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Abstract—Pre/post condition-based specifications are common-place in a variety of software engineering activities that range from
requirements through to design and implementation. The fragmented nature of these specifications can hinder validation as it is
difficult to understand if the specifications for the various operations fit together well. In this paper, we propose a novel technique
for automatically constructing abstractions in the form of behaviour models from pre/post condition-based specifications. Abstraction
techniques have been used successfully for addressing the complexity of formal artefacts in software engineering; however, the focus
has been, up to now, on abstractions for verification. Our aim is abstraction for validation and hence, different and novel trade-
offs between precision and tractability are required. More specifically, in this paper, we define and study enabledness preserving
abstractions, that is, models in which concrete states are grouped according to the set of operations that they enable. The abstraction
results in a finite model that is intuitive to validate and which facilitates tracing back to the specification for debugging. The paper also
reports on the application of the approach to two industrial strength protocol specifications in which concerns were identified.

Index Terms—Requirements/Specifications, Validation, Automated Abstraction.
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1 INTRODUCTION

P RE/POST condition specifications constitute good
practice in a variety of software engineering activi-

ties [1]. In requirements engineering, they provide the
link between declarative high-level system goals, and
operational requirements for the software-to-be [2]. Use
case specifications, which are popular in development
processes such as RUP (Rational Unified Process) are also
equipped with pre and postconditions. In design, the no-
tion of design by contract [3], as a mechanism to abstract
the way functionality is provided by a procedure or
method, is underpinned by pre/post conditions. Object
oriented design commonly includes design of method
pre and postconditions in addition to the specification
of class or object invariants. At the code level, the use
of assertions to verify at run-time pre/post conditions is
considered good-practice [4].

A pre/post condition pair constitutes a specification
that is local to a specific operation (method, procedure,
use case, event, etc.). The precondition is an assertion
that is expected to hold before the occurrence of the
operation, the postcondition is an assertion that is guar-
anteed to hold after the occurrence of the operation if
the precondition held before the occurrence. Typically,
a contract specification will include various operations
(needed to provide some significant service) each with
a pre/post condition pair and possibly an invariant that
is expected to hold after the occurrence of any sequence
of the specified operations
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Validating pre/post condition specifications, i.e., un-
derstanding if the there is a correspondence between
the meaning of the specification and the meaning that
the specification was expected to have, is a difficult and
error prone task. Although understanding the pre/post
condition for a single operation may be relatively simple,
understanding if the chaining of pre/post conditions for
an arbitrary sequence of operations is describing the
intended outcome is complicated. For example, ensuring
that the pre/post conditions of a set of operations of
an API are correct requires understanding if the set
of pre/post conditions of the API preserve the system
invariant and fit together adequately to provide the
intended API functionality. Validating a use case model
requires understanding how the various use-cases can
be combined to provide (and only provide) the expected
software-wide requirements.

In this paper we propose a strategy for validation of pre/post
condition specifications based on the conjecture that pre/post
condition specifications would benefit from easily auditable
abstractions that exhibit global implications of locally specified
behaviour.

Validation techniques can be classified into two com-
plementary strategies. The first is to convert the problem
into a verification problem by producing a specifica-
tion against which the artefact to be validated can be
rigorously checked, possibly even (semi-)automatically
using testing, model checking, theorem proving or com-
binations thereof. There are multiple advantages to this
strategy and many approaches have shown it to be effec-
tive. However, there are downsides too. An alternative
specification must be built or be available, and we must
be sure that it has been validated appropriately; in other
words, the validation problem has been simply shifted.

The second strategy is to automatically produce alter-
native views of the artefact to be validated so that the
engineer can contrast his or her understanding of the
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expected behaviour against a different, but semantically
equivalent, perspective of the original specification. In
other words to transform the problem into a different,
hopefully simpler, validation problem. In this strategy,
the human plays a crucial role as it is she or he that must
identify a mismatch between the intended behaviour and
the specified behaviour.

A number of different approaches that fall into this
second validation strategy can be used to for pre/post
condition specifications. Manual inspection and review
techniques can identify some problems but are limited in
that reviewers must build a cohesive mental model of the
overall behaviour of the specification from a fragmented
specification in order to understand if: a) all admissible
sequences of operations (sequences where an operation
is applied only if its precondition is met) yield the
expected result and b) if all sequences of operations that
are considered valid are in effect admissible according to
the pre/post conditions specified. State space exploration
is an alternative validation strategy. A state machine can
be constructed, possibly automatically, and then be ex-
plored to gain confidence on the validity of the pre/post
condition specification. One of the main limitations here
is the state space of such a model is potentially infinite
and certainly unmanageable as a whole for an engineer.
Inspection of parts of the state space, via simulation or
animation is an alternative; but it provides, in addition
to a very partial exploration, a localised linear view that
may not suffice to detect problems.

In this paper we propose a complementary approach for
validation of pre/post condition specifications that is based
on the static construction of a conservative abstraction of
the specification in the form of a behaviour model which
exhibits the global implications of locally specified behaviour.
We conjecture that validation of abstract behaviour mod-
els automatically constructed from pre/post condition
specifications can facilitate the validation of the latter.

Behaviour models such as finite state machines and
action machines [5] are well founded formalisms that
allow describing the temporal relation between the oc-
currence of events. Depending on the context of use,
these events can be interpreted in various ways such
as operations, methods, procedures. Behaviour models
are used in requirements engineering for providing the
expected behaviour of the software-to-be or of external
agents that interact with it. These models are also used
to explain the expected usage of an API, the expected
communication protocol between processes, or to pro-
vide an abstract view of the state space of a system and
how various operations affect it.

Behaviour models are a popular target for synthesising
fragmented behaviour information. They can be syn-
thesised from requirements specifications [6], use cases,
and scenarios [7]. Their intuitive graphical representa-
tion and their executable semantics makes them good
choices for validation. The aim of this work is to support
validation of software engineering artefacts that rely
on pre/post conditions as a means for specification by

automated construction and tool-supported analysis of
behaviour models that abstract the state space of these
artefacts sufficiently to make validation tractable.

The use of abstract behaviour models for addressing
the complexity of formal artefacts in software engi-
neering is not novel. In particular, there has been a
significant amount of work in the use of abstractions
for verification (e.g., [8]) where the aim is to reduce the
complexity of the artefact to be verified automatically
against some property by automated abstraction. The
absence of a violation to the property in the (significantly
more tractable) abstraction guarantees that the original
artefact satisfies the property. The price to be paid for
the abstraction is that of precision: a violation of the
property in the abstraction may however be spurious,
not corresponding to a behaviour in the original artefact.

The work presented in this paper, however, aims at
using abstraction to support validation instead of verifica-
tion. Hence, the level of abstraction required to obtain an
appropriate trade-off between precision and tractability
is different and the computation of the abstraction poses
different challenges. In this paper we present and study
a particular level of abstraction, enabledness preserving
abstractions, and show that it supports validation of
complex, industrial strength, specifications.

More specifically, in this paper, we propose a novel
technique for constructing behaviour models from con-
tract specifications, i.e., operations specified with pre-
and post conditions. Given a contract, the resulting
behaviour model is an abstraction of all possible im-
plementations that satisfy the contract. The level of
abstraction chosen to construct the behaviour model can
be seen as a generalisation of the pre/post condition
philosophy: A precondition describes the state in which
a specific operation is permissible, we are interested
in capturing the precondition for each arbitrary set of
operations. In other words, each state in the resulting
behaviour model should characterise the condition for
which a subset of the specified operations is enabled; this
means that the invariant of the state is the conjunction
of the preconditions enabled at that state. The contract
abstraction is then completed by adding transitions ac-
cording to the preconditions and postconditions of the
operations they model: A transition can be added if the
precondition for the operation holds on the source state
and the postcondition holds on the target state.

The models constructed by the approach described
herein can be used to validate contract pre/post-
condition-based specifications through inspection, ani-
mation and simulation. We believe, and our experience
so far confirms, that the criteria chosen for abstraction
facilitates validation and debugging. Firstly, because a
formal and intuitive correspondence exists between the
state space of the behaviour model and that of the arte-
fact being specified. Furthermore, that correspondence
is structured in a way that can be easily traced back to
the original specification. Not only does each state in
the behaviour model represent an invariant expressed
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CircularBuffer
variable a array of integers
variable wp, rp integer
inv 0 ≤ rp < |a| ∧ 0 ≤ wp < |a| ∧ |a| > 3
start |a| > 3 ∧ rp = |a| − 1 ∧ wp = 0

action write(integer n)
pre (wp < rp− 1) ∨ (wp = |a| − 1 ∧ rp > 0)
∨ (wp < |a| − 1 ∧ rp < wp)

post rp′ = rp ∧ (wp < |a| − 1 ⇒ wp′ = wp+ 1)
∧ (wp = |a| − 1 ⇒ wp′ = 0)
∧ (a′ = updateArray(a,wp, n))

action integer read()
pre (rp < wp− 1) ∨ (rp = |a| − 1 ∧ wp > 0)
∨ (rp < |a| − 1 ∧ wp < rp)

post rv = a[rp′] ∧ wp′ = wp ∧ a′ = a
∧ (rp < |a| − 1 ⇒ rp′ = rp+ 1)
∧ (rp = |a| − 1 ⇒ rp′ = 0)

Fig. 1. Specification of a circular buffer

in terms of the variables, predicates and propositions
that appear in the specification (and hence constructing
concrete scenarios from abstract ones is straightforward),
but also the invariants are expressed as a conjunction of
preconditions, each of which is a building block of the
specification being validated (and hence facilitating the
identification of problematic operations). Secondly, be-
cause in the case studies conducted so far, the state-based
models we have produced automatically from contract
specifications have had a similar level of abstraction
to models manually produced by the authors of the
contract specification. For instance, we have produced
abstractions that correspond to manually produced type-
state specifications for object oriented classes [9], and
abstractions that are comparable to the state-machines
included in Microsoft technical documents to aid the
comprehension of their protocol specifications.

In summary, the contributions of this paper are: i)
a definition of finite state abstraction of a pre/post-
condition-based specification, ii) the notion of enabled-
ness preserving abstraction as an adequate level of ab-
straction to support contract validation, iii) an algo-
rithm, and tool, that constructs enabledness preserv-
ing abstractions from contracts, which in practice is
quadratic with respect to the amount of states of the
abstraction and that scales to industrial strength con-
tract specifications, iv) the validation of two industrial
strength protocol specifications in which our approach
supported the identification of a number of ambigui-
ties and inconsistencies, and v) a number of heuristics
based on the structural characteristics of an enabledness
preserving behaviour abstractions that can help identify
problems in pre/post-condition-based specifications.

The rest of this paper is organised as follows. We
begin with a motivation example that informally intro-
duces the concept of contract validation via finite state
abstractions (Section 2). We continue with the formal
definition of contracts, contract implementations and
finite state contract abstractions (Section 3). We then

introduce the notion of enabledness equivalence and
enabledness-preserving contract abstractions (Section 4).
Subsequently, we report on the implementation of our
approach and the validation of the tool and approach
on four case studies (Section 5). Then we comment on a
number of guidelines which proved to be useful when
validating contract by means of enabledness-preserving
abstractions (Section 6). Finally, we discuss related work
(Section 7), ideas for future work (Section 8) and conclu-
sions (Section 9).

2 MOTIVATION

In this section, we motivate our approach by illustrating
the difficulties of validating pre/post condition specifi-
cations using a toy example.

Consider the specification of a circular buffer given in
Figure 1. The specification includes three state variables:
a represents an integer array with slots that the buffer
uses for storing data, wp is a pointer to the first available
slot for storing new data, and rp is a pointer to the last
slot from which data was read. The idea is that wp points
to a slot further ahead than the slot pointed to by rp and
that the slots in between are those that have been written
but not yet read. Of course, the fact that this is a circular
buffer makes the notion of “further ahead” slightly more
complicated to express formally. The specification in-
cludes pre and postconditions for two actions applicable
to circular buffers: read and write. Writing requires the
buffer to have empty slots and results in a circular buffer
that has incremented by one its writing pointer unless
it has reached the array limit, case in which the writing
pointer is set to 0. Reading requires the buffer to have
slots with unread data and updates its reading pointer
using the same strategy as write uses for wp. Finally,
the specification includes an invariant which requires the
circular buffer to have more than three slots for storing
data1 and requires both pointers to be within the bounds
of the circular buffer, i.e., between 0 and |a| − 1, and
there is a condition over the acceptable starting states
for circular buffers.

Given the circular buffer specification, how can we
validate if it corresponds to the intended behaviour for
a circular buffer is? As mentioned above, one strategy
would be to write another specification (or use an ex-
isting one) and verify the contract specification against
it using techniques such as model-checking or theorem
proving.

For instance, a reviewer might perform an automated
analysis capable of checking if the contract specifica-
tion satisfies some given properties. Techniques such
as model checking [10] and in particular infinite state
model checking [11] allow verifying if the the entire
state-machine defined by a contract specification, as
described above, satisfies a property. Theorem proving
allows checking if a property can be directly inferred

1. Notice however, that the actual storing capacity is always reduced
by one.
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from the contract specification. The problem with these
strategies, in addition to tractability issues, is coming
up with the properties to be checked. Some examples
of properties that one would want to check against the
circular buffer contract are:

1) Initially, the read action is enabled after the first
write action occurs.

2) Either a write or a read action can be performed
at any given moment.

3) The read operation is always enabled after any
(positive) number of write operations.

4) The write operation is always enabled after any
(positive) number of read operations.

The completeness of the set of properties to be checked
against the contract is crucial to this strategy: Have
we included all the relevant properties? In addition,
it requires specifying the intended behaviour, of the
circular buffer in this case, twice: Once in an operational
pre/post condition style and the other in a, for instance,
more declarative style.

Such strategies can be effective at finding faults, how-
ever, they require another specification (namely, the
aforementioned desirable properties) and shift the val-
idation problem as it is now the alternative specification
that must be validated.

Instead, the complementary approach we propose is
to automatically construct a behaviour model such as
the one shown in Figure 2. In this model the concrete
state space of the circular buffer has been abstracted
based the set of operations the concrete states enable,
that is, the set of operations for which their preconditions
hold. Concrete states of a circular buffer that only allow
execution of write are represented by the abstract state
S0, concrete states that allow write and read are
grouped into abstract state S1, and all concrete states
that only allow to read are abstracted into S2. Tran-
sitions between abstract states exist only if a transition
between concrete states they represent exist. Finally, an
abstract state is an initial state (marked with a double
circle) if it abstracts at least one initial concrete state of
the circular buffer.

We believe that automated construction of abstractions
that consolidate pre/post condition specifications into
one cohesive behaviour model which quotients states
based on the operations they enable can complement the
strategies outlined previously providing further support
for analysis and validation of pre/post specifications.
The model of the circular buffer specification shown
in Figure 2 abstracts away the size of the buffer and
brings an infinite state space down to only three abstract
states. Furthermore, the three abstract states have a clear
and intuitive interpretation in the domain of circular
buffers: a circular buffer can be empty, full, or partially
full/empty: State 0 represents a buffer in which we can
write but we cannot read, state 1 allows both actions to
be performed and state 2 allows reading only.

Consider the write-labelled transition from state 1
to 0. This transition is suspicious as writing data into a

S 0 S 1
wr i te

w r i t e ,  r e a d

wr i t e ,
r e a d

S 2
w r i t e ,  r e a d

r e a d

Fig. 2. Circular buffer finite abstraction

S 0 S 1
wr i te

r e a d

wr i t e ,
r e a d

S 2
wr i te

r e a d

Fig. 3. Corrected circular buffer finite abstraction

non-empty buffer should not lead to a state that models
empty buffers. Similarly, the transition from the state
1 (non-full) to state 2 (full) on label read also looks
suspicious. These transitions suggest that there could
be something in the specification that is not entirely
accurate or correct.

To understand why these suspicious transitions ap-
pear in the behaviour model it is important to un-
derstand the abstraction relation between the model in
Figure 2 and the specification. The concrete states of the
circular buffer are formally abstracted to get the model
in that figure according to following invariants:

• State 0: inv ∧ write_pre ∧ ¬read_pre
• State 1: inv ∧ write_pre ∧ read_pre
• State 2: inv ∧ ¬write_pre ∧ read_pre

Let us now try to understand why the transition
labelled write from states 1 to 0 appears in Figure 2 and
if this is signalling a problem in the specification. The fact
that the transition is enabled in state 1 follows directly
from the choice of level of abstraction of Figure 2. State
1 models all the states of circular buffers in which both
read and write are enabled. So the question to answer
is why can write lead to state 0. The question can be
answered by asking how can the invariant of state 0 hold
if the invariant of state 1 holds and action write occurs;
question which can be easily answered automatically
with appropriate tool support: If rp = wp holds on top
of the invariant for state 1, then the postcondition for
write leads to state 0.

It turns out that the invariant for circular buffers
was missing the condition rp 6= wp. The amended
specification would yield an abstract behaviour model
(see Figure 3) without the two suspicious transitions
described previously. It is interesting to note the subtlety
of this error: The completed invariant is guaranteed to
be true by the initial predicate and the postconditions of
the two circular buffer actions. Any sequence of actions
starting from the initial state guarantees rp 6= wp yet the
omission becomes a problem if the buffer is extended
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ExtendedCircularBuffer
...

inv 0 ≤ rp < |a| ∧ 0 ≤ wp < |a| ∧ |a| > 3...action reset()
pre true
post rp′ = wp ∧ wp′ = wp ∧ a′ = a

Fig. 4. Circular buffer with reset

with legal operations (those that preserve the incomplete
invariant) such as the specification shown in Figure 4.

In summary, the example above illustrates how the
depiction of an abstract model that integrates the various
pieces of information that appear in a contract specifica-
tion supports validation of such specifications and aids
identifying potential problems it may have. Furthermore,
we believe that the specific choice of level of abstraction
of the model, the traceability of the abstraction to the
specification and to domain-relevant states help identify
and fix problems. In the rest of the paper we present
a novel technique to automatically construct abstract
behaviour models like the one in Figure 2 from contracts
such as the ones depicted in Figures 1 and 4 and discuss
validation of our approach on a number of case studies.

3 FINITE STATE CONTRACT ABSTRACTIONS

In this section, we define the formal underpinnings of
the problem we want to solve: finding a finite abstraction
of a contract. Firstly, we define contracts and their mean-
ing as a set of acceptable implementations. Then, we
define abstractions as a finite state machine which is able
to simulate any valid implementation of the protocol.

We call P (X) the set of first order predicates whose
free variables are included in X . We will use the operator
X ′ to refer to the set of variables { x′ | x ∈ X }.

Definition 1 (Contract). A structure of the form C =
〈V, inv, init, A, P, Q〉, is called a contract when:

• V is a finite set of variables.
• inv ∈ P (V ) is the system invariant.
• init ∈ P (V ) is the initial predicate.
• A = { a1, . . . , an } is a finite set of action labels.
• P : A→ P (V ∪ { p }) is a total mapping that assigns a

precondition for each of the action labels. Note that the
distinguished variable p stands for the name of any action
parameter2.

• Q : A → P (V ∪ V ′ ∪ { p }) is a total mapping that
assigns a postcondition for each of the action labels, where
v′ stands for the new value of the variable v after an
action execution.

Example 1. Formally, the specification given in Figure 1

2. For the sake of simplicity, and without loosing generality, we set
the number of parameters to 1. More parameters could be accommo-
dated by thinking of p as the name of a n-uple.

denotes the contract C = 〈V, inv, init, A, P, Q〉 where:

V = { a, rp, wp }
inv = 0 ≤ rp < |a| ∧ 0 ≤ wp < |a| ∧ |a| > 3

init = |a| > 3 ∧ rp = |a| − 1 ∧ wp = 0

A = { read,write }

Pwrite = (wp < rp− 1) ∨ (wp = |a| − 1 ∧ rp > 0)

∨ (wp < |a| − 1 ∧ rp < wp)

Qwrite = rp′ = rp ∧ (wp = |a| − 1 ⇒ wp′ = 0)

∧ (wp < |a| − 1 ⇒ wp′ = wp+ 1)

∧ (a′ = updateArray(a,wp, n))

Pread = (rp < wp− 1) ∨ (rp = |a| − 1 ∧ wp > 0)

∨ (rp < |a| − 1 ∧ wp < rp)

Qread = ∃ rv
(
rv = a[rp′] ∧ wp′ = wp ∧ a′ = a

∧ (rp < |a| − 1 ⇒ rp′ = rp+ 1)

∧ (rp = |a| − 1 ⇒ rp′ = 0)
)

Notice that the translation is straightforward except for
the return values, which are existentially quantified in the
postcondition. We do not take into consideration the return
values because we are only interested in the effects that the
actions have on the system variables.

On the other hand, contract implementations will be
defined on top of what we call Data State Machine (which
is a sort of simplified version of an Action Machine [5]).
Data State Machines have states labelled by mappings
from variable names to a given value domain while
transitions are labelled with actions together with actual
parameter values.

Definition 2 (Data State Machine (DSM)). A structure of
the form I = 〈V, D, A, S, S0, ∆〉, is called Data State
Machine when:
• V is a finite set of variable names.
• D is a value domain.
• A is a set of action labels.
• S is a set of states denoted by functions from V to D

(i.e., S ⊆ V → D).
• S0 ⊆ S is the set of initial states.
• ∆ : S ×A×D → ℘(S) is a transition function.

Now we define an implementation of a contract as a
DSM that satisfies the contract:

Definition 3 (Contract Implementation). Given a con-
tract C = 〈V, inv, init, A, P, Q〉, a value domain D
and an interpretation Dop for the symbols appearing in
predicates. We say that a Data State Machine of the form
I = 〈V, D, A, S, S0, ∆〉 is an implementation for the
contract C under the interpretation 〈D,Dop〉 iff the following
hold:

1) V ⊇ V , D = D, A = A.
2) init(s) yields true for each s ∈ S0.
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3) There exists a set of states Sv ⊆ S such that inv(s)
yields true for each s ∈ Sv , S0 ⊆ Sv and for each
ai ∈ A and d ∈ D such that Pai(s ∪ { p 7→ d }) yields
true then ∆(s, ai, d) is non-empty and each state s′ ∈
∆(s, ai, d) is also included in Sv . Furthermore, Qai

(s∪
s′ ∪ { p 7→ d }) holds3.

Conceptually, an implementation is a legal opera-
tionalization of the actions described by a contract. This
operationalization must satisfy that the initial configu-
rations are allowed by the contract and that every time
that it evolves then it follows the pre and postconditions
established by the contract.

In the rest of the paper, given an implementation,
Sv will denote the smallest set satisfying the above
conditions.

Example 2. A possible implementation of contract of Figure
1 for a buffer of size four is the Data State Machine of the
form I = 〈V, D, A, S, S0, ∆〉, where:

V = { a,wp, rp }
D = Z ∪ ({ 0, 1, 2, 3 } → Z)

A = { read, write }

S =

{
s

∣∣∣∣ |s(a)| = 4 ∧ 0 ≤ s(rp) < 4 ∧
0 ≤ s(wp) < 4 ∧ s(rp) 6= s(wp)

}
S0 =

{(
a 7→ [0 7→ 0, 1 7→ 0, 2 7→ 0, 3 7→ 0],

rp 7→ 3, wp 7→ 0

)}
Informally, the function ∆ is defined as having transitions
from every state that satisfies the precondition of a given
action, going to every possible state that satisfies the post-
condition of the same action.

The number of states of this implementation is values|a| ×
|a|× (|a|−1), where values is the number of different values
that can be entered in the array. For instance, if we only allow
boolean elements and the array is of size 4, we would have
192 states. This shows that abstraction is necessary even for
a simple example like the circular buffer.

We use Finite State Machines to provide an abstract
representation of a contract, or more precisely, of the
implementations allowable by a contract. Simply, a FSM
is defined as a structure M = 〈S, S0, Σ, δ〉 where S is
a finite set of states, S0 ⊆ S is the set of initial states, Σ
is a finite alphabet and δ : S × Σ → ℘(S) is a transition
function.

We now define a finite contract abstraction as a FSM
which is able to simulate any possible contract imple-
mentation.

Definition 4 (Finite State Contract Abstraction (FSCA)).
Given a contract C = 〈V, inv, init, A, P, Q〉, an inter-
pretation 〈D,Dop〉 and a FSM M = 〈S, S0, Σ, δ〉, we say
that M is a finite state contract abstraction (FSCA) of C
under the interpretation 〈D,Dop〉 iff for each implementation
I = 〈V, D, A, S, S0, ∆〉 of C there exists a total function

3. Note that s′ : V → D, however it can be straightforwardly
reinterpreted as a mapping from V ′ to D.

absI : Sv → S, called witness abstraction function, such
that:

1) absI(S0) ⊆ S0

2) For every s ∈ Sv , and every action label ai
and actual parameter d such that Pai

holds, then
absI(∆(s, ai, d)) ⊆ δ(absI(s), ai).

Having fixed, in the notion of contract, what we
mean by a pre/post-condition-based specification, and
having formally defined contracts, their acceptable im-
plementations and finite state abstractions of these, in
the next section we concentrate on finding a finite state
abstraction of a contract which is abstract enough to
enable validation yet not too coarse (note that universal
language generator would fit previous definition) to im-
pede finding problems with the contract-under-analysis.

Moreover, an FSCA is able to reproduce any legal
action sequence allowed by a contract.

Lemma 1. Given a contract C = 〈V, inv, init, A, P, Q〉,
an interpretation 〈D,Dop〉 and its FSCA M =
〈S, S0, Σ, δ〉, then every path on any implementation
I of C is accepted by the language of M .

4 FSCAS FOR CONTRACT VALIDATION

In this section, we show how to construct a finite state
contract abstraction from a contract. The particular level
of abstraction for the FSMs to be constructed is based on
the notion of enabledness. This level of abstraction results
in state invariants in the contract abstraction which are
compact, intuitive and can be easily traced back to the
contract. We believe that this is essential to facilitate
the task of the engineer that must mentally fill the gap
between abstraction and contract in order to validate and
fix the latter.

The core idea for setting the level of abstraction to
support contract validation is to capture the different
states of the contract that are relevant in terms of the
operations which are enabled at a given time. This means
that we will group together concrete states of contract
implementations based on the preconditions that are
satisfied at those states.

Definition 5 (Enabledness Equivalence). Given a contract
C = 〈V, inv, init, A, P, Q〉, an implementation of the form
I = 〈V, D, A, S, S0, ∆〉 of C under 〈D,Dop〉 and two
concrete states s, t ∈ S we say that s and t are enabledness
equivalent states (noted s ≡e t) iff for every a ∈ A:
• ∃ d . Pa(s ∪ { p 7→ d }) ⇒ ∃ d′ . Pa(t ∪ { p 7→ d′ })
• ∃ d′ . Pa(t ∪ { p 7→ d′ }) ⇒ ∃ d . Pa(s ∪ { p 7→ d })

Note that this definition is comparable to requiring
simulation equivalence for just one step.

An enabledness-preserving abstraction is a finite state
contract abstraction in which concrete states are parti-
tioned by enabledness equivalence. In other words, they
are grouped based on the one-step availability of actions.
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Definition 6 (Enabledness-preserving FSCA). A Finite
State Contract Abstraction M = 〈S, S0, Σ, δ〉 of a con-
tract C = 〈V, inv, init, A, P, Q〉 under an interpretation
〈D,Dop〉 is enabledness-preserving iff for every implemen-
tation I of C there exists absI : Sv → S (a witness abstraction
function) such that given a pair of concrete states s, t on Sv ,
then s ≡e t ⇔ absI(s) = absI(t) holds.

The previous definition characterises those FSCAs
whose state set complies with the enabledness equiv-
alence partition. In order to construct such abstraction,
we first need to define a couple of concepts. The first of
them is the notion of action set invariant. Given a subset
of actions as of a contract C, we wish to characterise
all concrete states s of implementations of C that satisfy
the contract invariant inv in which every action a in as
is possible from s (there exists a parameter p for every
action a in as such that the precondition Pa of action a
holds) and, importantly, in which every action a not in
as it is not possible from s.

Definition 7 (Invariant of an Action Set). Given a contract
C = 〈V, inv, init, A, P, Q〉, the invariant of a set of
actions as ⊆ ℘(A) is the predicate invas ∈ P (V ) defined
as:

invas
def
= inv ∧

∧
a∈as
∃p. Pa ∧

∧
a/∈as

@p. Pa

We can now construct an enabledness-preserving
FSCA of a contract by fixing the states to be the enu-
meration of all the possible action sets. We connect
two action sets whenever there is a variable assignment
satisfying the invariant of the first set, that executing an
action, reaches a variable assignment which satisfies the
invariant of the second set.

Theorem 1 (FSCA characterisation). Given a contract C =
〈V, inv, init, A, P, Q〉 and an interpretation 〈D,Dop〉, the
FSM M = 〈S, S0, Σ, δ〉 is an enabledness-preserving FSCA
of C where:

1) S = ℘(A)
2) as ∈ S0 iff invas ⇒ init.
3) Σ = A.
4) For all as ∈ S and a ∈ Σ, if a 6∈ as then δ(as, a) = ∅,

otherwise:

δ(as, a) ⊇
{
bs
∣∣ invas ∧ Qa ∧ inv′bs is satisfiable

}
The proof for the theorem can be done showing that,

given an implementation I ,

absI(s)
def
= { a | ∃ d ∈ D . Pa(s ∪ { p 7→ d }) }

is a witness abstraction function satisfying: i) Definition 4
and ii) that every pair of concrete states s, t satisfy that
s ≡e t ⇔ absI(s) = absI(t). The first condition can be
proved by using the fact that invabsI(s)(s) = true. The
second condition is implied by Definition 5.

Returning to the example of Section 2, the FSCA in
Figure 2 is an enabledness-preserving abstraction of the
circular buffer contract depicted in Figure 1. The action

sets for states S0, S1 and S2 are {write }, {write, read },
and { read }, respectively. In addition, it is simple to
show that the initial state has been set correctly as init
implies inv{ write }. The satisfiability proofs for transi-
tions are more complex to show and were computed
using SMT solvers (see the next section).

Notice that the abstractions that we produce are able
to simulate every possible implementation of a contract.
However there may be traces of the FSCA that are
not feasible on any given implementation. For instance,
write → read → read can be performed in the FSCA
of Figure 2 but it is not possible to read twice after
writing once on any circular buffer implementation in-
dependently of its size.

It is important to note that item 4 of Theorem 1
could be strengthened by requiring equality rather than
inclusion. The reason for choosing a weaker condition is
that in practice it is undecidable to check if invas ∧ Qa ∧
inv′bs is satisfiable. The theorem above guarantees that
choosing to add transitions in the face of uncertainty
still guarantees the construction of a proper abstraction.
In the case of the abstraction for the circular buffer
in Figure 2 no additional transitions due to unfinished
satisfiability checks were added.

In the presence of spurious transitions the possibility
of having FSCA traces that are not feasible on any
implementation is even higher. Fortunately, state-of-the-
art theorem provers are increasingly able to deal with
different “kinds” of formulae in a complete fashion and
therefore cases of uncertainty did not arise in any of our
case studies.

4.1 Construction algorithm

In this section we present an algorithm for the generation
of an enabledness-preserving FSCA out of a contract. A
trivial algorithm using the concepts of Theorem 1 would
require Ω(2n × n × 2n) satisfiability queries, where n
is the amount of actions in a contract. This is because
we would have to consider 2n states and each state
could potentially advance using any of the n actions to
any state. Space consumption would also be exponential
since the set of states would have to be kept in memory
while computing transitions.

Using this naïve implementation, together with a in-
consistent state pruning phase, was enough for most
of the case studies we present here in Section 5. This
implementation, together with the execution times, was
reported in in [12] without mentioning the inconsis-
tent state pruning phase. Unfortunately the biggest case
study, which has 33 actions, was intractable with this
implementation and introduced the need for a more
efficient algorithm to construct FSCAs.

The idea behind the algorithm we present in this
section is splitting the construction problem in three
parts: i) obtaining a set of candidate states, ii) computing
the transitions between these states, and iii) restricting
the result to the reachable part.
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The first part could be easily accomplished by just enu-
merating all the possible states, but this would result in
a very expensive transition-computation phase. Instead,
we construct a set of candidate states by calculating
enabledness dependencies among actions, yielding a set
of states which is usually much smaller than 2n but still
contains any reachable state in the resulting FSCA. The
second part takes the set of candidate states and explores
every possible transition between them in a standard
manner. The complexity of the second phase is heavily
dependent on the size of the candidate set constructed
in the first phase. Finally, the third phase restricts the
result to only those connected subgraphs which contain
at least one initial state.

First of all, we define the notion of enabledness depen-
dency between actions. We say that actions a and b are
dependent if either: i) every time that a is enabled then
b is also enabled, ii) every time that a is enabled then
b is disabled, iii) every time that a is disabled then b is
enabled, or iv) a is disabled implies that b is disabled.

Definition 8 (Enabledness Dependencies). Given a con-
tract C = 〈V, inv, init, A, P, Q〉, we define the following
enabledness dependency relationships in A×A:

• D++ def
= { (a, b) | inv ∧ Pa ⇒ Pb }

• D+− def
= { (a, b) | inv ∧ Pa ⇒ ¬Pb }

• D−+
def
= { (a, b) | inv ∧ ¬Pa ⇒ Pb }

• D−−
def
= { (a, b) | inv ∧ ¬Pa ⇒ ¬Pb }

Given a set of actions we will say that it is compliant
with the enabledness dependencies relationships if it
satisfies all the restrictions that they impose.

Definition 9 (Enabledness Dependencies Compliance).
Given a contract C = 〈V, inv, init, A, P, Q〉 and its en-
abledness dependencies relationships D++, D+−, D−+, D−−,
we say that a set of actions as ∈ ℘(A) complies with the
enabledness dependencies if all the following conditions
hold:

1) For every (a, b) ∈ D++, if a ∈ as then b ∈ as.
2) For every (a, b) ∈ D+−, if a ∈ as then b /∈ as.
3) For every (a, b) ∈ D−+, if a /∈ as then b ∈ as.
4) For every (a, b) ∈ D−−, if a /∈ as then b /∈ as.

The enabledness dependencies relationships are
straightforwardly computed using the following algo-
rithm.

Definition 10 (Enabledness Dependencies
Computation Algorithm). Given a contract
C = 〈V, inv, init, A, P, Q〉, we construct the enabledness
dependencies relationships D++, D+−, D−+ and D−− using
the following procedure.

1: D++ ← ∅
2: D+− ← ∅
3: D−+ ← ∅
4: D−− ← ∅
5: for a ∈ A do

6: for b ∈ A do
7: if inv ∧ Pa ⇒ Pb then
8: D++ ← D++ ∪ { (a, b) }
9: else if inv ∧ Pa ⇒ ¬Pb then

10: D+− ← D+− ∪ { (a, b) }
11: end if
12: if inv ∧ ¬Pa ⇒ Pb then
13: D−+ ← D−+ ∪ { (a, b) }
14: else if inv ∧ ¬Pa ⇒ ¬Pb then
15: D−− ← D−− ∪ { (a, b) }
16: end if
17: end for
18: end for

To analyse the time complexity of this algorithm, we
count the number of logical implications which need to
be solved. This number drives the resulting execution
time since solving each of these implications is much
more expensive than the other operations in the algo-
rithm (initialising sets, adding elements to sets). More
concretely, the number of logical implications is bounded
by 4× n2, where n is the amount of actions. Notice that
(a, b) ∈ D−− is equivalent to (b, a) ∈ D++, therefore
reducing the total number of logical implications that
need to be solved.

Lemma 2. Given a state s ∈ ℘(A), if invs is satisfiable
then s, understood as a set of actions, is compliant with the
enabledness dependencies relationships.

Notice that the converse is not true: there exist states
that are compliant with the enabledness dependencies
relationships but are not consistent. For instance, take a
contract with integer variables x, y, z, true as invariant
and actions a1, a2, a3 with preconditions x < y, y < z
and z < x respectively. There are no precondition de-
pendencies, therefore the state { a1, a2, a3 } is compliant,
but its state invariant is still not satisfiable.

Once that we have calculated the enabledness de-
pendencies relationships, we can proceed to enumerate
all the states that comply with these restrictions. The
following algorithm provides an efficient way to do so.

Definition 11 (Enumerating States that Comply with
Enabledness Dependencies). Given a contract C =
〈V, inv, init, { a1, . . . , an } , P, Q〉 and its enabledness de-
pendencies relationships D++, D+−, D−+ and D−−, we com-
pute a set of states S? given as the result of ENUM(∅, 1).

1: procedure ENUM(current, i)
2: if i > n then
3: if invcurrent is consistent then
4: return { current }
5: else
6: return ∅
7: end if
8: else if ai /∈ current ∧ (¬ai) /∈ current then
9: c1 ← current ∪ { ai }

10: c1 ← c1 ∪ { b | (ai, b) ∈ D++ }
11: c1 ← c1 ∪ { (¬b) | (ai, b) ∈ D+− }
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12: c2 ← current ∪ { (¬ai) }
13: c2 ← c2 ∪ { b | (ai, b) ∈ D−+ }
14: c2 ← c2 ∪ { (¬b) | (ai, b) ∈ D−− }
15: return ENUM(c1, i+ 1) ∪ ENUM(c2, i+ 1)
16: else
17: return ENUM(current, i+ 1)
18: end if
19: end procedure

This recursive algorithm uses a set of literals current
to hold all those actions that need to be enabled (or
disabled) at a certain point. At every step, it analyses the
current action ai and it checks if it is already contained
in current, either negated or not.

1) If both ai and (¬ai) are not included in current,
the algorithm advances recursively by separately
considering the case in which ai is added to the
current set and the case in which (¬ai) is added to
the current set.
Before actually performing the recursive call, the
algorithm uses the enabledness dependency infor-
mation to see if any other restrictions can be added
to the current set. Due to the nature of the enabled-
ness dependencies, this step could never include
any inconsistent restriction (namely the negation of
a literal which is already included) into the current
set. Formally, for each j such that j < i then:
• if (ai, aj) ∈ D++ then (¬aj) /∈ current
• if (ai, aj) ∈ D+− then aj /∈ current
• if (ai, aj) ∈ D−+ then (¬aj) /∈ current
• if (ai, aj) ∈ D−− then aj /∈ current

After the recursive calls finished enumerating both
set of states, these are joined and returned.

2) If either ai or (¬ai) are contained in current, then
it advances to analyse the following action.

If it reaches the end, then it returns the current state
(only if its invariant is satisfiable)4.

Lemma 3. The set of candidate states S?, as constructed in
Definition 11, satisfies that it is equal to the set of consistent
states that comply with the enabledness dependencies relation-
ships.

Once that the set S? of candidate states has been
constructed, we need to construct the transitions be-
tween states in S?. This is performed using the following
algorithm.

Definition 12 (Enabledness-preserving FSCA Con-
struction Algorithm). Given an input contract C =
〈V, inv, init, A, P, Q〉 and a set of candidate states S,
we build a FSM M = 〈S, S0, Σ, δ〉 using the following
procedure:

1: S0 ← { s ∈ S | invs ⇒ init }
2: Σ← A.
3: δ(s, a)← ∅ ∀s, a

4. Notice that, since states are defined only by the set of actions that
they contain, all the negated actions are implicitly dropped.

4: for s, s′ ∈ S do
5: for each action a ∈ s do
6: if invs ∧ Qa ∧ inv′s′ is satisfiable then
7: δ(s, a)← δ(s, a) ∪ { s′ }
8: end if
9: end for

10: end for

In this algorithm we test each of the candidate states
in S to see if they are initial states (which requires |S|
logical queries). We then initialize the transition function
as empty for any input and proceed to check if any pair
of states is reachable using enabled transitions in the
departing state (which requires |S|2×|A| logical queries).

We can now postulate that the enabledness-preserving
FSCAs constructed by our algorithm are in fact compli-
ant with Definition 6.

Theorem 2. Given a contract C and an interpretation
〈D,Dop〉, then M as built by Definition 12 using the set S? of
candidate states as given by Definition 11 is an enabledness-
preserving FSCA of C under the 〈D,Dop〉.

The proof for this theorem is based on the fact that
the algorithm in Definition 12 performs an exhaustive
exploration which complies with Theorem 1 over the
set of states S?. All the states which are left out of
this exploration (namely, ℘(A) r S?) would never be
part of the final result since their state invariants are
insatisfiable, as implied by Lemmas 2 and 3.

The final FSCA construction phase, which is the re-
striction of the resulting abstraction to its reachable
fragment, is entirely standard and will not be analysed in
this paper. Furthermore, notice that this phase could be
combined with the transition generation phase following
standard BFS or DFS exploration patterns.

We now proceed to analyse the time complexity of the
full FSCA construction process. As mentioned before,
the enabledness dependencies calculation needs O(n2)
logical queries, where n is the number of actions. The
construction of the set of candidate states S? requires
one query for each state that is compliant with the
enabledness dependencies. If we have no dependencies
at all, then we need O(2n) queries, which is the worst
case. However, in practice the set of compliant states
and consistent states in the resulting abstraction is very
similar, as can be observed in Table 2 in Section 5. Finally,
as mentioned before, the transition calculation phase
requires O(|S?|2 × n) queries.

5 TOOL SUPPORT AND CASE STUDIES

In this section, we comment on some of the aspects
involved in the validation of our approach. We discuss
tool support and various case studies.
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5.1 Tool Support
In order to validate our approach, we built a tool called
CONTRACTOR5 that takes a contract description as input
and returns an enabledness-preserving finite state con-
tract abstraction. It uses Satisfiability Modulo Theories
(SMT) solvers [13] to reason about satisfiability of the
formulae as described in Section 4. In cases where these
solvers time-out or return “unknown”, we assume that
the formula is satisfiable, resulting in additional transi-
tions in the enabledness-preserving FSCA. As discussed
in the previous section, item 4 of Theorem 1 allows these
conservative decisions, guaranteeing the construction of
a proper abstraction of the contract. In any case, in all
case studies we conducted, no transitions were added as
a result of limitations of the SMT solvers (using theories
such as linear arithmetic and arrays).

Notice that both the algorithms in Definition 10 and
Definition 12 can be easily adapted to make use of
multiple worker threads and our CONTRACTOR tool
currently implements this.

Furthermore, the algorithm in Definition 10, which
calculates the enabledness dependencies relationships, is
implemented with a few optimizations in CONTRACTOR.
In a first round, only dependencies among labels ai
and aj with i ≤ j are calculated. This information is
then propagated using a standard fix-point algorithm
to calculate the rest of the dependencies. This reduces
almost in half the number of satisfiability queries that
need to be solved in order to compute the relationships
D++, D+−, D−+ and D−−.

The rest of this section presents four case studies used
to test CONTRACTOR, its capabilities and, more impor-
tantly, to validate the approach. Note that CONTRACTOR
is capable of dealing with complex case studies in times
that range from a few seconds up to a couple of minutes
in a standard desktop computer (Intel Core i7 with 4GB
of RAM memory).

5.2 WebFetcher
The purpose of this case study was to compare the
enabledness-preserving abstractions automatically con-
structed by CONTRACTOR with manually constructed
abstractions aimed at static-time reasoning about pro-
grams. We considered a case study presented in [9]
which extends the notion of typestates for object oriented
languages: a class modelling a web page fetcher. The
class provides methods to set the target URL, to open
and close the connection and to fetch data, as described
in Figure 5.

CONTRACTOR applied to the web fetcher contract
results in the FSCA depicted in Figure 6. The states,
the transitions (as depicted in the diagram) and the
invariants (as computed according to Definition 7) that
our technique produces coincide with the manually con-
structed typestate FSM diagram shown in [9].

5. The CONTRACTOR tool is available on-line together with the
contracts used in this section at http://lafhis.dc.uba.ar/contractor.

WebFetcher
variable site string
variable cxn socket
inv site 6= null ∧ (cxn 6= null ⇒ cxn.state = open)
start site 6= null ∧ cxn = null

action setSite(string s)
pre s 6= null ∧ cxn = null post site′ = s

action open()
pre cxn = null post cxn′ 6= null ∧ cxn′.state = open

action close()
pre cxn 6= null post cxn′ = null

action getPage()
pre cxn 6= null post true

Fig. 5. Specification of a web page fetcher

S1

setSite

S2open

close

getPage

Fig. 6. FSCA for the web page fetcher

The results of this case study support the conjecture
that enabledness-preservation provides an abstraction
level that is close to the level at which developers find
convenient to describe protocols and API expected us-
age. In addition, the case study provides some indication
that the automated FSCA construction technique here
presented could be used to produce typestates, in the
sense of [9], automatically from contracts.

5.3 ATM
In this case study, our aim was to apply our approach to
validate an existing contract specification produced by a
third party. We took the ATM case study described in [7]
where a statechart [14] model is inferred from scenarios
and pre/post conditions for actions appearing in them.
The resulting statechart can simulate the scenarios and
has an invariant for each of its states based on the
pre/post conditions of actions.

We fed CONTRACTOR with the pre/post specification
provided in [7] and obtained the enabledness-preserving
FSCA in Figure 7. Note that we did not use the scenarios
provided in [7].

We then compared, with respect to simulation
[15], the FSCA model with the statechart provided
in Figure 11 of [7]. As a result, we found that the
following trace in the statechart can not be exhibited
by the enabledness-preserving contract abstraction:
displayMainScreen, insertCard, requestPassword,
enterPassword, canceledMessage, ejectCard,
requestTakeCard, takeCard, displayMainScreen,
insertCard, requestPassword.

Analysis of the execution of the trace on both mod-
els, showed that while the takeCard action in the
statechart led back to its initial state, this did not oc-
cur in our FSCA. Based on this observation, we com-
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S1

displayMainScreen,
requestPassword

S2

enterPassword

S6insertCard

displayMainScreen

S3

insertCard
canceledMessage

S4ejectCard

enterPassword

canceledMessage,
requestPassword

S7

ejectCard

takeCard

requestTakeCard

S5
insertCard

takeCard

ejectCard

canceledMessage,
requestTakeCard

takeCard

enterPassword

requestTakeCard,
requestPassword

S8
insertCard

takeCard

enterPassword

ejectCard

requestTakeCard,
requestPassword,
canceledMessage

Fig. 7. Enabledness-preserving Finite State Contract Abstraction for the ATM

pared the invariants of the states reached by the ex-
ecution up to takeCard in the FSCA and the state-
chart. We found that they differed on the acceptable
values for the passwdGiven system variable. In the in-
variant for the FSCA state, passwdGiven is required to
be true, while in the invariant for the statechart state,
passwdGiven is required to be false. Further analysis
shows that takeCard’s postcondition does not update
the passwdGiven system variable to false. The impact of
this omission is that, according to the pre/post speci-
fication in [7], the ATM never returns to a state where
it can accept a new password to be entered because it
already has one. In addition, it shows that the synthesis
algorithm in [7] does not guarantee preservation of
postconditions in the synthesised statechart.

In summary, the construction of an enabledness-
preserving FSCA from the pre/post specification of an
ATM in [7] supported uncovering errors in the specifi-
cation and problems with the actual synthesis algorithm
therein proposed.

5.4 .NET NegotiateStream Protocol

The aim of this case study was twofold. On one hand, we
intended to validate the utility of the approach in aiding
the construction of pre/post condition-based specifica-
tions. The hypothesis was that by using behaviour mod-
els early in the development of the specification, bugs
can be detected and guidance on how to fix them can
be obtained. On the other hand, we aimed at validating
whether the approach can support identifying problems
in real specifications.

Using the quality process and model-based testing ap-
proach described in [16] as a starting point, we selected
as case study subject a Microsoft protocol specification
currently under revision: The MS-NSS protocol [17] con-
ceived for the negotiation of credentials between a client
and a server over a TCP stream.

The protocol has two phases: i) a negotiation phase in
which client and server exchange security tokens using
the GSS-API [18] and ii) a data transfer phase in which
actual data is transmitted according to the negotiated
standards.

Basically, the negotiation phase starts with the client
sending a security token to the server including a re-
quested security level (e.g., encryption and/or signa-
ture). The server processes this token and sends an
answer to the client, which processes it and sends back
another answer. This process is repeated while the token
that they send each other is a continuation token and is
finished usually when one of the following situations
takes place:
• An error message is sent by either the client or the

server, in which case the client may try again or
terminate the negotiation.

• The server sends an acceptance token indicating
the client the end of the first phase (a security
mechanism like Kerberos may have been negotiated
run-time). This token includes the final protection
level, which could be weaker than the required by
the client.

Once the data transfer phase begins, the client can
exchange data with the server. Data exchange requires
framing when signature and/or encryption are implied
by the negotiated protection level. As in the negotiation
phase, the data exchange phase can result in an error in
which case the communication is usually terminated.

The experimental setup for this case study (which can
be seen diagrammatically in Figure 8) was as follows.
First, a person completely unfamiliar with the protocol
but experienced in writing pre/post condition-based
specifications read the publicly available protocol speci-
fication document describing the protocol [17]. Then, the
same person wrote a contract for the protocol validating
the protocol against the document and using as sole au-
tomated support the CONTRACTOR tool described above.
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Once the protocol’s contract was completed, an engi-
neer with experience in protocol validation analysed the
enabledness-preserving abstraction produced by CON-
TRACTOR in order to validate the contract specification
and the protocol specification document itself.

Protocol
specification

natural
language

+ diagrams

formal
languageextraction

Contract

Contractor
Tool

FSM

Contract
abstraction

feedback

1) ....
2) ...
3) .... validation

Suspicious
behaviour

check for
errors

Fig. 8. Experimental setup for the MS-NSS case study

The protocol specification document is structured nat-
ural language description containing two auxiliary state
machines. The specification states that the natural lan-
guage description is to be considered the normative
specification of the protocol while the state machines are
simply aids and references for the reader.

The protocol contract developed was included a set
of controllable and observable actions appearing in the
specification of client side of the protocol. Only the
information provided in natural language was used as
a source for the contract-to-be. For instance, Figure 9
depicts a natural language fragment of the original tech-
nical document, together with its contract translation.
It is worth mentioning that models developed in [17]
include server and client-side requirements since the
main goal of the QA project is to check protocol specifi-
cation document compliance against Windows products.
For our experiment, the modeller did only resort to the
client-side specification section of the document.

“If the gss_init_sec_context function returns an error
code, then the client MUST create a HandshakeError mes-
sage, placing the returned error code in the AuthPayload
of the messages as described in section 2.2.1.”

action SendHandShakeError()
pre tcpConnection ∧ handShakeState = Proccessed ∧

gssReturned = Error
post (handShakeState’ = NotStarted ∧ tcpConnection’) ∨

(handShakeState’ = Error ∧ ¬tcpConnection’)

Fig. 9. MS-NSS documentation fragment and corre-
sponding translation

During the contract development process the mod-
eller used the enabledness-preserving FSCA produced
by CONTRACTOR to eliminate bugs and typos from the

specification being developed: The FSCA was analysed
using: i) inspection techniques, ii) simulating scenarios
appearing in the protocol specification document, iii)
checking for bisimilarity of the FSCA against the auxil-
iary client side state machine of the protocol specification
document, and iv) composing the FSCA in parallel with
the the server side auxiliary state machine of the protocol
specification document. Such analyses allowed uncov-
ering inconsistencies in the contract-under-development
such as a client trying to send a token before having
produced it, or a client receiving responses to messages
that had never been sent to the server. As a result
of the construction effort, a number of under-specified
aspects were identified in the protocol specification doc-
ument, these were documented and modelled as non-
deterministic actions in the contract.

The validation of the final contract specification,
and indirectly, of the protocol specification document
was performed by the experienced engineer. Most of
the validation was done by inspection, guided by
the enabledness-preserving abstraction (Fig.10) and the
modellers expertise, going into the detail of the con-
tract and finally the protocol specification document if
needed.

As a result of this final validation by the experienced
engineer, three kinds of issues arose. First, two questions
regarding the behaviour of the client were raised. These
issues point to potential problems in the the protocol
specification document:

• In state S6 of the enabledness-preserving FSCA, the
client has just sent a message to the server indicat-
ing that the negotiation phase is over (sndDone).
However, at this point the server could reply with
a continuation token (rcvInProgess), which the
client cannot accept in state S6. From the document
it is not clear what should happen to this continua-
tion token and what should the server side do if it
is not accepted.

• States S5, S6 and S7 have outgoing transitions with
error labels that go to both the initial and the dead-
lock state. This non-determinism reflects underspec-
ified behaviour described in the protocol specifi-
cation document. However, this underspecification
seems to be problematic as an implementation of
the contract could decide unilaterally whether to
(return to the initial state and) try to reuse the
connection despite the error or if is to deadlock
and require the user to restart with a new protocol
instance. However, the server side does not seem to
be prepared for such a non-deterministic choice on
the client side.

Second, an inconsistency between the natural lan-
guage specification of the client behaviour and the
state machine of the protocol specification document
describing the server behaviour was identified: The
enabledness-preserving FSCA for the client constructed
automatically from the protocol’s contract composed in
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Fig. 10. Enabledness-preserving Finite State Contract Abstraction for the NegotiateStream protocol

parallel with the state machine for the server leads to a
deadlock. A trace to the deadlock, raises the following
question:

• The FSCA shows that the contract allows a client to
receive rcvDone without ever sending a sndDone
message. This implies that the server may unilater-
ally decide to enter the data transfer phase, which
leads to a deadlock. Why is the client not sending a
sndDone message before being allowed to receive
rcvDone?

Note that, in fact, the contract and hence the natural
language specification for the client is consistent with
the natural language description for the server (which is
the normative part of the specification), hence the issue
raised above actually shows an discrepancy between text
specification and diagrammatic-aid of the server side in
the protocol specification document.

Finally, inspection of the enabledness-preserving
FSCA and comparison against the auxiliary client side
state machine of the protocol specification documenta-
tion helped find some discrepancies between the textual
specification and diagrammatic aid for the client side:

• In the state machine of the protocol specification
documentation, action sndError goes to a state in
which the client waits for a message from the server.
However, the FSCA that CONTRACTOR produced
shows that after this event the client should either
terminate the connection or retry the whole phase.
The FSCA is consistent with the protocol specifica-
tion document text.

• Analogously to sndError, when the state machine
of the protocol specification for the client side re-
ceives rcvError, the client must wait. However,

the FSCA, in agreement with the protocol specifica-
tion document text, shows that this is not the case.

Various of the issues reported above for version 2.0 of
the protocol specification document that was available at
the time, were subsequently corrected in version 3.0 of
the document. This shows to some extent that the issues
identified were not only real but also relevant enough to
warrant correction.

In summary, in this case study, the automated con-
struction of an enabledness-preserving finite state ab-
straction of an industrial strength document aided sig-
nificantly in: i) correcting and elaborating a formal
contract specification of the protocol, in ii) identifying
relevant problems in the pre-existing real natural lan-
guage (and auxiliary diagrammatic) protocol specifica-
tion document, and iii) in automatically constructing a
diagrammatic aide which is sound with respect to the
protocol specification (as opposed to manually generated
diagrams that have inconsistencies with the normative
description of the protocol).

On a final note, it is worth mentioning that the
enabledness-preserving FSCA obtained (Figure 10) fea-
tured almost the same level of abstraction as the state
machines in the protocol specification document. Main
differences were that the FSCA has more states and tran-
sitions because it models local GSS-API calls explicitly
and distinguishes encrypted and plain data transmis-
sions. This similarity in abstraction level is not only rele-
vant because it allows validations based on bisimulation
and parallel composition of artefact but also because
it supports the conjecture that enabledness-preservation
provides an intuitive abstraction level that is close to the
level at which developers describe protocols and API
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expected usage.

5.5 WINS Replication and Autodiscovery Protocol
The purpose of this case study was to analyse the
limitations of our approach that arise from dealing with
a large industrial strength contract specification. These
difficulties are mainly divided in two categories: scala-
bility of the construction algorithm in terms of time and
memory consumption and feasibility of validating the
output FSCA which has the potential of having billions
of states.

We chose another Microsoft protocol specification, in
this case the one for the “WINS Replication and Au-
todiscovery Protocol” [19]. This protocol, also known as
WINSRA, governs the process by which a set of name
servers discover each other and share their records in or-
der to keep an up-to-date vision of the name mappings.

A name server can have two different roles when
interacting with other servers. It can be in pull replication
mode, in which from time to time the server asks its
partners whether they have something new, and then
fetches the differences between its own name mapping
and that of its partners. Or it can be in push replication
mode, in which it informs its partners that there is some
new information that they need to be aware of, so they
can fetch it.

On a pull replication round a name server goes
through the following actions:

1) It initiates network traffic, indicating the replication
mode with initiateTrafficPull.

2) It establishes an association with its partner using
associationStartRequestControlSuccess.
Once the request is sent it awaits for a
associationStartResponseObserve
response.

3) Once the association is set up it requests a map-
ping indicating which are the maximum and
minimum version numbers for each server hav-
ing name records owned by its partner with
ownerVersionMapRequestControlSuccess. It
then waits for its partner to send this mapping via
ownerVersionMapResponseObserve.

4) Once it has the versions mapping it calculates
which name records it needs to update and
proceeds to request them one by one with succes-
sive nameRecordsRequestControlSuccess.
Each of these messages has its corresponding
nameRecordsResponseObserve.

5) Finally, when there are no more name
records that need to be requested,
it finishes its association by sending
associationStopRequestControlSuccess.

The push replication round is somehow symmetrical:
1) The round starts with traffic initiation, which is

performed with initiateTrafficPush.
2) Once the traffic has been initiated, the

name server waits for its partner to connect

and send an association start request with
associationStartRequestObserve. Once
received, this request is answered with an
associationStartResponseControlSuccess.

3) An updateNotificationControl action hap-
pens in which the partner is sent the mapping (as
if it had been requested).

4) The name server expects its partner to ask for name
records with nameRecordsRequestObserve.
Each of these record requests is responded with
nameRecordsResponseControlSuccess.

5) Finally, a disconnection from
the partner is expected with
associationStopRequestObserve.

Notice that this brief description of the WINSRA
protocol is simplified for the sake of presentation. The
actual protocol deals with the fact that each participant
can switch between the push and pull roles in particular
situations, as well as being able to act as both pull and
push partner at the same time. There also exists the pos-
sibility for the pull partner to act in “data verification”
mode, which adds complexity.

The case study was conducted as follows (refer to
Figure 11 for a diagrammatic representation the pro-
cess): The initial documentation available was, as with
the previous case study, a publicly available protocol
specification document [19] including a normative nat-
ural language description of the protocol together with
diagrammatic aids in the form of state machines, and
a SpecExplorer [20] model of the protocol. The SpecEx-
plorer model had been created by a different team than
the one that developed the protocol specification.

We used the SpecExplorer model as the basis for con-
structing, manually, a protocol contract specification that
could be input into CONTRACTOR. A systematic transla-
tion procedure was used for translating the SpecExplorer
model into a contract: a contract variable was created for
each of the SpecExplorer model variables and one con-
tract action for each method in the SpecExplorer model.
For action preconditions we used the REQUIRES clauses
of the SpecExplorer model and for postconditions we
performed manual strongest postcondition calculus.

Notice that the SpecExplorer model is 2500 lines
long, featuring a class with 16 fields some of which
are complex data types such as maps and sets.
This class describes 33 actions, which are composed
by the aforementioned events, together with spe-
cial variants used in special cases. For instance,
NameRecordsResponseControlDisconnect is used
when the obtained name record was the last one and the
partner proceeds to disconnect.

In order to get an FSCA, we proceeded and ran
CONTRACTOR on the protocol contract specification ob-
tained by translating the SpecExplorer model. This initial
abstraction was produced in about 4 minutes and it
had 60 states and 642 transitions. Algorithm scalability,
which was the first of our motivations for carrying out
this case study, did not seem to be a problem specially
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Fig. 11. Experimental setup for the WINSRA case study

considering that we were exploring and producing a
result that may have potentially involved 233 (over 8
billion) states.

Regarding the second of our motivations for this
case study, feasibility of validating large FSCAs, various
standard finite state machine analysis techniques such
as hiding and minimisation were needed to handle an
abstraction that had, in its initial version, 20 times more
transitions than the MS-NSS protocol.

Similarly to the the MS-NSS protocol case study, an
iterative process was enacted in which first the protocol
contract was used to produce a FSCA for validation, sec-
ond the resulting abstraction was analysed and a list of
issues that were thought to be suspicious was generated.
This list was then validated against the SpecExplorer
model and the protocol specification document. Errors
detected in the contract or in the SpecExplorer model
were subsequently corrected and the CONTRACTOR tool
executed again.

We now reproduce parts of the validation process that
led to detecting flaws in:

1) The contract with respect to the SpecExplorer
model.

2) The SpecExplorer model with respect to the WIN-
SRA technical documentation.

3) The WINSRA technical documentation with re-
spect to the intended protocol behaviour.

From the first version of the FSCA generations, our im-
pression was that there was something wrong with the
contract: the natural language protocol description did
not seem to be describing a protocol such a rich number
of modes that would lead to a 60-state abstraction. In
other words, it did not seem to be a case that the protocol
actions could legally be combined in 60 different ways.
We decided to inspect the states closest to the initial one
in order to see if we could identify clues as to why the
contract produced so many states and transitions.

The first issue that we found is that the action
setupInitialization, which is supposed to be
called once, appeared in a looping transition (i.e., a
transition that has the same source and target states).

action associationStartRequestControlSuccess()
pre . . . ∧

(
(association = None ∧ persistent =

No) ∨ (association = Pull ∧ replicationType = Push) ∨
(association = Push ∧ replicationType 6= Push) ∨
association 6= Both

)
post protocolState’ = AssociationStartRequestControl

Fig. 12. Buggy specification for association start request
(fragment)

We discovered that the SpecExplorer model’s REQUIRES
clause for this method was too weak with respect to the
original protocol specification document. Having fixed
the model and the contract, we ran CONTRACTOR again
but the amount of states and transitions remained almost
the same.

The next step was to discover that there
was a state very close to the initial one that
had more than 60 incoming transitions, such a
high fan-in was a warning sign. We observed
that the actions available in that state were
initiateTrafficPull, initiateTrafficPush
and initiateTrafficDataVerify.
(initiateTrafficDataVerify is used for a
scheduled data verification process that is similar
to the standard pull replication process). We revisited
the protocol technical documentation and discovered
that the protocol allows partners to establish persistent
associations that last along several replication rounds.
This persistent behaviour is modelled by calling traffic
initiation actions in advanced stages of the protocol.
In the SpecExplorer model this was allowed by letting
any of the traffic initiation actions occur at any time.
This was too permissive, since it is not true that a new
persistent round can be initiated at any time. According
to the technical documentation this is not intended to
happen until a replication round is over.

Correcting this issue in the model (and, by translation,
in the contract) involved modifying the REQUIRES clause
of the three traffic initiation methods. After this change,
the FSCA could be generated in about 3 minutes and
had 54 states and 467 transitions.

We further analysed the states nearest to the initial one
and found that, even having fixed the traffic initiation
process, the association start request and observe actions
were creating another high fan-in state (of about 30
incoming transitions). We carefully inspected the RE-
QUIRES clauses for those methods in the SpecExporer
model and found two errors:

1) The REQUIRES clauses for these methods enumerate
a series of conditions as the one in Figure 12.
This was suspicious, since a valuation with val-
ues association = Pull and replicationType = No
would be accepted, even when it is clear that
replicationType is not Push. The conditions were in
fact wrong, and corrected by replacing the conjunc-
tions with logical implications and the disjunctions
by conjunctions.
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2) The REQUIRES clauses for these methods were
lacking a condition over the variable protocolState
which is used throughout the protocol life to in-
dicate in which stage is the protocol currently on
(This is basically achieved by keeping record of
which was the last received or sent message). A
correction was introduced by indicating that in
order to start an association (or observe an associ-
ation request) the previous action must have been
a traffic initiation and the one before that a setup
initialization action.

Having corrected this issues in the model and in the
contract we ran CONTRACTOR yet again, this time for
less than 30 seconds, resulting in an output of 38 states
and 233 transitions, which is roughly half the size than
before. The following is a list of errors that we found
using this FSCA in this iteration:

• The setupInitialization action may go to a
state with no enabled actions. This was caused by a
weak contract invariant, which did not account for
the fact that whenever the system was not initial-
ized, then a boolean variable was necessarily fixed
to be false (more precisely, ¬isSetupInitialized ⇒
¬replicationOn). This was corrected.

• The REQUIRES clauses for the traffic initiation meth-
ods were allowing the server to persistently asso-
ciate in push mode with a partner and then re-
establish communication taking the pull role. This
was corrected by making available of the traffic initi-
ation methods in the case of the protocol beginning,
in which we have not yet taken a role. Successive
calls to traffic initiation methods are restricted in
order to allow them only if we keep the role we
already had. The SpecExplorer model and the re-
sulting contract were corrected.

• The updateNotificationObserve action may
go to a state in which the only available ac-
tion is to end the association. This is not correct
since when the push partner is telling that there
is something new, then the following action is a
name records request. This anomalous behaviour
was due to an error in the contract translation
from the SpecExplorer model. In particular, the
updateNotificationObserve action postcondi-
tion may leave a contract variable that indicates how
many name records have to be requested with value
0 and this was too permissive.

During the validation process, we identified a num-
ber of suspicious behaviours in the FSCA that turned
out to be perfectly acceptable behaviour. These cases
correspond to when our understanding of the techni-
cal document was incomplete or incorrect and do not
highlight neither errors in the technical document, nor
the SpecExplorer model, nor the contract specification.
However, they do show that validation of FSCAs can
help in understanding complex protocol specifications.
Some of the issues that led us to gain a better under-

standing of the protocol were:

• After the association has been just established, name
records can be requested even when the owner ver-
sion map has not yet been requested. This appeared
to be incorrect, but we checked the technical docu-
mentation and this was possible when the protocol
was in data verification mode.

• Once we get the owner version map we can directly
disconnect. This also appeared to be incorrect, but
in fact it is not. This can happen if the owner
version map that we get indicates that the partner
has nothing to offer us. In that case we can not ask
for name records.

In this case study the automated construction of an
enabledness-preserving FSCA was helpful in: i) correct-
ing and elaborating a formal contract specification of
the protocol, and in ii) identifying relevant problems
in pre-existing industrial formal models of the protocol
specification. The case study showed that both the FSCA
construction algorithm and its implementation can scale
to industrial case studies and that the FSCA that is pro-
duced, although large, is still amenable to analysis and
helpful in finding problems in software development
artefacts.

5.6 Case Studies Summary

In this section we have reported on some of the case
studies conducted to validate our approach. The case
studies provide some evidence regarding the i) scala-
bility of the FSCA construction algorithm, ii) the size
and ease of validation of the resulting abstractions, iii)
the aid that the abstractions provide in validating and
elaborating not only contract specifications but also in-
formal descriptions that can be encoded as contracts, iv)
the degree to which enabledness-preservation provides
an intuitive abstraction level that is close to the level at
which developers describe protocols and API expected
usage, and v) that the spurious behaviour introduced by
the abstraction does not hinder the validation process.

Table 1 shows a execution times comparison between
the naïve version of the algorithm presented in [12]
and the current implementation, which is based on the
dependencies analysis presented in Section 4. Not only
execution times are much smaller for the case in which
both implementations terminate, but also the current
implementation is able to cope with the larger case study
in less than 4 minutes.

Table 2 shows that reachable states are a very small
fraction of the full (and intractable) set of possible states.
The amount of reachable states is always larger than
1/3 of the consistent states. Furthermore, the number of
compliant states is the same as consistent states except
for the case of the ATM, in which there are 2 inconsistent
compliant states. Therefore, the state enumeration algo-
rithm presented in Definition 11 almost always performs
just one single query for each consistent state, except
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Input # SMT queries (and running time) Output
Name # actions Naïf algorithm [12] Current algorithm # states # transitions

WebFetcher 4 31 (0.15 s.) 35 (0.07 s.) 2 4
ATM 8 535 (3.75 s.) 396 (1.02 s.) 8 30
MS-NSS 13 8454 (72.59 s.) 580 (1.12 s) 10 31
MS-WINSRA (initial) 33 n/a (> 12 hours) 57300 (233.98 s.) 60 642
MS-WINSRA (second) 33 n/a (> 12 hours) 49043 (197.28 s.) 54 467
MS-WINSRA (final) 33 n/a (> 12 hours) 7226 (27.55 s.) 38 233

TABLE 1
Execution times

Name Possible states Compliant states Consistent states Reachable states

WebFetcher 4 2 2 2
ATM 256 10 8 8
MS-NSS 8192 11 10 10
MS-WINSRA (initial) 233 105 105 60
MS-WINSRA (second) 233 99 99 54
MS-WINSRA (final) 233 38 38 38

TABLE 2
Space state sizes

for one case in which it performs 2 extra queries which
result in inconsistent states.

The set of compliant states contains all the reachable
states in the resulting abstraction and some other in-
consistent or unreachable states. These unreachable and
inconsistent (yet compliant) states are not very large in
number in any of the analysed case studies. In most
of the cases there were none of them; in the worst
situation this accounted for approximately 50% of the
total compliant states. This indicates that the set of
compliant states is a good approximation of the set of
reachable states.

The best possible construction algorithm would be
quadratic in the number of resulting states. Our algo-
rithm is quadratic in the number of compliant states,
which is a very good approximation.

6 VALIDATION GUIDELINES

Based on the experience gained by performing case
studies, some of which are discussed in the previous
section, we have identified a number of heuristics that
aid identification of “suspicious behaviour” during the
validation process. This in turn supports identification
of problems in the contract specification.

We organise the heuristics into two categories. The first
category is of a more semantic nature while the second
is related to the structure of the enabledness preserving
FSCA.

We hypothesise that one of the benefits of the ap-
proach presented is that the level of abstraction defined
by the enabledness criterion is intuitive and modellers
can interpret the different states of the enabledness
preserving FSCA into the problem domain with relative
ease. The first two heuristics we developed confirm, to
some extent, this hypothesis.

• Understanding states. There are certain abstract
states in the enabledness-preserving FSCA that can
be easily interpreted to particular situations of the
system under analysis. For instance, in the ATM
abstraction of Figure 7 the state S6 is the one which
groups those concrete instances on which the card
has been inserted but the password has not. In
the FSCA of Figure 6 the state S2 is clearly the
one that groups the instances which have an open
connection.
When it is not possible or not easy to associate
a particular states with a declarative description
of the set of instances that it abstracts, this may
be an indication that there is a problem with the
specification. We have found that in these cases, it
was often the case that the state should have been
inconsistent (and hence should not have appeared
in the FSCA) but that the preconditions of enabled
actions or the invariant were (incorrectly) too weak.

• Understanding action sequences. On the other
hand, states which can be declaratively traced to
a meaningful set of instances are good candidates
for analysing action sequences. Following fragments
of traces from these states may lead to discovering
a certain sequence of actions which should not be
allowed by the contract. The reviewer should be
aware that, given the approximate nature of the
abstraction, the appearance of a trace is not a guar-
antee that it denotes a feasible action sequence.

We also identified the following structural character-
istics of an enabledness-preserving FSCA that can help
pinpoint problems in a contract specification:

• Large state space. A large state space in the
enabledness-preserving FSCA may be an indication
of either a poorly designed set of operations or an
incorrectly specified contract. The intuition is that
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a set of operations that are intended to be used
together to provide a more complex service (e.g.,
a protocol, a class or an API) will conceptually have
a few modes that characterise the set operations
available at a given moment. An unmanageable
set of enabledness states is an indication that the
protocol, class or API is either extremely complex to
be used or incorrectly specified. More specifically, a
large state space can be an indication of problems
with preconditions. A good strategy is to question
why different states in the enabledness-preserving
FSCA differ in the actions that they enable.

• Deadlock states. The presence (or absence) of a
deadlock state is something that should be analysed
in detail when validating a contract specification
using enabledness-preserving FSCAs. By definition
of enabledness-preserving FSCA there can be only
one deadlock state, the state whose action set is
empty.
The presence of an unintended deadlock state in an
FSCA is likely to be an indication of a problem with
a condition that is stronger than needed. Particu-
larly, a problem with a postcondition (an operation
that leads to a state where no preconditions hold),
with an invariant (which in conjunction with a
postcondition makes all preconditions infeasible), or
with a precondition (that disallows an operation that
would prevent the deadlock)

• Sink states. Similarly to deadlock states, states
which only have outgoing transitions leading back
to it can be indicators of problems. They are very
similar to deadlock states since they indicate that
once this “operation mode” is reached it can not be
abandoned.

• Missing action. If a given specified action is not
present in any of the enabledness-preserving FSCA
reachable states then this is an indication that some-
thing is not quite right. It may be the case that
the precondition for that action is inconsistent when
combined with the contract invariant. It might also
be the case that none of the other actions’ postcon-
ditions leave the system in a state which enables the
missing action.

• Enabled action with missing transitions. If a state
which enables a certain action does not have any
outgoing transition labelled with that action name,
then the postcondition for that action is a contradic-
tion.

• High fan-in. States in an enabledness-preserving
FSCA that have a large number of incoming transi-
tions can be an indication of problems. In particular,
they are typically undesirable since they cause his-
tory loss for all the paths that reach the state. These
states can be an indication of problems in precon-
ditions that when corrected end up partitioning the
high fan-in state into several states.

• Highly non-deterministic actions. When a state
has a large number of outgoing transitions labelled

with the same action it is usually symptomatic of
a problem. Such situations may be caused by two
different scenarios. Firstly, it may be the case that
the postcondition for the action is non-deterministic.
This can occur for instance if the postcondition
underspecifies the behaviour of the operation; un-
derspecification which can be intentional or not. The
latter case requires strengthening the postcondition
for the action. Secondly, a highly non-deterministic
action on a state can also happen if the invariant
for the state is weak. For instance, an action with
a postcondition of the form (A1 ⇒ B1) ∧ . . . (An ⇒
Bn) may generate undesired non-deterministic be-
haviour in a state where several Ai hold. In these
cases, it may be the case that a precondition or the
contract invariant requires strengthening.

• Mirrored actions. If whenever there is a transition
labelled with a given action a1, there is another
transition with the same origin and destination state
labelled with action a2, this is an indication that both
actions were specified independently but are treated
in the same way by the system. It may be the case
that one action was copied from the other but the
system designer forgot to modify the appropriate
differences between the two (known as copy-paste
bugs).

Finally, if the contract is modelling a reactive system
(such as the MS-NSS and MS-WINSRA protocols), then
actions are categorised as either controllable or moni-
torable. In this context, the following strategies can also
be applied when validating via enabledness-preserving
FSCAs:
• Connected subsets with no monitorable actions

enabled. If a connected subset in the enabledness-
preserving FSCA does not include any state that
accepts monitorable actions, this is indicative of
a problem: The specification allows blocking the
environment or at the very least fails to consume
relevant events controlled by the environment.

• Mixed controllable and monitorable enabled ac-
tions. If a state contains a mixture of controllable
and monitorable actions this is indicating that the
system is ready to both engage in an operation on its
own or receive a stimulus from its counterpart. This
could be considered highly suspicious in the context
of a contract describing a synchronous system.

Some of the heuristics presented in this section are
straightforward to implement as a feature in our CON-
TRACTOR tool, and in fact some of them are already
implemented. These include the detection of deadlock
or sink states, mirrored or missing actions or enabled
actions with missing transitions.

7 DISCUSSION AND RELATED WORK

The use of abstraction to address the complexity of
contracts introduces spurious behaviour in the same
way abstraction for verification does. This can hinder
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both verification and validation if too much spurious
behaviour is present in the abstraction. Automated re-
finement techniques can be applied in abstract verifi-
cation methodologies to resolve this problem: When a
spurious counter-example is identified, the abstraction
can be refined, with some semantic preservation cri-
terion, to remove the spurious behaviour (e.g., [21]).
Although a scheme such as this one could be replicated
in the context of abstraction for validation such as ours,
the resulting refined model will most likely cease to
be tractable for validation rapidly. The case studies we
conducted have shown that although the enabledness-
preserving abstraction is rather coarse grained, and
hence it introduces spurious behaviour, it still supports
finding real errors in real specifications.

The notion of abstraction used in this paper relates
to that of a finite state machine simulating all possible
implementations of a contract. An alternative approach
to the one presented here is to define a notion of
canonical implementation of a contract and then ap-
ply some well-known abstraction techniques over that
possibly very large or even infinite state space. Such
an approach would allow analysis of the abstraction to
provide stronger guarantees on possible contract imple-
mentations. However, even being a sensible approach
for verification, validation of such a model would be
significantly hindered in our opinion: Firstly, requiring
preservation of behaviour implies that a minimal finite
state abstraction may not exist. For instance, the circular
buffer example used in Section 2 would not have a
finite state bisimulation abstraction. Secondly, even if
a finite bisimulation exists, the size of the abstraction
may be too large to validate. In fact, in the case of
the NegotiateStream protocol would have a bisimulation
abstraction that is roughly twice the size than ours since
it would have to account for the requested protection
level from the first call to GSSinitsec operation done
by the client. Finally, unlike our approach, given an
abstract state, predicates characterising which concrete
states are represented by it (i.e., “abs−1”) are likely to be
cumbersome and hard to relate with the original contract
predicates.

The work presented in this paper extends previous
results presented by the authors ( [12]). More specifically,
we now present a novel FSCA construction algorithm
that scales to industrial strength case studies, discuss the
CONTRACTOR tool which supports the approach, reports
on a large case study that features a contract with 33
actions. The size of this case study was beyond that
which could be addressed with the algorithm presented
in [12], and discuss lessons learnt based on the validation
of our approach providing, in particular, some heuristics
that were used to identify errors in the industrial case
studies we conducted.

Predicate abstraction
Our work can be considered as instantiating the frame-
work of predicate abstraction [8], [21] in that we pro-

duce abstractions based on predicates that characterise
the enabledness of sets of operations. While resting in
this framework, the contributions of this work are the
selected level of abstraction and its application to the
problem of contract validation, together with an algo-
rithm and validation guidelines.

Within the area of predicate abstraction, a closely
related technique is the construction of finite state ma-
chines from Z specifications (which include pre and
postconditions) and Live Sequence Charts (LSCs) [22].
Although there are similarities with our work in how
transitions are computed the key difference is in the
predicates used for abstraction: In [22] predicates found
in LSCs are used to construct the set of states, while
pre and postconditions are used to construct transitions.
We use pre and postconditions for constructing both
the states and the transitions, thus leveraging the en-
abledness concept in order to generate models which
are useful for validation. Other predicate abstraction
approaches such as counterexample-guided abstraction
refinement (CEGAR) sometimes need an initial model
and a property from which then the iterative process is
performed. In fact, we believe that FSCAs may serve that
first purpose.

Techniques that construct FSMs from declarative re-
quirements specifications [6] have been proposed as a
means to facilitate analysis of such specifications and to
support the transition to more design oriented modelling
techniques. A particular instance of these approaches
is the construction of FSMs from pre/post condition
specifications. This approach differs from ours in that
of their pre/post condition specification language is
propositional logic, the concrete state space is therefore
finite modulo bisimulation and that the resulting FSM
has the same level of abstraction as the specification.

A level of abstraction somewhat related to that of
enabledness has been used in [23]. The authors quotient
the state space of a class based on the result of its
parameterless boolean observers. The abstraction is used
for test-case generation aiming to obtain state coverage
of the abstraction. Our work differs in two significant
ways: (i) their approach constructs the set of states using
(a subset of the) class observers while we rely on (all
of the) class methods that change its state and (ii) we
do not require the presence of a representative set of
boolean observers in order to produce an abstraction. By
fixing the abstraction level using the boolean observers,
the resulting finite state machine is heavily dependant
on the quantity and quality of these observers.

Our technique is related with [24], meant for checking
invariants, which builds an abstract state graph out of a
guarded transition system and a set of input predicates.
Concrete states are abstracted by using a sub-lattice of
monomials of abstract boolean variables representing
the truth values of the input predicates. Notice that an
approach based on monomials would yield a 3-valued
denotation: an action is enabled (positive literal in the
monomial), an action is disabled (negative literal in the
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monomial) or an action may be enabled (when the literal
is absent in a monomial). In contrast, our technique
defines states by formulas determining the enabledness
of each action precondition (the atoms of the lattice).

Even setting the input predicates in [24] to model the
enabledness conditions of actions, their level of abstrac-
tion would generate less intuitive states. For instance, in
the case of the circular buffer, partially full buffers would
be mapped to 3 different abstract states. Furthermore,
there would not be any abstract state uniquely charac-
terising the full circular buffer. Their level of abstraction
might also generate larger state spaces (up to 3n).

In [24] transitions are determinised by using the least
monomial among all successors in the concrete system.
On the other hand, we allow non-determinism in tran-
sitions, which results in a more compact state machine,
which we believe could be practical for validation.

Contract exploration
Other contract validating techniques such as the ones
presented in [16], [25], [26] explore the state space of a
given contract either symbolically or concretely but they
do not intend to construct a complete finite abstraction
of it. We believe the latter provides a global view that
can aid, in a complementary manner, the validation of
contracts.

The ideas presented in [2] are also aimed at validation
of contracts by automatically constructing finite state
machines from them. However, the construction does not
involve further abstraction: the language used for the pre
and postconditions requires bounding the number and
values of propositions and predicates.

LTS minimisation
The comparison with behavioural abstractions is linked
to the minimisation problem of transition systems [27],
[28]. These algorithms are based on finding a maximum
fixed point by stabilising state space partitions. Besides
the shortcomings mentioned regarding requiring bisim-
ilarity in our setting, in general, such approaches do
not deal with actions with parameters in the implicit
expression of the transition system (our LTS may have
infinitely many labels due to parameters). The exception
seems to be [28] where the authors present a technique
for obtaining an untimed abstraction of timed automata.
In timed automata semantics, the LTS also features in-
finitely many time transitions, that is transitions labelled
with a real number standing for time elapsed from the
source state. The abstractions yield by that technique
feature an abstract time transition when for every state
represented by the source abstract state there exists an
amount of time to elapse and thus change to a state
which maps to the target of the abstract transition. That
is, it works as an existential elimination of the parameter
value. Similarly, our technique exhibits a transition at
the abstract level if there may be at least one parameter
value (and a concrete state) to jump to the target abstract

state. Unlike [28], we do not require every concrete state
to be enabled to perform such a jump (i.e., we are not
requiring pre-stability of the yielded abstraction).

Typestates and interface learning

Our technique is related to approaches that synthesize
typestates [29], [30] or interfaces [31], [32], [33] from
a program: any sequence of methods that is not ac-
cepted by our abstraction will not be allowed by a
program. However, in typestate and interface synthesis
approaches the aim is to obtain a set of safe traces from
a client perspective (every trace in the abstraction must
be accepted by the original program), using abstraction
for verification purposes rather than validation.

For instance, in [31] this safety requirement tends to
make their abstractions overly restrictive in terms of the
model behaviour. This particular work aims at creating
finite models out of Java classes with the focus in client
code, trying to safely capture as much environmental
behaviour as possible while assuring that the program
never throws an exception on any model path. This
restriction make their approach unfit for validation pur-
poses since limiting the model to safe behaviour may
render a trivial state machine.

Consider the circular buffer example in Figure 1. The
non-regular nature of the underlying language makes
the approach in [31] render a finite state machine like
ours but without the loop transitions in the middle state.
This is due to the fact that the only behaviour for a
circular buffer of size greater or equal to 2 that is always
available is writing at most twice and then reading. Our
technique does not guarantee that any path is exception-
free on any implementation of the contract. By not trying
to enforce this condition, we are able to produce finite
state machines that aid validation by showing as much
behaviour as possible. The restriction due to client safety
can be clearly seen in the evaluation section of [31]
in the interface of Figure 6 where the authors limits
the number of observed exceptions in order to show
a more meaningful state machine. Furthermore, tracing
back the interface elements to the original artefact is not
an easy task using [31] since states are constructed as
needed by the learning algorithm. On the other hand,
our technique favours validation by having a direct
relationship between states and enabledness of actions.

While keeping the safety requirement, approaches
such as [32], [33] successfully deal with the problem of
inferring more permissive interfaces. They do so at the
cost of assuming certain conditions over the artefacts
they analyse, for instance the algorithm in [32] requires
the software component to be described by a finite
automaton. The algorithm in [33], as the one in [31],
construct abstractions which are safe with respect to
the throwing of a single exception. Even under these
limitations, obtained abstractions are potentially less
permissive than ours due to the safety requirement.
Furthermore, tracing the abstraction back to the original
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artefact is not necessarily easy with their abstractions
since there is not a clear relation between the obtained
model and the elements of the artefact under analysis.

Behaviour model mining

Dynamic invariant detecting tools such as Daikon [34]
have proven useful in many contexts. In our case, Daikon
could be used to obtain pre/post conditions, as well
as invariants, for a particular program. With this infor-
mation, we could proceed and create a FSCA for that
program and produce a graphical and concise repre-
sentation of the extensive amount of information that
Daikon produces. Using this configuration we would
be able to provide the user an on-line abstraction of
the program he is writing. We would have to take
into account that the assertions that Daikon outputs are
true for the runs that it used to create them, yet not
necessarily true for all the possible runs.

Our approach relates to the mining of temporal spec-
ifications (e.g., [35]), which aims at producing, from
traces, a finite state automata that describes how a set
of operations is used. The main difference with our
work is that the resulting automata are built from the
client’s actual usage of a set of operations rather than
from the constraints of usage provided by a contract.
In addition, mining techniques have a dynamic flavour
and their results heavily depend on the quality of the
traces used as input. On the other hand, our technique
statically yields a model that is an abstraction of any legal
implementation of a given contract.

Furthermore, behaviour model mining tools such as
ADABU [36] produce finite state machines whose states
are determined by a fixed abstraction over the return
values of all the inspectors in a class. For instance,
integers are abstracted according to its sign, therefore
this technique is not suitable for differencing two signif-
icant states defined by a different positive integer. Our
approach depends on the preconditions in order to create
the set of states; if preconditions mention specific integer
values then our abstraction is going to consider them by
means of the SMT solvers.

Run-time behaviour observation is also used in [37], in
which the authors provide a way to generalise compo-
nent behaviour using samples taken during a systematic
bounded execution. In a first step a deterministic finite
state machine is built using the sampled behaviour.
This is then generalised via graph transformation rules
and invariant detection tools. If a canonical contract
implementation were to be sampled using this technique
then we would end up having a set of graph rules tightly
correlated to the original contract. That is, the technique
would traverse the inverse path we define in our work.

A similar approach can be found in [38], a technique
in which behavioural models that preserve data and
control dependencies are mined out of execution traces.
In a first step, sets of traces that share the same ac-
tions are identified and their parameters are abstracted

away by applying Daikon. This produces a tree-like
representation in which then states are joined if they
share a common k-future. This technique is similar
to the previous one in the sense that it (unsoundly)
generalises observed behaviour by applying invariant
detecting tools. Also, unlike our approach, the amount
and quality of behaviour space synthesized depends on
the traces used as input. On the other hand, there is
no clear indication that yielded abstractions would be
coarse enough for validation.

8 FUTURE WORK

The problem of supporting the analysis of FSCAs is a line
of work that we aim to study. For instance, data and con-
trol slicing of contracts and FSCAs may provide useful
tools for designers, however these operations need to be
studied formally, property preservation results obtained
and efficient algorithms developed. Of course, relatively
standard tool support such as compacting the FSCA
using hierarchical states like those in UML statecharts
or decomposition into communicating FSCAs may be
useful.

In addition, there is the issue of model precision,
the algorithm presented in this paper introduces, as
any abstraction, spurious paths. Can a more precise
enabledness preserving abstraction of a contract be pro-
duced? One potential direction is to introduce modalities
into our finite state abstractions to distinguish between
may transitions (FSCAs current interpretation) and must
transitions that can always be traversed by selecting the
appropriate parameter values. Another potential direc-
tion is to analyse the effect of postconditions allowing
to produce stronger state-invariants, such effects could
be propagated using a fix-point algorithm.

Finally, although a number of industrial case studies
have been performed these have focused on software
protocols, application of the approach to other kinds of
systems may yield more refined heuristics for detecting
problems in contract specifications.

9 CONCLUSION

We conjecture that contract validation would benefit
from easily auditable abstractions that exhibit global
implications of locally specified behaviour. In this paper,
we have showed the potential validation capacity of
enabledness-based contract abstractions. We have pro-
vided a novel symbolic algorithm that leverages the
concept of action enabledness dependencies to efficiently
construct finite contract abstractions that are both concise
and handy for validation purposes. We have imple-
mented our algorithm as a practical tool and used it to
get finite abstractions of a variety of contracts. These
finite models led us to discover previously unknown
inconsistencies or omissions in real-life specifications.
We have provided a set of guidelines that we believe
are useful when validating contract specifications by
means of enabledness-preserving abstractions. Finally,
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we believe that the succinctness of the abstractions we
obtain with our technique makes them valuable and
versatile tools when constructing or analysing contracts.
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