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Single ionization of CH4 by bare ions: Fully differential cross sections
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A theoretical study of fully differential cross sections for the single ionization of CH4 by collisions with H+,
He2+, and C6+ ions at energies in the order of MeV/amu is presented. We work in terms of the Born-3DW model,
which considers a non-Coulomb central potential for the interaction of the active electron with the molecular
core. Results obtained with the Born-3DW model are compared to those obtained with the Born-C3 model,
which assumes this potential as purely Coulombic. The anisotropic potential of the CH4 molecule is smoothed
through an angular integration, and results are averaged over all the possible orientations of the target molecule.
Results for the lesser bound molecular orbitals (1T and 2A1) are presented and discussed for different projectile
momentum transfers for the coplanar geometry.
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I. INTRODUCTION

Ionization of atoms and molecules by fast charged particles
has been a matter of active research in the last two decades [1],
and it is nowadays a well-documented subject with relevance
in many areas like atmosphere, (fusion) plasma physics, or
astrophysics. In addition, it has been checked that ionization
cross sections for biological molecules are quite useful in
medical studies, like radiobiology, medical imaging, and
radiotherapy [2].

Since the mid-1990s, the Cold Target Recoil Ion Momen-
tum Spectroscopy (COLTRIMS) [3–5] technique has provided
a kinematically complete insight of collision processes in-
volving photons, ions, and electrons [6–9]. Following the
Frankfurt and Heidelberg groups this technique has since then
been adopted by several laboratories worldwide. Despite the
limitations in the experimental setup (only low-energy emitted
electrons are detected to avoid prohibitive extraction fields),
a vast amount of data has been obtained for a large variety
of collision systems. More recent works have been realized in
ion-atom [10–12], ion-molecule [13–16], and ion-cluster [17]
collisions.

Theoretically, Fully Differential Cross Sections (FDCS)
in ion-atom collisions have been calculated to describe the
existing data in terms of continuum distorted waves meth-
ods [18–23] or using the classical trajectory Monte Carlo
method (CTMC) [24–26].

In this work we consider the single ionization of the
methane molecule by fully stripped ions at high-impact
energies. Motivation for the present analysis is provided by
the need of ionization cross sections of methane in fields like
astrophysics (planetary atmospheres studies), in radiobiology,
where the methane molecule resembles organic matter, or in
fusion plasmas, where carbon atoms can be ejected from the fist
wall and react with the hydrogen forming methane and other
hydrocarbons in the cold zones of the plasma, like the divertors.

The present paper is organized as follows. In Sec. II we
describe in detail the theoretical model employed to calculate
the FDCS which is based on a Born-type initial-state and
a final-state wavefunction built upon three distorted waves

(Born-3DW model). For the electron-core interaction we use a
central model potential that we build upon the orbitals provided
by Moccia [27] as one-center expansions in terms of Slater
functions. Although a particular case of the Born-3DW model,
we hereafter refer as the Born-C3 model to the case in which
the electron-core interaction in the final state is represented
by a pure Coulomb potential leading to the well-known C3
function [28,29]. In Sec. IV we present and discuss our results.
We compare the angular distributions obtained with the Born-
3DW and the simpler Born-C3 model for different emission
energies and transferred momenta. In Sec. V, we draw the main
conclusions and summarize the perspectives of our work.

Atomic units are used throughout this work unless other-
wise indicated.

II. THEORY

A. Born-3DW approximation

We consider a stripped ion of charge ZP and mass MP

incident upon a multielectron molecular target of mass MT

in the ground state. According to the independent particle
model (IPM), we consider one active electron placed in the
molecular orbital i of the ground state, so the target initial
wavefunction can be written as φi(r), eigenfunction of the
molecular model potential Vmoli(r), that includes the nuclei
and the other electron terms:

Vmoli(r) = −
M∑
l=1

Zl

|r − Rl| +
NMO∑
j=1

Nij

∫
d3r ′ |φj (r ′)|2

|r − r ′| , (1)

where M is the number of nuclei which form the molecule,
Zl the charge of each nuclei, Rl their position with respect to
the molecular center of mass, NMO the number of molecular
orbitals of the molecule, Nij values 2 if i �= j and 1 if i = j ,
and φj (r ′) their one-electron wavefunctions. In our case, the
wavefunctions for CH4 are taken from [27], where they are
expanded in a Slater functions basis set as follows:

φi(r) =
n∑

j=1

aij Rnij lij ξij
(r) Ylij mij

(r̂), (2)
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where Ylij mij
(r̂) are the spherical harmonics and Rnij lij ξij

(r)
Slater type functions given by

Rnij lij ξij
(r) =

√
(2ξij )2nij +1

(2nij )!
e−ξij r rnij −1. (3)

Although in [27] the coefficients aij are given in terms of the
real spherical harmonics Clm(r̂) and Slm(r̂), the expansion can
be written in the function of the complex spherical harmonics
Ylm(r̂) by introducing simple multiplication factors 1√

2
and the

imaginary unit i when m �= 0:

m = 0 Cl0(r̂) = Yl0(r̂),

m > 0 Clm(r̂) = 1√
2

[Ylm(r̂) + (−1)m Yl−m(r̂)], (4)

m < 0 Slm(r̂) = 1

i
√

2
[Ylm(r̂) − (−1)m Yl−m(r̂)].

To carry out the following algebra, it is convenient to write
the wavefunction (2) separating the radial and angular part as
follows:

φi(r) =
∑
lm

Rilm(r) Ylm(r̂), (5)

where the radial part Rilm is, comparing with (2),

Rilm(r) =
∑

j

aij Rnij lij ξij
(r), (6)

extending the sum for all j that lij = l and mij = m.
As K i is the initial incident momentum of the impacting

projectile, K f the momentum of the scattered projectile after
the collision, and k the momentum of the ionized electron, the
fully differential cross section is given by [30]

d5σ

d2q⊥ d3k
= (2π )4 Ne

µIeµ
2
PT

KiKf

|Tf i |2, (7)

where q is the momentum transferred by the projectile,

q = K i − K f , (8)

q⊥ denotes its component perpendicular to K i , Ne the number
of electrons in the molecular orbital i, and µIe, µPT are the
relative reduced electron-target and projectile-target masses
after the ionization takes place:

µIe = MI

MI + 1
, (9)

µPT = MP(MI + 1)

MP + MI + 1
, (10)

with MP, MI the masses of the projectile and not-ionized target,
respectively.

The transition amplitude for single ionization can be written
as

Tf i = 〈�f | VI | �i〉, (11)

where the initial channel wavefunction �i(K i ; Ri ,r) is given
by a bound wavefunction for the molecular orbital under
consideration times an incident plane wave for the incoming
projectile:

�i = 1

(2π )3/2
ei K i ·Ri φi(r), (12)

where Ri is the relative coordinate between the projectile and
the center of mass of the target molecule before the collision.
The final channel wavefunction �f (K f ; Rf ,r) is written as

�f = 1

(2π )3/2
ei K f ·Rf C−(K f ; Rf )

×χ−(k; r) C−(keP; Rf − r), (13)

where r is the coordinate of the ejected electron with respect
to the center of mass of the ionized target system, Rf the
position of the projectile with respect to the same origin
after the collision; χ−(k; r) represents a final continuum
wavefunction (E > 0) for the emitted electron with a de-
termined momentum k subject to the potential Vmoli(r), and
C−(K f ,Rf ), C−(keP,Rf − r) are the Coulombian distortions
for the internuclear interaction and the emitted electron-
projectile subsystem, respectively. The interaction potential
VI is given by the nonresolved part of the Hamiltonian by the
initial state:

VI(Ri ,r) = − ZP

|r − Ri | − ZP Vmoli(Ri). (14)

As a first approximation, to calculate the continuum
wavefunction of the ejected electron, we do not use the real
anisotropic potential Vmoli(r) shown in (1). Instead, we use a
radial Ui(r) resulting from its angular integration:

Ui(r) = 1

4π

∫
4π

d�Vmoli(r). (15)

In Fig. 1, we show the potential Ui(r) and compare it to the
asymptotic Coulomb potential −1/r . Despite the averaging
process, we note that the hydrogen atoms leave a clear trace
in the potential through the minimum that can be seen about
r = 2.1 a.u. Then the continuum wavefunction χ−(k; r) can
be separated in a radial and angular part,

χ−(k; r) =
∞∑
l=0

+l∑
m=−l

4π

kr
il − iσl ul(k; r) Y ∗

lm(k̂) Ylm(r̂),

(16)

where σl = σ Coul
l + δl, and σ Coul

l = arg[	(l + 1 + iα)], δl is
the non-Coulombic phase shift of the radial waves with respect
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FIG. 1. (Color online) Radially integrated potential for orbital
1T2z of CH4 molecule U1T2z

(r), and some cuts of three-dimensional
potential V1T2z

(r).
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to the Coulomb asymptotic ones [31], and α = −ZT/k is the
Sommerfeld parameter for the asymptotic Coulomb problem.
The radial wavefunction ul(k; r) fulfills the equation,[

−1

2

d2

dr2
+ l(l + 1)

2r2
+ Ui(r)

]
ul(k; r) = k2

2
ul(k; r).

(17)

We have employed Salvat’s code throughout this work to
obtain the ul(k; r) partial waves as well as the non-Coulombic
phase shifts δl [32]. The transition amplitude |Tf i | depends on
the orientation of the target molecule through the electronic
initial and final wavefunction φi(r), χ−(k; r), and the second
term of the interaction potential (14) Vmoli(R). Hence, we
obtain the transition amplitudes for a given orientation of the
molecule, which, in the case where it involves more than two
atoms, is characterized for the three Euler angles (α,β,γ ) so
we can define an octuple differential cross section as a function
of these angles:

d8σ

d2q⊥ d3k dα dβ dγ
= (2π )4 Ne

µIeµ
2
PT

KiKf

|Tf i(q⊥,k,α,β,γ )|2.
(18)

If we work in terms of the rotational sudden approximation
we can suppose the experiment with a large number of
molecules whose orientations in space remain constant during
the time of the collision and they are randomly distributed.
Then, in order to obtain the 5DCS (7) we have to integrate
Eq. (18) over the Euler angles (α,β,γ ):

d5σ

d2q⊥ d3k
=

∫
dα dβ dγ

d8σ

d2q⊥ d3k dα dβ dγ
. (19)

For the energy range under consideration vibrational effects
can be neglected, so we work in terms of the Frank Condon
approximation, in which we suppose all the nuclei of the target
molecule static at the equilibrium position with respect to the
main molecular coordinates.

To calculate the transition amplitude Tf i (11), we employ a
Nordsieck integral scheme together with a three-dimensional
numerical integration as described in [33].

Working the expression of the transition amplitude (11) we
can separate the part dependent on the Euler angles as a factor
D(α,β,γ ), which leads us to the following expression for the
eight-differential transition amplitude [34,35].

Tf i(q⊥,k,α,β,γ ) =
∑
lm

+l∑
µ=−l

Slmµ Dlmµ(α,β,γ ), (20)

where the sum over lm is extended over the values of
expansion (6) through the Moccia basis set [27], and Slmµ

is given by

Slmµ(k,q) = 1

(2π )9/2

∫
d3 p s

(1)
lmµ( p)

[
s

(2)
lm ( p) + s

(3)
lm ( p)

]
,

(21)

with

s
(1)
lmµ( p) = (4π )2

k

∞∑
l1=0

l1+l∑
l2=|l1−l|

+l1∑
m1=−l1

(−i)l1+l2Almµ,l1l2m1

×
∫ ∞

0
rdr Rlm(r) ul1 (k; r) eiσl1 jl2 (| p + q|r)

×Y ∗
l1,m1

(k̂) Yl2,−m1−µ( p̂ + q), (22)

s
(2)
lm ( p) =

∫
d3reP e−i( p−K f +K i )·reP e−zcreP

× 1F1

[
i

ZP

keP
,1,i keP reP + i keP · reP

]
×

∫
d3 Rf e−i p·Rf e−zcRf [−ZPVmoli(Rf )]

× 1F1

[
−i

ZPµPT

Kf

,1,i Kf Rf + i K f · Rf

]
,

(23)

s
(3)
lm ( p) =

∫
d3reP e−i( p−K f +K i )·reP e−zcreP

(
−ZP

reP

)
× 1F1

[
i

ZP

keP
,1,i keP reP + i keP · reP

]
×

∫
d3 Rf e−i p·Rf e−zcRf

× 1F1

[
i
ZPµPT

Kf

,1,i Kf Rf + i K f · Rf

]
.

(24)

The angular part Almµ,l1l2m1 is a product of Clebsch-Gordan
coefficients:

Almµ,l1l2m1 =
√

(2l1 + 1) (2l2 + 1)

4π (2l + 1)
〈l1 l2 0 0 | l 0〉

× 〈l1 l2,m1, − m1 − µ | l, − µ〉, (25)

keP is the momentum of the ionized electron with respect to
the projectile:

keP = k − K f

µPT
, (26)

Rlm(r) is the radial function (6), ul1 (k; r) is the radial part
of the continuum wavefunction (16), jl2 (pr) the spherical
Bessel functions, and zc is a cutoff parameter, included to make
convergent the Fourier transform of the continuum-continuum
integrals involving the projectile and the ionized electron
wavefunctions; in our case we have taken zc = 10−4 a.u.−1.
Smaller values of zc do not lead to noticeable changes in the
figures shown in this paper and only increase the computational
times. Since we are concerned with large impact parameter
collisions, the internuclear interaction potential present in (23)
can be approximated by Vmoli(Rf ) = − 1

Rf
.

The dependence in the orientation of the 8DCS given in
Eq. (20) is included in the rotation matrix Dlmµ(α,β,γ ) defined
by

Dlmµ(α,β,γ ) = e−iαµ d (l)
µm(β) e−iγm, (27)
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where the functions d (l)
µm(β) are defined in [36,37] through the

Jacobi polynomials. For a randomly oriented molecular target
we can use the orthogonality relation,

1

8π2

∫ π

0
sin βdβ

∫ 2π

0
dα

∫ 2π

0
dγ

×Dlmµ(α,β,γ ) D∗
l′m′µ′(α,β,γ ) = 1

2l + 1
δll′ δmm′ δµµ′,

(28)

and taking the square modulus of Tif (α,β,γ ) it leads to a
discrete sum over µ to determine the 5DCS:

d5σif

d2q⊥ d3k
= 1

8π2

∫ π

0
sin βdβ

∫ 2π

0
dα

∫ 2π

0
dγ

× d8σif (α,β,γ )

d2q⊥ d3k dα dβ dγ

=
∑
lm

+l∑
µ=−l

1

2l + 1
|Slmµ|2. (29)

Finally, we have to sum the 5DCS corresponding to all
the electrons of the target molecule. In practice, due to the
increasing binding energies of the different orbitals, only the
outer ones are relevant and will be considered as described in
the following,

d5σ

d2q⊥ d3k
(K f ,k) =

∑
i

d5σif

d2q⊥ d3k
. (30)

B. Born-C3 approximation

The Born-C3 approximation is a particular case of the Born-
3DW model and consists of neglecting the low-r structure of
the target potential Ui(r) (15),

UC
i (r) = − ZT

r
, (31)

where ZT is the charge of the target after losing one electron.
For an initially neutral target like methane, we then consider
ZT = 1.

In terms of the Born-C3 model, Eq. (17) is reduced to a
radial Coulomb equation. Then the continuum wavefunction
of the ionized electron χ−(k; r) (16) is reduced to a Coulomb
function C−(k; r) and in Eq. (22) one must replace the
numerical partial waves ul(k; r) by the spherical Coulomb
functions Fl(k; r) and σl by σ Coul

l .
The unoriented part of the transition amplitude Slmµ (21)

has then an analytical expression in terms of the Nordsieck
integrals Qnlξmµ( p,k) [38], with no need of doing the infinite
sum (22).

(4π )2

k

∞∑
l1=0

l1+l∑
l2=|l1−l|

+l1∑
m1=−l1

(−i)l1+l2 Almµ,l1l2m1

×
∫ ∞

0
rdrRnlξ (r) Fl1 (k; r) e

iσ Coul
l1 jl2 (| p + q|r)

×Y ∗
l1,m1

(k̂) Yl2,−m1−µ( p̂ + q) = Qnlξmµ( p,k). (32)

TABLE I. Coefficients of the expansion of the wavefunction of
the orbital 2A1 of CH4.

l,m 0,0 3,2

a,n,ξ 0.00877 1 9.500 −0.100791 i 7 2.900
−0.21248 1 5.500

0.98204 2 1.500 3,-2

0.05076 4 2.000 0.100791 i 7 2.900
−0.01799 4 3.000

As Rnl is a linear combination of Rnlξ through the Moccia
coefficients, the integral (22) can be written as a simple linear
combination of the Nordsieck ones.

III. CALCULATION

A. Radial wavefunctions of CH4

The wavefunction of the molecular orbitals of CH4 have
been taken from the expansions of Moccia [27], for the five
occupied orbitals of the CH4 molecule. To calculate the total
ionization cross section (30), we should extend the sum over
all the five orbitals: 1A1, 2A1, 1T2z, 1T2x , and 1T2y . As the
inner orbital 1A1 is tightly bound (−11.1949 a.u.), we can
neglect the ionization coming from it and consider that only the
outer ones 2A1 and 1T contribute (−0.9024 and −0.5042 a.u.,
respectively). Due to the symmetry of the molecule, when the
total 8DCS is averaged in space through (29), the three orbitals
1T will produce exactly the same result. So we calculate the
total 5DCS (30) as

d5σ

d2q⊥ d3k
(K f ,k) = d5σ2A1

d2q⊥ d3k
+ 3

d5σ1Tz

d2q⊥ d3k
. (33)

In the list of Moccia coefficients, we obtain the pairs
(l,m) that contribute to the cross section for each molecular
orbital (29) and the parameters for these radial expansions in
Slater functions a,n,ξ (6). They are shown in Tables I and II
(see [27]).

B. Partial waves

As the angular quantum number l of the continuum
Schrödinger equation (17) is increased, the radial function
ul(k; r) remains practically zero up to larger r values. This is
easily seen by the relation between l and the classical impact
parameter as usually taught in scattering theory courses. As

TABLE II. Coefficients of the expansion of the wavefunction of
the orbital 1T2z of CH4.

l,m 1,0 2,2

a,n,ξ 1.25998 2 1.373 −0.04731 i 4 2.400
−0.05762 3 2.950 0.23175 i 4 1.900
−0.26738 4 2.950

l,m 2, − 2 3,0

a,n,ξ 0.04731 i 4 2.400 −0.08695 7 2.900
−0.23175 i 4 1.900
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a result, for l values larger than a certain lmax, the partial
waves are not influenced by the internal structure of the
molecular potential (i.e., the short interaction term), and the
radial functions ul(k; r) tend to Coulomb functions as it is
proposed by the Born-C3 model. We determinate lmax for each
emission energy by studying how ul(k; r) converges to Fl(k; r)
as a function of l. In our case we have fixed the lmax value by
asking δl max to be lower than 10−4. Once fixed this lmax value,
we can calculate the integral (22) by correcting Nordsieck
integrals as follows:

(4π )2

k

∞∑
l1=0

l1+l∑
l2=|l1−l|

+l1∑
m1=−l1

(−i)l1+l2 Almµ,l1l2m1

×
∫ ∞

0
rdrRlm(r) ul1 (k; r) eiσl1 jl2 (| p + q|r)

×Y ∗
l1,m1

(k̂) Yl2,−m1−µ( p̂ + q)

= (4π )2

k

∞∑
l1=0

l1+l∑
l2=|l1−l|

+l1∑
m1=−l1

(−i)l1+l2 Almµ,l1l2m1

×
∫ ∞

0
rdrRlm(r) Fl1 (k; r) e

iσ Coul
l1 jl2 (| p + q|r)

×Y ∗
l1,m1

(k̂) Yl2,−m1−µ( p̂ + q)

+ (4π )2

k

lmax∑
l1=0

l1+l∑
l2=|l1−l|

+l1∑
m1=−l1

(−i)l1+l2 Almµ,l1l2m1

×
∫ ∞

0
rdr Rlm(r) jl2 (| p + q|r)

× [ul1 (k; r) eiσl1 − Fl1 (k; r) e
iσ Coul

l1 ]

×Y ∗
l1,m1

(k̂) Yl2,−m1−µ( p̂ + q)

= (4π )2

k

∞∑
l1=0

l1+l∑
l2=|l1−l|

+l1∑
m1=−l1

(−i)l1+l2 Almµ,l1l2m1
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FIG. 2. Partial waves for several values of l for an energy of
5 eV. Solid lines, distorted wave (ul) for CH4 radially integrated
potential (15); dashed lines, Coulomb waves (Fl) for the Coulomb
potential (− 1

r
).

×
∫ ∞

0
rdr Rlm(r) e

iσ Coul
l1 jl2 (| p + q|r)

× [ul1 (k; r) eiδl1 − Fl1 (k; r)]

×Y ∗
l1,m1

(k̂) Yl2,−m1−µ( p̂ + q)

+
∑

j

Qnj lj ξj mµ( p,k). (34)

With this method, we consider the infinite partial waves
by adding, explicitly, a relatively small number of them. In
other words, the essence of this method is to make use of the
convenience of the Nordsieck integrals (which consider the
infinite partial waves for the asymptotic Coulomb potential)
and just correct the behavior of the first few partial waves for
which the short interaction term of the molecular potential
turns important. In Fig. 2 we consider an electron emitted
with 5 eV and compare several partial waves for the molecular
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FIG. 3. (Color online) Fully differential single ionization cross
section for the collision H+ + CH4 versus the in-plane electron
emission θe for an impact energy E0 = 2 MeV/amu and an electron
emission energy of Ee = 5 eV. Three different momentum transfer
q values are considered. Solid lines, Born-3DW model; dashed line,
Born-3C model.
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L. FERNÁNDEZ-MENCHERO AND S. OTRANTO PHYSICAL REVIEW A 82, 022712 (2010)

0 60 120 180 240 300 360
θ

e
 (deg)

0

2

4

6

8

10

12

14

F
D

C
S

 (
a.

u.
)

E
0
 = 2 MeV/amu   E

e
 = 5 eV

q=0.25

q=0.50

q=0.75

0 60 120 180 240 300 360
θ

e
 (deg)

0

20

40

60

80

100

120

F
D

C
S

 (
a.

u.
)

E
0
 = 2 MeV/amu   E

e
 = 5 eV

q=0.25

q=0.50

q=0.75

(a)

(b)

FIG. 4. (Color online) Single ionization FDCS for (a) He2+ +
CH4 and (b) C6+ + CH4 collisions. Impact and emission energies as
in Fig. 3.

potential Ui(r) to those obtained for the Coulombic one (− 1
r
).

We note that for lmax = 4 the radial function has already
converged to the Coulombic one.

IV. RESULTS

We have calculated fully differential single ionization cross
sections for collisions of H+, He2+, and C6+ on CH4 initially
in its electronic and vibrational ground state. The calculations
have been done by an impact energy of 2 MeV/amu, and we
have considered electron emission energies between 2.5 and
10 eV and transferred momentum values between 0.25 and
0.75 a.u. In all cases we consider the coplanar geometry in
which the momenta of all the particles in the final channel
live in the plane defined by Ki and Kf . The angle θe is
the emission angle of the electron in the collision plane
measured clockwise from the beam direction. The projectiles
are deflected counterclockwise.

In Fig. 3 we compare the FDCS obtained with the Born-
3DW and the Born-C3 models. Due to the extension of the
molecule, the internal structure of the potential is relevant, and
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FIG. 5. (Color online) Singly ionization FDCS for H+ + CH4

collisions. The impact energy is E0 = 2 MeV/amu, and the emitted
electron is ejected with energies: (a) Ee = 2.5 eV, (b) Ee = 10 eV.

the results comparing both methods are expected to be quite
different. However, a first glance at Fig. 3(a) would indicate
that the two models here recalled lead to similar qualitative
results: for low q values, the typical two-lobe structure is
obtained consisting of the binary and recoil peaks. As the
q value increases, the binary peak splits due to the p-state
behavior of several of the Slater components of the 1T orbitals.
The s nature of the 2A1 state partially helps to fill the gap
region due to the splitting, leading to a wide structure as seen in
Fig. 3(a). We note that the binary peak splitting for increasing q

values has been recently studied in light particle impact single
ionization of Ar [39]. A closer inspection [Fig. 3(b)] shows
that our predictions with the Born-3DW model for the 2A1

state are much lower than those obtained with the Born-C3
model probably due to the larger ionization potential which
indicates an electron bound closer to the nucleus as well as
to the larger CH+

4 charge seen by the emitted electron for r

values lower than 2 a.u. These features are hard to infer from
Fig. 3(a) due to the dominance of the 1T orbitals in the overall
cross sections.
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In Fig. 4 we show FDCS for 2 MeV/amu (a) He2+ and (b)
C6+ collisions on CH4. The emitted electron energy is 5 eV.
The higher charge of the projectile not only leads to a larger
cross section but is also seen to affect the binary to recoil ratio
as expected.

In Fig. 5 we show FDCS for the 2 MeV/amu H+ + CH4

collision for electron emission energies of 2.5 and 10 eV. From
this figure and Fig. 3, we observe how the binary to recoil
peak ratio tends to increase as the electron emission energy
increases.

V. CONCLUSIONS

In this work, we have developed a Born-3DW model
in order to consider ion-molecule ionizing collisions at the
fully differential level. The emitted electron-remaining core
interaction has been represented by a non-Coulombic central
potential which takes into account the variable charge seen
by the electron as it leaves the reaction region. In particular,
we have considered the CH4 molecule for which Slater
parametrizations for the different molecular orbitals have been
available in the literature for a long time. The FDCS obtained
with the Born-3DW model have been compared to those

obtained by means of the much simpler Born-C3 method.
We have concentrated on collision and emission energies that
have been already explored with COLTRIMS (low q values,
low-energy electron emission) for which we find that the
results obtained with both models are in qualitative agreement.
We note however that a more cautious inspection of this
collision system (like isolation and exploration of the FDCS
for the inner orbitals) would probably highlight the differences
between both models and help gain insight into the underlying
physics for future studies. Experimental data for this system
would be highly desirable at this point.

This method can be easily extended to different target
molecules, in particular H2O, for which precise data is needed
in biology and medicine.
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