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Introduction

Let k be a field and A an associative k-algebra with 1. An extension E/A of A is a differential
operator ring on A if there exist a Lie k-algebra g and a k-vector space embedding x �→ x, of g into E ,
such that for all x, y ∈ g and a ∈ A, the following conditions hold:

(1) xa − ax = ax , where a �→ ax is a derivation,
(2) x y − y x = [x, y]g + f (x, y), where [−,−]g is the bracket of g and f :g × g → A is a k-bilinear

map,
(3) for a given basis (xi)i∈I of g, the algebra E is a free left A-module with the standard monomials

in the xi ’s as a basis.
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This general construction was introduced in [Ch] and [Mc-R]. Several particular cases of this type
of extensions have been considered previously in the literature. For instance:

– when g is a one-dimensional vector space and f is the trivial cocycle, E is the Ore extension
A[x, δ], where δ(a) = ax ,

– when A = k, we obtain the algebras studied by Sridharan in [S], which are the quasi-commutative
algebras E , whose associated graded algebra is a symmetric algebra,

– McConnell [Mc, §2] studies this type of extensions under the hypothesis that A is commutative
and (x,a) �→ ax is an action, and Borho et al. [B-G-R, Theorem 4.2] consider the case in which the
cocycle is trivial.

Blattner et al. [B-C-M] and Doi and Takeuchi [D-T] independently begun the study of the crossed
products A# f H of a k-algebra A by a Hopf k-algebra H , and in [M] it was proved that the differential
operator rings on A are the crossed products of A by enveloping algebras of Lie algebras.

In [G-G1] the authors obtained complexes, simpler than the canonical ones, which compute the
Hochschild homology and cohomology of a differential operator ring E with coefficients in an E-
bimodule M . In this paper we continue this investigation by studying the Hochschild cohomology
ring of E and the cap product

Hp(E, M) × HHq(E) → Hp−q(E, M) (q � p),

in terms of the above mentioned complexes. Moreover we generalize the results of [G-G1] by con-
sidering the (co)homology of E relative to a subalgebra K of A which is stable under the action of g
(which we also call the Hochschild (co)homology of the K -algebra E). We also seize the opportunity
to fix some minor mistakes and to simplify some proofs in [G-G1].

The paper is organized as follows: In Section 1 we obtain a projective resolution (X∗,d∗) of the E-
bimodule E , relative to the family of all epimorphisms of E-bimodules which split as (E, K )-bimodule
maps. In Section 2 we determine and study comparison maps between (X∗,d∗) and the normalized
Hochschild resolution (E ⊗K E⊗∗

K ⊗K E,b′∗) of E , relative to K . In Sections 3 and 4 we apply the above
results in order to obtain complexes (X K∗ (M),d∗) and (X∗

K (M),d∗), simpler than the canonical ones,
giving the Hochschild homology and cohomology of the K -algebra E with coefficients in an E-bi-
module M , respectively. The main results are Theorems 3.4 and 4.4, in which we obtain morphisms

X∗
K (E) ⊗ X∗

K (E) → X∗
K (E) and X K∗ (M) ⊗ X∗

K (E) → X K∗ (M),

inducing the cup and cap product, respectively. Finally in Section 5 we obtain further simplifications,
assuming that A is a symmetric algebra.

1. Preliminaries

Let k be a field. In this paper all the algebras are over k. Let A be an algebra and H a Hopf algebra.
We are going to use the Sweedler notation �(h) = ∑

(h) h(1) ⊗k h(2) for the comultiplication � of H .

A weak action of H on A is a k-bilinear map (h,a) �→ ah , from H × A to A, such that

(1) (ab)h = ∑
(h) ah(1)

bh(2)
,

(2) 1h = ε(h)1,
(3) a1 = a,

for h ∈ H , a,b ∈ A. By an action of H on A we mean a weak action such that

(
al)h = ahl for all h, l ∈ H, a ∈ A.
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Let A be an algebra and let H be a Hopf algebra acting weakly on A. Given a k-linear map f : H ⊗k
H → A we let A# f H denote the algebra (which is not necessarily associative nor with multiplicative
unit) whose underlying vector space is A ⊗k H and whose multiplication is given by

(a ⊗k h)(b ⊗k l) =
∑
(h)(l)

abh(1)

f
(
h(2), l(1)

) ⊗k h(3)l(2),

for all a,b ∈ A, h, l ∈ H . The element a⊗k h of A# f H will usually be written a#h. The algebra A# f H is
called a crossed product if it is associative with 1#1 as identity element. In [B-C-M] it was proved that
this happens if and only if the map f and the weak action of H on A satisfy the following conditions:

(1) (Normality of f ) for all h ∈ H we have f (h,1) = f (1,h) = ε(h)1A ,
(2) (Cocycle condition) for all h, l,m ∈ H we have

∑
(h)(l)(m)

f
(
l(1),m(1)

)h(1)

f
(
h(2), l(2)m(2)

) =
∑
(h)(l)

f
(
h(1), l(1)

)
f
(
h(2)l(2),m

)
,

(3) (Twisted module condition) for all h, l ∈ H and a ∈ A we have

∑
(h)(l)

(
al(1))h(1)

f
(
h(2), l(2)

) =
∑
(h)(l)

f
(
h(1), l(1)

)
ah(2)l(2)

.

We assume from now on that H is the enveloping algebra U (g) of a Lie algebra g. In this case,
item (1) of the definition of weak action implies that

(ab)x = axb + abx

for each x ∈ g and a,b ∈ A. So, a weak action determines a k-linear map

δ :g → Derk(A)

by δ(x)(a) = ax . Moreover if (h,a) �→ ah is an action, then δ is a homomorphism of Lie algebras.
Conversely, given a k-linear map δ :g → Derk(A), there exists a (generally non-unique) weak action
of U (g) on A such that δ(x)(a) = ax . When δ is a homomorphism of Lie algebras, there is a unique
action of U (g) on A such that δ(x)(a) = ax . For a proof of the previous results we refer to [B-C-M]. It
is immediate to prove that each normal cocycle

f : U (g) ⊗k U (g) → A

is convolution invertible. For a proof see [G-G1, Remark 1.1].
Next we recall some results and notations from [G-G1] that we will need later. Let K be a subal-

gebra of A which is stable under the weak action of g (that is λx ∈ K for all λ ∈ K and x ∈ g) and let
E = A# f U (g) be a crossed product. We are going to modify the sign of some boundary maps in order
to obtain simpler expressions for the comparison maps.

To begin, we fix some notations:

(1) The unadorned tensor product ⊗ means the tensor product ⊗K over K .
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(2) For B = A or B = E and each r ∈ N, we write B = B/K ,

Br = B ⊗ · · · ⊗ B (r times) and Br = B ⊗ · · · ⊗ B (r times).

Moreover, for b ∈ B we also let b denote the class of b in B .
(3) For each Lie algebra g and s ∈ N, we write g∧s = g ∧ · · · ∧ g (s times).
(4) Throughout this paper we will write a1r for a1 ⊗ · · · ⊗ ar ∈ Ar and x1s for x1 ∧ · · · ∧ xs ∈ g∧s .
(5) For a1r and 0 � i < j � r, we write ai j = ai ⊗ · · · ⊗ a j .
(6) For x1s and 1 � i � s, we write x1ı̂s = x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xs .
(7) For x1s and 1 � i < j � s, we write x1ı̂ ĵ s = x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂ j ∧ · · · ∧ xs .

Let Λ(g) be the exterior algebra generated by the k-vector space g and let Λ(g)#U (g) be the
smash product obtained by using the action of U (g) over Λ(g), determined by xx′ := [x′, x]g . We
define Y∗ as the algebra

E ⊗ (
Λ(g)#U (g)

) = (
A# f U (g)

) ⊗ (
Λ(g)#U (g)

)
,

endowed with the gradation, obtained giving degree 0 to the elements

(a#1) ⊗ (1#1), yx := (1#x) ⊗ (1#1) and ρx := (1#1) ⊗ (1#x),

and degree 1 to the elements ex := (1#1) ⊗ (x#1). If we identify each a ∈ A with (a#1) ⊗ (1#1), then
Y∗ is the extension of A, generated by the elements yx and ρx of degree 0, and ex , of the degree 1,
subject to the relations

yλx+x′ = λyx + yx′ , yx′ yx = yx yx′ + y[y′,y]g + f
(

y′, y
) − f

(
y, y′),

ρλx+x′ = λρx + ρx′ , ρx′ zy = yxρx′ ,

eλx+x′ = λex + ex′ , ex′ yx = yxex′ ,

yxa = ax + ayx, ρx′ρx = ρxρx′ + ρ[x′,x]g ,

ρxa = aρx, ex′ρx = ρxex′ + e[x′,x]g ,

exa = aex, e2
x = 0,

where λ ∈ k, x′ and x in g and [−,−]g denotes the Lie bracket in g. Note that E is a subalgebra of Y∗
via the embedding that takes a ∈ A to a and 1#x to yx for all x ∈ g. This gives rise to a structure of
left E-module on Y∗ . For all x ∈ g, let zx = yx + ρx . Since

zλx+x′ = λzx + zx′ ,

zxa = ax + azx,

zx′ zx = zxzx′ + z[x′,x]g + f
(
x′, x

) − f
(
x, x′),

there is also an algebra map from E to Y∗ that takes a ∈ A to a and 1#x to zx for all x ∈ g. This map
is also an embedding, since it is a section, with a left inverse given by the algebra map from Y∗ to E ,
that takes a to a, yx to 1#x, ρx to 0 and ex to 0.
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Remark 1.1. The complex Y∗ is slightly different from the similar complex introduced in [G-G1]. How-
ever we will obtain in Theorem 1.8 the same projective resolution of E as the one obtained in [G-G1].
We have two reasons to justify the present definition of Y∗ . On one hand, it allows us to give a very
simple proof of the following theorem (corresponding to [G-G1, Theorem 3.1.1]) and, on the other
hand, it allows us to obtain a better contracting homotopy of the resolution that appears in Theo-
rem 1.7. For instance the new contracting homotopy will be left E-linear.

Remark 1.2. In a first version of this paper we fixed in the following theorem a mistake at the be-
ginning of Section 3.1 of [G-G1]. The error was that the weak action of g on A ⊗ Λ(g) was poorly
defined. Using the notation of that paper it was

(a ⊗ e)u = aπ(u) ⊗ e + a ⊗ eu,

but should have been

(a ⊗ e)u =
∑
(u)

aπ(u(1)) ⊗ eπ(u(2)).

In the current version this weak action does not appear.

Let (gi)i∈I be a basis of g with indexes running on an ordered set I . For each i ∈ I let us write
yi := ygi , zi := zgi , ei := egi and ρi := ρgi .

Theorem 1.3. Each Ys is a free left E-module with basis

ρ
m1
i1

eδ1
i1

· · ·ρml
il

eδl
il

(
l � 0, i1 < · · · < il ∈ I, m j � 0, δ j ∈ {0,1}

m j + δ j > 0, δ1 + · · · + δl = s

)
.

Proof. It is sufficient to see that

ρ
m1
i1

eδ1
i1

· · ·ρml
il

eδl
il

(
l � 0, i1 < · · · < il ∈ I, m j � 0, δ j ∈ {0,1}

m j + δ j > 0, δ1 + · · · + δl = s

)
,

where ρ i := 1#xi and ei := xi#1, is a basis of Λ(g)#U (g) as a k-vector space, which follows easily
from the fact that

x j1 ∧ · · · ∧ x js ( j1 < · · · < jl ∈ I)

is a basis of g∧s and, by the Poincaré–Birkhoff–Witt theorem,

xm1
i1

· · · xml
il

(l � 0, i1 < · · · < il ∈ I, m j � 0)

is a basis of U (g). �
Remark 1.4. A similar, but more involved argument, shows that each Ys is a free right E-module with
the same basis. We will not use this result.

Remark 1.5. The following result improves [G-G1, Theorem 3.1.3] in the sense that in the current
version we obtain that the complex introduced there is contractible as a complex of (A, E)-bimodules
and not only as a complex of k-modules.
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Theorem 1.6. Let μ̃ : Y0 → E be the algebra map defined by μ̃(a) = a for a ∈ A and μ̃(yi) = μ̃(zi) = 1#gi for
i ∈ I . There is a unique derivation ∂∗ : Y∗ → Y∗−1 such that ∂(ei) = ρi for i ∈ I . Moreover, the chain complex
of E-bimodules

E Y0
μ̃

Y1
∂1

Y2
∂2

Y3
∂3

Y4
∂4

Y5
∂5

. . .
∂6

is contractible as a complex of (E, A)-bimodules. A chain contracting homotopy

σ−1
0 : E → Y0, σ−1

s+1 : Ys → Ys+1 (s � 0)

is given by

σ−1(1) = 1,

σ−1(ρm1
i1

eδ1
i1

· · ·ρml
il

eδl
il

) =
{

(−1)sρ
m1
i1

eδ1
i1

· · ·ρml−1
il−1

e
δl−1
il−1

ρ
ml−1
il

eil if δl = 0,

0 if δl = 1,

where we assume that i1 < · · · < il , δ1 + · · · + δl = s and ml + δl > 0.

Proof. A direct computation shows that

– μ̃◦σ−1(1) = μ̃(1) = 1.
– σ−1 ◦ μ̃(1) = σ−1(1) = 1 and ∂ ◦σ−1(1) = ∂(0) = 0.
– If x = x′ρml

il
, where ml > 0 and x′ = ρ

m1
i1

· · ·ρml−1
il−1

with i1 < · · · < il , then

σ−1 ◦ μ̃(x) = σ−1(0) = 0 and ∂ ◦σ−1(x) = ∂
(
x′ρml−1

il
eil

) = x.

– Let x = x′ρml
il

eδl
il

, where ml + δl > 0 and x′ = ρ
m1
i1

eδ1
i1

· · ·ρml−1
il−1

e
δl−1
il−1

with i1 < · · · < il and δ1 + · · · +
δl = s > 0. If δl = 0, then

σ−1 ◦ ∂(x) = σ−1(∂(
x′)ρml

il

) = (−1)s−1∂
(
x′)ρml−1

il
eil ,

∂ ◦σ−1(x) = ∂
(
(−1)sx′ρml−1

il
eil

) = (−1)s∂
(
x′)ρml−1

il
eil + x,

and if δl = 1, then

σ−1 ◦ ∂(x) = σ−1(∂(
x′)ρml

il
eil + (−1)s−1x′ρml+1

il

) = x,

∂ ◦σ−1(x) = ∂(0) = 0.

The result follows immediately. �
For each s � 0 we consider E ⊗k g∧s as a right K -module via (c ⊗k x)λ = cλ ⊗k x. For r, s � 0, let

Xrs = (E ⊗k g∧s) ⊗ Ar ⊗ E . The groups Xrs are E-bimodules in an obvious way. Let us consider the
diagram of E-bimodules and E-bimodule maps
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...

∂3

Y2

∂2

X02
μ2

X12

d0
12

. . .
d0

22

Y1

∂1

X01
μ1

X11

d0
11

. . .
d0

21

Y0 X00
μ0

X10

d0
10 . . . ,

d0
20

where μ∗ : X0∗ → Y∗ and d0∗∗ : X∗∗ → X∗−1,∗ , are defined by:

μ(1 ⊗k x1s ⊗ 1) = ex1 · · · exs ,

d0(1 ⊗k x1s ⊗ a1r ⊗ 1) = (−1)sa1 ⊗k x1s ⊗ a2r ⊗ 1

+
r−1∑
i=1

(−1)i+s ⊗k x1s ⊗ a1,i−1 ⊗ aiai+1 ⊗ ai+1,r ⊗ 1

+ (−1)r+s ⊗k x1s ⊗ a1,r−1 ⊗ ar .

Each horizontal complex in this diagram is contractible as a complex of (E, K )-bimodules. A chain
contracting homotopy is the family

σ 0
0s : Ys → X0s, σ 0

r+1,s : Xrs → Xr+1,s (r � 0),

of (E, K )-bimodule maps, defined by

σ 0(ex1 · · · exs zxs+1 · · · zxn) =
∑

j

a j ⊗k x1s ⊗ 1#w j,

where
∑

j a j#w j = (1#xs+1) · · · (1#xn), and

σ 0(1 ⊗k x1s ⊗ a1r ⊗ ar+1#w) = (−1)r+s+1 ⊗k x1s ⊗ a1,r+1 ⊗ 1#w (r � 0).

(In order to prove that the σ 0’s are right K -linear it is necessary to use that K is stable under the
action of g.) Moreover, each Xrs is a projective E-bimodule relative to the family of all epimorphisms
of E-bimodules which split as (E, K )-bimodule maps. We define E-bimodule maps

dl
rs : Xrs → Xr+l−1,s−l (r � 0 and 1 � l � s)

recursively by:

dl(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−σ 0 ◦ ∂ ◦μ(y) if l = 1 and r = 0,
−σ 0 ◦d1 ◦d0(y) if l = 1 and r > 0,

−∑l−1
j=1 σ 0 ◦dl− j ◦d j(y) if l > 1 and r = 0,

−∑l−1
j=0 σ 0 ◦dl− j ◦d j(y) if l > 1 and r > 0,

where y = 1 ⊗k x1s ⊗ a1r ⊗ 1.
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Theorem 1.7. The complex

E X0
μ

X1
d1

X2
d2

X3
d3

X4
d4

X5
d5 . . . ,

d6
(1)

where

μ(1 ⊗ 1) = 1, Xn =
⊕

r+s=n

Xrs and dn =
∑

r+s=n
r+l>0

s∑
l=0

dl
rs,

is a projective resolution of the E-bimodule E, relative to the family of all epimorphisms of E-bimodules which
split as (E, K )-bimodule maps. Moreover an explicit contracting homotopy

σ 0 : E → X0, σ n+1 : Xn → Xn+1 (n � 0)

of (1), as a complex of (E, K )-bimodules, is given by

σ 0 = σ 0 ◦σ−1
0 and σ n+1 = −

n+1∑
l=0

σ l
l,n−l+1 ◦σ−1

n+1 ◦μn +
n∑

r=0

n−r∑
l=0

σ l
r+l+1,n−l−r,

where

σ l
l,s−l : Ys → Xl,s−l and σ l

r+l+1,s−l : Xrs → Xr+l+1,s−l (0 < l � s, r � 0)

are recursively defined by

σ l = −
l−1∑
j=0

σ 0 ◦dl− j ◦σ j .

Proof. It follows from [G-G2, Corollary A.2]. �
The boundary maps of the projective resolution of E that we just found are defined recursively.

Next we give closed formulas for them.

Theorem 1.8. For xi, x j ∈ g, we put f̂ i j = f (xi, x j) − f (x j, xi). We have:

d1(1 ⊗k x1s ⊗ a1r ⊗ 1) =
s∑

i=1

(−1)i+1#xi ⊗k x1ı̂s ⊗ a1r ⊗ 1

+
s∑

i=1

(−1)i ⊗k x1ı̂s ⊗ a1r ⊗ 1#xi

+
s∑

i=1
1�h�r

(−1)i ⊗k x1ı̂s ⊗ a1,h−1 ⊗ axi
h ⊗ ah+1,r ⊗ 1

+
∑

1�i< j�s

(−1)i+ j ⊗k [xi, x j]g ∧ x1ı̂ ĵ s ⊗ a1r ⊗ 1,
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d2(1 ⊗k x1s ⊗ a1r ⊗ 1) =
∑

1�i< j�s
0�h�r

(−1)i+ j+h+s ⊗k x1ı̂ ĵ s ⊗ a1h ⊗ f̂ i j ⊗ ah+1,r ⊗ 1

and dl = 0 for all l � 3.

Proof. The proof of [G-G1, Theorem 3.3] works in our more general context. �
2. The comparison maps

In this section we introduce and study comparison maps between (X∗,d∗) and the canonical nor-
malized Hochschild resolution (E ⊗ E∗ ⊗ E,b′∗) of the K -algebra E . It is well known that there are
morphisms of E-bimodule complexes

θ∗ : (X∗,d∗) → (
E ⊗ E∗ ⊗ E,b′∗

)
and ϑ∗ :

(
E ⊗ E∗ ⊗ E,b′∗

) → (X∗,d∗),

such that θ0 = ϑ0 = idE⊗E and that these morphisms are inverse of each other up to homotopy. They
can be recursively defined by θ0 = ϑ0 = idE⊗E and

θ(1 ⊗k x1s ⊗ a1r ⊗ 1) = (−1)nθ ◦d(1 ⊗k x1s ⊗ a1r ⊗ 1) ⊗ 1

and

ϑ(1 ⊗ c1n ⊗ 1) = σ ◦ϑ ◦b′(1 ⊗ c1n ⊗ 1),

for n � 1, where r + s = n and c1n = c1 ⊗ · · · ⊗ cn ∈ En . The following result was established without
proof in [G-G1].

Proposition 2.1. We have:

θ(1 ⊗k x1s ⊗ a1r ⊗ 1) =
∑
τ∈Ss

sg(τ ) ⊗ (1#xτ (1) ⊗ · · · ⊗ 1#xτ (s)) ∗ a1r ⊗ 1,

where Ss is the symmetric group in s elements and ∗ denotes the shuffle product, which is defined by

(β1 ⊗ · · · ⊗ βs) ∗ (βs+1 ⊗ · · · ⊗ βn) =
∑

σ∈{(s,n−s)−shuffles}
sg(σ )βσ(1) ⊗ · · · ⊗ βσ(n).

Proof. We proceed by induction on n = r + s. The case n = 0 is obvious. Suppose that r + s = n and
the result is valid for θn−1. By the recursive definition of θ , Theorem 1.8, and the inductive hypothesis
we obtain that:

θ(1 ⊗k x1s ⊗ a1r ⊗ 1) = (−1)nθ ◦d(1 ⊗k x1s ⊗ a1r ⊗ 1) ⊗ 1

= (−1)nθ ◦(d0 + d1 + d2)(1 ⊗k x1s ⊗ a1r ⊗ 1) ⊗ 1

= θ(1 ⊗k x1s ⊗ a1,r−1 ⊗ ar) ⊗ 1

+ θ

(
s∑

i=1

(−1)i+n ⊗k x1ı̂s ⊗ a1r ⊗ 1#xi

)
⊗ 1.

The desired result follows now using again the inductive hypothesis. �
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Lemma 2.2. Let (gi)i∈I be the basis of g considered in Theorem 1.3. As in that theorem, let us write ei = egi for
each i ∈ I . The following facts hold:

(1) σ n+1 ◦σ n = 0 for all n � 0.
(2) σ l((E ⊗k g∧s) ⊗ Ar ⊗ K #U (g)) = 0 for all 0 � l � s.
(3) σ l(ei1 · · · ein ) = 0 for all 0 < l � n.
(4) σ l((E ⊗k g∧s) ⊗ Ar ⊗ A) = 0 for all 0 < l � s.
(5) σ−1 ◦μ(A ⊗k g∧n ⊗ A) = 0.
(6) Assume that i1 < · · · < in. Then,

σ−1 ◦μ(1 ⊗k gi1 ∧ · · · ∧ gin ⊗ 1#gin+1) =
{

(−1)nei1 · · · ein+1 if in < in+1,

0 otherwise.

Proof. (1) An inductive argument shows that there are maps (which are left E-linear and right K -
linear)

γ l
rs : Xr+1,s → Xr+l,s−l,

such that σ l
r+l+1,s−l = σ 0

r+l+1,s−l ◦γ l
rs ◦σ 0

rs . Because of σ 0 ◦σ 0 = 0, this implies that σ l′ ◦σ l = 0, for all
l, l′ � 0. Thus,

σ n+1 ◦σ n =
n+1∑
l=0

σ l ◦σ−1 ◦μ◦σ 0 ◦σ−1 ◦μ = 0,

where the last equality holds because μ◦σ 0 = id and σ−1 ◦σ−1 = 0.
(2) Since σ l = σ 0 ◦γ l ◦σ 0 for l > 0, we can assume that l = 0. In this case the assertion follows

immediately from the definition of σ 0.
(3) By the definition of σ 0 and Theorem 1.8,

σ 0 ◦d1 ◦σ 0(ei1 · · · ein ) = σ 0 ◦d1(1 ⊗k gi1 ∧ · · · ∧ gin ⊗ 1) = 0

and

σ 0 ◦d2 ◦σ 0(ei1 · · · ein ) = σ 0 ◦d2(1 ⊗k gi1 ∧ · · · ∧ gin ⊗ 1) = 0.

Item (3) follows now easily by induction on l, since, by the recursive definition of σ l and Theorem 1.8,

σ 1 = −σ 0 ◦d1 ◦σ 0 and σ l = −σ 0 ◦d1 ◦σ l−1 − σ 0 ◦d2 ◦σ l−2 for l � 2.

(4) It is similar to the proof of item (3).
(5) Since eia = aei for all i ∈ I and a ∈ A,

σ−1 ◦μ
(
a ⊗k gi1 ∧ · · · ∧ gin ⊗ a′) = σ−1(aei1 · · · ein a′) = σ−1(aa′ei1 · · · ein

) = 0,

where the last equality follows from the definition of σ−1.
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(6) We have

σ−1 ◦μ(1 ⊗k gi1 ∧ · · · ∧ gin ⊗ 1#gin+1) = σ−1(ei1 · · · ein zin+1)

= σ−1(ei1 · · · ein(yin+1 + ρin+1)
)

= σ−1(yin+1 ei1 · · · ein ) + σ−1(ei1 · · · einρin+1),

where zin+1 , yin+1 and ρin+1 are as in Theorem 1.3. So, in order to finish the proof it suffices to note
that σ−1(yin+1 ei1 · · · ein ) = 0 and

σ−1(ei1 · · · einρin+1) =
{

(−1)nei1 · · · ein+1 if in < in+1,

0 otherwise,

which follows immediately from

ei j ρin+1 = ρin+1 ei j + e[xi j
,xin+1 ]g for all j such that i j > in+1,

and the definition of σ−1. �
Theorem 2.3. Let (gi)i∈I be the basis of g considered in Theorem 1.3. Assume that c1n = c1 ⊗ · · · ⊗ cn ∈ En is
a simple tensor with c j ∈ A ∪ {1#gi: i ∈ I} for all j ∈ {1, . . . ,n}. If there exist 0 � s � n and i1 < · · · < is in I ,
such that c j = 1#gi j for 1 � j � s and c j ∈ A for s < j � n, then

ϑ(1 ⊗ c1n ⊗ 1) = 1 ⊗k gi1 ∧ · · · ∧ gis ⊗ cs+1,n ⊗ 1.

Otherwise, ϑ(1 ⊗ c1n ⊗ 1) = 0.

Proof. For all n � 0 we define Pn by c1n ∈ Pn if there are i1 < · · · < is in I such that c j = 1#gi j for
j � s and c j ∈ A for j > s. We now proceed by induction on n. The case n = 0 is immediate. Assume
that the result is valid for ϑn . By item (1) of Lemma 2.2 and the recursive definition of ϑn , we have

σ ◦ϑ
(
c′

0n ⊗ 1
) = σ ◦σ ◦ϑ ◦b′(c′

0n ⊗ 1
) = 0,

and so

ϑ(1 ⊗ c1,n+1 ⊗ 1) = (−1)n+1σ ◦ϑ(1 ⊗ c1,n+1).

Assume that c j ∈ A ∪ {1#gi: i ∈ I} for all j ∈ {1, . . . ,n + 1}. In order to finish the proof it suffices to
show that:

– If c1,n+1 /∈ Pn+1, then σ ◦ϑ(1 ⊗ c1,n+1) = 0.
– If c1,n+1 = 1#gi1 ⊗ · · · ⊗ 1#gis ⊗ as+1,n+1 ∈ Pn+1, then

σ ◦ϑ(1 ⊗ c1,n+1) = (−1)n+1 ⊗k gi1 ∧ · · · ∧ gis ⊗ as+1,n+1 ⊗ 1.

If c1n /∈ Pn , then ϑ(1 ⊗ c1,n+1) = 0 by the inductive hypothesis. It remains to consider the case
c1n ∈ Pn . We divide this into three subcases.
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(1) If c1n = 1#gi1 ⊗ · · · ⊗ 1#gis ⊗ as+1,n and cn+1 = an+1 ∈ A, then

σ ◦ϑ(1 ⊗ c1,n+1) = σ(1 ⊗k gi1 ∧ · · · ∧ gis ⊗ as+1,n+1)

= σ 0(1 ⊗k gi1 ∧ · · · ∧ gis ⊗ as+1,n+1)

= (−1)n+1 ⊗k gi1 ∧ · · · ∧ gis ⊗ as+1,n+1 ⊗ 1,

by the inductive hypothesis, items (4) and (5) of Lemma 2.2, and the definitions of σ and σ 0.
(2) If c1n = 1#gi1 ⊗ · · · ⊗ 1#gis ⊗ as+1,n with s < n and cn+1 = 1#gin+1 , then

σ ◦ϑ(1 ⊗ c1,n+1) = σ(1 ⊗k gi1 ∧ · · · ∧ gis ⊗ as+1,n ⊗ 1#gin+1) = 0,

by the inductive hypothesis, the definition of σ and item (2) of Lemma 2.2.
(3) If c1n = 1#gi1 ⊗ · · · ⊗ 1#gin and cn+1 = 1#gin+1 , then

σ ◦ϑ(1 ⊗ c1,n+1) = σ(1 ⊗k gi1 ∧ · · · ∧ gin ⊗ 1#gin+1)

= −σ 0 ◦σ−1 ◦μ(1 ⊗k gi1 ∧ · · · ∧ gin ⊗ 1#gin+1)

=
{

(−1)n+1 ⊗k gi1 ∧ · · · ∧ gin+1 ⊗ 1 if c1,n+1 ∈ Pn+1,

0 otherwise,

by the inductive hypothesis, items (2), (3) and (6) of Lemma 2.2, and the definitions of σ and σ 0. �
3. The Hochschild cohomology

Let E = A# f U (g) and let M be an E-bimodule. In this section we obtain a cochain complex
(X∗

K (M),d∗), simpler than the canonical one, giving the Hochschild cohomology of the K -algebra E
with coefficients in M . When K = k our result reduces to the one obtained in [G-G1, Section 5]. Then,
we obtain an expression that gives the cup product of the Hochschild cohomology of E in terms of
(X∗

K (E),d∗). As usual, given c ∈ E and m ∈ M , we let [m, c] denote the commutator mc − cm.

3.1. The complex (X∗
K (M),d∗)

For r, s � 0, let

Xrs
K (M) = HomK e

(
Ar ⊗k g∧s, M

)
,

where Ar ⊗k g∧s is considered as a K -bimodule via the canonical actions on Ar . We define the mor-
phism

drs
l : Xr+l−1,s−l

K (M) → Xrs
K (M)

(
with 0 � l � min(2, s) and r + l > 0

)
by:

d0(ϕ)(a1r ⊗k x1s) = a1ϕ(a2r ⊗k x1s)

+
r−1∑
i=1

(−1)iϕ(a1,i−1 ⊗ aiai+1 ⊗ ai+2,r ⊗k x1s)

+ (−1)rϕ(a1,r−1 ⊗k x1s)ar,
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d1(ϕ)(a1r ⊗k x1s) =
s∑

i=1

(−1)i+r[ϕ(a1r ⊗k x1ı̂s),1#xi
]

+
s∑

i=1
1�h�r

(−1)i+rϕ
(
a1,h−1 ⊗ axi

h ⊗ ah+1,r ⊗k x1ı̂s
)

+
∑

1�i< j�s

(−1)i+ j+rϕ
(
a1r ⊗k [xi, x j]g ∧ x1ı̂ ĵ s

)

and

d2(ϕ)(a1r ⊗k x1s) =
∑

1�i< j�s
0�h�r

(−1)i+ j+hϕ(a1h ⊗ f̂ i j ⊗ ah+1,r ⊗k x1ı̂ ĵ s),

where f̂ i j = f (xi, x j) − f (x j, xi). Recall that Xrs = (E ⊗k g∧s) ⊗ Ar ⊗ E . Applying the functor
HomEe (−, M) to the complex (X∗,d∗) of Theorem 1.7, and using Theorem 1.8 and the identifications
γ rs : Xrs

K (M) → HomEe (Xrs, M), given by

γ (ϕ)(1 ⊗k x1s ⊗ a1r ⊗ 1) = (−1)rsϕ(a1r ⊗k x1s),

we obtain the complex

X0
K (M)

d1

X1
K (M)

d2

X2
K (M)

d3

X3
K (M)

d4

X4
K (M)

d5 · · · ,

where

Xn
K (M) =

⊕
r+s=n

Xrs
K (M) and dn =

∑
r+s=n
r+l>0

min(s,2)∑
l=0

drs
l .

Note that if f (g ⊗k g) ⊆ K , then the cochain complex (X∗
K (M),d∗) is the total complex of the double

complex (X∗∗
K (M),d∗∗

0 ,d∗∗
1 ).

Theorem 3.1. The Hochschild cohomology H∗
K (E, M), of the K -algebra E with coefficients in M, is the coho-

mology of (X∗
K (M),d∗).

Proof. It is an immediate consequence of the above discussion. �
3.2. The comparison maps

The maps θ∗ and ϑ∗ , introduced in Section 2, induce quasi-isomorphisms

θ∗ :
(
HomK e

(
E∗, M

)
,b∗) → (

X∗
K (M),d∗)

and

ϑ∗ :
(

X∗
K (M),d∗) → (

HomK e
(

E∗, M
)
,b∗)

which are inverse of each other up to homotopy.



Author's personal copy

68 G. Carboni et al. / Journal of Algebra 339 (2011) 55–79

Proposition 3.2. We have

θ(ψ)(a1r ⊗k x1s) =
∑
τ∈Ss

(−1)rs sg(τ )ψ
(
(1#xτ (1) ⊗ · · · ⊗ 1#xτ (s)) ∗ a1r

)
.

Proof. This follows immediately from Proposition 2.1. �
In the sequel we consider that Xrs

K ⊆ Xr+s
K in the canonical way.

Theorem 3.3. Let (gi)i∈I be the basis of g considered in Theorem 1.3 and let ϕ ∈ Xrs
K . Assume that c1,r+s =

c1 ⊗ · · · ⊗ cr+s ∈ Er+s is a simple tensor with c j ∈ A ∪ {1#gi: i ∈ I} for all j ∈ {1, . . . , r + s}. If c j = 1#gi j

with i1 < · · · < is in I for 1 � j � s and c j ∈ A for s < j � r + s, then

ϑ(ϕ)(c1,r+s) = (−1)rsϕ(cs+1,r+s ⊗k gi1 ∧ · · · ∧ gis ).

Otherwise, ϑ(ϕ)(c1,r+s) = 0.

Proof. This follows immediately from Theorem 2.3. �
As usual, in the following subsection we will write HH∗

K (E) instead of H∗
K (E, E).

3.3. The cup product

Recall that the cup product of HH∗
K (E) is given in terms of (HomK e (E∗, E),b∗), by

(
ψ � ψ ′)(c1,m+n) = ψ(c1m)ψ ′(cm+1,m+n),

where ψ ∈ HomK e (Em, E) and ψ ′ ∈ HomK e (En, E). In this subsection we compute the cup product of
HH∗

K (E) in terms of the small complex (X∗
K (E),d∗). Given

ϕ ∈ Xrs
K (E) and ϕ′ ∈ Xr′s′

K (E)

we define ϕ • ϕ′ ∈ Xr+r′,s+s′
K (E) by

(
ϕ • ϕ′)(a1r′′ ⊗k x1s′′) =

∑
1� j1<···< js�s′′

sg( j1s)ϕ(a1r ⊗k x j1s )ϕ
′(ar+1,r′′ ⊗k xl1s′ ),

where

– sg( j1s) = (−1)r′s+∑s
u=1( ju−u) ,

– r′′ = r + r′ and s′′ = s + s′ ,
– 1 � l1 < · · · < ls′ � s′′ denote the set defined by

{ j1, . . . , js} ∪ {l1, . . . , ls′ } = {
1, . . . , s′′},

– x j1s = x j1 ∧ · · · ∧ x js and xl1s′ = xl1 ∧ · · · ∧ xls′ .

Theorem 3.4. The cup product of HH∗
K (E) is induced by the operation • in the complex (X∗

K (E),d∗).
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Proof. Let ϕ ∈ Xrs
K (E) and ϕ′ ∈ Xr′s′

K (E). Let r′′ and s′′ be natural numbers satisfying r′′ + s′′ = r + r′ +
s + s′ and let a1r′′ ⊗k x1s′′ ∈ X K

r′′s′′ . Let (gi)i∈I be the basis of g considered in Theorem 1.3. Clearly we
can assume that there exist i1 < · · · < is′′ in I such that x j = gi j for all 1 � j � s′′ . By Proposition 3.2,

θ
(
ϑ(ϕ) � ϑ

(
ϕ′))(a1r′′ ⊗k x1s′′) = (

ϑ(ϕ) � ϑ
(
ϕ′))(T )

where

T =
∑

τ∈Ss′′
(−1)r′′s′′ sg(τ )

(
(1#xτ (1)) ⊗ · · · ⊗ (1#xτ (s′′))

) ∗ a1r′′ .

In order to finish the proof it suffices to note that by Theorem 3.3, this is zero if r′′ �= r + r′ and this
is (ϕ • ϕ′)(a1r′′ ⊗k x1s′′ ) if r′′ = r + r′ . �
4. The Hochschild homology

Let E = A# f U (g) and let M be an E-bimodule. In this section we obtain a chain complex
(X K∗ (M),d∗), simpler than the canonical one, giving the Hochschild homology of the K -algebra E
with coefficients in M . When K = k our result reduces to the one obtained in [G-G1, Section 4].
Then, we obtain an expression that gives the cap product of HK∗ (E, M) in terms of (X∗

K (E),d∗) and
(X K∗ (E, M),d∗). As in the previous section [m, c] denotes the commutator mc − cm of m ∈ M and
c ∈ E .

4.1. The complex (X K∗ (M),d∗)

For r, s � 0, let

X K
rs(M) = M ⊗ Ar

[M ⊗ Ar, K ] ⊗ g∧s,

where [M ⊗ Ar, K ] is the k-vector space generated by the commutators [m ⊗ a1r, λ], with λ ∈ K and
m ⊗ a1r ∈ M ⊗ Ar . We let m ⊗ a1r denote the class of m ⊗ a1r in M ⊗ Ar/[M ⊗ Ar, K ]. We define the
morphism

dl
rs : X K

rs(M) → X K
r+l−1,s−l(M)

(
with 0 � l � min(2, s) and r + l > 0

)
by:

d0(m ⊗ a1r ⊗k x1s) = ma1 ⊗ a2r ⊗k x1s

+
r−1∑
i=1

(−1)im ⊗ a1,i−1 ⊗ aiai+1 ⊗ ai+2,r ⊗k x1s + (−1)rarm ⊗ a1,r−1 ⊗k x1s,

d1(m ⊗ a1r ⊗k x1s) =
s∑

i=1

(−1)i+r[(1#xi),m
] ⊗ a1r ⊗k x1ı̂s

+
s∑

i=1
1�h�r

(−1)i+rm ⊗ a1,h−1 ⊗ axi
h ⊗ ah+1,r ⊗k x1ı̂s

+
∑

1�i< j�s

(−1)i+ j+rm ⊗ a1r ⊗k [xi, x j]g ∧ x1ı̂ ĵ s
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and

d2(m ⊗ a1r ⊗k x1s) =
∑

1�i< j�s
0�h�r

(−1)i+ j+hm ⊗ a1h ⊗ f̂ i j ⊗ ah+1,r ⊗k x1ı̂ ĵ s,

where f̂ i j = f (xi, x j)− f (x j, xi). Recall that Xrs = (E ⊗k g∧s)⊗ Ar ⊗ E and let Ee be enveloping algebra
of E . By tensoring on the left Xrs over Ee with M , and using Theorem 1.8 and the identifications
γrs : X K

rs(M) → M ⊗Ee Xrs , given by

γ (m ⊗ a1r ⊗k x1s) = (−1)rsm ⊗Ee (1 ⊗k x1s ⊗ a1r ⊗ 1),

we obtain the complex

X K
0 (M) X K

1 (M)
d1

X K
2 (M)

d2
X K

3 (M)
d3

X K
4 (M)

d4 · · · ,d5

where

X K
n (M) =

⊕
r+s=n

X K
rs(M) and dn =

∑
r+s=n
r+l>0

min(s,2)∑
l=0

dl
rs.

Note that if f (g ⊗k g) ⊆ K , then the chain complex (X K∗ (M),d∗) is the total complex of the double
complex (X K∗∗(M),d0∗∗,d1∗∗).

Theorem 4.1. The Hochschild homology HK∗ (E, M), of the K -algebra E with coefficients in M, is the homology
of (X K∗ (M),d∗).

Proof. It is an immediate consequence of the above discussion. �
4.2. The comparison maps

The maps θ∗ and ϑ∗ , introduced in Section 2, induce quasi-isomorphisms

θ∗ :
(

X K∗ (M),d∗
) →

(
M ⊗ E∗

[M ⊗ E∗, K ] ,b∗
)

and

ϑ∗ :

(
M ⊗ E∗

[M ⊗ E∗, K ] ,b∗
)

→ (
X K∗ (M),d∗

)
which are inverse one of each other up to homotopy.

Proposition 4.2. We have

θ(m ⊗ a1r ⊗k x1s) =
∑
τ∈Ss

(−1)rs sg(τ )m ⊗ (1#xτ (1) ⊗ · · · ⊗ 1#xτ (s)) ∗ a1r .

Proof. This follows immediately from Proposition 2.1. �
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Theorem 4.3. Let (gi)i∈I be the basis of g considered in Theorem 1.3. Assume that c1n = c1 ⊗ · · · ⊗ cn ∈ En is
a simple tensor with c j ∈ A ∪ {1#gi: i ∈ I} for all j ∈ {1, . . . ,n}. If there exist 0 � s � n and i1 < · · · < is in I ,
such that c j = 1#gi j for 1 � j � s and c j ∈ A for s < j � n, then

ϑ(m ⊗ c1n) = (−1)s(n−s)m ⊗ cs+1,n ⊗k gi1 ∧ · · · ∧ gis .

Otherwise, ϑ(m ⊗ c1n) = 0.

Proof. This follows immediately from Theorem 2.3. �
4.3. The cap product

Recall that the cap product

HK
p (E, M) × HHq

K (E) → HK
p−q(E, M) (q � p)

is defined in terms of ( M⊗E∗
[M⊗E∗,K ] ,b∗) and (HomK e (E∗, E),b∗), by

m ⊗ c1p � ψ = mψ(c1q) ⊗ cq+1,p,

where ψ ∈ HomK e (Eq, E). In this subsection we compute the cap product in terms of the small com-
plexes (X K∗ (M),d∗) and (X∗

K (E),d∗). Given

m ⊗ a1r ⊗k x1s ∈ X K
rs(M) and ϕ′ ∈ Xr′s′

K (E) with r � r′ and s � s′,

we define (m ⊗ a1r ⊗k x1s) • ϕ′ ∈ X K
r−r′,s−s′ (M) by

(m ⊗ a1r ⊗k x1s) • ϕ′ =
∑

1� j1<···< js′�s

sg( j1s′)mϕ′(a1r′ ⊗k x j1s′ ) ⊗ ar′+1,r ⊗k xl1,s−s′ ,

where

– sg( j1s′ ) = (−1)rs′+r′s′+∑s′
u=1( ju−u) ,

– 1 � l1 < · · · < ls−s′ � s denote the set defined by

{ j1, . . . , js′ } ∪ {l1, . . . , ls−s′ } = {1, . . . , s},

– x j1s′ = x j1 ∧ · · · ∧ x js′ and xl1,s−s′ = xl1 ∧ · · · ∧ xls−s′ .

Theorem 4.4. In terms of the complexes (X K∗ (M),d∗) and (X∗
K (E),d∗), the cap product

HK
p (E, M) × HHq

K (E) → HK
p−q(E, M)

is induced by •.
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Proof. Let m ⊗ a1r ⊗k x1s ∈ X K
rs(M) and ϕ′ ∈ Xr′s′

K (E). Let (gi)i∈I be the basis of g considered in Theo-
rem 1.3. Clearly we can assume that there exist i1 < · · · < is in I such that x j = gi j for all 1 � j � s.
By Proposition 4.2,

ϑ
(
θ(m ⊗ a1r ⊗k x1s) � ϑ

(
ϕ′)) = ϑ

(
T � ϑ

(
ϕ′)),

where

T =
∑

σ∈Ss

(−1)rs sg(σ )
(
(1#xσ (1)) ⊗ · · · ⊗ (1#xσ (s))

) ∗ a1r .

Hence, by Theorem 3.3, if r′ > r or s′ > s, then

ϑ
(
θ(m ⊗ a1r ⊗k x1s) � ϑ

(
ϕ′)) = 0,

and, if r′ � r and s′ � s, then

ϑ
(
θ(m ⊗ a1r ⊗k x1s) � ϑ

(
ϕ′)) =

∑
1� j1<···< js′�s

ϑ
(
mϕ′(a1r′ ⊗k x j1s′ ) ⊗ T ′

ll,s−s′
)
,

where

T ′
ll,s−s′ =

∑
τ∈Ss−s′

(−1)rs+r′s sg(τ )
(
(1#xlτ (1)

) ⊗ · · · ⊗ (1#xlτ (s−s′) )
) ∗ ar′+1,r .

In order to finish the proof it suffices to apply Theorem 4.3. �
5. The (co)homology of S(V )# f U (g)

In this section we obtain complexes (Z∗(M), δ∗) and (Z∗(M), δ∗), simpler than (X∗
K (M),d∗) and

(X K∗ (M),d∗) respectively, giving the Hochschild homology of the K -algebra E := A# f U (g) with coef-
ficients in an E-bimodule M , when

– K = k and A is a symmetric algebra S(V ),
– vx ∈ k ⊕ V for all v ∈ V and x ∈ g,
– f (x1, x2) ∈ k ⊕ V for all x1, x2 ∈ g.

Then, we obtain an expression that gives the cup product of HH∗
K (E) in terms of (Z∗(E), δ∗), and we

obtain an expression that gives the cap product of HK∗ (E, M) in terms of (Z∗(M), δ∗) and (Z∗(E), δ∗).
For r, s � 0, let Zrs = E ⊗ g∧s ⊗ V ∧r ⊗ E . The groups Zrs are E-bimodules in an obvious way. Let

δl
rs : Zrs → Zr+l−1,s−l

(
0 � l � min(2, s) and r + l > 0

)
be the E-bimodule morphisms defined by

δ0(1 ⊗ x1s ⊗ v1r ⊗ 1) =
r∑

i=1

(−1)i+s(vi ⊗ x1s ⊗ v1ı̂r ⊗ 1 − 1 ⊗ x1s ⊗ v1ı̂r ⊗ vi),

δ1(1 ⊗ x1s ⊗ v1r ⊗ 1) =
s∑

i=1

(−1)i+1#xi ⊗ x1ı̂s ⊗ v1r ⊗ 1

+
s∑

i=1

(−1)i ⊗ x1ı̂s ⊗ v1r ⊗ 1#xi
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+
s∑

i=1
1�h�r

(−1)i ⊗ x1ı̂s ⊗ v1,h−1 ∧ vxi
h ∧ vh+1,r ⊗ 1

+
∑

1�i< j�s

(−1)i+ j ⊗ [xi, x j]g ∧ x1ı̂ ĵ s ⊗ v1r ⊗ 1

and

δ2(1 ⊗ x1s ⊗ v1r ⊗ 1) =
∑

1�i< j�s

(−1)i+ j+s ⊗ x1ı̂ ĵ s ⊗ f̂ i j ∧ v1r ⊗ 1,

where

– vhl = vh ∧ · · · ∧ vl ,
– vxi

h is the V -component of vxi
h (that is vxi

h ∈ V and vxi
h − vxi

h ∈ k),

– f̂ i j = f V (xi, x j) − f V (x j, xi) in which f V (xi, x j) and f V (x j, xi) are the V -components of f (xi, x j)

and f (x j, xi), respectively.

Theorem 5.1. The complex

E Z0
μ

Z1
δ1

Z2
δ2

Z3
δ3

Z4
δ4

Z5
δ5 . . . ,

δ6

where

μ(1 ⊗ 1) = 1, Zn =
⊕

r+s=n

Zrs and δn =
∑

r+s=n
r+l>0

min(s,2)∑
l=0

δl
rs,

is a projective resolution of the E-bimodule E. Moreover, the family of maps

Γ∗ : Z∗ → X∗,

given by

Γ (1 ⊗ x1s ⊗ v1r ⊗ 1) =
∑

σ∈Sr

sg(σ ) ⊗ x1s ⊗ vσ (1) ⊗ · · · ⊗ vσ (r) ⊗ 1,

defines a morphism of E-bimodule complexes from (Z∗, δ∗) to (X∗,d∗).

Proof. It is clear that each Zn is a projective E-bimodule and a direct computation shows that Γ∗ is
a morphism of complexes. Let

G0∗ ⊆ G1∗ ⊆ G2∗ ⊆ G3∗ ⊆ · · · and F 0∗ ⊆ F 1∗ ⊆ F 2∗ ⊆ F 3∗ ⊆ · · ·
be the filtrations of (Z∗, δ∗) and (X∗,d∗), defined by

Gi
n =

⊕
r+s=n

s�i

Zrs and F i
n =

⊕
r+s=n

s�i

Xrs,
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respectively. In order to see that Γ∗ is a quasi-isomorphism it is sufficient to show that it induces a
quasi-isomorphism between the graded complexes associated with the filtrations introduced above.
In other words, the maps

Γ∗s :
(

Z∗s, δ
0∗s

) → (
X∗s,d0∗s

)
(s � 0),

defined by

Γ (1 ⊗ x1s ⊗ v1r ⊗ 1) =
∑

σ∈Sr

sg(σ ) ⊗ x1s ⊗ vσ (1) ⊗ · · · ⊗ vσ (r) ⊗ 1,

are quasi-isomorphisms, which follows easily from Proposition 2.1. �
5.1. Hochschild cohomology

Let M be an E-bimodule. For r, s � 0, let

Zrs(M) = Homk
(

V r ⊗ g∧s, M
)
.

We define the morphism

δrs
l : Zr+l−1,s−l(M) → Zrs(M)

(
with 0 � l � min(2, s) and r + l > 0

)
by:

δ0(ϕ)(v1r ⊗ x1s) =
r∑

i=1

(−1)i[vi,ϕ(v1ı̂r ⊗ x1s)
]
,

δ1(ϕ)(v1r ⊗ x1s) =
s∑

i=1

(−1)i+r[ϕ(v1r ⊗ x1ı̂s),1#xi
]

+
s∑

i=1
1�h�r

(−1)i+rϕ
(
v1,h−1 ∧ vxi

h ∧ vh+1,r ⊗ x1ı̂s
)

+
∑

1�i< j�s

(−1)i+ j+rϕ
(
v1r ⊗ [xi, x j]g ∧ x1ı̂ ĵ s

)

and

δ2(ϕ)(v1r ⊗ x1s) =
∑

1�i< j�s

(−1)i+ jϕ( f̂ i j ∧ v1r ⊗ x1ı̂ ĵ s).

Applying the functor HomEe (−, M) to the complex (Z∗, δ∗), and using Theorem 5.1 and the identifi-
cations ξ rs : Zrs(M) → HomEe (Zrs, M), given by

ξ(ϕ)(1 ⊗ x1s ⊗ v1r ⊗ 1) = (−1)rsϕ(v1r ⊗ x1s),

we obtain the complex
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Z 0(M)
δ1

Z 1(M)
δ2

Z 2(M)
δ3

Z 3(M)
δ4

Z 4(M)
δ5 · · · ,

where

Zn(M) =
⊕

r+s=n

Zrs(M) and δn =
∑

r+s=n
r+l>0

min(s,2)∑
l=0

δrs
l .

Note that if f (g ⊗ g) ⊆ k, then the cochain complex (Z∗(M), δ∗) is the total complex of the double
complex (Z∗∗(M), δ∗∗

0 , δ∗∗
1 ).

Theorem 5.2. The Hochschild cohomology H∗(E, M), of E with coefficients in M, is the cohomology of
(Z∗(M), δ∗).

The map Γ∗ : (Z∗, δ∗) → (X∗,d∗) induces a quasi-isomorphism

Γ ∗ :
(

X∗
k(M),d∗

) → (
Z∗(M), δ∗).

Proposition 5.3. We have

Γ (ϕ)(v1r ⊗ x1s) =
∑

σ∈Sr

sg(σ )ϕ(vσ (1) ⊗ · · · ⊗ vσ (r) ⊗ x1s).

Proof. This follows immediately from Theorem 5.1. �
5.2. The cup product

In this subsection we compute the cup product of HH∗(E) in terms of the complex (Z∗(E), δ∗).
Given φ ∈ Zrs(E) and φ′ ∈ Zr′s′ (E), we define φ � φ′ ∈ Zr+r′,s+s′ (E) by

(
φ � φ′)(v1r′′ ⊗ x1s′′) =

∑
1�i1<···<ir�r′′
1� j1<···< js�s′′

sg(i1r, j1s)φ(vi1r ⊗ x j1s )φ
′(vh1r′ ⊗ xl1s′ ),

where

– sg(i1r, j1s) = (−1)r′s+∑r
u=1(iu−u)+∑s

u=1( ju−u) ,
– r′′ = r + r′ and s′′ = s + s′ ,
– 1 � h1 < · · · < hr′ � r′′ denote the set defined by

{i1, . . . , ir} ∪ {h1, . . . ,hr′ } = {
1, . . . , r′′},

– 1 � l1 < · · · < ls′ � s′′ denote the set defined by

{ j1, . . . , js} ∪ {l1, . . . , ls′ } = {
1, . . . , s′′},

– vi1r = vi1 ∧ · · · ∧ vir and vh1r′ = vh1 ∧ · · · ∧ vhr′ ,
– x j1s = x j1 ∧ · · · ∧ x js and xl1s′ = xl1 ∧ · · · ∧ xls′ .
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Theorem 5.4. The cup product of HH∗(E) is induced by the operation � in the complex (Z∗(E), δ∗).

Proof. By Theorem 3.4 it suffices to prove that

Γ
(
ϕ • ϕ′) = Γ (ϕ) � Γ

(
ϕ′) (2)

for all ϕ ∈ Xrs
k (E) and ϕ′ ∈ Xr′s′

k (E). Let φ = Γ (ϕ) and φ′ = Γ (ϕ′). On one hand

(
φ � φ′)(v1r′′ ⊗ x1s′′) =

∑
1�i1<···<ir�r′′
1� j1<···< js�s′′

sg(i1r, j1s)φ(vi1r ⊗ x j1s )φ
′(vh1r′ ⊗ xl1s′ )

=
∑

1�i1<···<ir�r′′
1� j1<···< js�s′′

τ∈Sr , ν∈Sr′

sg(i1r, j1s) sg(τ ) sg(ν)ϕ(viτ (1r) ⊗ x j1s )ϕ
′(vhν(1r′) ⊗ xl1s′ ),

where

viτ (1r) = viτ (1)
⊗ · · · ⊗ viτ (r) and vhν(1r′) = vhν(1)

⊗ · · · ⊗ vhν(r′) .

On the other hand

Γ
(
ϕ • ϕ′)(v1r′′ ⊗ x1s′′) =

∑
σ∈Sr′′

sg(σ )
(
ϕ • ϕ′)(vσ (1) ⊗ · · · ⊗ vσ (r′′) ⊗ x1s′′)

=
∑

1� j1<···< js�s′′
σ∈Sr′′

sg(σ ) sg( jis)ϕ(vσ (1r) ⊗ x j1s )ϕ
′(vσ (r+1,r′′) ⊗ xl1s′ ),

where

vσ (1r) = vσ (1) ⊗ · · · ⊗ vσ (r) and vσ (r+1,r′′) = vσ (r+1) ⊗ · · · ⊗ vσ (r′′).

Now, formula (2) follows immediately from these facts. �
5.3. Hochschild homology

Let M be an E-bimodule. For r, s � 0, let

Zrs(M) = M ⊗ V ∧r ⊗ g∧s.

We define the morphisms

δl
rs : Zrs(M) → Zr+l−1,s−l(M)

(
0 � l � min(2, s) and r + l > 0

)
by:
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δ0(m ⊗ v1r ⊗ x1s) =
r∑

i=1

(−1)i[m, vi] ⊗ v1ı̂r ⊗ x1s,

δ1(m ⊗ v1r ⊗ x1s) =
s∑

i=1

(−1)i+r[1#xi,m] ⊗ v1r ⊗ x1ı̂s

+
s∑

i=1
1�h�r

(−1)i+rm ⊗ v1,h−1 ∧ vxi
h ∧ vh+1,r ⊗ x1ı̂s

+
∑

1�i< j�s

(−1)i+ j+rm ⊗ v1r ⊗ [xi, x j]g ∧ x1ı̂ ĵ s

and

δ2(m ⊗ v1r ⊗ x1s) =
∑

1�i< j�s

(−1)i+ jm ⊗ f̂ i j ∧ v1r ⊗ x1ı̂ ĵ s.

By tensoring on the left the complex (Z∗, δ∗) over Ee with M , and using Theorem 5.1 and the identi-
fications ξrs : Zrs(M) → M ⊗Ee Zrs , given by

ξ(m ⊗ v1r ⊗ x1s) = (−1)rsm ⊗Ee (1 ⊗ x1s ⊗ v1r ⊗ 1),

we obtain the complex

Z 0(M) Z 1(M)
δ1

Z 2(M)
δ2

Z 3(M)
δ3

Z 4(M)
δ4 · · · ,δ5

where

Zn(M) =
⊕

r+s=n

Zrs(M) and δn =
∑

r+s=n
r+l>0

min(s,2)∑
l=0

δl
rs.

Note that if f (g ⊗ g) ⊆ k, then the chain complex (Z∗(M), δ∗) is the total complex of the double
complex (Z∗∗(M), δ0∗∗, δ1∗∗).

Theorem 5.5. The Hochschild homology H∗(E, M), of E with coefficients in M, is the homology of (Z∗(M), δ∗).

Proof. It is an immediate consequence of the above discussion. �
The map Γ∗ : (Z∗, δ∗) → (X∗,d∗) induces a quasi-isomorphism

Γ ∗ :
(

Z∗(M), δ∗
) → (

Xk∗(M),d∗
)
.

Proposition 5.6. We have

Γ (m ⊗ v1r ⊗ x1s) =
∑

σ∈Sr

sg(σ )m ⊗ vσ (1) ⊗ · · · ⊗ vσ (r) ⊗ x1s.

Proof. This follows immediately from Theorem 5.1. �
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5.4. The cap product

In this subsection we compute the cap product

Hp(E, M) × HHq(E) → Hp−q(E, M) (q � p),

in terms of the complexes (Z∗(M), δ∗) and (Z∗(E), δ∗). Given

m ⊗ v1s ⊗ x1s ∈ Zrs(M) and φ′ ∈ Zr′s′(E) with r � r′ and s � s′,

we define (m ⊗ v1r ⊗ x1s) � φ′ ∈ Zr−r′,s−s′ (M) by

(m ⊗ v1r ⊗ x1s) � φ′ =
∑

1�i1<···<ir′�r
1� j1<···< js′�s

sg(i1r′ , j1s′)mφ′(vi1r′ ⊗ x j1s′ ) ⊗ vh1,r′−r
⊗ xl1,s′−s

,

where

– sg(i1r′ , j1s′) = (−1)rs′+r′s′+∑r′
u=1(iu−u)+∑s′

u=1( ju−u) ,
– 1 � h1 < · · · < hr−r′ � r denote the set defined by

{i1, . . . , ir′ } ∪ {h1, . . . ,hr−r′ } = {1, . . . , r},
– 1 � l1 < · · · < ls−s′ � s denote the set defined by

{ j1, . . . , js′ } ∪ {l1, . . . , ls−s′ } = {1, . . . , s},
– vi1r′ = vi1 ∧ · · · ∧ vir′ and vh1,r−r′ = vh1 ∧ · · · ∧ vhr−r′ ,
– x j1s′ = x j1 ∧ · · · ∧ x js′ and xl1,s−s′ = xl1 ∧ · · · ∧ xls−s′ .

Theorem 5.7. The cap product

Hp(E, M) × HHq(E) → Hp−q(E, M) (q � p)

is induced by �, in terms of the complexes (Z∗(M), δ∗) and (Z∗(E), δ∗).

Proof. By Theorem 4.4 it suffices to prove that

Γ (m ⊗ v1r ⊗ x1s) • ϕ′ = Γ
(
(m ⊗ v1r ⊗ x1s) � Γ

(
ϕ′)) (3)

for all m ⊗ v1r ⊗ x1s ∈ Zrs(M) and ϕ′ ∈ Xr′s′
k (E). Let φ′ = Γ (ϕ′). On one hand

Γ (m ⊗ v1r ⊗ x1s) • ϕ′ =
∑

1� j1<···< js′�s
σ∈Sr

sg(σ ) sg( j1,s′)mϕ′(vσ (1r′) ⊗ x j1s′ ) ⊗ vσ (r′+1,r) ⊗ xl1,s−s′ ,

where

vσ (1r′) = vσ (1) ⊗ · · · ⊗ vσ (r′) and vσ (r′+1,r) = vσ (r′+1) ⊗ · · · ⊗ vσ (r).
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On the other hand

(m ⊗ v1r ⊗ x1s) � φ′ =
∑

1�i1<···<ir′�r
1� j1<···< js′�s

sg(i1r′ , j1s′)mφ′(vi1r′ ⊗ x j1s′ ) ⊗ vh1,r′−r
⊗ xl1,s′−s

=
∑

1�i1<···<ir′�r
1� j1<···< js′�s

τ∈Sr′

sg(τ ) sg(i1r′ , j1s′)mϕ′(viτ (1r′) ⊗ x j1s′ ) ⊗ vh1,r′−r
⊗ xl1,s′−s

,

where viτ (1r′) = viτ (1)
⊗ · · · ⊗ viτ (r′) . Formula (3) follows immediately. �
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