REMARKS ON AN OPTIMIZATION PROBLEM FOR THE $p-L A P L A C I A N$

LEANDRO M. DEL PEZZO AND JULIÁN FERNÁNDEZ BONDER

Abstract

In this note we give some remarks and improvements on a recent paper of us [3] about an optimization problem for the p-Laplace operator that were motivated by some discussion the authors had with Prof. Cianchi.

1. Introduction

In this note, we want to give some remarks and improvements on a recent paper of us [3] about an optimization problem for the p-Laplace operator.

These remarks were motivated by some discussion the authors had with Prof. Cianchi and we are grateful to him.

Let us recall the problem analyzed in [3].
Given a domain $\Omega \subset \mathbb{R}^{N}$ (bounded, connected, with smooth boundary) and some class of admissibel loads \mathcal{A}, in [3] we studied the following problem:

$$
\mathcal{J}(f):=\int_{\partial \Omega} f(x) u_{f} \mathrm{~d} \mathcal{H}^{N-1} \rightarrow \max
$$

for $f \in \mathcal{A}$, where \mathcal{H}^{d} denotes the d-dimensional Hausdorff measure and u is the (unique) solution to the nonlinear problem with load f

$$
\begin{cases}-\Delta_{p} u+|u|^{p-2} u=0 & \text { in } \Omega, \tag{1.1}\\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu}=f & \text { on } \partial \Omega .\end{cases}
$$

Where $p \in(1, \infty), \Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the usual p-Laplacian, $\frac{\partial}{\partial \nu}$ is the outer normal derivative and $f \in L^{q}(\partial \Omega)$ with $q>\frac{p^{\prime}}{N^{\prime}}$.

In [3], we worked with three different classes of admissible functions \mathcal{A}

- The class of rearrangements of a given function f_{0}.
- The (unit) ball in some L^{q}.
- The class of characteristic functions of sets of given measure.

For each of these classes, we proved existence of a maximizing load (in the respective class) and analyzed properties of these maximizer.

When we worked in the unit ball of L^{q}, we explicitly found the (unique) maximizar for \mathcal{J}, namely, the first eigenfunction of a Steklov-like nonlinear eigenvalue problem.

[^0]Whereas when we worked with the class of characteristic functions of set of given boundary measure, besides to prove that there exists a maximizer function we could give a characterization of set where the maximizer function is supported. Moreover, in order to analyze properties of this maximizer, we computed the first variation with respect respect to perturbations on the set where the characteristic function was supported. See [3] (section 5).

The aim of this work is to generalize the results obtained for the class of characteristic functions of set of given boundary measure to the class of rearrangements function of a given function f_{0}.

Recall that if f_{0} is a characteristic function of a set of \mathcal{H}^{N-1}-measure α, then every characteristic function of a set of \mathcal{H}^{N-1}-measure α is a rearrangement of f_{0}.

2. Characterization of Maximizer Function

In this section we give characterization of the maximizer function relative to the class of rearrangements of a given function f_{0}.

We begin by observe that (1.1) has a unique weak solution u_{f}, for which the following equations hold

$$
\begin{equation*}
\int_{\partial \Omega} f u_{f} \mathrm{~d} \mathcal{H}^{N-1}=\sup _{u \in W^{1, p}(\Omega)} \mathcal{I}(u) \tag{2.2}
\end{equation*}
$$

where

$$
\mathcal{I}(u):=\frac{1}{p-1}\left\{p \int_{\partial \Omega} f u \mathrm{~d} \mathcal{H}^{N-1}-\int_{\Omega}|\nabla u|^{p}+|u|^{p} \mathrm{~d} \mathcal{H}^{N}\right\}
$$

Let $f_{0} \in L^{q}(\partial \Omega)$, with $q=p /(p-1)$, and let $\mathcal{R}_{f_{0}}$ be the class of rearrangements of f_{0}. We was interested in finding

$$
\begin{equation*}
\sup _{f \in \mathcal{R}_{f_{0}}} \int_{\partial \Omega} f u_{f} \mathrm{~d} \mathcal{H}^{N-1} \tag{2.3}
\end{equation*}
$$

In [3], Theorem 3.1, we could proof that there exists $\hat{f} \in \mathcal{R}_{f_{0}}$ such that

$$
\int_{\partial \Omega} \hat{f} \hat{u} \mathrm{~d} \mathcal{H}^{N-1}=\sup _{f \in \mathcal{R}_{f_{0}}} \int_{\partial \Omega} f u_{f} \mathrm{~d} \mathcal{H}^{N-1}
$$

where $\hat{u}=u_{\hat{f}}$.
We begin by giving a characterization of this maximizer \hat{f} in the spirit of [2].
Theorem 2.1. \hat{f} is the unique maximizer of linear functional $L(f):=$ $\int_{\partial \Omega} f \hat{u} d \mathcal{H}^{N-1}$, relative to $f \in \mathcal{R}_{f_{0}}$. Therefore, there is an increasing function ϕ such that $\hat{f}=\phi \circ \hat{u} \mathcal{H}^{N-1}-$ a.e.

Proof. We proceed in three steps.
Step 1. First we show that \hat{f} is a maximizer of $L(f)$ relative to $f \in \mathcal{R}_{f_{0}}$.

In fact, let $h \in \mathcal{R}_{f_{0}}$, since $\int_{\partial \Omega} \hat{f} \hat{u} \mathrm{~d} \mathcal{H}^{N-1}=\sup _{f \in \mathcal{R}_{f_{0}}} \int_{\partial \Omega} f u_{f} \mathrm{~d} \mathcal{H}^{N-1}$, we have that

$$
\begin{aligned}
\int_{\partial \Omega} \hat{f} \hat{u} \mathrm{~d} \mathcal{H}^{N-1} & \geq \int_{\partial \Omega} h u_{h} \mathrm{~d} \mathcal{H}^{N-1} \\
& =\sup _{u \in W^{1, p}(\Omega)} \frac{1}{p-1}\left\{p \int_{\partial \Omega} h u \mathrm{~d} \mathcal{H}^{N-1}-\int_{\partial \Omega}|\nabla u|^{p}+|u|^{p} \mathrm{~d} \mathcal{H}^{N}\right\} \\
& \geq \frac{1}{p-1}\left\{p \int_{\partial \Omega} h \hat{u} \mathrm{~d} \mathcal{H}^{N-1}-\int_{\partial \Omega}|\nabla \hat{u}|^{p}+|\hat{u}|^{p} \mathrm{~d} \mathcal{H}^{N}\right\}
\end{aligned}
$$

and, since

$$
\int_{\partial \Omega} \hat{f} \hat{u} \mathrm{~d} \mathcal{H}^{N-1}=\frac{1}{p-1}\left\{p \int_{\partial \Omega} \hat{f} \hat{u} \mathrm{~d} \mathcal{H}^{N-1}-\int_{\partial \Omega}|\nabla \hat{u}|^{p}+|\hat{u}|^{p} \mathrm{~d} \mathcal{H}^{N}\right\}
$$

we have

$$
\int_{\partial \Omega} \hat{f} \hat{u} \mathrm{~d} \mathcal{H}^{N-1} \geq \int_{\partial \Omega} h \hat{u} \mathrm{~d} \mathcal{H}^{N-1}
$$

Therefore,

$$
\int_{\partial \Omega} \hat{f} \hat{u} \mathrm{~d} \mathcal{H}^{N-1}=\sup _{f \in \mathcal{R}_{f_{0}}} L(f)
$$

Step 2. Now, we show that \hat{f} is the unique maximizer of $L(f)$ relative to $f \in \mathcal{R}_{f_{0}}$. We suppose that g is another maximizer of $L(f)$ relative to $f \in \mathcal{R}_{f_{0}}$. Then

$$
\int_{\partial \Omega} \hat{f} \hat{u} \mathrm{~d} \mathcal{H}^{N-1}=\int_{\partial \Omega} g \hat{u} \mathrm{~d} \mathcal{H}^{N-1}
$$

Thus

$$
\begin{aligned}
\int_{\partial \Omega} g \hat{u} \mathrm{~d} \mathcal{H}^{N-1} & =\int_{\partial \Omega} \hat{f} \hat{u} \mathrm{~d} \mathcal{H}^{N-1} \\
& \geq \int_{\partial \Omega} g u_{g} \mathrm{~d} \mathcal{H}^{N-1} \\
& =\sup _{u \in W^{1, p}(\Omega)} \frac{1}{p-1}\left\{p \int_{\partial \Omega} g u \mathrm{~d} \mathcal{H}^{N-1}-\int_{\partial \Omega}|\nabla u|^{p}+|u|^{p} \mathrm{~d} \mathcal{H}^{N}\right\}
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\int_{\partial \Omega} g \hat{u} \mathrm{~d} \mathcal{H}^{N-1} & =\int_{\partial \Omega} \hat{f} \hat{u} \mathrm{~d} \mathcal{H}^{N-1} \\
& =\frac{1}{p-1}\left\{p \int_{\partial \Omega} \hat{f} \hat{u} \mathrm{~d} \mathcal{H}^{N-1}-\int_{\partial \Omega}|\nabla \hat{u}|^{p}+|\hat{u}|^{p} \mathrm{~d} \mathcal{H}^{N}\right\} \\
& =\frac{1}{p-1}\left\{p \int_{\partial \Omega} g \hat{u} \mathrm{~d} \mathcal{H}^{N-1}-\int_{\partial \Omega}|\nabla \hat{u}|^{p}+|\hat{u}|^{p} \mathrm{~d} \mathcal{H}^{N}\right\} .
\end{aligned}
$$

Then

$$
\int_{\partial \Omega} g \hat{u} \mathrm{~d} \mathcal{H}^{N-1}=\sup _{u \in W^{1, p}(\Omega)} \frac{1}{p-1}\left\{p \int_{\partial \Omega} g u \mathrm{~d} \mathcal{H}^{N-1}-\int_{\partial \Omega}|\nabla u|^{p}+|u|^{p} \mathrm{~d} \mathcal{H}^{N}\right\}
$$

Therefore $\hat{u}=u_{g}$. Then \hat{u} is the unique weak solution to

$$
\begin{cases}\Delta_{p} \hat{u}+|\hat{u}|^{p-2} \hat{u}=0 & \text { in } \Omega \\ |\nabla \hat{u}|^{p-2} \frac{\partial \hat{u}}{\partial \nu}=g & \text { on } \partial \Omega\end{cases}
$$

Furthermore, we now that u is the unique weak solution to

$$
\begin{cases}\Delta_{p} \hat{u}+|\hat{u}|^{p-2} \hat{u}=0 & \text { in } \Omega, \\ |\nabla \hat{u}|^{p-2} \frac{\partial \hat{u}}{\partial \nu}=\hat{f} & \text { on } \partial \Omega .\end{cases}
$$

Therefor $\hat{f}=g \mathcal{H}^{N-1}$-a.e.
Step 3. Finally, we have that there is an increasing function ϕ such that $\hat{f}=\phi \circ \hat{u}$ \mathcal{H}^{N-1}-a.e.

This is a direct consequence of Steps 1, 2 and Theorem 2.3 below.
This completes the proof of Theorem 2.1.
In order to state Theorem 2.3, we need the following definition
Definition 2.2. The measure space (X, \mathcal{M}, μ) is called nonatomic if for $U \in \mathcal{M}$ with $\mu(U)>0$, there exists $V \in \mathcal{M}$ with $V \subset U$ and $0<\mu(V)<\mu(U)$. The measure space (X, \mathcal{M}, μ) is called separable if there is a sequence $\left\{U_{n}\right\}_{n=1}^{\infty}$ of measurable sets such that for every $V \in \mathcal{M}$ and $\varepsilon>0$ there exists n such that

$$
\mu\left(V \backslash U_{n}\right)+\mu\left(U_{n} \backslash V\right)<\varepsilon
$$

Theorem 2.3 (See [1]). Let (X, \mathcal{M}, μ) be a finite separable nonatomic measure space, let $1 \leq p \leq \infty$, let q be the conjugate exponent of p, let $f_{0} \in L^{p}(X, \mu)$ and $g \in L^{q}(X, \mu)$ and let $R_{f_{0}}$ be the set of rearrangements of f_{0} on X. If $L(f)=$ $\int_{X} f g d \mu$ has a unique maximizer \hat{f} relative to $\mathcal{R}_{f_{0}}$ there is an increasing function ϕ such that $f^{*}=\phi \circ g \mu-a . e$.

3. Derivate with Respect to the load

Now we compute the derivate of the functional $\mathcal{J}(\hat{f})$ with respect to perturbations in \hat{f}. We will consider regular perturbations and asume that the function \hat{f} has bounded variation in $\partial \Omega$.

We begin by describing the kind of variations that we are considering. Let V be a regular (smooth) vector field, globally Lipschitz, with support in a neighborhood of $\partial \Omega$ such that $\langle V, \nu\rangle=0$ and let $\psi_{t}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ be defined as the unique solution to

$$
\begin{cases}\frac{\mathrm{d}}{\mathrm{~d} t} \psi_{t}(x)=V\left(\psi_{t}(x)\right) & t>0 \tag{3.4}\\ \psi_{0}(x)=x & x \in \mathbb{R}^{N}\end{cases}
$$

We have

$$
\psi_{t}(x)=x+t V(x)+o(t) \quad \forall x \in \mathbb{R}^{N}
$$

Thus, if $f \in \mathcal{R}_{f_{0}}$, we define $f_{t}=f \circ \psi_{t}^{-1}$. Now, let

$$
I(t):=\mathcal{J}\left(f_{t}\right)=\int_{\partial \Omega} u_{t} f_{t} \mathrm{~d} \mathcal{H}^{N-1}
$$

where $u_{t} \in W^{1, p}(\Omega)$ is the unique solution to

$$
\begin{cases}-\Delta_{p} u_{t}+\left|u_{t}\right|^{p-2}=0 & \text { in } \Omega, \tag{3.5}\\ \left|\nabla u_{t}\right|^{p-2} \frac{\partial u_{t}}{\partial \nu}=f_{t} & \text { on } \partial \Omega .\end{cases}
$$

Lemma 3.1. Given $f \in L^{q}(\partial \Omega)$ then

$$
f_{t}=f \circ \psi_{t}^{-1} \rightarrow f \text { in } L^{q}(\partial \Omega), \text { as } t \rightarrow 0
$$

Proof. Let $\varepsilon>0$, and let $g \in C_{c}^{\infty}(\partial \Omega)$ fixed such that $\|f-g\|_{L^{q}(\partial \Omega)}<\varepsilon$. By the usual change of variables formula, we have,

$$
\left\|f_{t}-g_{t}\right\|_{L^{q}(\partial \Omega)}^{q}=\int_{\partial \Omega}|f-g|^{q} J_{\tau} \psi_{t} \mathrm{~d} \mathcal{H}^{N-1}
$$

where $g_{t}=g \circ \psi_{t}^{-1}$ and $J \psi$ is the tangential Jacobian of ψ. We also know that

$$
J_{\tau} \psi:=1+t \operatorname{div}_{\tau} V+o(t)
$$

Here $\operatorname{div}_{\tau} V$ is the tangential divergence of V over $\partial \Omega$. Then

$$
\left\|f_{t}-g_{t}\right\|_{L^{q}(\partial \Omega)}^{q}=\int_{\partial \Omega}|f-g|^{q}\left(1+t \operatorname{div}_{\tau} V+o(t)\right) \mathrm{d} \mathcal{H}^{N-1}
$$

Then, there exist $t_{1}>0$ and such that if $0<t<t_{1}$ then

$$
\left\|f_{t}-g_{t}\right\|_{L^{q}(\partial \Omega)} \leq C \varepsilon
$$

where C is a constant independent of t. Moreover, since $\psi_{t}^{-1} \rightarrow I d$ in the C^{1} topology when $t \rightarrow 0$ then $g_{t}=g \circ \psi_{t}^{-1} \rightarrow g$ in the C^{1} topology and therefore there exists $t_{2}>0$ such that if $0<t<t_{2}$ then

$$
\left\|g_{t}-g\right\|_{L^{q}(\partial \Omega)}<\varepsilon
$$

Finally, we have for all $0<t<t_{0}=\min \left\{t_{1}, t_{2}\right\}$ then

$$
\begin{aligned}
\left\|f_{t}-f\right\|_{L^{q}(\partial \Omega)} & \leq\left\|f_{t}-g_{t}\right\|_{L^{q}(\partial \Omega)}+\left\|g_{t}-g\right\|_{L^{q}(\partial \Omega)}+\|g-f\|_{L^{q}(\partial \Omega)} \\
& \leq C \varepsilon
\end{aligned}
$$

where C is a constant independent of t.
Lemma 3.2. Let u_{0} and u_{t} be the solution of (3.5) with $t=0$ and $t>0$, respectively. Then

$$
u_{t} \rightarrow u_{0} \text { in } W^{1, p}(\Omega), \text { as } t \rightarrow 0^{+}
$$

Proof. The proof follows exactly as the one in Lemma 4.2 in [2]. The only difference being that we use the trace inequality instead of the Poincaré inequality.

Remark 3.3. It is easy to see that, as $\psi_{t} \rightarrow I d$ in the C^{1} topology, then from Lemma 3.2 it follows that

$$
w_{t}:=u_{t} \circ \psi_{t} \rightarrow u_{0} \quad \text { strongly in } W^{1, p}(\Omega)
$$

With these preliminaries, the following theorem follows exactly as Theorem 5.5 of [3].

Theorem 3.4. With the previous notation, we have that $I(t)$ is differentiable at $t=0$ and

$$
\begin{aligned}
\left.\frac{d I(t)}{d t}\right|_{t=0}= & \frac{1}{p-1}\left\{p \int_{\partial \Omega} u_{0} f d i v_{\tau} V d \mathcal{H}^{N-1}+p \int_{\Omega}\left|\nabla u_{0}\right|^{p-2}\left\langle\nabla u_{0},{ }^{T} V^{\prime} \nabla u_{0}^{T}\right\rangle d \mathcal{H}^{N}\right. \\
& \left.-\int_{\Omega}\left(\left|\nabla u_{0}\right|^{p}+\left|u_{0}\right|^{p}\right) \operatorname{div} V d \mathcal{H}^{N}\right\}
\end{aligned}
$$

where u_{0} is the solution of (3.5) with $t=0$.

Proof. For the details see the proof of Theorem 5.5 of [3].
Now we try to find a more explicit formula for $I^{\prime}(0)$. For This, we consider $f \in$ $L^{q}(\partial \Omega) \cap B V(\partial \Omega)$, where $B V(\partial \Omega)$ is the space of functions of bounded variation. For details and properties of BV functions we refer to the book [4].

Theorem 3.5. If $f \in L^{q}(\partial \Omega) \cap B V(\partial \Omega)$, we have that

$$
\left.\frac{\partial I(t)}{\partial t}\right|_{t=0}=\frac{p}{p-1} \int_{\partial \Omega} u_{0} V d[D f] .
$$

where u_{0} is the solution of (3.5) with $t=0$.
Proof. In the course of the computations, we require the solution u_{0} to

$$
\begin{cases}-\Delta u_{0}+\left|u_{0}\right|^{p-2} u_{0}=0 & \text { in } \Omega \\ \left|\nabla u_{0}\right|^{p-2} \frac{\partial u_{0}}{\partial \nu}=f & \text { on } \partial \Omega\end{cases}
$$

to be C^{2}. However, this is not true. As it is well known (see, for instance, [7]), u_{0} belongs to the class $C^{1, \delta}$ for some $0<\delta<1$.

In order to overcome this difficulty, we proceed as follows. We consider the regularized problems

$$
\begin{cases}-\operatorname{div}\left(\left(\left|\nabla u_{0}^{\varepsilon}\right|^{2}+\varepsilon^{2}\right)^{(p-2) / 2} \nabla u_{0}^{\varepsilon}\right)+\left|u_{0}^{\varepsilon}\right|^{p-2} u_{0}^{\varepsilon}=0 & \text { in } \Omega \tag{3.6}\\ \left(\left|\nabla u_{0}^{\varepsilon}\right|^{2}+\varepsilon^{2}\right)^{(p-2) / 2} \frac{\partial u_{0}^{\varepsilon}}{\partial \nu}=f & \text { on } \partial \Omega\end{cases}
$$

It is well known that the solution u_{0}^{ε} to (3.6) is of class $C^{2, \rho}$ for some $0<\rho<1$ (see [6]).

Then, we can perform all of our computations with the functions u_{0}^{ε} and pass to the limit as $\varepsilon \rightarrow 0+$ at the end.

We have chosen to work formally with the function u_{0} in order to make our arguments more transparent and leave the details to the reader. For a similar approach, see [5].

Now, by Theorem 3.4 and since

$$
\begin{aligned}
\operatorname{div}\left(\left|u_{0}\right|^{p} V\right) & =p\left|u_{0}\right|^{p-2} u_{0}\left\langle\nabla u_{0}, V\right\rangle+\left|u_{0}\right|^{p} \operatorname{div} V, \\
\operatorname{div}\left(\left|\nabla u_{0}\right|^{p} V\right) & =p\left|\nabla u_{0}\right|^{p-2}\left\langle\nabla u_{0} D^{2} u_{0}, V\right\rangle+\left|\nabla u_{0}\right|^{p} \operatorname{div} V,
\end{aligned}
$$

we obtain

$$
\begin{aligned}
I^{\prime}(0)= & \frac{1}{p-1}\left\{p \int_{\partial \Omega} u_{0} f \operatorname{div}_{\tau} V \mathrm{~d} \mathcal{H}^{N-1}+p \int_{\Omega}\left|\nabla u_{0}\right|^{p-2}\left\langle\nabla u_{0},{ }^{T} V^{\prime} \nabla u_{0}^{T}\right\rangle \mathrm{d} \mathcal{H}^{N}\right. \\
& -\int_{\Omega}\left(\left|\nabla u_{0}\right|^{p}+\left|u_{0}\right|^{p}\right) \operatorname{div} V \mathrm{~d} \mathcal{H}^{N} \\
= & \frac{1}{p-1}\left\{p \int_{\partial \Omega} u_{0} f \operatorname{div}_{\tau} V \mathrm{~d} \mathcal{H}^{N-1}+p \int_{\Omega}\left|\nabla u_{0}\right|^{p-2}\left\langle\nabla u_{0},{ }^{T} V^{\prime} \nabla u_{0}^{T}\right\rangle \mathrm{d} \mathcal{H}^{N}\right. \\
& -\int_{\Omega} \operatorname{div}\left(\left(\left|\nabla u_{0}\right|^{p}+\left|u_{0}\right|^{p}\right) V\right) \mathrm{d} \mathcal{H}^{N}+p \int_{\Omega}\left|\nabla u_{0}\right|^{p-2}\left\langle\nabla u_{0} D^{2} u_{0}, V\right\rangle \mathrm{d} \mathcal{H}^{N} \\
& \left.+p \int_{\Omega}\left|u_{0}\right|^{p-2} u_{0}\left\langle\nabla u_{0}, V\right\rangle \mathrm{d} \mathcal{H}^{N}\right\} .
\end{aligned}
$$

Hence, using that $\langle V, \nu\rangle=0$ in the right hand side of the above equality we find

$$
\begin{aligned}
I^{\prime}(0)= & \frac{p}{p-1}\left\{\int_{\partial \Omega} u_{0} f \operatorname{div}_{\tau} V \mathrm{~d} \mathcal{H}^{N-1}\right. \\
& +\int_{\Omega}\left|\nabla u_{0}\right|^{p-2}\left\langle\nabla u_{0},{ }^{T} V^{\prime} \nabla u_{0}^{T}+D^{2} u_{0} V^{T}\right\rangle \mathrm{d} \mathcal{H}^{N} \\
& \left.+\int_{\Omega}\left|u_{0}\right|^{p-2} u_{0}\left\langle\nabla u_{0}, V\right\rangle \mathrm{d} \mathcal{H}^{N}\right\} \\
= & \frac{p}{p-1}\left\{\int_{\partial \Omega} u_{0} f \operatorname{div}_{\tau} V \mathrm{~d} \mathcal{H}^{N-1}+\int_{\Omega}\left|\nabla u_{0}\right|^{p-2}\left\langle\nabla u_{0}, \nabla\left(\left\langle\nabla u_{0}, V\right\rangle\right)\right\rangle \mathrm{d} \mathcal{H}^{N}\right. \\
& \left.+\int_{\Omega}\left|u_{0}\right|^{p-2} u_{0}\left\langle\nabla u_{0}, V\right\rangle \mathrm{d} \mathcal{H}^{N}\right\}
\end{aligned}
$$

Since u_{0} is a week solution of (3.5) with $t=0$ we have

$$
\begin{aligned}
I^{\prime}(0) & =\frac{p}{p-1}\left\{\int_{\partial \Omega} u_{0} f \operatorname{div}_{\tau} V \mathrm{~d} \mathcal{H}^{N-1}+\int_{\partial \Omega}\left\langle\nabla u_{0}, V\right\rangle f \mathrm{~d} \mathcal{H}^{N-1}\right\} \\
& =\frac{p}{p-1} \int_{\partial \Omega} \operatorname{div}_{\tau}\left(u_{0} V\right) f \mathrm{~d} \mathcal{H}^{N-1}
\end{aligned}
$$

Finally, since $f \in B V(\partial \Omega)$ and $V \in C^{1}\left(\partial \Omega ; \mathbb{R}^{N}\right)$,

$$
\begin{aligned}
I^{\prime}(0) & =\frac{p}{p-1} \int_{\partial \Omega} \operatorname{div}_{\tau}\left(u_{0} V\right) f \mathrm{~d} \mathcal{H}^{N-1} \\
& =\frac{p}{p-1} \int_{\partial \Omega} u_{0} V \mathrm{~d}[D f]
\end{aligned}
$$

The proof is now complete.

References

[1] Burton, G. R. Rearrangements of functions, maximization of convex functionals, and vortex rings. Math. Ann. 276 (1987), no. 2, 225-253.
[2] F. Cuccu, B. Emamizadeh and G. Porru. Nonlinear elastic membranes involving the pLaplacian operator. Electron. J. Differential Equations 2006, No. 49, 10 pp.
[3] Del Pezzo, L. M. and Fernández Bonder, J. Some optimization problems for nonlinear elastic membranes. To appear in Appl. Math. Optim.
[4] Evans, Lawrence C.; Gariepy, Ronald F. Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.
[5] J. García Meliá, J. Sabina de Lis. On the perturbation of eigenvalues for the p-Laplacian. C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 10, 893-898.
[6] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monographs, Vol. 23, Amer. Math. Soc., Providence, R.I., 1968.
[7] P. Tolksdorf. Regularity for a more general class of quasilinear elliptic equations. J. Differential Equations, 51 (1984), 126-150.

Leandro M. Del Pezzo
Departamento de Matemática, FCEyn, Universidad de Buenos Aires,
Pabellón I, Ciudad Universitaria (1428), Buenos Aires, Argentina.
E-mail address: ldpezzo@dm.uba.ar

Julián Fernández Bonder
Departamento de Matemática, FCEyN, Universidad de Buenos Aires,
Pabellón I, Ciudad Universitaria (1428), Buenos Aires, Argentina.
E-mail address: jfbonder@dm.uba.ar
Web page: http://mate.dm.uba.ar/~jfbonder

[^0]: Supported by Universidad de Buenos Aires under grant X078, by ANPCyT PICT No. 2006290 and CONICET (Argentina) PIP 5478/1438. J. Fernández Bonder is a member of CONICET. Leandro Del Pezzo is a fellow of CONICET.

