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REMARKS ON AN OPTIMIZATION PROBLEM FOR THE

p−LAPLACIAN

LEANDRO M. DEL PEZZO AND JULIÁN FERNÁNDEZ BONDER

Abstract. In this note we give some remarks and improvements on a recent
paper of us [3] about an optimization problem for the p−Laplace operator that
were motivated by some discussion the authors had with Prof. Cianchi.

1. Introduction

In this note, we want to give some remarks and improvements on a recent paper
of us [3] about an optimization problem for the p−Laplace operator.

These remarks were motivated by some discussion the authors had with Prof.
Cianchi and we are grateful to him.

Let us recall the problem analyzed in [3].

Given a domain Ω ⊂ R
N (bounded, connected, with smooth boundary) and

some class of admissibel loads A, in [3] we studied the following problem:

J (f) :=

∫

∂Ω

f(x)uf dH
N−1 → max

for f ∈ A, where Hd denotes the d−dimensional Hausdorff measure and u is the
(unique) solution to the nonlinear problem with load f

(1.1)

{

−∆pu+ |u|p−2u = 0 in Ω,

|∇u|p−2 ∂u
∂ν = f on ∂Ω.

Where p ∈ (1,∞), ∆pu = div(|∇u|p−2∇u) is the usual p−Laplacian, ∂
∂ν is the

outer normal derivative and f ∈ Lq(∂Ω) with q > p′

N ′
.

In [3], we worked with three different classes of admissible functions A

• The class of rearrangements of a given function f0.
• The (unit) ball in some Lq.
• The class of characteristic functions of sets of given measure.

For each of these classes, we proved existence of a maximizing load (in the
respective class) and analyzed properties of these maximizer.

When we worked in the unit ball of Lq, we explicitly found the (unique) maxi-
mizar for J , namely, the first eigenfunction of a Steklov-like nonlinear eigenvalue
problem.
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Whereas when we worked with the class of characteristic functions of set of given
boundary measure, besides to prove that there exists a maximizer function we could
give a characterization of set where the maximizer function is supported. Moreover,
in order to analyze properties of this maximizer, we computed the first variation
with respect respect to perturbations on the set where the characteristic function
was supported. See [3] (section 5).

The aim of this work is to generalize the results obtained for the class of charac-
teristic functions of set of given boundary measure to the class of rearrangements
function of a given function f0.

Recall that if f0 is a characteristic function of a set of HN−1-measure α, then
every characteristic function of a set of HN−1-measure α is a rearrangement of f0.

2. Characterization of Maximizer Function

In this section we give characterization of the maximizer function relative to the
class of rearrangements of a given function f0.

We begin by observe that (1.1) has a unique weak solution uf , for which the
following equations hold

(2.2)

∫

∂Ω

fuf dH
N−1 = sup

u∈W 1,p(Ω)

I(u),

where

I(u) :=
1

p− 1

{

p

∫

∂Ω

fu dHN−1 −

∫

Ω

|∇u|p + |u|p dHN
}

.

Let f0 ∈ Lq(∂Ω), with q = p/(p− 1), and let Rf0 be the class of rearrangements
of f0. We was interested in finding

(2.3) sup
f∈Rf0

∫

∂Ω

fuf dH
N−1.

In [3], Theorem 3.1, we could proof that there exists f̂ ∈ Rf0 such that

∫

∂Ω

f̂ ûdHN−1 = sup
f∈Rf0

∫

∂Ω

fuf dH
N−1.

where û = uf̂ .

We begin by giving a characterization of this maximizer f̂ in the spirit of [2].

Theorem 2.1. f̂ is the unique maximizer of linear functional L(f) :=
∫

∂Ω
fû dHN−1, relative to f ∈ Rf0 . Therefore, there is an increasing function φ

such that f̂ = φ ◦ û HN−1−a.e.

Proof. We proceed in three steps.

Step 1. First we show that f̂ is a maximizer of L(f) relative to f ∈ Rf0 .



REMARKS ON AN OPTIMIZATION PROBLEM 3

In fact, let h ∈ Rf0 , since
∫

∂Ω
f̂ ûdHN−1 = supf∈Rf0

∫

∂Ω
fuf dH

N−1, we have

that
∫

∂Ω

f̂ û dHN−1 ≥

∫

∂Ω

huh dH
N−1

= sup
u∈W 1,p(Ω)

1

p− 1

{

p

∫

∂Ω

hu dHN−1 −

∫

∂Ω

|∇u|p + |u|p dHN

}

≥
1

p− 1

{

p

∫

∂Ω

hûdHN−1 −

∫

∂Ω

|∇û|p + |û|p dHN

}

,

and, since
∫

∂Ω

f̂ û dHN−1 =
1

p− 1

{

p

∫

∂Ω

f̂ ûdHN−1 −

∫

∂Ω

|∇û|p + |û|p dHN

}

,

we have
∫

∂Ω

f̂ ûdHN−1 ≥

∫

∂Ω

hûdHN−1.

Therefore,
∫

∂Ω

f̂ ûdHN−1 = sup
f∈Rf0

L(f).

Step 2. Now, we show that f̂ is the unique maximizer of L(f) relative to f ∈ Rf0 .

We suppose that g is another maximizer of L(f) relative to f ∈ Rf0 . Then
∫

∂Ω

f̂ û dHN−1 =

∫

∂Ω

gûdHN−1.

Thus
∫

∂Ω

gûdHN−1 =

∫

∂Ω

f̂ ûdHN−1

≥

∫

∂Ω

gug dH
N−1

= sup
u∈W 1,p(Ω)

1

p− 1

{

p

∫

∂Ω

gu dHN−1 −

∫

∂Ω

|∇u|p + |u|p dHN

}

.

On the other hand,
∫

∂Ω

gûdHN−1 =

∫

∂Ω

f̂ û dHN−1

=
1

p− 1

{

p

∫

∂Ω

f̂ ûdHN−1 −

∫

∂Ω

|∇û|p + |û|p dHN

}

=
1

p− 1

{

p

∫

∂Ω

gûdHN−1 −

∫

∂Ω

|∇û|p + |û|p dHN

}

.

Then
∫

∂Ω

gûdHN−1 = sup
u∈W 1,p(Ω)

1

p− 1

{

p

∫

∂Ω

gu dHN−1 −

∫

∂Ω

|∇u|p + |u|p dHN

}

.

Therefore û = ug. Then û is the unique weak solution to
{

∆pû+ |û|p−2û = 0 in Ω,

|∇û|p−2 ∂û
∂ν = g on ∂Ω.
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Furthermore, we now that u is the unique weak solution to
{

∆pû+ |û|p−2û = 0 in Ω,

|∇û|p−2 ∂û
∂ν = f̂ on ∂Ω.

Therefor f̂ = g HN−1−a.e.

Step 3. Finally, we have that there is an increasing function φ such that f̂ = φ◦ û
HN−1−a.e.

This is a direct consequence of Steps 1, 2 and Theorem 2.3 below.

This completes the proof of Theorem 2.1. �

In order to state Theorem 2.3, we need the following definition

Definition 2.2. The measure space (X,M, µ) is called nonatomic if for U ∈ M
with µ(U) > 0, there exists V ∈ M with V ⊂ U and 0 < µ(V ) < µ(U). The measure

space (X,M, µ) is called separable if there is a sequence {Un}
∞
n=1 of measurable sets

such that for every V ∈ M and ε > 0 there exists n such that

µ(V \ Un) + µ(Un \ V ) < ε.

Theorem 2.3 (See [1]). Let (X,M, µ) be a finite separable nonatomic measure

space, let 1 ≤ p ≤ ∞, let q be the conjugate exponent of p, let f0 ∈ Lp(X,µ)
and g ∈ Lq(X,µ) and let Rf0 be the set of rearrangements of f0 on X. If L(f) =
∫

X fg dµ has a unique maximizer f̂ relative to Rf0 there is an increasing function

φ such that f∗ = φ ◦ g µ−a.e.

3. Derivate with respect to the load

Now we compute the derivate of the functional J (f̂) with respect to perturba-

tions in f̂ . We will consider regular perturbations and asume that the function f̂
has bounded variation in ∂Ω.

We begin by describing the kind of variations that we are considering. Let V be
a regular (smooth) vector field, globally Lipschitz, with support in a neighborhood
of ∂Ω such that 〈V, ν〉 = 0 and let ψt : R

N → R
N be defined as the unique solution

to

(3.4)

{

d
dtψt(x) = V (ψt(x)) t > 0,

ψ0(x) = x x ∈ R
N .

We have

ψt(x) = x+ tV (x) + o(t) ∀x ∈ R
N .

Thus, if f ∈ Rf0 , we define ft = f ◦ ψ−1
t . Now, let

I(t) := J (ft) =

∫

∂Ω

utftdH
N−1

where ut ∈ W 1,p(Ω) is the unique solution to

(3.5)

{

−∆put + |ut|
p−2 = 0 in Ω,

|∇ut|
p−2 ∂ut

∂ν = ft on ∂Ω.
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Lemma 3.1. Given f ∈ Lq(∂Ω) then

ft = f ◦ ψ−1
t → f in Lq(∂Ω), as t→ 0.

Proof. Let ε > 0, and let g ∈ C∞
c (∂Ω) fixed such that ‖f − g‖Lq(∂Ω) < ε. By the

usual change of variables formula, we have,

‖ft − gt‖
q
Lq(∂Ω) =

∫

∂Ω

|f − g|qJτψtdH
N−1,

where gt = g ◦ ψ−1
t and Jψ is the tangential Jacobian of ψ. We also know that

Jτψ := 1 + t divτV + o(t).

Here divτV is the tangential divergence of V over ∂Ω. Then

‖ft − gt‖
q
Lq(∂Ω) =

∫

∂Ω

|f − g|q(1 + t divτV + o(t)) dHN−1.

Then, there exist t1 > 0 and such that if 0 < t < t1 then

‖ft − gt‖Lq(∂Ω) ≤ Cε.

where C is a constant independent of t. Moreover, since ψ−1
t → Id in the C1

topology when t → 0 then gt = g ◦ψ−1
t → g in the C1 topology and therefore there

exists t2 > 0 such that if 0 < t < t2 then

‖gt − g‖Lq(∂Ω) < ε.

Finally, we have for all 0 < t < t0 = min{t1, t2} then

‖ft − f‖Lq(∂Ω) ≤ ‖ft − gt‖Lq(∂Ω) + ‖gt − g‖Lq(∂Ω) + ‖g − f‖Lq(∂Ω)

≤ Cε

where C is a constant independent of t. �

Lemma 3.2. Let u0 and ut be the solution of (3.5) with t = 0 and t > 0, respec-
tively. Then

ut → u0 in W 1,p(Ω), as t→ 0+.

Proof. The proof follows exactly as the one in Lemma 4.2 in [2]. The only difference
being that we use the trace inequality instead of the Poincaré inequality. �

Remark 3.3. It is easy to see that, as ψt → Id in the C1 topology, then from

Lemma 3.2 it follows that

wt := ut ◦ ψt → u0 strongly in W 1,p(Ω).

With these preliminaries, the following theorem follows exactly as Theorem 5.5
of [3].

Theorem 3.4. With the previous notation, we have that I(t) is differentiable at

t = 0 and

dI(t)

dt

∣

∣

∣

t=0
=

1

p− 1

{

p

∫

∂Ω

u0f divτV dHN−1 + p

∫

Ω

|∇u0|
p−2〈∇u0,

T V ′∇uT0 〉 dH
N

−

∫

Ω

(|∇u0|
p + |u0|

p) div V dHN

}

.

where u0 is the solution of (3.5) with t = 0.
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Proof. For the details see the proof of Theorem 5.5 of [3]. �

Now we try to find a more explicit formula for I ′(0). For This, we consider f ∈
Lq(∂Ω) ∩BV (∂Ω), where BV (∂Ω) is the space of functions of bounded variation.
For details and properties of BV functions we refer to the book [4].

Theorem 3.5. If f ∈ Lq(∂Ω) ∩BV (∂Ω), we have that

∂I(t)

∂t

∣

∣

∣

t=0
=

p

p− 1

∫

∂Ω

u0V d[Df ].

where u0 is the solution of (3.5) with t = 0.

Proof. In the course of the computations, we require the solution u0 to
{

−∆u0 + |u0|
p−2u0 = 0 in Ω,

|∇u0|
p−2 ∂u0

∂ν = f on ∂Ω,

to be C2. However, this is not true. As it is well known (see, for instance, [7]), u0
belongs to the class C1,δ for some 0 < δ < 1.

In order to overcome this difficulty, we proceed as follows. We consider the
regularized problems

(3.6)

{

−div((|∇uε0|
2 + ε2)(p−2)/2∇uε0) + |uε0|

p−2uε0 = 0 in Ω,

(|∇uε0|
2 + ε2)(p−2)/2 ∂uε

0

∂ν = f on ∂Ω.

It is well known that the solution uε0 to (3.6) is of class C2,ρ for some 0 < ρ < 1
(see [6]).

Then, we can perform all of our computations with the functions uε0 and pass to
the limit as ε→ 0+ at the end.

We have chosen to work formally with the function u0 in order to make our
arguments more transparent and leave the details to the reader. For a similar
approach, see [5].

Now, by Theorem 3.4 and since

div(|u0|
pV ) = p|u0|

p−2u0〈∇u0, V 〉+ |u0|
p divV,

div(|∇u0|
pV ) = p|∇u0|

p−2〈∇u0D
2u0, V 〉+ |∇u0|

p divV,

we obtain

I ′(0) =
1

p− 1

{

p

∫

∂Ω

u0f divτV dHN−1 + p

∫

Ω

|∇u0|
p−2〈∇u0,

T V ′∇uT0 〉dH
N

−

∫

Ω

(|∇u0|
p + |u0|

p) divV dHN

=
1

p− 1

{

p

∫

∂Ω

u0f divτV dHN−1 + p

∫

Ω

|∇u0|
p−2〈∇u0,

T V ′∇uT0 〉dH
N

−

∫

Ω

div((|∇u0|
p + |u0|

p)V ) dHN + p

∫

Ω

|∇u0|
p−2〈∇u0D

2u0, V 〉dHN

+ p

∫

Ω

|u0|
p−2u0〈∇u0, V 〉dHN

}

.
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Hence, using that 〈V, ν〉 = 0 in the right hand side of the above equality we find

I ′(0) =
p

p− 1

{
∫

∂Ω

u0f divτV dHN−1

+

∫

Ω

|∇u0|
p−2〈∇u0,

T V ′∇uT0 +D2u0V
T 〉dHN

+

∫

Ω

|u0|
p−2u0〈∇u0, V 〉dHN

}

=
p

p− 1

{
∫

∂Ω

u0f divτV dHN−1 +

∫

Ω

|∇u0|
p−2〈∇u0,∇(〈∇u0, V 〉)〉dHN

+

∫

Ω

|u0|
p−2u0〈∇u0, V 〉dHN

}

.

Since u0 is a week solution of (3.5) with t = 0 we have

I ′(0) =
p

p− 1

{
∫

∂Ω

u0f divτV dHN−1 +

∫

∂Ω

〈∇u0, V 〉f dHN−1

}

=
p

p− 1

∫

∂Ω

divτ (u0V )f dHN−1

Finally, since f ∈ BV (∂Ω) and V ∈ C1(∂Ω;RN ),

I ′(0) =
p

p− 1

∫

∂Ω

divτ (u0V )f dHN−1

=
p

p− 1

∫

∂Ω

u0V d[Df ].

The proof is now complete. �
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Departamento de Matemática, FCEyN, Universidad de Buenos Aires,
Pabellón I, Ciudad Universitaria (1428), Buenos Aires, Argentina.

E-mail address: ldpezzo@dm.uba.ar



8 L. DEL PEZZO AND J. FERNÁNDEZ BONDER
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Departamento de Matemática, FCEyN, Universidad de Buenos Aires,
Pabellón I, Ciudad Universitaria (1428), Buenos Aires, Argentina.

E-mail address: jfbonder@dm.uba.ar

Web page: http://mate.dm.uba.ar/∼jfbonder


