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We study formal deformations of a crossed product S(V )# f G , of
a polynomial algebra with a group, induced from a universal de-
formation formula introduced by Witherspoon. These deformations
arise from braided actions of Hopf algebras generated by automor-
phisms and skew derivations. We show that they are non-trivial
in the characteristic free context, even if G is infinite, by showing
that their infinitesimals are not coboundaries. For this we con-
struct a new complex which computes the Hochschild cohomology
of S(V )# f G .
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Introduction

In [G-Z] Giaquinto and Zhang develop the notion of a universal deformation formula based on
a bialgebra H , extending earlier formulas based on universal enveloping algebras of Lie algebras. Each
one of these formulas is called universal because it provides a formal deformation for any H-module
algebra. In the same paper the authors construct the first family of such formulas based on non-
commutative bialgebras, namely the enveloping algebras of central extensions of a Heisenberg Lie

* Corresponding author.
E-mail addresses: vander@dm.uba.ar (J.A. Guccione), jjgucci@dm.uba.ar (J.J. Guccione), cvalqui@pucp.edu.pe (C. Valqui).

1 Supported by UBACYT 095, PIP 112-200801-00900 (CONICET) and PUCP-DAI-2009-0042.
2 Supported by UBACYT 095 and PIP 112-200801-00900 (CONICET).
3 Supported by PUCP-DAI-2009-0042, Lucet 90-DAI-L005, SFB 478 U. Münster, Konrad Adenauer Stiftung.
4 The author thanks the appointment as a visiting professor “Cátedra José Tola Pasquel” and the hospitality during his stay at

the PUCP.
0021-8693/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2010.12.022

http://dx.doi.org/10.1016/j.jalgebra.2010.12.022
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:vander@dm.uba.ar
mailto:jjgucci@dm.uba.ar
mailto:cvalqui@pucp.edu.pe
http://dx.doi.org/10.1016/j.jalgebra.2010.12.022


264 J.A. Guccione et al. / Journal of Algebra 330 (2011) 263–297
algebra L. Another of these formulas, based on a Hopf algebra Hq over C, where q ∈ C
× is a parame-

ter, generated by group like elements σ±1 and two skew primitive elements D1, D2, were obtained in
the generic case by the same authors, but were not published. In [W] the author generalizes this for-
mula to include the case where q is a root of unity, and she uses it to construct formal deformations
of a crossed product S(V )# f G , where S(V ) is the polynomial algebra and the group G acts linearly
on V . More precisely, she deals with deformations whose infinitesimal sends V ⊗ V to S(V )w g , where
g is a central element of G .

In this paper we prove that some results established in [W] under the hypothesis that G is a fi-
nite group, remain valid for arbitrary groups, and with C replaced by an arbitrary field. For instance
we show that the determinant of the action of g on V is always 1. Moreover, we do not only con-
sider standard Hq-module algebra structures on S(V )# f G , but also the more general ones introduced
in [G-G1], and we work with actions which depend on two central elements g1 and g2 of G and
two polynomials P1 and P2. When the actions are the standard ones, g1 = 1 and P1 = 1, we obtain
the case considered in [W]. Finally, in Section 3.2 we show how to extend the explicit formulas ob-
tained previously, to non-central g1 and g2. As was noted by Witherspoon, these formulas necessarily
involve all components of S(V )# f G corresponding to the elements of a union of conjugacy classes
of G .

The paper is organized as follows: in the first section we review the concept of braided mod-
ule algebra introduced in [G-G1], we adapt the notion of universal deformation formula (UDF) to
the braided context, and we show that each one of these formulas produces a deformation on any
braided H-module algebra whose transposition (see Definition 1.6) satisfy a suitable hypothesis. We
remark that, when the bialgebra H is standard, the use of braided module algebra gives rise to more
deformations than the ones obtained using only module algebras, because the transposition can be
different from the flip. With this in mind, although we are going to work with the standard Hopf
algebra Hq , we establish the basic properties of UDF’s in the braided case, because it is the most ap-
propriate setting to deal with arbitrary transpositions. In the second section we recall the definitions
of the Hopf algebra Hq and of the UDF expq considered in [W, Section 3], which we are going to
study. We also introduce the concept of a good transposition of Hq on an algebra A, and we study
some of its properties. Perhaps the most important result in this section is Theorem 2.4, in which
we obtain a description of all the Hq-module algebras (A, s), with s a good transposition. This is the
first of several results in which we give a systematic account of the necessary and sufficient con-
ditions that an algebra (in general a crossed product S(V )# f G) must satisfy in order to support a
braided Hq-module algebra structure satisfying suitable hypothesis. In Section 4 of [W], using the
UDF expq the author constructs a large family of deformations whose infinitesimal sends V ⊗ V to
S(V )w g , where g is a central element of G . Using cohomological methods she proves that if G is
finite, these deformations are non-trivial, that the action of g on V has determinant 1 and that the
codimension of g V is 0 or 2. In the first part of Section 3 we study a larger family of deformations
and we prove that the last two results hold for this family even if G is infinite and the characteristic
of k is non-zero. Finally, in Section 4 we show that, under very general hypothesis, the deformations
constructed in the previous section are non-trivial. Once again, we do not assume characteristic zero,
nor that the group G is finite. One of the interesting points in this paper is the method developed
to deal with the cohomology of S(V )# f G when k[G] is non-semisimple. As far as we know it is
the first time that this type of cochain complexes is used to prove the non-triviality of a Hochschild
cocycle.

1. Preliminaries

After introducing some basic notations we recall briefly the concepts of braided bialgebra
and braided Hopf algebra following the presentation given in [T1] (see also [T2,L1,F-M-S,A-S,D,So]
and [B-K-L-T]). Then we review the notion of braided module algebra introduced in [G-G1], we recall
the concept of universal deformation formula based on a bialgebra H , due to Giaquinto and Zhang,
and we show that such a UDF produces a formal deformation when it is applied to an H-braided
module algebra, satisfying suitable hypothesis, generalizing slightly a result in [G-Z].
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In this paper k is a field, k× = k \ {0}, all the vector spaces are over k, and ⊗ = ⊗k . Moreover we
will use the usual notation (i)q = 1 + q + · · · + qi−1 and (i)!q = (1)q · · · (i)q , for q ∈ k× and i ∈ N.

Let V , W be vector spaces and let c : V ⊗ W → W ⊗ V be a k-linear map. Recall that:

– If V is an algebra, then c is compatible with the algebra structure of V if c◦(η ⊗ W ) = W ⊗ η
and c◦(μ ⊗ W ) = (W ⊗ μ)◦(c ⊗ V )◦(V ⊗ c), where η : k → V and μ : V ⊗ V → V denotes the
unit and the multiplication map of V , respectively.

– If V is a coalgebra, then c is compatible with the coalgebra structure of V if (W ⊗ ε)◦c = ε ⊗ W
and (W ⊗ �)◦c = (c ⊗ V )◦(V ⊗ c)◦(� ⊗ W ), where ε : V → k and � : V → V ⊗ V denotes the
counit and the comultiplication map of V , respectively.

Of course, there are similar compatibilities when W is an algebra or a coalgebra.

1.1. Braided bialgebras and braided Hopf algebras

Definition 1.1. A braided bialgebra is a vector space H endowed with an algebra structure, a coalgebra
structure and a braiding operator c ∈ Autk(H⊗2) (called the braid of H), such that c is compatible with
the algebra and coalgebra structures of H , �◦μ = (μ ⊗ μ)◦(H ⊗ c ⊗ H)◦(� ⊗ �), η is a coalgebra
morphism and ε is an algebra morphism. Furthermore, if there exists a k-linear map S : H → H , which
is the inverse of the identity map for the convolution product, then we say that H is a braided Hopf
algebra and we call S the antipode of H .

Usually H denotes a braided bialgebra, understanding the structure maps, and c denotes its braid.
If necessary, we will use notations as cH , μH , etcetera.

Remark 1.2. Assume that H is an algebra and a coalgebra and c ∈ Autk(H⊗2) is a solution of
the braiding equation, which is compatible with the algebra and coalgebra structures of H . Let
H ⊗c H be the algebra with underlying vector space H⊗2 and multiplication map given by μH⊗c H :=
(μ ⊗ μ)◦(H ⊗ c ⊗ H). It is easy to see that H is a braided bialgebra with braid c if and only if
� : H → H ⊗c H and ε : H → k are morphisms of algebras.

Definition 1.3. Let H and L be braided bialgebras. A map g : H → L is a morphism of braided bialgebras
if it is an algebra homomorphism, a coalgebra homomorphism and c◦(g ⊗ g) = (g ⊗ g)◦c.

Let H and L be braided Hopf algebras. It is well known that if g : H → L is a morphism of braided
bialgebras, then g◦S = S◦g .

1.2. Braided module algebras

Definition 1.4. Let H be a braided bialgebra. A left H-braided space (V , s) is a vector space V , endowed
with a bijective k-linear map s : H ⊗ V → V ⊗ H , which is compatible with the bialgebra structure of H
and satisfies

(s ⊗ H)◦(H ⊗ s)◦(c ⊗ V ) = (V ⊗ c)◦(s ⊗ H)◦(H ⊗ s)

(compatibility of s with the braid). Let (V ′, s′) be another left H-braided space. A k-linear map
f : V → V ′ is said to be a morphism of left H-braided spaces, from (V , s) to (V ′, s′), if ( f ⊗ H)◦s =
s′◦(H ⊗ f ).

We let L B H denote the category of all left H-braided spaces. It is easy to check that this is a
monoidal category with:
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– unit (k, τ ), where τ : H ⊗ k → k ⊗ H is the flip,
– tensor product (V , sV ) ⊗ (U , sU ) := (V ⊗ U , sV ⊗U ), where sV ⊗U is the map

sV ⊗U := (V ⊗ sU )◦(sV ⊗ U ),

– the usual associativity and unit constraints.

Definition 1.5. We will say that (A, s) is a left H-braided algebra or simply a left H-algebra if it is an
algebra in L B H .

We let A L B H denote the category of left H-braided algebras.

Definition 1.6. Let A be an algebra. A left transposition of H on A is a bijective map s : H ⊗ A → A ⊗ H ,
satisfying:

(1) (A, s) is a left H-braided space,
(2) s is compatible with the algebra structure of A.

Remark 1.7. A left H-braided algebra is a pair (A, s) consisting of an algebra A and a left transposi-
tion s of H on A. Let (A′, s′) be another left H-braided algebra. A map f : A → A′ is a morphism of
left H-braided algebras, from (A, s) to (A′, s′), if and only if it is a morphism of standard algebras and
( f ⊗ H)◦s = s′◦(H ⊗ f ).

Note that (H, c) is an algebra in L B H . Hence, one can consider left and right (H, c)-modules in
this monoidal category.

Definition 1.8. We will say that (V , s) is a left H-braided module or simply a left H-module to mean
that it is a left (H, c)-module in L B H .

We let H (L B H ) denote the category of left H-braided modules.

Remark 1.9. A left H-braided space (V , s) is a left H-module if and only if V is a standard left
H-module and

s◦(H ⊗ ρ) = (ρ ⊗ H)◦(H ⊗ s)◦(c ⊗ V ),

where ρ denotes the action of H on V . Furthermore, a map f : V → V ′ is a morphism of left H-modules,
from (V , s) to (V ′, s′), if and only if it is H-linear and ( f ⊗ H)◦s = s′◦(H ⊗ f ).

Given left H-modules (V , sV ) and (U , sU ), with actions ρV and ρU respectively, we let ρV ⊗U

denote the diagonal action

ρV ⊗U := (ρV ⊗ ρU )◦(H ⊗ sV ⊗ U )◦(�H ⊗ V ⊗ U ).

The following proposition says in particular that (k, τ ) is a left H-module via the trivial action and
that (V , sV ) ⊗ (U , sU ) is a left H-module via ρV ⊗U .

Proposition 1.10. (See [G-G1].) The category H (L B H ), of left H-braided modules, endowed with the usual
associativity and unit constraints, is monoidal.

Definition 1.11. We say that (A, s) is a left H-braided module algebra or simply a left H-module algebra
if it is an algebra in H (L B H ).
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We let H (A L B H ) denote the category of left H-braided module algebras.

Remark 1.12. (A, s) is a left H-module algebra if and only if the following facts hold:

(1) A is an algebra,
(2) s is a left transposition of H on A,
(3) A is a standard left H-module,
(4) s◦(H ⊗ ρ) = (ρ ⊗ H)◦(H ⊗ s)◦(c ⊗ A),
(5) μA◦(ρ ⊗ ρ)◦(H ⊗ s ⊗ A)◦(�H ⊗ A ⊗ A) = ρ◦(H ⊗ μA),
(6) h · 1 = ε(h)1 for all h ∈ H ,

where ρ denotes the action of H on A. So, (A, s) is a left H-module algebra if and only if it is a left
H-algebra, a left H-module and satisfies conditions (5) and (6).

In the sequel, given a map ρ : H ⊗ A → A, sometimes we will write h · a to denote ρ(h ⊗ a).

Remark 1.13. If X generates H as a k-algebra, then conditions (4), (5) and (6) of the above remark are
satisfied if and only if

s(h ⊗ l · a) = (ρ ⊗ H)◦(H ⊗ s)◦(c ⊗ A)(h ⊗ l ⊗ a),

h · (ab) = μA◦(ρ ⊗ ρ)◦(H ⊗ s ⊗ A)
(
�(h) ⊗ a ⊗ b

)
,

h · 1 = ε(h),

for all a,b ∈ A and h, l ∈ X .

Let (A′, s′) be another left H-module algebra. A map f : A → A′ is a morphism of left H-module
algebras, from (A, s) to (A′, s′), if and only if it is an H-linear morphism of standard algebras that
satisfies ( f ⊗ H)◦s = s′◦(H ⊗ f ).

1.3. Bialgebra actions and universal deformation formulas

Most of the results of [G-Z, Section 1] remain valid in our more general context, with the same
arguments and minimal changes. In particular Theorem 1.15 below holds.

Let H be a braided bialgebra. Given a left H-module algebra (A, s) and an element F ∈ H ⊗ H , we
let Fl : A ⊗ A → A ⊗ A denote the map defined by

Fl(a ⊗ b) := (ρ ⊗ ρ)◦(H ⊗ s ⊗ A)(F ⊗ a ⊗ b),

where ρ : H ⊗ A → A is the action of H on A. We let A F denote A endowed with the multiplication
map μA◦Fl .

Definition 1.14. We say that F ∈ H ⊗ H is a twisting element (based on H) if

(1) (ε ⊗ id)(F ) = (id⊗ε)(F ) = 1,
(2) [(� ⊗ id)(F )](F ⊗ 1) = [(id⊗�)(F )](1 ⊗ F ) in H ⊗c H ⊗c H ,
(3) (c ⊗ H)◦(H ⊗ c)(F ⊗ h) = h ⊗ F , for all h ∈ H .

Theorem 1.15. Let (A, s) be a left H-module algebra. If F ∈ H ⊗ H is a twisting element such that
(s ⊗ H)◦(H ⊗ s)(F ⊗ a) = a ⊗ F , for all a ∈ A, then A F is an associative algebra with unit 1A .

The notions of braided bialgebra, left H-braided module algebra and twisting element make sense
in arbitrary monoidal categories. Here we consider the monoidal category M�t � defined as follows:
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– the objects are the k�t �-modules of the form M �t � where M is a k-vector space,
– the arrows are the k�t �-linear maps,
– the tensor product is the completion

M �t � ⊗̂k�t� N �t �

of the algebraic tensor product M �t � ⊗k�t� N �t � with respect to the t-adic topology,
– the unit and the associativity constrains are the evident ones.

We identify M �t � ⊗̂k�t� N �t � with (M ⊗ N)�t � by the map

Θ : M �t � ⊗̂k�t� N �t � → (M ⊗ N)�t �

given by Θ(mti ⊗ nt j) := (m ⊗ n)ti+ j .
If A is a k-algebra, then A�t � is an algebra in M�t � via the multiplication map

(A ⊗ A)�t �
μ

A�t �∑
(ai ⊗ bi)ti ∑

aibiti,

where aibi = μA(ai ⊗ bi). The unit map is the canonical inclusion k�t � ↪→ A�t �.
If H is a braided bialgebra over k, then H �t � is a braided bialgebra in M�t �. The multiplication

and unit maps are as above. The comultiplication and counits are the maps

H �t �
�

(H ⊗ H)�t �∑
hiti ∑

�H (hi)ti
and

H �t �
ε

k�t �∑
hiti ∑

εH (hi)ti,

and the braid operator is the map

(H ⊗ H)�t �
c�t�

(H ⊗ H)�t �∑
(hi ⊗ li)ti ∑

cH (hi ⊗ li)ti .

If (A, s) is an H-module algebra, then (A�t �, s�t �), where s�t � is the map

(H ⊗ A)�t �
s�t�

(A ⊗ H)�t �∑
(hi ⊗ ai)ti ∑

s(hi ⊗ ai)ti,

is an H �t �-module algebra, via

(H ⊗ A)�t �
ρ

A�t �∑
(hi ⊗ ai)ti ∑

ρA(hi ⊗ ai)ti .

A twisting element based on H �t � in M�t � is an element F ∈ H �t � ⊗̂k�t� H �t � satisfying con-

ditions (1)–(3) of Definition 1.14. It is easy to check that a power series F = ∑
Fiti ∈ (H ⊗ H)�t �

corresponds via Θ−1 to a twisting element if and only if
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(1) (ε ⊗ id)(F0) = (id⊗ε)(F0) = 1 and (ε ⊗ id)(Fi) = (id⊗ε)(Fi) = 0 for i � 1,
(2) for all n � 0,

∑
i+ j=n

(� ⊗ id)(Fi)(F j ⊗ 1) =
∑

i+ j=n

(id ⊗�)(Fi)(1 ⊗ F j) in H ⊗c H ⊗c H,

(3) (c ⊗ H)◦(H ⊗ c)(Fn ⊗ h) = h ⊗ Fn , for all h ∈ H and n � 0.

We will say that F is a universal deformation formula (UDF) based on H if, moreover, F0 = 1 ⊗ 1.

Theorem 1.16. Let (A, s) be a left H-module algebra. If F = ∑
Fiti is a UDF based on H, such that

(s ⊗ H)◦(H ⊗ s)(Fi ⊗ a) = a ⊗ Fi for all i � 0 and a ∈ A,

then, the construction considered in Theorem 1.15, applied to the left H �t �-module algebra (A�t �, s�t �) intro-
duced above, produces a formal deformation of A.

Proof. It is immediate. �
2. Hq-module algebra structures and deformations

In this section, we briefly review the construction of the Hopf algebra Hq and the UDF expq based
on Hq considered in [W], we introduce the notion of a good transposition of Hq on an algebra A, and
we describe all the braided Hq-module algebras whose transposition is good.

Let q ∈ k× and let H be the algebra generated by D1, D2, σ±1, subject to the relations

D1 D2 = D2 D1, σσ−1 = σ−1σ = 1 and qσ Di = Diσ for i = 1,2.

It is easy to check that H is a Hopf algebra with

�(D1) := D1 ⊗ σ + 1 ⊗ D1, ε(D1) :=0, S(D1) :=−D1σ
−1,

�(D2) := D2 ⊗ 1 + σ ⊗ D2, ε(D2) :=0, S(D2) :=−σ−1 D2,

�(σ ) :=σ ⊗ σ , ε(σ ) := 1, S(σ ) :=σ−1.

If q is a primitive l-root of unity with l � 2, then the ideal I of H generated by Dl
1 and Dl

2 is a Hopf
ideal. So, the quotient H/I is also a Hopf algebra. Let

Hq :=
{

H/I if q is a primitive l-root of unity with l � 2,

H if q = 1 or it is not a root of unity.

The Hopf algebra Hq was considered in the paper [W], where it was proved that

expq(t D1 ⊗ D2) :=
⎧⎨⎩

∑l−1
i=0

1
(i)!q (t D1 ⊗ D2)

i if q is a primitive l-root of unity (l � 2),∑∞
i=0

1
(i)q! (t D1 ⊗ D2)

i if q = 1 or it is not a root of unity,

is a UDF based on Hq .
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2.1. Good transpositions of Hq on an algebra

One of our main purposes in this paper is to construct formal deformation of algebras by using the
UDF expq(t D1 ⊗ D2). By Theorem 1.16, it will be sufficient to obtain examples of Hq-module algebras
(A, s), whose underlying transpositions s satisfy

(s ⊗ Hq)◦(Hq ⊗ s)(D1 ⊗ D2 ⊗ a) = a ⊗ D1 ⊗ D2 for all a ∈ A. (2.1)

Definition 2.1. A k-linear map s : Hq ⊗ A → A ⊗ Hq is good if condition (2.1) is fulfilled.

It is evident that s : Hq ⊗ A → A ⊗ Hq is good if and only if there exists a bijective k-linear map
α : A → A such that

s(D1 ⊗ a) = α(a) ⊗ D1 and s(D2 ⊗ a) = α−1(a) ⊗ D2 for all a ∈ A.

Lemma 2.2. Let k[σ±1] denote the sub-Hopf algebra of Hq generated by σ . Each transposition s : Hq ⊗ A →
A ⊗ Hq takes k[σ±1] ⊗ A onto A ⊗ k[σ±1].

Proof. Let τ be the flip. Since τ◦s−1◦τ is a transposition, it suffices to prove that s(σ±1 ⊗ a) ∈
A ⊗ k[σ±1] for all a ∈ A. Write

s(σ ⊗ a) =
∑
i jk

γi jk(a) ⊗ σ i D j
1 Dk

2.

Since S2(D1) = q−1 D1, S2(D2) = qD2 and S2(σ±1) = σ±1, we have

∑
i jk

γi jk(a) ⊗ σ i D j
1 Dk

2 = s(σ ⊗ a)

= s◦(
S2 ⊗ A

)
(σ ⊗ a)

= (
A ⊗ S2)◦s(σ ⊗ a)

=
∑
i jk

qk− jγi jk(a) ⊗ σ i D j
1 Dk

2,

and so γi jk = 0 for j 	= k. Using now that

∑
i j

γi j j(a) ⊗ �(σ)i�(D1)
j�(D2)

j = (A ⊗ �)◦s(σ ⊗ a)

= (s ⊗ Hq)◦(Hq ⊗ s)◦(� ⊗ A)(σ ⊗ a)

=
∑
i ji′ j′

γi′ j′ j′
(
γi j j(a)

) ⊗ σ i′ D j′
1 D j′

2 ⊗ σ i D j
1 D j

2,

it is easy to check that γi j j = 0 if j > 0 (use that in each term of the right side the exponent of D1

equals the exponent of D2). For σ−1 the same argument carries over. This finishes the proof. �
In the following result we obtain a characterization of the good transpositions of Hq on an alge-

bra A.
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Theorem 2.3. The following facts hold:

(1) If s : Hq ⊗ A → A ⊗ Hq is a good transposition, then s(σ±1 ⊗ a) = a ⊗ σ±1 for all a ∈ A and the map
α : A → A, defined by s(D1 ⊗ a) = α(a) ⊗ D1 , is an algebra homomorphism.

(2) Given an algebra automorphism α : A → A, there exists only one good transposition s : Hq ⊗ A → A ⊗ Hq
such that s(D1 ⊗ a) = α(a) ⊗ D1 for all a ∈ A.

Proof. (1) By Lemma 2.2, we know that s induces by restriction a transposition of k[σ±1] on A.
Hence, by [G-G1, Theorem 4.14], there is a superalgebra structure A = A+ ⊕ A− such that

s
(
σ i ⊗ a

) =
{

a ⊗ σ i if a ∈ A+,

a ⊗ σ−i if a ∈ A−.

Let α : A → A be as in the statement. Since σ is a transposition, if a ∈ A− , then

α(a) ⊗ D1 ⊗ σ + α(a) ⊗ 1 ⊗ D1 = (A ⊗ �)◦s(D1 ⊗ a)

= (s ⊗ Hq)◦(Hq ⊗ s)◦(� ⊗ A)(D1 ⊗ a)

= α(a) ⊗ D1 ⊗ σ−1 + α(a) ⊗ 1 ⊗ D1.

So, A− = 0. Finally, α is an algebra homomorphism, because

s(h ⊗ 1) = 1 ⊗ h for each h ∈ Hq and s◦(Hq ⊗ μA) = (μA ⊗ Hq)◦(A ⊗ s)◦(s ⊗ A).

(2) By item (1) and the comment preceding Lemma 2.2, it must be

s
(
σ±1 ⊗ a

) = a ⊗ σ±1, s(D1 ⊗ a) = α(a) ⊗ D1 and s(D2 ⊗ a) = α−1(a) ⊗ D2.

So, necessarily

s
(
σ i D j

1 Dk
2 ⊗ a

) = α j−k(a) ⊗ σ i D j
1 Dk

2.

We leave to the reader the task to prove that s is a good transposition. �
2.2. Some Hq-module algebra structures

Let A be an algebra. Let us consider k-linear maps ς, δ1, δ2 : A → A. It is evident that there is a
(necessarily unique) action ρ : Hq ⊗ A → A such that

ρ(σ ⊗ a) = ς(a), ρ(D1 ⊗ a) = δ1(a) and ρ(D2 ⊗ a) = δ2(a) (2.2)

for all a ∈ A, if and only if the maps ς , δ1 and δ2 satisfy the following conditions:

(1) ς is a bijective map,
(2) δ1◦δ2 = δ2◦δ1,
(3) qς◦δi = δi◦ς for i = 1,2,
(4) if q 	= 1 and ql = 1, then δl

1 = δl
2 = 0.

Let s : Hq ⊗ A → A ⊗ Hq be a good transposition and let α be the associated automorphism. Let ς ,
δ1 and δ2 be k-linear endomorphisms of A satisfying (1)–(4). Next, we determine the conditions that
ς , δ1 and δ2 must satisfy in order that (A, s) becomes an Hq-module algebra via the action ρ defined
by (2.2).
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Theorem 2.4. (A, s) is an Hq-module algebra via ρ if and only if

(5) ς is an algebra automorphism,
(6) α◦δi = δi◦α for i = 1,2,
(7) α◦ς = ς◦α,
(8) δi(1) = 0 for i = 1,2,
(9) δ1(ab) = δ1(a)ς(b) + α(a)δ1(b) for all a,b ∈ A,

(10) δ2(ab) = δ2(a)b + ς(α−1(a))δ2(b) for all a,b ∈ A.

Proof. Assume that (A, s) is an Hq-module algebra and let τ : Hq ⊗ Hq → Hq ⊗ Hq be the flip. Evalu-
ating the equality

s◦(Hq ⊗ ρ) = (ρ ⊗ Hq)◦(Hq ⊗ s)◦(τ ⊗ A)

successively on D1 ⊗ Di ⊗a and D1 ⊗σ ⊗a with i ∈ {1,2} and a ∈ A arbitrary, we verify that items (6)
and (7) are satisfied. Item (8) follows from the fact that D1 · 1 = D2 · 1 = 0. Finally, using that σ · 1 = 1
and evaluating the equality

ρ◦(Hq ⊗ μA) = μA◦(ρ ⊗ ρ)◦(Hq ⊗ s ⊗ A)◦(� ⊗ A ⊗ A)

on σ ⊗ a ⊗ b and Di ⊗ a ⊗ b, with i = 1,2 and a,b ∈ A arbitrary, we see that items (5), (9) and (10)
hold. So, conditions (5)–(10) are necessary. By Remark 1.13, in order to verify that they are also
sufficient, it is enough to check that they imply that

h · 1 = ε(h),

s(h ⊗ l · a) = (ρ ⊗ Hq)◦(Hq ⊗ s)(l ⊗ h ⊗ a),

h · (ab) = μA◦(ρ ⊗ ρ)◦(Hq ⊗ s ⊗ A)
(
�(h) ⊗ a ⊗ b

)
,

for all a,b ∈ A and h, l ∈ {D1, D2, σ
±1}. We leave this task to the reader. �

Note that condition (8) in Theorem 2.4 is redundant since it can be obtained by applying condi-
tions (9) and (10) with a = b = 1.

3. Hq-module algebra structures on crossed products

Let G be a group endowed with a representation on a k-vector space V of dimension n. Consider
the symmetric k-algebra S(V ) equipped with the unique action of G by automorphisms that extends
the action of G on V and take A = S(V )# f G , where f : G × G → k× is a normal cocycle. By definition
the k-algebra A is a free left S(V )-module with basis {w g : g ∈ G}. Its product is given by

(P w g)(Q wh) := P g Q f (g,h)w gh,

where g Q denotes the action of g on Q . This section is devoted to the study of the Hq-module
algebras (A, s), with s good, that satisfy

s(Hq ⊗ V ) ⊆ V ⊗ Hq, s(Hq ⊗ kw g) ⊆ kw g ⊗ Hq, σ · v ∈ V and σ · w g ∈ kw g,

for all v ∈ V and g ∈ G . In Theorem 3.5 we give a general characterization of these module algebras,
and in Section 3.1 we consider a specific case which is more suitable for finding concrete examples,
and we study it in detail. Finally in Section 3.2 we consider the case where the cocycle involves
several not necessarily central elements of G .
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In the following proposition we characterize the good transpositions s of Hq on A satisfying the
hypothesis mentioned above. By Theorem 2.3 this is equivalent to require that the k-linear map
α : A → A associated with α, takes V to V and kw g to kw g for all g ∈ G .

Proposition 3.1. Let α̂ : V → V be a k-linear map and χα : G → k× a map. There is a good transposition
s : Hq ⊗ A → A ⊗ Hq, such that

s(D1 ⊗ v) = α̂(v) ⊗ D1 and s(D1 ⊗ w g) = χα(g)w g ⊗ D1

for all v ∈ V and g ∈ G, if and only if α̂ is a bijective k[G]-linear map and χα is a group homomorphism.

Proof. By Theorem 2.3 we know that s exists if an only if the k-linear map α : A → A defined by

α(v1 · · · vm w g) := α̂(v1) · · · α̂(vm)χα(g)w g,

is an automorphism. But, if this happens, then:

a) χα is a morphism since

χα(g)χα(h) f (g,h)w gh = α(w g)α(wh) = α(w g wh) = χα(gh) f (g,h)w gh

for all g,h ∈ G ,
b) α̂ is a bijective k[G]-linear map, since it is the restriction and corestriction of α to V , and

α̂
(g v

) = α(w g)α̂(v)α
(

w−1
g

) = χα(g)w gα̂(v)
(
χα(g)w g

)−1 = w gα̂(v)w−1
g = gα̂(v).

Conversely, if α̂ is a bijective map then α is also, and if α̂ is a k[G]-linear map and χα is a morphism,
then

α(w g)α̂(v) = χα(g)w gα̂(v) = gα̂(v)χα(g)w g = α̂
(g v

)
α(w g)

and

α(w g)α(wh) = χα(g)w gχα(h)wh = f (g,h)χα(gh)w gh = α
(

f (g,h)w gh
)
,

for all v ∈ V and g,h ∈ G , from which it follows easily that α is a morphism. �
Let A = S(V )# f G be as above. Throughout this section we fix a morphism χα : G → k× and a

bijective k[G]-linear map α̂ : V → V , and we let α : A → A denote the automorphism determined
by α̂ and χα . Moreover we will call

s : Hq ⊗ A → A ⊗ Hq

the good transposition associated with α. Our purpose is to obtain all the Hq-module algebra struc-
tures on (A, s) such that

σ · v ∈ V and σ · w g ∈ kw g for all v ∈ V and g ∈ G. (3.3)

Under these restrictions we obtain conditions which allow us to construct all Hq-module structures
in concrete examples. Thanks to Theorem 1.16 and the fact that expq(t D1 ⊗ D2) is a UDF based on Hq ,
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each one of these examples produces automatically a formal deformation of A. First note that given
an Hq-module algebra structure on (A, s) satisfying (3.3), we can define k-linear maps

δ̂1 : V → A, δ̂2 : V → A and ς̂ : V → V

and maps

δ1 : G → A, δ2 : G → A and χς : G → k×,

by

δ̂i(v) := Di · v, ς̂ (v) := σ · v, δi(g) := Di · w g and σ · w g := χς(g)w g .

Lemma 3.2. Let ς̂ : V → V be a k-linear map and χς : G → k× be a map. Then, the map ς : A → A defined
by

ς(v1m w g) := ς̂ (v1) · · · ς̂ (vm)χς (g)w g,

is a k-algebra automorphism if and only if ς̂ is a bijective k[G]-linear map and χς is a group homomorphism.

Proof. This was checked in the proof of Proposition 3.1. �
Lemma 3.3. Let δ̂1 : V → A and δ̂2 : V → A be k-linear maps and let δ1 : G → A and δ2 : G → A be maps.

(1) The k-linear map δ1 : A → A given by

δ1(v1m w g) :=
m∑

j=1

α(v1, j−1)δ̂1(v j)ς(v j+1,m w g) + α(v1m)δ1(g),

where vhl = vh · · · vl , is well defined if and only if

δ̂1(v)ς̂ (w) + α̂(v)δ̂1(w) = δ̂1(w)ς̂ (v) + α̂(w)δ̂1(v) for all v, w ∈ V . (3.4)

(2) The map δ2 : A → A given by

δ2(v1m w g) :=
m∑

j=1

ς
(
α−1(v1, j−1)

)
δ̂2(v j)v j+1,m w g + ς

(
α−1)(v1m)δ2(g)

is well defined if and only if

δ̂2(v)w + ς
(
α̂−1(v)

)
δ̂2(w) = δ̂2(w)v + ς

(
α̂−1(w)

)
δ̂2(v) for all v, w ∈ V . (3.5)

Proof. We prove the first assertion and leave the second one, which is similar, to the reader. The only
if part follows immediately by noting that

δ̂1(v)ς̂ (w) + α̂(v)δ̂1(w) = δ1(v w) = δ1(w v) = δ̂1(w)ς̂ (v) + α̂(w)δ̂1(v).

In order to prove the if part it suffices to check that

δ1(v1 · · · vi−1 vi+1 vi vi+2 · · · vm w g) = δ1(v1m w g) for all i < m,

which follows easily from the hypothesis. �
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Lemma 3.4. Assume that ς is an algebra automorphism and δ1 , δ2 are well defined. The following facts hold:

(1) The map δ1 satisfies

δ1(x1 · · · xm) =
m∑

j=1

α(x1 · · · x j−1)δ1(x j)ς(x j+1 · · · xm)

for all x1, . . . , xm ∈ k# f G ∪ V , if and only if

(a) δ̂1(
g v)χς (g)w g + α̂(g v)δ1(g) = δ1(g)ς̂ (v) + χα(g)w g δ̂1(v),

(b) f (g,h)δ1(gh) = δ1(g)χς (h)wh + χα(g)w gδ1(h),
for all v ∈ V and g,h ∈ G.

(2) The map δ2 satisfies

δ2(x1 · · · xm) =
m∑

j=1

ς◦α−1(x1 · · · x j−1)δ1(x j)x j+1 · · · xm

for all x1, . . . , xm ∈ k# f G ∪ V , if and only if

(a) δ̂2(
g v)w g + ς̂ (α̂−1(g v))δ2(g) = δ2(g)v + χς (g)χ−1

α (g)w g δ̂2(v),
(b) f (g,h)δ2(gh) = δ2(g)wh + χς (g)χ−1

α (g)w gδ2(h),
for all v ∈ V and g,h ∈ G.

Proof. We prove the first assertion and leave the second one to the reader. For the only if part it
suffices to note that

δ̂1
(g v

)
ς(w g) + α

(g v
)
δ1(g) = δ1

(g v w g
) = δ1(w g v) = δ1(g)ς(v) + α(w g)δ̂1(v),

f (g,h)δ1(gh) = δ1(w g wh) = δ1(g)ς(wh) + α(w g)δ1(h),

and to use the definitions of ς(w g) and α(w g). We prove the sufficient part by induction on r =
m + 1 − i, where i is the first index with xi ∈ k# f G (if x1, . . . , xm ∈ V we set r := 0). For r ∈ {0,1}
the result follows immediately from the definition of δ1. Assume that it is true when r < r0 and that
m + 1 − i = r0. If xi = w g and xi+1 = v ∈ V , then

δ1(x1 · · · xm) = δ1(y1 · · · ym) where y j =
⎧⎨⎩

x j if j /∈ {i, i + 1},
g v if j = i,
w g if j = i + 1,

and hence, by the inductive hypothesis and item (a),

δ1(x1 · · · xm) =
m∑

j=1

α(y1 · · · y j−1)δ1(y j)ς(y j+1 · · · ym)

=
m∑

j=1

α(x1 · · · x j−1)δ1(x j)ς(x j+1 · · · xm).

If xi = w g and xi+1 = wh , then

δ1(x1 · · · xm) = f (g,h)δ1(y1 · · · ym−1) where y j =
⎧⎨⎩

x j if j < i,
w gh if j = i,
x if j > i,
j+1
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and hence, by the inductive hypothesis and item (b),

δ1(x1 · · · xm) =
m−1∑
j=1

f (g,h)α(y1 · · · y j−1)δ1(y j)ς(y j+1 · · · ym−1)

=
m∑

j=1

α(x1 · · · x j−1)δ1(x j)ς(x j+1 · · · xm),

as we want. �
Theorem 3.5. Let δ̂1 : V → A, δ̂2 : V → A and ς̂ : V → V be k-linear maps and let δ1 : G → A, δ2 : G → A
and χς : G → k× be maps. There is an Hq-module algebra structure on (A, s), such that

σ · v = ς̂ (v), σ · w g = χς(g)w g, Di · v = δ̂i(v) and Di · w g = δi(g)

for all v ∈ V , g ∈ G and i ∈ {1,2}, if and only if

(1) ς̂ : V → V is a bijective k[G]-linear map and χς is a group homomorphism,
(2) conditions (3.4) and (3.5) in Lemma 3.3 and items (1)(a), (1)(b), (2)(a) and (2)(b) in Lemma 3.4 are

satisfied,
(3) δ̂i◦α̂ = α◦δ̂i ,
(4) χα(g)δi(g) = α(δi(g)) for all g ∈ G,
(5) ς̂◦α̂ = α̂◦ς̂ ,
(6) the maps ς : A → A, δ1 : A → A and δ2 : A → A, introduced in Lemmas 3.2 and 3.3, satisfy the following

properties:

δ2◦δ̂1 = δ1◦δ̂2, δ̂i◦ς̂ = qς◦δ̂i, δ2◦δ1 = δ1◦δ2,

χς (g)δi(g) = qς
(
δi(g)

)
, δl

1 = δl
2 = 0 if q 	= 1 and ql = 1.

Proof. By Theorem 2.4 and the discussion above it, we know that to have an Hq-module alge-
bra structure on (A, s) satisfying the requirements in the statement is equivalent to have maps
ς, δ1, δ2 : A → A satisfying conditions (1)–(10) in Section 2.2 and such that

ς(v) = ς̂ (v), ς(w g) = χς(g)w g, δi(v) = δ̂i(v) and δi(w g) = δi(g)

for all v ∈ V , g ∈ G and i ∈ {1,2}. Now, it is easy to see that:

a) If ς , δ1 and δ2 satisfy conditions (5), (9) and (10) in Section 2.2, then

ς(v1m w g) = ς̂ (v1) · · · ς̂ (vm)χς (g)w g,

δ1(v1m w g) =
m∑

j=1

α(v1, j−1)δ̂1(v j)ς(v j+1,m w g) + α(v1m)δ1(g),

δ2(v1m w g) =
m∑

j=1

ς
(
α−1(v1, j−1)

)
δ̂2(v j)v j+1,m w g + ς

(
α−1(v1m)

)
δ2(g),

where vhl = vh · · · vl .
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b) By Lemmas 3.2, 3.3 and 3.4, the maps defined in a) satisfy conditions (1), (5), (8), (9) and (10) in
Section 2.2 if and only if items (1) and (2) of the present theorem are fulfilled.

So, in order to finish the proof it suffices to check that:

c) Conditions (6) and (7) in Section 2.2 are satisfied if and only if items (3)–(5) of the present
theorem are fulfilled.

d) Conditions (2), (3) and (4) in Section 2.2 are satisfied if and only if item (6) of the present
theorem is fulfilled.

We leave this task to the reader. �
We are going now to consider several particular cases, with the purpose of obtaining more pre-

cise results. This will allow us to give some specific examples of formal deformations of associative
algebras.

3.1. First case

Let α̂, χα , α and s be as in the discussion following Proposition 3.1. Let δ̂1 : V → A, δ̂2 : V → A and
ς̂ : V → V be k-linear maps and let χς : G → k× be a map. Assume that the kernels of δ̂1 and δ̂2 have
codimension 1, ker δ̂1 	= ker δ̂2 and there exist xi ∈ V \ ker δ̂i , such that δ̂i(xi) = Pi w gi with Pi ∈ S(V )

and gi ∈ G . Without loss of generality we can assume that x1 ∈ ker δ̂2 and x2 ∈ ker δ̂1 (and we do it).
For g ∈ G and i ∈ {1,2}, let λig,ωi, νi ∈ k be the elements defined by the following conditions:

g xi − λig xi ∈ ker δ̂i, ς̂ (xi) − ωi xi ∈ ker δ̂i and α̂(xi) − νi xi ∈ ker δ̂i .

Theorem 3.6. There is an Hq-module algebra structure on (A, s), satisfying

σ · v = ς̂ (v), σ · w g = χς (g)w g, Di · v = δ̂i(v) and Di · w g = 0

for all v ∈ V , g ∈ G and i ∈ {1,2}, if and only if

(1) ς̂ is a bijective k[G]-linear map and χς is a group homomorphism,

(2) ς̂ (v) = g−1
1 α̂(v) for all v ∈ ker δ̂1 and ς̂ (v) = g2 α̂(v) for all v ∈ ker δ̂2 ,

(3) g1 and g2 belong to the center of G,
(4) ker δ̂1 and ker δ̂2 are G-submodules of V ,
(5) g P1 = λ1gχ

−1
α (g)χς (g) f −1(g, g1) f (g1, g)P1 for all g ∈ G,

(6) g P2 = λ2gχα(g)χ−1
ς (g) f −1(g, g2) f (g2, g)P2 for all g ∈ G,

(7) α̂(ker δ̂i) = ker δ̂i for i ∈ {1,2},
(8) P1 ∈ ker δ2 and P2 ∈ ker δ1 , where δ1 and δ2 are the maps defined by

δ1(v1m w g) :=
m∑

j=1

α(v1, j−1)δ̂1(v j)ς(v j+1,m w g),

δ2(v1m w g) :=
m∑

j=1

ς
(
α−1(v1, j−1)

)
δ̂2(v j)v j+1,m w g,

in which vhl = vh · · · vl ,
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(9) ς(Pi) = q−1ωiχ
−1
ς (gi)Pi and α(Pi) = νiχ

−1
α (gi)Pi for i ∈ {1,2}, where ς is the map given by

ς(v1m w g) = ς̂ (v1) · · · ς̂ (vm)χς (g)w g,

(10) if q 	= 1 and ql = 1, then δl
1 = δl

2 = 0.

In order to prove this result we first need to establish some auxiliary results.

Lemma 3.7. The following facts hold:

(1) Condition (3.4) of Lemma 3.3 is satisfied if and only if g1 ς̂ (v) = α̂(v) for all v ∈ ker δ̂1 .
(2) Condition (3.5) of Lemma 3.3 is satisfied if and only if g2 v = ς̂ (α̂−1(v)) for all v ∈ ker δ̂2 .

Proof. We prove item (1) and we leave item (2), which is similar, to the reader. We must check that

δ̂1(v)ς̂ (w) + α̂(v)δ̂1(w) = δ̂1(w)ς̂ (v) + α̂(w)δ̂1(v) for all v, w ∈ V (3.6)

if and only if ς̂1(v) = g−1
1 α̂(v) for all v ∈ ker δ̂1. It is clear that we can suppose that v, w ∈ {x1}∪ker δ̂1.

When v, w ∈ ker δ̂1 or v = w = x1 the equality (3.6) is trivial. Assume v = x1 and w ∈ ker δ̂1. Then,

δ̂1(v)ς̂ (w) + α̂(v)δ̂1(w) = P1 w g1 ς̂ (w) = P1
g1 ς̂ (w)w g1

and

δ̂1(w)ς̂ (v) + α̂(w)δ̂1(v) = α̂(w)P1 w g1 = P1α̂(w)w g1 .

So, in this case, the result is true. Case v ∈ ker δ̂1 and w = x1 can be treated in a similar way. �
Lemma 3.8. The following facts hold:

(1) Items (1)(a) and (1)(b) of Lemma 3.4 are satisfied if and only if
(a) ker δ̂1 is a G-submodule of V ,
(b) g1 belongs to the center of G,
(c) g P1 = λ1gχ

−1
α (g)χς (g) f −1(g, g1) f (g1, g)P1 , for all g ∈ G.

(2) Items (2)(a) and (2)(b) of Lemma 3.4 are satisfied if and only if
(a) ker δ̂2 is a G-submodule of V ,
(b) g2 belongs to the center of G,
(c) g P2 = λ2gχα(g)χ−1

ς (g) f −1(g, g2) f (g2, g)P2 , for all g ∈ G.

Proof. We prove item (1) and we leave item (2) to the reader. Since δ1 = 0, it is sufficient to prove
that

δ̂1
(g v

)
χς (g)w g = χα(g)w g δ̂1(v) for all v ∈ V and g ∈ G, (3.7)

if and only if conditions (1)(a), (1)(b) and (1)(c) are satisfied. We can assume that v ∈ {x1} ∪ ker δ̂1.
When v ∈ ker δ̂1, then equality (3.7) is true if and only if g v ∈ ker δ̂1. Now, since

δ̂1
(g x1

)
χς(g)w g = λ1g P1 w g1χς(g)w g = λ1g P1χς(g) f (g1, g)w g1 g

and
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χα(g)w g δ̂1(x1) = χα(g)w g P1 w g1 = χα(g) g P1 f (g, g1)w gg1 ,

equality (3.7) is true for v = x1 and g ∈ G if and only if conditions (1)(b) and (1)(c) are satisfied. �
Proof of Theorem 3.6. First note that item (1) coincide with item (1) of Theorem 3.5 and that, by
Lemmas 3.7 and 3.8, item (2) of Theorem 3.5 is equivalent to items (2)–(6). Item (4) of Theorem 3.5
and two of the equalities in item (6) of the same theorem, are trivially satisfied because δ1 = δ2 = 0.
Since

δ̂i
(
α̂(xi)

) = νi δ̂i(xi) = νPi w gi and α
(
δ̂i(xi)

) = α(Pi w gi ) = α(Pi)χα(gi)w gi ,

item (3) of Theorem 3.5 is true if and only if item (7) and the second equality in item (9) hold.
Since α̂ is k[G]-linear, item (5) of Theorem 3.5 is an immediate consequence of item (2) of The-
orem 3.6. Finally we consider the non-trivial equalities in item (6) of Theorem 3.5. It is easy to
see that δ̂i(ς̂ (xi)) = qς(δ̂i(xi)) if and only if the first equality in item (9) holds. On the other hand
δ̂i(ς̂ (v)) = qς(δ̂i(v)) for all v ∈ ker δ̂i if and only if ς̂ (ker δ̂i) ⊆ ker δ̂i , which follows from items (2),
(4) and (7). The equality δ2(δ̂1(v)) = δ1(δ̂2(v)) is trivially satisfied for v ∈ ker δ̂1 ∩ ker δ̂2, and for
v ∈ {x1, x2} it is equivalent to item (8). Lastly, the remaining equality coincides with item (10). �
Remark 3.9. The following facts hold:

– Since α̂ and ς̂ are bijective k[G]-linear maps, from item (2) of Theorem 3.6 it follows that

g−1
1 v = g2 v for all v ∈ ker δ̂1 ∩ ker δ̂2. (3.8)

– Since x1 ∈ ker δ̂2 and ker δ̂2 is G-stable, g x1 −λ1g x1 ∈ ker δ̂1 ∩ker δ̂2. Similarly g x2 −λ1g x2 ∈ ker δ̂1 ∩
ker δ̂2.

– Since ker δ̂i is a G-submodule of V and the k-linear map

V V
v g v

is an isomorphism for each g ∈ G , it is impossible that g xi ∈ ker δ̂i . Consequently, λig ∈ k× for
each g ∈ G . Moreover, using again that ker δ̂i is a G-submodule of V , it is easy to see that the
map g �→ λig is a group homomorphism. Items (1), (2), (4), (7) and the fact that α̂ is bijective
imply that also ω1,ω2, ν1, ν2 ∈ k× .

– Since

ς̂ (x1) = α̂
(g2 x1

) ≡ λ1g2 α̂(x1) ≡ λ1g2ν1x1 (mod ker δ̂1),

we have ω1 = λ1g2ν1. A similar argument shows that ν2 = λ2g1ω2.

Corollary 3.10. Assume that the conditions above Theorem 3.6 are fulfilled and that there exists an Hq-module
algebra structure on (A, s) satisfying

σ · v = ς̂ (v), σ · w g = χς (g)w g, Di · v = δ̂i(v) and Di · w g = 0

for all v ∈ V , g ∈ G and i ∈ {1,2}. If P1 ∈ S(ker δ̂1) and P2 ∈ S(ker δ̂2), then

λ1g1λ1g2 = q and λ2g1λ2g2 = q−1.

Moreover g0 := g1 g2 has determinant 1 as an operator on V .
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Proof. By items (9), (2) and (5) of Theorem 3.6,

q−1ω1χ
−1
ς (g1)P1 = ς(P1) = g−1

1 α̂(P1) = ν1χ
−1
α (g1)

g−1
1 P1 = ν1λ

−1
1g1

χ−1
ς (g1)P1.

Hence λ1g1λ1g2 = q as we want, since ω1 = ν1λ1g2 . The proof that λ2g1λ2g2 = q−1 is similar. It remains
to check that det(g0) = 1. Since ker δ̂1 and ker δ̂2 are G-invariant, we have

g x1 ∈ ker δ̂2 and g x2 ∈ ker δ̂1 for all g ∈ G,

and so

g0 x1 ∈ λ1g1λ1g2 x1 + W and g0 x2 ∈ λ2g1λ2g2 x1 + W ,

where W = ker δ̂1 ∩ ker δ̂2. Moreover, by Remark 3.9 we know that g0 acts as the identity map on W
and hence det(g0) = λ1g1λ1g2λ2g1λ2g2 = 1. �
Remark 3.11. A particular case is the Hq-module algebra A considered in [W, Section 4], in which
P1 = 1, g1 = 1 and α̂ is the identity map. Our P2, g2 and f correspond in [W] to s, g and α, re-
spectively. Our computations show that the condition that h(s) = x1(h)x2(h)α(g,h)α−1(h, g)s, which
appears as informed by the cohomology of finite groups in [W], is in fact necessary for the existence
of the Hq-module algebra structure of A, and it does not depend on cohomological considerations.
In particular we need this condition for any group G , finite or not. Similarly the conditions that g is
central and det(g) = 1 are necessary even for infinite groups.

Let G , V , f : G × G → k× and A be as at the beginning of this section. Let α̂ : V → V be a bijective
k[G]-linear map, χα : G → k× a group homomorphism, α : A → A the algebra automorphism induced
by α̂ and χα , and s the good transposition associated with α. Let

a) V 1 	= V 2 subspaces of codimension 1 of V such that V 1 and V 2 are α̂-stable G-submodules of V ,

b) g1 and g2 central elements of G such that g−1
1 v = g2 v for all v ∈ V 1 ∩ V 2,

c) χς : G → k× a group homomorphism and ς̂ : V → V the map defined by

ς̂ (v) :=
{

α̂(g−1
1 v) if v ∈ V 1,

α̂(g2 v) if v ∈ V 2,

d) x1 ∈ V 2 \ V 1, x2 ∈ V 1 \ V 2, P1 ∈ S(V 1), P2 ∈ S(V 2) and δ̂1, δ̂2 : V → A the maps defined by

ker δ̂i := V i and δ̂i(xi) := Pi w gi .

For g ∈ G and i ∈ {1,2}, let λig, νi,ωi ∈ k× be the elements defined by the conditions g xi −
λig xi ∈ V i , α̂(xi) − νi xi ∈ V i and ς̂ (xi) − ωi xi ∈ V i .

The following result is a sort of a reformulation of Theorem 3.6, more appropriate to construct
explicit examples. The only new hypothesis that we need is that Pi ∈ S(V i).

Corollary 3.12. There is an Hq-module algebra structure on (A, s), satisfying

σ · v = ς̂ (v), σ · w g = χς(g)w g, Di · v = δ̂i(v) and Di · w g = 0

for all v ∈ V , g ∈ G and i ∈ {1,2}, if and only if

(1) q = λ1g1λ1g2 and q−1 = λ2g1λ2g2 ,
(2) g P1 = λ1gχ

−1
α (g)χς (g) f −1(g, g1) f (g1, g)P1 ,
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(3) g P2 = λ2gχα(g)χ−1
ς (g) f −1(g, g2) f (g2, g)P2 ,

(4) α(Pi) = νiχ
−1
α (gi)Pi ,

(5) P1 ∈ ker δ2 and P2 ∈ ker δ1 , where δ1, δ2 : A → A are the maps defined in item (8) of Theorem 3.6,
(6) if q 	= 1 and ql = 1, then δl

1 = δl
2 = 0.

Proof. ⇐) By a), b), c) and d), it is obvious that items (1), (2), (3), (4) and (7) of Theorem 3.6 are
satisfied. Moreover items (2), (3), (5) and (6) are items (5), (6), (8) and (10) of Theorem 3.6. So, we
only must to check that item (9) of Theorem 3.6 is satisfied. But the second equality in this item is
exactly the one required in item (4) of the present corollary, and we are going to check that the first
one is true with q = λ1g1λ1g2 . Arguing as in Remark 3.9, and using item (2) with g = g1, items (1)
and (4), we obtain

q−1ω1χ
−1
ς (g1)P1 = q−1λ1g2ν1χ

−1
ς (g1)P1

= q−1λ1g1λ1g2ν1χ
−1
α (g1)

g−1
1 P1

= ν1χ
−1
α (g1)

g−1
1 P1

= g−1
1 α(P1)

= ς(P1),

where the last equality is true since P1 ∈ S(V 1). Again arguing as in Remark 3.9, and using item (3)
with g = g2, items (1) and (4), we obtain

q−1ω2χ
−1
ς (g2)P2 = q−1λ−1

2g1
ν2χ

−1
ς (g2)P2

= q−1λ−1
2g1

λ−1
2g2

ν2χ
−1
α (g2)

g2 P2

= ν2χ
−1
α (g2)

g2 P2

= g2α(P2)

= ς(P2),

where the last equality is true since P2 ∈ S(V 2).
⇒) Items (2), (3), (5) and (6) are items (5), (6), (8) and (1) of Theorem 3.6, and item (4) is the

first equality in item (9) of that theorem. Finally item (1) follows from Corollary 3.10. �
The following result shows that if x1 and x2 are eigenvectors of the maps v �→ g1 v and v �→ g2 v ,

then item (5) in the statement of Corollary 3.12 can be easily tested and item (6) can be removed
from the hypothesis.

Proposition 3.13. Assume that conditions a), b), c) and d) above Corollary 3.12 are fulfilled. Let δ1 and δ2 be
the maps introduced in item (8) of Theorem 3.6. If

λ1g1λ1g2 = q, λ2g1λ2g2 = q−1 and gi x j = λ jgi x j for 1 � i, j � 2,

then:

(1) δl
1 = δl

2 = 0, whenever q 	= 1 and ql = 1.
(2) If q = 1 or it is not a root of unity, then P1 ∈ ker δ2 and P2 ∈ ker δ1 if and only if P1, P2 ∈ S(V 1 ∩ V 2).
(3) If q 	= 1 is a primitive l-root of unity, then P1 ∈ ker δ2 and P2 ∈ ker δ1 if and only if P1 ∈ S(kxl

2 ⊕ (V 1 ∩
V 2)) and P2 ∈ S(kxl

1 ⊕ (V 1 ∩ V 2)).
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Proof. The proposition is a direct consequence of the following formulas:

δs
1

(
xr1

1 · · · xrn
n w g

) =
{

cαs(xr1−s
1 xr2

2 · · · xrn
n )w gs

1 g for s � r1,

0 otherwise,

and

δs
2

(
xr1

1 · · · xrn
n w g

) =
{

dxr2−s
2

gs
2(xr1

1 xr3
3 · · · xrn

n )w gs
2 g for s � r2,

0 otherwise,

where αs denotes the s-fold composition of α,

c = χ s
ς (g)χ

s(s−1)/2
ς (g1)χ

s(s−1)/2
α (g1)

(
s−1∏
k=0

(r1 − k)q

)(
s−1∏
k=0

f
(

g1, gk
1 g

))
αs−1(P s

1

)
,

d = λ
sr2−s(s+1)/2
2g2

(
s−1∏
k=0

(r2 − k)q

)(
s−1∏
k=0

f
(

g2, gk
2 g

))(
s−1∏
k=0

gk
2 P2

)
.

We will prove the formula for δs
1 and we will leave the other one to the reader. We begin with the

case s = 1. Since x2, . . . , xn ∈ ker δ̂1 and δ̂1(x1) = P1 w g1 , from the definition of δ1 it follows that

δ1
(
xr1

1 · · · xrn
n w g

) =
r1−1∑
j=0

α
(
x j

1

)
P1 w g1ς

(
xr1− j−1

1 xr2
2 · · · xrn

n w g
)
.

Thus, using the definition of ς , item c) above Corollary 3.12, the fact that α is G-linear and the
hypothesis, we obtain

δ1
(
xr1

1 · · · xrn
n w g

) =
r1−1∑
j=0

α
(
x j

1

)
P1 w g1α

(g2 xr1− j−1
1

)g−1
1 α

(
xr2

2 · · · xrn
n

)
χς(g)w g

=
r1−1∑
j=0

α
(
x j

1

)
P1α

(g1 g2 xr1− j−1
1

)
α

(
xr2

2 · · · xrn
n

)
χς (g) f (g1, g)w g1 g

= χς (g)(r1)q f (g1, g)P1α
(
xr1−1

1 xr2
2 · · · xrn

n
)

w g1 g .

Assume that s � r1 and that the formula for δs
1 holds. Since c depends on s, r1 and g , it will be con-

venient for us to use the more precise notation cs,r1(g) for c. From items (3) and (5) of Theorem 3.5
and item (9) of Theorem 2.4. It follows easily that α◦δ1 = δ1◦α on S(V ). Using this fact, item (9) of
Theorem 2.4 and the inductive hypothesis, we obtain

δs+1
1

(
xr1

1 · · · xrn
n w g

) = α
(
csr1(g)

)
αs(δ1

(
xr1−s

1 xr2
2 · · · xrn

n
))

ς(w gs
1 g).

If s = r1, then δ1(xr1−s
1 xr2

2 · · · xrn
n ) = 0. Otherwise,

δs+1
1

(
xr1

1 · · · xrn
n w g

) = cαs(α(
xr1−s−1

1 xr2
2 · · · xrn

n
)

w g1

)
ς(w gs

1 g)

= cαs+1(xr1−s−1
1 xr2

2 · · · xrn
n

)
χ s

α(g1)χ
s
ς (g1)χς (g) f

(
g1, gs

1 g
)

w gs+1
1 g,

where c = α(cs,r1(g))αs(c1,r1−s(1)). The formula for δs+1
1 follows immediately from this fact. �
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Example 3.14. Let G = 〈g〉 be an order r cyclic group, ξ an element of k× and fξ : G ⊗ G → k the
cocycle defined by

fξ
(

gu, gv) :=
{

1 if u + v < r,
ξ otherwise.

Of course, if r = ∞, then for any ξ this is the trivial cocycle. Let V be a vector space endowed with
an action of G and let A be the crossed product A = S(V )# fξ G . Let {x1, . . . , xn} be a basis of V . Let us
V 1 and V 2 denote the subspaces of V generated by {x2, . . . , xn} and {x1, x3, . . . , xn}, respectively. Let
α̂ : V → V be a bijective k[G]-linear map. Assume that V 1 and V 2 are α̂-stable G-submodules of V
and that there exist λ1, λ2 ∈ k× such that g x1 = λ1x1 and g x2 = λ2x2. Let m1,m2 ∈ Z. Assume that
gm1+m2 v = v for all v ∈ V 1 ∩ V 2 (if r < ∞ we can take 0 � m1,m2 < r). Let ς̂ : V → V be the map
defined by

ς̂ (v) :=
{

α̂(g−m1 v) if v ∈ V 1,

α̂(gm2 v) if v ∈ V 2,

and let χα,χς : G → k× be two morphisms. Consider the automorphism of algebras α : A → A given
by α(v) := α̂(v) for v ∈ V and α(w g) = χα(g)w g , and define δ̂1, δ̂2 : V → A by

δ̂1(x2) = · · · = δ̂1(xn) := 0, δ̂1(x1) := P1 w gm1 ,

δ̂2(x1) = δ̂2(x3) = · · · = δ̂1(xn) := 0, δ̂2(x2) := P2 w gm2 ,

where P1 ∈ S(V 1) \ {0} and P2 ∈ S(V 2) \ {0}. Let s be the transposition of Hq with A associated
with α. There is an Hq-module algebra structure over (A, s) satisfying

σ · v = ς̂ (v), σ · w g = χς (g)w g, Di · v = δ̂i(v) and Di · w g = 0 for all v ∈ V ,

if and only if

(1) q = λ
m1+m2
1 and q−1 = λ

m1+m2
2 ,

(2) g P1 = λ1χ
−1
α (g)χς (g)P1 and g P2 = λ2χα(g)χ−1

ς (g)P2,

(3) α(P1) = ν1χ
−m1
α (g)P1 and α(P2) = ν2χ

−m2
α (g)P2,

(4) if q = 1 or q is not a root of unity, then P1, P2 ∈ k[x3, . . . , xn],
(5) if q 	= 1 is a primitive l-root of unity, then

P1 ∈ k
[
xl

2, x3, . . . , xn
]

and P2 ∈ k
[
xl

1, x3, . . . , xn
]
.

Consequently, in order to obtain explicit examples of braided Hq-module algebra structures on an
algebra A of the shape S(V )# fξ G , where V is a k-vector space with basis {x1, . . . , xn} and G = 〈g〉 is
a cyclic group of order r � ∞, we proceed as follows:

First: We define an action of G on V . For this we choose
– a k-linear automorphism γ of V 12 := 〈x3, . . . , xn〉, whose order divides r if r < ∞,
– λ1, λ2 ∈ k× such that λr

1 = λr
2 = 1 if r < ∞,

and we set

g xi :=
⎧⎨⎩

λ1x1 if i = 1,

λ2x2 if i = 2,

γ (xi) if i � 3.
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Second: We construct the algebra A. For this we choose ξ ∈ k× and we define A = S(V )# fξ G , where
fξ is the cocycle associate with ξ .

Third: We endow A with a k-algebra automorphism α. For this we take ν1, ν2, η ∈ k× such that
ηr = 1 if r < ∞, a k-linear automorphism α′ of V 12 and v1, v2 ∈ V 12, and we define

α(w g) := ηw g and α(xi) :=
⎧⎨⎩

ν1x1 + v1 if i = 1,

ν2x2 + v2 if i = 2,

α′(xi) if i � 3.

Fourth: We choose m1,m2 ∈ Z and ζ ∈ k× such that

γ m1+m2 = id, (λ1λ2)
m1+m2 = 1 and ζ r = 1 if r < ∞,

and we define

ς(w g) := ζ w g and ς(xi) :=

⎧⎪⎨⎪⎩
λ

m2
1 (ν1x1 + v1) if i = 1,

λ
−m1
2 (ν2x2 + v2) if i = 2,

α′(γ m2(xi)) if i � 3.

Fifth: We set q := λ
m1+m2
1 and we choose P1, P2 ∈ S(V ) \ {0} such that

– if q is not a root of unity, then P1, P2 ∈ k[x3, . . . , xn],
– if q is a primitive l-root of unity, then

P1 ∈ k
[
xl

2, x3, . . . , xn
]

and P2 ∈ k
[
xl

1, x3, . . . , xn
]
,

– g P1 = λ1η
−1ζ P1 and g P2 = λ2ηζ−1 P2,

– α(P1) = ν1η
−m1 P1 and α(P2) = ν2η

−m2 P2.

Now, by the discussion at the beginning of this example, there is an Hq-module algebra structure on
(A, s), where s : Hq ⊗ A → A ⊗ Hq is the good transposition associated with α, such that

σ · x j = ς(x j), σ · w g = ζ w g, Di · w g = 0 and Di(x j) =
{

0 if i 	= j,
Pi w gmi if i = j,

where i ∈ {1,2} and j ∈ {1, . . . ,n}.

Remark 3.15. If P1(0) 	= 0 and P2(0) 	= 0, then the conditions in the first step are fulfilled if and only
if λ1λ2 = 1, η = λ1ζ , ν1 = ηm1 , ν2 = ηm2 , P1 and P2 are G-invariants, α(P1) = P1 and α(P2) = P2.

3.2. Second case

Let α̂, χα , α and s be as in the discussion following Proposition 3.1, let χς : G → k× be a map and
let δ̂1 : V → A, δ̂2 : V → A and ς̂ : V → V be k-linear maps such that ker δ̂1 	= ker δ̂2 are subspaces of
codimension 1 of V . Here we are going to consider a more general situation that the one studied in
the previous subsection. Assume that for each i ∈ {1,2} there exist

– an element xi ∈ V \ ker(δ̂i),
– different elements gi1, . . . , gini of G ,

– polynomials P (i)
gi1 , . . . , P (i)

gin
∈ S(V ) \ {0},
i
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such that

δ̂i(xi) =
ni∑

j=1

P (i)
gi j

w gij .

(The reason for the notation P (i)
gij

instead of the more simple Pij will became clear in items (5) and (6)

of the following theorem.) Without loss of generality we can assume that x1 ∈ ker δ̂2 and x2 ∈ ker δ̂1
(and we do it). For g ∈ G and i ∈ {1,2}, let λig,ωi, νi ∈ k be the elements defined by the following
conditions:

g xi − λig xi ∈ ker δ̂i, ς̂ (xi) − ωi xi ∈ ker δ̂i and α̂(xi) − νi xi ∈ ker δ̂i .

Lemma 3.16. The following facts hold:

(1) Condition (3.4) of Lemma 3.3 is satisfied if and only if g1 j ς̂ (v) = α̂(v) for all j � n1 and v ∈ ker δ̂1 .
(2) Condition (3.5) of Lemma 3.3 is satisfied if and only if g2 j v = ς̂ (α̂−1(v)) for all j � n2 and v ∈ ker δ̂2 .

Proof. Mimic the proof of Lemma 3.7. �
Lemma 3.17. The following facts hold:

(1) Items (1)(a) and (1)(b) of Lemma 3.4 are satisfied if and only if
(a) ker δ̂1 is a G-submodule of V ,
(b) {g1 j: 1 � j � n1} is a union of conjugacy classes of G,

(c) g P (1)
g1 j

= λ1gχ
−1
α (g)χς (g) f −1(g, g1 j) f (gg1 j g−1, g)P (1)

gg1 j g−1 for j � n1 .

(2) Items (2)(a) and (2)(b) of Lemma 3.4 are satisfied if and only if
(a) ker δ̂2 is a G-submodule of V ,
(b) {g2 j: 1 � j � n2} is a union of conjugacy classes of G,

(c) g P (2)
g2 j

= λ2gχα(g)χ−1
ς (g) f −1(g, g2 j) f (gg2 j g−1, g)P (2)

gg2 j g−1 for j � n2 .

Proof. Mimic the proof of Lemma 3.8. �
Theorem 3.18. There is an Hq-module algebra structure on (A, s), satisfying

σ · v = ς̂ (v), σ · w g = χς (g)w g, Di · v = δ̂i(v) and Di · w g = 0

for all v ∈ V , g ∈ G and i ∈ {1,2}, if and only if

(1) ς̂ is a bijective k[G]-linear map and χς is a group homomorphism,

(2) ς̂ (v) = g−1
1 j α̂(v) for j � n1 and all v ∈ ker δ̂1 , and ς̂ (v) = g2 j α̂(v) for j � n2 and all v ∈ ker δ̂2 ,

(3) {gij: 1 � j � ni} is a union of conjugacy classes of G for i ∈ {1,2},

(4) ker δ̂1 and ker δ̂2 are G-submodules of V ,
(5) g P (1)

g1 j
= λ1gχ

−1
α (g)χς (g) f −1(g, g1 j) f (gg1 j g−1, g)P (1)

gg1 j g−1 for j � n1 ,

(6) g P (2)
g2 j

= λ2gχα(g)χ−1
ς (g) f −1(g, g2 j) f (gg2 j g−1, g)P (2)

gg2 j g−1 for j � n2 ,

(7) α̂(ker δ̂i) = ker δ̂i for i ∈ {1,2},
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(8)
∑n1

j=1 P (1)
g1 j

w g1 j ∈ ker δ2 and
∑n2

j=1 P (2)
g2 j

w g2 j ∈ ker δ1 , where δ1 and δ2 are the maps defined by

δ1(v1m w g) :=
m∑

j=1

α(v1, j−1)δ̂1(v j)ς(v j+1,m w g),

δ2(v1m w g) :=
m∑

j=1

ς
(
α−1(v1, j−1)

)
δ̂2(v j)v j+1,m w g,

in which vhl = vh · · · vl ,
(9) ς(P (i)

gij
) = q−1ωiχ

−1
ς (gij)P (i)

gij
and α(P (i)

gij
) = νiχ

−1
α (gij)P (i)

gij
for i ∈ {1,2} and j � ni , where ς is the

map given by

ς(v1m w g) := ς̂ (v1) · · · ς̂ (vm)χς (g)w g,

(10) if q 	= 1 and ql = 1, then δl
1 = δl

2 = 0.

Proof. Mimic the proof of Theorem 3.6, but using Lemmas 3.16 and 3.17 instead of Lemmas 3.7
and 3.8, respectively. �
Remark 3.19. Since α and ς are bijective k[G]-linear maps, from item (2) it follows that

g1 j v = g1h v for 1 � j,h � n1 and all v ∈ ker δ̂1, (3.9)

g2 j v = g2h v for 1 � j,h � n2 and all v ∈ ker δ̂2, (3.10)

g−1
1 j v = g2h v for 1 � j � n1, 1 � h � n2 and all v ∈ ker δ̂1 ∩ ker δ̂2. (3.11)

On the other hand, arguing as in Remark 3.9 we can check that

– g xi − λ1g xi ∈ ker δ̂1 ∩ ker δ̂2 for all g ∈ G ,
– λig ∈ k× for all g ∈ G ,
– the maps g �→ λig are morphisms,
– ω1,ω2, ν1, ν2 ∈ k× .

Finally, since

ς̂ (x1) = α̂
(g2 j x1

) ≡ λ1g2 j α̂(x1) (mod ker δ̂1),

we have ω1 = λ1g2 j ν1 for j � n2. Similarly, ν2 = λ2g1 j ω2 for j � n1. Consequently,

λ1g21 = · · · = λ1g2n2
and λ2g11 = · · · = λ2g1n1

,

which also follows from (3.9) and (3.10).

Corollary 3.20. Assume that the conditions at the beginning of the present subsection are fulfilled and that
there exists an Hq-module algebra structure on (A, s), satisfying

σ · v = ς̂ (v), σ · w g = χς(g)w g, Di · v = δ̂i(v) and Di · w g = 0
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for all v ∈ V , g ∈ G and i ∈ {1,2}. If P (1)
g1 j

∈ S(ker δ̂1) and P (2)
g2h

∈ S(ker δ̂2) for all j � n1 and h � n2 , then

λ1g1 j λ1g2h = q and λ2g1 j λ2g2h = q−1.

Moreover g1 j g2h has determinant 1 as an operator on V .

Proof. This result generalizes Corollary 3.10, and its proof is similar. �
Let G , V , f : G × G → k× , A, α̂ : V → V , χα : G → k× , α : A → A and s be as below of Remark 3.11.

Assume we have

a) subspaces V 1 	= V 2 of codimension 1 of V such that V 1 and V 2 are α̂-stable G-submodules of V ,
and vectors x1 ∈ V 2 \ V 1 and x2 ∈ V 1 \ V 2,

b) different elements gi1, . . . , gini of G , where i ∈ {1,2}, such that:
• {g11, . . . , g1n1} and {g21, . . . , g2n2 } are unions of conjugacy classes of G ,
• g1 j v = g1h v for 1 � j,h � n1 and all v ∈ V 1,
• g2 j v = g2h v for 1 � j,h � n2 and all v ∈ V 2,

• g−1
1 j v = g2h v for 1 � j � n1, 1 � h � n2 and all v ∈ V 1 ∩ V 2,

c) a morphism χς : G → k× ,

d) non-zero polynomials P (1)
g1 j

∈ S(V 1) and P (2)
g2h

∈ S(V 2), where 1 � j � n1 and 1 � h � n2.

Let ς̂ : V → V and δ̂1, δ̂2 : V → A be the maps defined by

ς̂ (v) :=
{

α̂(g−1
11 v) if v ∈ V 1,

α̂(g21 v) if v ∈ V 2,
ker δ̂i := V i and δ̂i(xi) :=

ni∑
j=1

P (i)
gi j

w gij .

For g ∈ G and i ∈ {1,2}, let λig, νi ∈ k× be the elements defined by the following conditions: g xi −
λig xi ∈ V i and α(xi) − νi xi ∈ V i . Note that, by item b),

λ2g11 = · · · = λ2g1n1
and λ1g21 = · · · = λ1g2n2

.

Corollary 3.21. There is an Hq-module algebra structure on (A, s), satisfying

σ · v = ς̂ (v), σ · w g = χς(g)w g, Dh · v = δ̂h(v) and Dh · w g = 0,

for all v ∈ V , g ∈ G and i ∈ {1,2}, if and only if for all j � n1 and h � n2 the following facts hold:

(1) q = λ1g1 j λ1g21 and q−1 = λ2g11λ2g2h ,

(2) g P (1)
g1 j

= λ1gχ
−1
α (g)χς (g) f −1(g, g1 j) f (gg1 j g−1, g)P (1)

gg1 j g−1 ,

(3) g P (2)
g2h

= λ2gχα(g)χ−1
ς (g) f −1(g, g2h) f (gg2h g−1, g)P (2)

gg2h g−1 ,

(4) α(P (1)
g1 j

) = ν1χ
−1
α (g1 j)P (1)

g1 j
and α(P (2)

g2h
) = ν2χ

−1
α (g2h)P (2)

g2h
,

(5)
∑n1

j=1 P (1)
g1 j

w g1 j ∈ ker δ2 and
∑n2

h=1 P (2)
g2h

w g2h ∈ ker δ1 , where δ1, δ2 : A → A are the maps defined in
item (8) of Theorem 3.18,

(6) if q 	= 1 and ql = 1, then δl
1 = δl

2 = 0.

Proof. It is similar to the proof of Corollary 3.12, using Theorem 3.18 instead of Theorem 3.6. The
proof that ς is G-linear requires additionally the fact that ggij g−1

v = gij v for 1 � i � 2 and 1 � j � ni ,
which is true by b). �
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Remark 3.22. Assume that the hypotheses of Corollary 3.21 are fulfilled. Then, as it was note above
this corollary,

λ2g11 = · · · = λ2g1n1
and λ1g21 = · · · = λ1g2n2

.

Moreover, by item (1) it is clear that

λ1g11 = · · · = λ1g1n1
and λ2g21 = · · · = λ2g2n2

.

Proposition 3.23. Let G, V , f , A, α, V 1 , V 2 , g11, . . . , g1n1 , g21, . . . , g2n2 , ς̂ , χς , δ̂1 , δ̂2 , x1 , x2 , ν1 , ν2 , λ1g

and λ2g , where g ∈ G, be as in the discussion above Corollary 3.21. Assume that

λ2g11 = · · · = λ2g1n1
, λ1g21 = · · · = λ1g2n2

,

λ1g11 = · · · = λ1g1n1
, λ2g21 = · · · = λ2g2n2

,

and that conditions a), b), c) and d) above that corollary are fulfilled. If

λ1g11λ1g21 = q, λ2g11λ2g21 = q−1 and gih x j = λ jgih x j,

for 1 � i, j � 2 and 1 � h � ni , then:

(1) δl
1 = δl

2 = 0, whenever q 	= 1 and ql = 1.

(2) If q = 1 or q is not a root of unity, then P (1)
g1 j

∈ ker δ2 and P (2)
g2h

∈ ker δ1 if and only if P (1)
g1 j

, P (2)
g2h

∈
S(V 1 ∩ V 2).

(3) If q 	= 1 is a primitive l-root of unity, then P (1)
g1 j

∈ ker δ2 and P (2)
g2h

∈ ker δ1 if and only if P (1)
g1 j

∈ S(kxl
2 ⊕

(V 1 ∩ V 2)) and P (2)
g2h

∈ S(kxl
1 ⊕ (V 1 ∩ V 2)).

Proof. Let xr = xr1
1 · · · xrn

n . Using the hypothesis it is easy to check by induction on s that

δs
1

(
xr w g

) =
{∑

h∈I
s
n1

chc′
hα

s(xr1−s
1 xr2

2 · · · xrn
n )w g1hs g1hs−1 ···g1h1 g for s � r1,

0 otherwise,

and

δs
2

(
xr w g

) =
{∑

h∈I
s
n2

dhd′
hxr2−s

2
gs

21(xr1
1 xr3

3 · · · xrn
n )w g2hs g2hs−1 ···g2h1 g for s � r2,

0 otherwise,

where

I
s
ni

= Ini × · · · × Ini︸ ︷︷ ︸
s times

, with Ini = {1, . . . ,ni},

αs denotes the s-fold composition of α,

ch = χ s
ς (g)

s−1∏
k=1

χ s−k
ς (g1hk )

s∏
k=2

χk−1
α (g1hk ),

c′
h =

(
s−1∏

(r1 − k)q

)(
s∏

f (g1hk , g1hk−1 · · · g1h1 g)

)(
s∏

αs−1(P (1)
g1hk

))
,

k=0 k=1 k=1
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dh = λ
sr2−s(s+1)/2
2g21

,

d′
h =

(
s−1∏
k=0

(r2 − k)q

)(
s∏

k=1

f (g2hk , g2hk−1 · · · g2h1 g)

)(
s−1∏
k=0

gk
21 P (2)

g2hs−k

)
.

The result follows easily from these formulas. �
Example 3.24. Let Du be the Dihedral group Du := 〈s, t | s2, tu, stst〉. Then Du acts on k[X1, X2] via

s X1 = −X1,
s X2 = −X2,

t X1 = X1 and t X2 = X2.

Let A = k[X1, X2]#Du . We have:

– Assume u is even. Then, there is an H1-module algebra structure on A, such that

σ · X1 = X1, σ · X2 = X2, σ · wti = wti , σ · wti s =−wti s,

D1 · X1 = wt + wt−1 , D1 · X2 =0, D1 · wti =0, D1 · wti s =0,

D2 · X1 =0, D2 · X2 = wtu/2 , D2 · wti =0, D2 · wti s =0.

– There is an H−1-module algebra structure on A, such that

σ · X1 = X1, σ · X2 =−X2, σ · wti = wti , σ · wti s =−wti s,

D1 · X1 =
u−1∑
i=0

wti s, D1 · X2 =0, D1 · wti =0, D1 · wti s =0,

D2 · X1 =0, D2 · X2 = wt + wt−1 , D2 · wti =0, D2 · wti s =0.

– Assume u is even. Let α : A → A be the k-algebra map defined by

α(Q wti ) := Q wti and α(Q wti s) := −Q wti s,

and let s : H1 ⊗ A → A ⊗ H1 be the transposition associated with α. There is an H1-module
algebra structure on A, such that

σ · X1 = X1, σ · X2 = X2, σ · wti = wti , σ · wti s = wti s,

D1 · X1 = wt + wt−1 , D1 · X2 =0, D1 · wti =0, D1 · wti s =0,

D2 · X1 =0, D2 · X2 = wtu/2 , D2 · wti =0, D2 · wti s =0.

4. Non-triviality of the deformations

Let A = S(V )# f G be as in Section 3. By Theorem 1.16 we know that each Hq-module algebra
(A, s), with s a good transposition, produces to a formal deformation A F of A, which is constructed
using the UDF F = expq(t D1 ⊗ D2). The aim of this section is to prove that if (A, s) satisfies the

conditions required in Corollary 3.21 and P (1)
g1 j

, P (2)
g2h

∈ S(V 1 ∩ V 2) for 1 � j � n1 and 1 � h � n2, then
A F is non-trivial. We will prove this showing that its infinitesimal

Φ(a ⊗ b) = δ1
(
α−1(a)

)
δ2(b),

is not a coboundary. For this we use a complex X∗(A), giving the Hochschild cohomology of A, which
is simpler than the canonical one.
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4.1. A simple resolution

Given a symmetric k-algebra S := S(V ), we consider the differential graded algebra (Y∗, ∂∗) gen-
erated by elements yv and zv , of zero degree, and v , of degree one, where v ∈ V , subject to the
relations

zλv+w =λzv + zw , yλv+w =λyv + yw , v + w =λv + w,

yv yw = yw yv , yv zw = zw yv , zv zw = zw zv ,

v yw = yw v, vzw = zw v, v2 =0,

where λ ∈ k and v, w ∈ V , and with differential ∂ defined by ∂(v) := ρv , where ρv = zv − yv .
Note that S is a subalgebra of Y∗ via the embedding that takes v to yv for all v ∈ V . This produces

a structure of left S-module on Y∗ . Similarly we consider Y∗ as a right S-module via the embedding
of S in Y∗ that takes v to zv for all v ∈ V .

Proposition 4.1. Let μ̃ : Y0 → S be the algebra map defined by μ̃(yv) = μ̃(zv) := v for all v ∈ V . The
S-bimodule complex

S Y0
μ̃

Y1
∂1

Y2
∂2

Y3
∂3

Y4
∂4

Y5
∂5 · · ·∂6

(4.12)

is contractible as a left S-module complex.

Proof. Let {x1, . . . , xn} be a basis of V . We will write yi , zi , ρi and vi instead of yxi , zxi , ρxi and vxi ,
respectively. A contracting homotopy

ς0 : S → Y0 and ςr+1 : Yr → Yr+1 (r � 0),

of (4.12) is given by

ς(1) := 1,

ς
(
ρ

m1
i1

vδ1
i1

· · ·ρml
il

vδl
il

) :=
{

(−1)sρ
m1
i1

vδ1
i1

· · ·ρml−1
il−1

v
δl−1
il−1

ρ
ml−1
il

vil if δl = 0,

0 if δl = 1,

where we assume that i1 < · · · < il , δ1 + · · · + δl = s and ml + δl > 0. In fact, a direct computation
shows that:

– μ̃◦σ−1(1) = μ̃(1) = 1.
– ς◦μ̃(1) = ς(1) = 1 and ∂◦ς(1) = ∂(0) = 0.
– If x = x′ρml

il
, where ml > 0 and x′ = ρ

m1
i1

· · ·ρml−1
il−1

with i1 < · · · < il , then

ς◦μ̃(x) = ς(0) = 0 and ∂◦ς(x) = ∂
(
x′ρml−1

il
vil

) = x.

– Let x = x′ρml
il

vδl
il

, where ml + δl > 0 and x′ = ρ
m1
i1

vδ1
i1

· · ·ρml−1
il−1

v
δl−1
il−1

with i1 < · · · < il and δ1 + · · · +
δl = s > 0. If δl = 0, then

ς◦∂(x) = ς
(
∂
(
x′)ρml

il

) = (−1)s−1∂
(
x′)ρml−1

il
vil ,

∂◦ς(x) = ∂
(
(−1)sx′ρml−1

i vil

) = (−1)s∂
(
x′)ρml−1

i vil + x,

l l
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and if δl = 1, then

ς◦∂(x) = ς
(
∂
(
x′)ρml

il
vil + (−1)s−1x′ρml+1

il

) = x,

∂◦ς(x) = ∂(0) = 0.

The result follows immediately from all these facts. �
Let G be a group acting on V . We consider S as a k[G]-module algebra via the action induced

by the one of G on V . Let f : k[G] × k[G] → k× be a normal cocycle and let A = S# f k[G] be the
associated crossed product. In the sequel we will use the following

Notation 4.2. We let k[G] denote k[G]/k. Moreover:

– Given g1, . . . , gs ∈ k[G] and 1 � i < j � s, we set gi j := gi ⊗ · · · ⊗ g j .
– Given v1, . . . , vr ∈ V and 1 � i < j � r, we set vi j := vi · · · v j .

For all r, s � 0, let

Zs = (
A ⊗ k[G]⊗s) ⊗S A and Xrs = (

A ⊗ k[G]⊗s) ⊗S Yr ⊗S A,

where we consider A ⊗ k[G]⊗s as a right S-module via

(a0 w g0 ⊗ g1s) · a = a0
g0···gs aw g0 ⊗ g1s.

The Xrs ’s and the Zs ’s are A-bimodules in a canonical way. Note that

Zs � A ⊗ k[G]⊗s ⊗ k[G] and Xrs � A ⊗ k[G]⊗s ⊗ Λr V ⊗ A.

In particular, Xrs is a free A-bimodule. Consider the diagram of A-bimodules and A-bimodule maps

...

−δ2

Z2

−δ2

X02
μ2

X12

d0
12 · · ·d0

22

Z1

−δ1

X01
μ1

X11

d0
11 · · ·d0

21

Z0 X00
μ0

X10

d0
10 · · · ,d0

20

where

– each δs is defined by

δ(1 ⊗ g1s ⊗S 1) := w g1 ⊗ g2s ⊗S 1 +
s−1∑
i+1

(−1)i f (gi, gi+1) ⊗ g1,i−1 ⊗ gi gi+1 ⊗ gi+2,s ⊗S 1

+ (−1)s1 ⊗ g1,s−1 ⊗S w gs ,
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– for each s � 0, the complex (X∗s,d∗s) is (−1)s times (Y∗, ∂∗), tensored over S , on the right with A
and on the left with A ⊗ k[G]⊗s ,

– for each s � 0, the map μs is defined by

μ(1 ⊗ g1s ⊗ 1) := 1 ⊗ g1s ⊗S 1.

Each row in this diagram is contractible as a left A-module. A contracting homotopy

ς0
0s : Zs → X0s and ς0

r+1,s : Xrs → Xr+1,s (r � 0),

is given by

ς0(1 ⊗ g1s ⊗S 1) := 1 ⊗ g1s ⊗ 1,

ς0(1 ⊗ g1s ⊗S P ⊗S 1) := (−1)s1 ⊗ g1s ⊗S ς(P) ⊗S 1.

For r � 0 and 1 � l � s, we define A-bimodule maps dl
rs : Xrs → Xr+l−1,s−l , recursively on l and r,

by

dl(x) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ς0◦δ◦μ(x) if l = 1 and r = 0,

−ς0◦d1◦d0(x) if l = 1 and r > 0,

−∑l−1
j=1 ς0◦dl− j◦d j(x) if 1 < l and r = 0,

−∑l−1
j=0 ς0◦dl− j◦d j(x) if 1 < l and r > 0,

for x = 1 ⊗ g1s ⊗ v1r ⊗ 1.

Theorem 4.3. There is a resolution of A as an A-bimodule

A X0
−μ

X1
d1

X2
d2

X3
d3

X4
d4 · · · ,d5

where μ : X00 → A is the multiplication map,

Xn =
⊕

r+s=n

Xrs and dn =
n∑

l=1

dl
0n +

n∑
r=1

n−r∑
l=0

dl
r,n−r .

Proof. See [G-G2, Appendix A]. �
Proposition 4.4. The maps dl vanish for all l � 2. Moreover

d1(1 ⊗ g1s ⊗ v1r ⊗ 1) = w g1 ⊗ g2s ⊗ v1r ⊗ 1

+
s−1∑
i=1

(−1)i f (gi, gi+1) ⊗ g1,i−1 ⊗ gi gi+1 ⊗ gi+2,s ⊗ v1r ⊗ 1

+ (−1)s1 ⊗ g1,s−1 ⊗ gs v1 · · · gs vr ⊗ w gs .



J.A. Guccione et al. / Journal of Algebra 330 (2011) 263–297 293
In particular, (X∗,d∗) is the total complex of the double complex

...

d1
03

...

d1
13

...

d1
23

X02

d1
02

X12

d0
12

d1
12

X22

d0
22

d1
22

· · ·d0
32

X01

d1
01

X11

d0
11

d1
11

X21

d0
21

d1
21

· · ·d0
31

X00 X10

d0
10

X20

d0
20 · · · .d0

30

Proof. The computation of d1
rs can be obtained easily by induction on r, using that

d1(x) = ς0◦δ◦μ(x) for x = 1 ⊗ g1s ⊗ 1,

and

d1(x) = −ς0◦d1◦d0(x) for r � 1 and x = 1 ⊗ g1s ⊗ v1r ⊗ 1.

The assertion for dl
rs , with l � 2, follows by induction on l and r, using the recursive definition

of dl
rs . �

4.2. A comparison map

Let A = A/k. In this subsection we introduce and study a comparison map from (X∗,d∗) to
the canonical normalized Hochschild resolution (A ⊗ A∗ ⊗ A,b′∗). It is well known that there is an
A-bimodule homotopy equivalence

θ∗ : (X∗,d∗) → (
A ⊗ A∗ ⊗ A,b′∗

)
such that θ0 = idA⊗A . It can be recursively defined by θ0 := idA⊗A and

θ(x) := (−1)r+sθ◦d(x) ⊗ 1 for x = 1 ⊗ g1s ⊗ v1r ⊗ 1 with r + s � 1.

Next we give a closed formula for θ∗ . In order to establish this result we need to introduce a new
notation. We recursively define (w g1 ⊗ · · · ⊗ w gs ) ∗ (P1 ⊗ · · · ⊗ Pr) by

– (w g1 ⊗ · · · ⊗ w gs ) ∗ (Q 1 ⊗ · · · ⊗ Q r) := (Q 1 ⊗ · · · ⊗ Q r) if s = 0,
– (w g1 ⊗ · · · ⊗ w gs ) ∗ (Q 1 ⊗ · · · ⊗ Q r) := (w g1 ⊗ · · · ⊗ w gs ) if r = 0,
– if r, s � 1, then (w g1 ⊗ · · · ⊗ w gs ) ∗ (Q 1 ⊗ · · · ⊗ Q r) equals

r∑
i=0

(−1)i(w g1 ⊗ · · · ⊗ w gs−1) ∗ (gs Q 1 ⊗ · · · ⊗ gs Q i
) ⊗ w gs ⊗ Q i+1 ⊗ · · · ⊗ Q r .
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Proposition 4.5. We have

θ(1 ⊗ g1s ⊗ v1r ⊗ 1) = (−1)r
∑
τ∈Sr

sg(τ ) ⊗ (w g1 ⊗ · · · ⊗ w gs ) ∗ vτ (1r) ⊗ 1,

where Sr is the symmetric group in r elements and vτ (1r) = vτ (1) ⊗ · · · ⊗ vτ (r) .

Proof. We proceed by induction on n = r + s. The case n = 0 is obvious. Suppose that r + s = n and
the result is valid for θn−1. By the recursive definition of θ and Theorem 4.3,

θ(1 ⊗ g1s ⊗ v1r ⊗ 1) = (−1)nθ◦d(1 ⊗ g1s ⊗ v1r ⊗ 1) ⊗ 1

= (−1)nθ◦(
d0 + d1)(1 ⊗ g1s ⊗ v1r ⊗ 1) ⊗ 1

=
r∑

i=1

(−1)i+rθ
(g1···gs vi ⊗ g1s ⊗ v1,i−1vi+1,r ⊗ 1

) ⊗ 1

−
r∑

i=1

(−1)i+rθ(1 ⊗ g1s ⊗ v1,i−1vi+1,r ⊗ vi) ⊗ 1

+ (−1)nθ(w g1 ⊗ g2s ⊗ v1r ⊗ 1) ⊗ 1

+
s−1∑
i=1

(−1)n+iθ(1 ⊗ g1,i−1 ⊗ gi gi+1 ⊗ gi+1,s ⊗ v1r ⊗ 1) ⊗ 1

+ (−1)rθ
(
1 ⊗ g1,s−1 ⊗ g1,s−1 ⊗ gs v1 · · · gs vr ⊗ w gs

) ⊗ 1.

The desired result follows now from the inductive hypothesis. �
4.3. The Hochschild cohomology

Let M be an A-bimodule and Ae the enveloping algebra of A. Applying the functor HomAe (−, M)

to (X∗∗,d0∗∗,d1∗∗) and using the identifications

HomAe (Xrs, M) � Homk
(
k[G]⊗s ⊗ Λr V , M

)
we obtain the double complex

...
...

...

X02

d03
1

d12
0

X12

d13
1

d22
0

X22
d32

0

d23
1

· · ·

X01

d02
1

d11
0

X11

d12
1

d21
0

X21
d31

0

d22
1

· · ·

X00

d01
1

d10
0

X10

d11
1

d20
0

X20

d21
1

d30
0 · · · ,
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where

Xrs = Homk
(
k[G]⊗s ⊗ Λr V , M

)
,

d0(ϕ)(g1s ⊗ v1,r+1) =
r+1∑
i=1

(−1)s+i+1ϕ(g1s ⊗ v1,i−1vi+1,r+1)vi

+
r+1∑
i=1

(−1)s+i g1···gs viϕ(g1s ⊗ v1,i−1vi+1,r+1),

d1(ϕ)(g1,s+1 ⊗ v1r) = w g1ϕ(g2,s+1 ⊗ v1r)

+
s∑

i=1

(−1)i f (gi, gi+1)ϕ(g1,i−1 ⊗ gi gi+1 ⊗ gi+1,s+1 ⊗ v1r)

+ (−1)s+1ϕ
(
g1s ⊗ gs+1 v1 · · · gs+1 vr

)
w gs+1 ,

whose total complex X∗(M) gives the Hochschild cohomology H∗(A, M) of A with coefficients in M .
The comparison map θ∗ induces a quasi-isomorphism

θ∗ :
(
Homk

(
A∗, M

)
,b∗) → X∗(M).

It is immediate that

θ(ϕ)(g1s ⊗ v1r) = (−1)r
∑
τ∈Sr

sg(τ )ϕ
(
(w g1 ⊗ · · · ⊗ w gs ) ∗ vτ (1r)

)
,

where Sr is the symmetric group in r elements and vτ (1r) = vτ (1) ⊗ · · · ⊗ vτ (r) .
From now on we take M = A and we write HH∗(A) instead of H∗(A, A).

4.4. Proof of the main result

We are ready to prove that the cocycle Φ is non-trivial. For this it is sufficient to show that θ(Φ)

is not a coboundary. Let x1, . . . , xn , P (1)
g11 , . . . , P (1)

g1n1
, P (2)

g21 , . . . , P (2)
g2n2

, g11, . . . , g1n1 and g21, . . . , g2n2 be
as in Corollary 3.21. A direct computation, using the formulas for δ1 and δ2 obtained in the proof of
Proposition 3.23, shows that

θ(Φ)(g ⊗ v) = 0 and θ(Φ)(g ⊗ h) = 0

for g,h ∈ G and v ∈ V , and that

θ(Φ)(x1x2) =
n1∑
j=1

n2∑
h=1

χ−1
α (g1 j) f (g1 j, g2h)α

−1(P (1)
g1 j

)g1 j P (2)
g2h

w g1 j g2h

and

θ(Φ)(xi x j) = 0 for 1 � i < j � n with (i, j) 	= (1,2).

We next prove that θ(Φ) is not a coboundary. Let ϕ0 ∈ X01 and ϕ1 ∈ X10. By definition
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d1(ϕ0)(g ⊗ h) = w gϕ0(h) − f (g,h)ϕ0(gh) + ϕ0(g)wh,

d0(ϕ0)(g ⊗ v) = g vϕ0(g) − ϕ0(g)v,

d1(ϕ1)(g ⊗ v) = w gϕ1(v) − ϕ1
(

g v
)

w g,

d0(ϕ1)(v1 v2) = ϕ1(v2)v1 − v1ϕ1(v2) + v2ϕ1(v1) − ϕ1(v1)v2,

and so θ(Φ) is a coboundary if and only if there exist ϕ0 and ϕ1 such that

w gϕ0(h) − f (g,h)ϕ0(gh) + ϕ0(g)wh = 0 for all g,h ∈ G,

g vϕ0(g) − ϕ0(g)v + w gϕ1(v) − ϕ1
(

g v
)

w g = 0 for all g ∈ G and v ∈ V ,[
ϕ1(x j), xi

] + [
x j,ϕ1(xi)

] = 0 for all i < j with (i, j) 	= (1,2),

where, as usual, [a,b] = ab − ba, and

[
ϕ1(x2), x1

] + [
x2,ϕ1(x1)

] =
n1∑
j=1

n2∑
h=1

χ−1
α (g1 j) f (g1 j, g2h)α

−1(P (1)
g1 j

)g1 j P (2)
g2h

w g1 j g2h .

But, since w g x j = g x j w g ,

w g1 j g2h x1 = f (g1 j, g2h)
−1 w g1 j w g2h x1 = qx1 and w g1 j g2h x2 = q−1x2,

if

ϕ1(x1) =
∑
g∈G

Q (1)
g w g and ϕ1(x2) =

∑
g∈G

Q (2)
g w g,

then necessarily

∑
g∈Υ

(q − 1)
(
x1 Q (2)

g + q−1x2 Q (1)
g

)
w g =

n1∑
j=1

n2∑
h=1

D jhα
−1(P (1)

g1 j

)g1 j P (2)
g2h

w g1 j g2h ,

where

D jh = χ−1
α (g1 j) f (g1 j, g2h) and Υ = {g1 j g2h: 1 � j � n1 and 1 � h � n2},

which is impossible because α−1(P (1)
g1 j

) g1 j P (2)
g2h

∈ k[x3, . . . , xn] \ {0}.
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