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Abstract

We consider different kinds of convergence of homogeneous polynomials and multilinear forms in ran-
dom variables. We show that for a variety of complex random variables, the almost sure convergence of
the polynomial is equivalent to that of the multilinear form, and to the square summability of the coeffi-
cients. Also, we present polynomial Khintchine inequalities for complex gaussian and Steinhaus variables.
All these results have no analogues in the real case. Moreover, we study the Lp-convergence of random
polynomials and derive certain decoupling inequalities without the usual tetrahedral hypothesis. We also
consider convergence on “full subspaces” in the sense of Sjögren, both for real and complex random vari-
ables, and relate it to domination properties of the polynomial or the multilinear form, establishing a link
with the theory of homogeneous polynomials on Banach spaces.
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0. Introduction

In this article we study the convergence of polynomials and multilinear forms in random
variables. If {Xi}i∈N is a sequence of complex or real random variables, we relate different kinds
of convergence (almost sure, in Lp , in full subspaces, etc.) of the k-homogeneous polynomial∑

i1,...,ik

ai1,...,ikXi1 · · ·Xik (1)

to properties of the coefficients {ai1,...,ik }i1,...,ik∈N (or mappings related to these coefficients).
By the convergence of the k-homogeneous polynomial we understand the convergence of the
random series (1), see the comments before Theorem 2.

For the real case, the almost sure convergence of the multilinear form∑
i1,...,ik

ai1,...,ik Y
(1)
i1

· · ·Y (k)
ik

, (2)

where {Y (1)
i }i∈N, . . . , {Y (k)

i }i∈N are sequences of random variables with the same distribution
as {Xi}i∈N, which are jointly independent, is not equivalent to the almost sure convergence of
the polynomial (1) (see, for example, [23] for the bilinear/quadratic case). Conditions on the
coefficients ai1,...,ik with repeated subindexes must be considered and also, in many cases, one
has to impose all of them to be null in order to relate the convergence of the polynomial to
that of the multilinear form. With the same spirit, for real random variables (or real function
spaces), there are multilinear Khintchine inequalities but no polynomial ones, and coefficients
with repeated indexes are again the problem: for Rademacher or gaussian variables, the Lp-
convergence of

∑
i ai,iX

2
i (the diagonal quadratic form) is not related to the square summability

of the coefficients ai,i , but to the convergence of
∑

i |ai,i |.
We show in Theorem 2 that for rotation-invariant complex random variables, coefficients with

repeated indexes are not a problem, and almost sure convergence of the polynomial (1) is equiv-
alent to that of the multilinear form (2) and, also, to the square summability of the coefficients
{ai1,...,ik }i1,...,ik∈N. Moreover, for complex gaussian and Steinhaus random variables, we present a
polynomial Khintchine inequality (which has no analogue for real random variables), that allows
us to relate the square summability of the coefficients also to the Lp-convergence of the poly-
nomial and the multilinear form (Theorems 3 and 6). Another consequence of our polynomial
Khintchine inequalities is a particular case of decoupling inequality, which again holds without
conditions on the coefficients with repeated indexes.

In [23], Sjögren considered the convergence of gaussian quadratic and bilinear forms on full
subspaces (see the definitions in Section 2). He shows that this convergence is equivalent to the
coefficients defining a nuclear operator on �2, but that this is no longer true for degree three. In
order to study higher degrees we introduce the standard full subspaces and show, for example,
that convergence on these subspaces is equivalent to the coefficients defining a 2-dominated
polynomial (or multilinear form) on �2 (see Theorem 10). We also consider non-gaussian random
variables. Finally, we use our polynomial Khintchine inequality to extend in Theorem 15 a result
on dominated polynomials due to Meléndez and Tonge [17].



D. Carando et al. / Journal of Functional Analysis 261 (2011) 2135–2163 2137
Some of our results are proved using recent techniques on integral representation of holomor-
phic functions on Banach spaces introduced in [20,22]. We devote Section 3 to summarize some
aspects of this theory, as well as to prove some new results needed in this work. The proofs of
most of the results of the first two sections are then postponed to Section 4.

1. Polynomial Khintchine type inequalities and almost sure convergence

Let us fix some terminology. The (multi-indexed) sequence of complex numbers
{aj1,...,jk

}j1,...,jk∈N is said to be symmetric if

aj1,...,jk
= al1,...,lk

whenever {l1, . . . , lk} is a permutation of {j1, . . . , jk}.
A complex random variable X : (Ω, A,P ) → C is said to be rotation-invariant if X and eiθX

have the same distribution law for all θ ∈ [0,2π]. Note that for such a random variable we must
have E(X) = 0, since in particular

E(X) = E
(
eiπX

)= eiπ
E(X) = −E(X).

In the sequel, given k ∈ N, we will need to work with sequences of independent complex
random variables {Xj }j∈N, which satisfy the following hypothesis:

(�) inf
j∈N

E
(|Xj |

)
> 0 and sup

j∈N

E
(|Xj |2k

)
< ∞.

We will call it the (�)-condition (for k). Note that, for a sequence of identically distributed non-
zero random variables, this condition is merely to have a finite 2k-th moment.

The following result makes apparent the difference between real and complex variables in
terms of polynomial convergence.

Proposition 1. Let k ∈ N and {Xj }j∈N be a sequence of independent and rotation-invariant
complex random variables satisfying the (�)-condition. Then, there exist positive constants Ak

and Bk such that for any symmetric sequence of complex numbers {aj1,...,jk
}j1,...,jk∈N and any

n ∈ N, we have

A−1
k

[
n∑

j1,...,jk=1

|aj1,...,jk
|2
] 1

2

�
[
E
(|Fn|2

)] 1
2 � Bk

[
n∑

j1,...,jk=1

|aj1,...,jk
|2
] 1

2

,

where Fn =∑n
j1,...,jk=1 aj1,...,jk

Xj1 · · ·Xjk
.

If the {Xj }j∈N are independent standard complex gaussian variables, we actually have

[
E
(|Fn|2

)]1/2 = √
k!
(

n∑
j1,...,jk=1

|aj1,...,jk
|2
)1/2

.
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As we can see in the proof of the previous proposition (in Section 4), the set of ran-
dom monomials {Xj1 · · ·Xjk

}j1�···�jk
is an orthogonal system. Note that we are including

monomials with repeated indexes. The implication (i) ⇒ (ii) in the next theorem will be
a consequence of this proposition, together with the martingale properties of the sequence∑n

j1,...,jk=1 aj1,...,jk
Xj1 · · ·Xjk

, to be shown in Section 4. Let us note that in [23], convergence
of bilinear and quadratic forms in real-valued random variables are studied. Under certain as-
sumptions, it is shown that the almost sure convergence of the bilinear form

∑∞
i,j=1 ai,jXiYj

is equivalent to the coefficients {ai,j }i,j∈N being square summable. For quadratic forms, extra
conditions on the diagonal {ai,i}i∈N are necessary for the equivalence. We see that for complex-
valued random variables the situation is different.

Throughout the article, by the convergence (in some sense) of the k-homogeneous polynomial∑
j1,...,jk

aj1,...,jk
Xj1 · · ·Xjk

we understand the existence (in the same sense) of the limit

lim
n→∞

n∑
j1,...,jk=1

aj1,...,jk
Xj1 · · ·Xjk

.

This convergence can be almost sure, in Lp , in full subspaces (see Section 2), etc. For multilinear
forms in random variables our notion of convergence is analogous.

Theorem 2. Given k ∈ N and a symmetric sequence {aj1,...,jk
}j1,...,jk∈N of complex numbers, the

following are equivalent:

(i)
∑

j1,...,jk�1 |aj1,...,jk
|2 < ∞.

(ii) For every sequence {Xj }j∈N of independent and rotation-invariant complex random vari-
ables which satisfies the (�)-condition (for k), the random series

n∑
j1,...,jk=1

aj1,...,jk
Xj1 · · ·Xjk

converges almost surely.
(iii) For every choice of k sequences {Y (1)

j }j∈N, . . . , {Y (k)
j }j∈N of rotation-invariant complex

random variables which are jointly independent and satisfy the (�)-condition (for k), the
random series

n∑
j1,...,jk=1

aj1,...,jk
Y

(1)
j1

· · ·Y (k)
jk

converges almost surely.

If the sequence {aj1,...,jk
}j1,...,jk∈N is not symmetric, the equivalence between (i) and (iii) re-

mains true.

Now we restrict ourselves to complex gaussian variables. As we have mentioned, the proof
of Proposition 1 shows the orthogonality of the whole family of functions Xj1 · · ·Xjk

in L2,
including those with repeated indexes. For the other Lp’s, we have the following polynomial
Khintchine inequality:
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Theorem 3. If {Xj }j∈N is a sequence of independent standard complex gaussian variables, then
for 1 � p < ∞ there are positive constants Ak,p and Bk,p such that for every symmetric sequence
of complex numbers {aj1,...,jk

}j1,...,jk∈N, we have:

A−1
k,p

[
n∑

j1,...,jk=1

|aj1,...,jk
|2
] 1

2

�
[
E
(|Fn|p

)] 1
p � Bk,p

[
n∑

j1,...,jk=1

|aj1,...,jk
|2
] 1

2

,

for all n ∈ N, where Fn =∑n
j1,...,jk=1 aj1,...,jk

Xj1 · · ·Xjk
.

Although this is probably known, we can derive the multilinear Khintchine inequality for
complex gaussian variables from the polynomial one to obtain:

Corollary 4. Let {Z(1)
j }j∈N, . . . , {Z(k)

j }j∈N be a finite set of sequences of standard complex gaus-
sian variables which are jointly independent, then for 1 � p < ∞ there are positive constants
Ãk,p and B̃k,p such that for every sequence of complex numbers {bj1,...,jk

}j1,...,jk∈N, we have:

Ã−1
k,p

[
n∑

j1,...,jk=1

|bj1,...,jk
|2
] 1

2

�
[
E
(|Gn|p

)] 1
p � B̃k,p

[
n∑

j1,...,jk=1

|bj1,...,jk
|2
] 1

2

,

for all n ∈ N, where Gn =∑n
j1,...,jk=1 bj1,...,jk

Z
(1)
j1

· · ·Z(k)
jk

.

Decoupling inequalities have evolved as a subject of great interest since their introduction by
McConnell and Taqqu [15,16]. Their motivation was the study of multiple stochastic integrals
(see the expository article [3] and the references therein, and also [2,4,11] for results and applica-
tions of decoupling inequalities). In these works, the polynomials and multilinear forms involved
are generally required to be “tetrahedral”, i.e., that the coefficients aj1,...,jk

are zero if j1, . . . , jk

are not all different. For complex gaussian variables, as an immediate consequence of our poly-
nomial Khintchine inequality and its multilinear analogue, we have the following particular case
of decoupling inequality, without the tetrahedral assumption.

Corollary 5. With the notation of Theorem 3 and Corollary 4 and for 1 � p,q < ∞ we have:

Ak,pB̃k,qE
(|Gn|q

)1/q � E
(|Fn|p

)1/p � Ãk,qBk,pE
(|Gn|q

)1/q
,

for all n ∈ N.

Now we turn our attention to Steinhaus random variables. Recall that for a uniform random
variable φ on the interval [0,2π], the (complex) random variable eiφ is uniformly distributed on
the complex circumference S1, and it is called a Steinhaus random variable. For these variables
we have the following.

Theorem 6. If {ϕj }j∈N is a sequence of independent Steinhaus random variables, then for 1 �
p < ∞ there are positive constants Ãk,p and B̃k,p such that for every symmetric sequence of
complex numbers {aj ,...,j }j ,...,j ∈N, we have:
1 k 1 k
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Ã−1
k,p

[
n∑

j1,...,jk=1

|aj1,...,jk
|2
] 1

2

�
[
E
(|Fn|p

)] 1
p � B̃k,p

[
n∑

j1,...,jk=1

|aj1,...,jk
|2
] 1

2

,

for all n ∈ N, where Fn =∑n
j1,...,jk=1 aj1,...,jk

ϕj1 · · ·ϕjk
.

Mimicking the proof of Corollary 4, we can obtain the following corollary for the multilinear
situation:

Corollary 7. Let {Z(1)
j }j∈N, . . . , {Z(k)

j }j∈N be a finite set of sequences of Steinhaus random

variables which are jointly independent, then for 1 � p < ∞ there are positive constants Ãk,p

and B̃k,p such that for every sequence of complex numbers {bj1,...,jk
}j1,...,jk∈N, we have:

Ã−1
k,p

[
n∑

j1,...,jk=1

|bj1,...,jk
|2
] 1

2

�
[
E
(|Gn|p

)] 1
p � B̃k,p

[
n∑

j1,...,jk=1

|bj1,...,jk
|2
] 1

2

,

for all n ∈ N, where Gn =∑n
j1,...,jk=1 bj1,...,jk

Z
(1)
j1

· · ·Z(k)
jk

.

It is clear that Theorem 6 and its Corollary 7 together give a decoupling inequality for Stein-
haus random variables just as we did in Corollary 5 for gaussian variables.

A combination of Theorem 3, Corollary 4, Theorem 6 and Corollary 7 gives the following:

Theorem 8. Let {aj1,...,jk
}j1,...,jk∈N be a symmetric sequence of complex numbers. The following

are equivalent:

(i)
∑

j1,...,jk�1 |aj1,...,jk
|2 < ∞ (or any of the equivalent conditions in Theorem 2).

(ii) For every sequence (or for some sequence) {Xj }j∈N of independent standard complex gaus-
sian variables (Steinhaus random variables), and for every 1 � p < ∞, the random series∑n

j1,...,jk=1 aj1,...,jk
Xj1 · · ·Xjk

is convergent in Lp .

(iii) For every sequences (or for some sequences) {Y (1)
j }i∈N, . . . , {Y (k)

j }j∈N of standard complex
gaussian variables (Steinhaus random variables) which are jointly independent and for
every 1 � p < ∞, the random series

∑n
j1,...,jk=1 aj1,...,jk

Y
(1)
j1

· · ·Y (k)
jk

is convergent in Lp .

If the sequence {aj1,...,jk
}j1,...,jk∈N is not symmetric, the equivalence between (i) and (iii) remains

true.

Note that as a consequence of Theorems 2 and 8, almost sure and Lp-convergence for either
homogeneous polynomials or the associated multilinear form on gaussian or Steinhaus variables
are all equivalent (and equivalent to square summability of the coefficients).

2. Convergence on standard full subspaces

In this section we consider polynomials and multilinear forms whose sets of convergence
enjoy some linearity property. In opposition to the previous section, all the results in this one
hold for both complex and real variables.
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Sjögren [23] studied the convergence of bilinear and quadratic forms of standard gaussian real
random variables on what he calls “full subspaces” of RN, motivated by the study of convergence
of some stochastic integrals. He looks at the sequence {Xj }j∈N as an element of R

N and, in R
N,

considers a gaussian product measure. A “full subspace” of RN is then a linear subspace with
gaussian measure 1. He shows that the convergence on a full subspace (for the gaussian measure)
is equivalent to the bilinear form being nuclear on �2. He also presents a counterexample showing
that for trilinear forms the convergence on full subspaces does not imply nuclearity on �2.

In order to study the same problem for n-linear forms or n-homogeneous polynomials on KN,
K = R or C, and for more general random variables, we need to restrict somehow the full sub-
spaces considered. We thus define the concept of “standard full subspace” in the construction
that follows.

Let X0 be the set of finite sequences of scalar numbers. Given a Hilbert–Schmidt injective
operator T : �2 → �2, we define a norm ||| · ||| on X0 by:

|||x||| = ‖T x‖�2 .

We denote by XT the completion of X0 with respect to the norm ||| · |||. We can identify XT with a
linear subspace of K

N whose gaussian measure is 1 [10, p. 59]. Therefore, XT is a full subspace
in the sense of Sjögren. We call these spaces “standard full subspaces”.

It is clear that we can continuously extend the operator T to XT . We denote by T̃ : XT → �2

this extension and we have |||x||| = ‖T̃ x‖�2 for all x ∈ XT . Also, it is straightforward that �2 ⊂ XT

and the inclusion i : �2 → XT has the same norm as T .
Note that the standard full subspaces include the following examples: given any sequence

(λn)n∈N ∈ �2 with λn > 0 for all n, and denoting by (en)n the canonical basis of �2, the map-
ping T (x) =∑

n λnxnen defines an injective Hilbert–Schmidt operator in �2. The corresponding
subspace XT is:

XT =
{
(xn)n ∈ K

N: |||x|||2 =
∑
n

λ2
n|xn|2 < ∞

}
.

Now we see that standard full subspaces have measure 1 for a great variety of product proba-
bilities. Suppose we are given a probability measure μ1 defined on the Borel subsets of K, such
that

∫
K

|z|2 dμ1(z) = σ 2 < ∞, and let μ be the induced product measure on K
N. Then we have

the following.

Theorem 9. Take an injective Hilbert–Schmidt operator T : �2 → �2 and let XT be the standard
full subspace associated with T . If μ is defined as above, then μ(XT ) = 1.

Our next objective is to relate the convergence of a random polynomial (or multilinear form)
on a standard full subspace to properties of the polynomial (or multilinear form) defined by
the same coefficients. First we need some definitions. Being E a Banach space, we say that a
mapping P : E → K is a k-homogeneous polynomial if there exists a k-linear form Φ : E ×· · ·×
E → K such that P(x) = Φ(x, . . . , x) for all x ∈ E. The space of all continuous k-homogeneous
polynomials is denoted by P (kE).
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For x1, . . . , xm ∈ E, the weak-�r norm of (xi)
m
i=1 is defined as

wr

(
(xi)

m
i=1

)= sup
x′∈BE′

(∑
i

∣∣〈x′, xi

〉∣∣r)1/r

.

A polynomial P ∈ P k(E) is r-dominated if there exists C > 0 such that for every finite sequence
(xi)

m
i=1 ⊂ E the following holds

(
m∑

i=1

∣∣P(xi)
∣∣ r

k

) k
r

� Cwr

(
(xi)

m
i=1

)k
.

The least of such constants C is called the r-dominated quasi-norm of P and will be denoted by
‖P ‖r-dom. The definition for multilinear forms is analogous.

Dominated polynomials satisfy the following domination property [17]: there exists a proba-
bility measure ν on BE′ such that for each x ∈ E we have:

∣∣P(x)
∣∣� ‖P ‖r-dom

( ∫
BE′

∣∣〈x′, x
〉∣∣r dν

)k/r

. (3)

It is not hard to see that the convergence of a k-linear form on the product of k standard full
subspaces is equivalent to the convergence on X × · · · × X for some standard full subspace X.
Therefore, assertion (iii) in the next theorem can be also stated as convergence on the product of
k standard full subspaces. We choose the following formulation for simplicity.

Theorem 10. Let {aj1,...,jk
}j1,...,jk∈N be a symmetric sequence of complex numbers. The following

are equivalent:

(i) The random series
∑

j1�N1,...,jk�Nk
aj1,...,jk

Xj1 · · ·Xjk
converges in a standard full sub-

space as N1, . . . ,Nk → ∞.
(ii) P(x) = ∑∞

j1,...,jk=1 aj1,...,jk
xj1 · · ·xjk

defines a 2-dominated k-homogeneous polynomial
on �2.

(iii) The random series
∑

j1�N1,...,jk�Nk
aj1,...,jk

X
(1)
j1

· · ·X(k)
jk

converges in a standard full sub-
space as N1, . . . ,Nk → ∞.

(iv) A(x) =∑∞
j1,...,jk=1 aj1,...,jk

x1
j1

· · ·xk
jk

defines a 2-dominated k-linear form on �2.

If the sequence {aj1,...,jk
}j1,...,jk∈N is not symmetric, the equivalence between (iii) and (iv) re-

mains true.

A combination of Theorems 9 and 10 gives the following.

Corollary 11. Let {aj1,...,jk
}j1,...,jk∈N be a sequence of complex numbers that define a 2-

dominated k-linear form on �2. Then∑
aj1,...,jk

Y
(1)
j1

· · ·Y (k)
jk
j1�N1,...,jk�Nk
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converges almost surely as N1, . . . ,Nk → ∞ for any sequences of {Y (1)
i }i∈N, . . . , {Y (k)

i }i∈N

jointly independent and identically distributed random variables with finite variance. If the coef-
ficients are symmetric, the analogous polynomial result holds.

It is a known fact that for degree two, nuclear and dominated polynomials (and multilinear
forms) on �2 coincide (see for example [5, Section 26.4]). So we can combine Theorem 10
with Sjögren’s result [23, Theorem 3] to see that the convergence of a gaussian 2-homogeneous
polynomial or bilinear form on some full subspace implies the convergence on some standard
full subspace. However, as we will see in Example 13 below, this is not true for degree greater
than 2.

Theorem 12. The following are equivalent:

(i) For every sequence {Xi}i∈N of independent standard complex gaussian variables, the ran-
dom series

∑
i,j ai,jXiXj converges in a full subspace.

(ii) The series
∑

i,j ai,jXiXj converges in a standard full subspace.
(iii) For every sequence {Xi}i∈N and {Yj }j∈N of independent standard complex gaussian vari-

ables, the series
∑

i,j ai,jXiYj converges in a full subspace.
(iv) The series

∑
i,j ai,jXiYj converges in a standard full subspace.

As a consequence, the convergence of the gaussian 2-homogeneous polynomial on a full
subspace implies the almost sure convergence of the random polynomial, for any sequence of
independent and identically distributed random variables {Xi}i∈N with finite variance. This fol-
lows from the fact that standard full subspaces have measure 1 for the product measure on K

N

induced by these kind of random variables.
Since for degree two, convergence of a gaussian polynomial in a full subspace implies its con-

vergence on some standard full subspace, one may ask if every full subspace contains a standard
full subspace. The answer is negative. It can be deduced from the existence of measurable norms
for which some orthonormal bases are not square summable (see [8] and [10, Chapter 1]). It
also follows easily from the following example. Sjögren presented an example of a non-nuclear
trilinear form that converges on a full subspace. We see that this trilinear form can be chosen so
that it is not 2-dominated. Therefore, it does not converge on any standard full subspace. This
shows that the previous theorem is not true for higher degrees and that there are full subspaces
that contain no standard full subspaces.

Example 13. A trilinear form that converges on a full subspace but not on any standard full
subspace. A full subspace not containing any standard full subspace.

Let ρ1 = 0 and ρn+1 = ρn + n2 + n + 1, for all n ∈ N. Sjögren’s example is the following
trilinear form:

T (X,Y,Z) =
∞∑

an

( ∑
Xρn+iYρn+jZρn+ni+j

)
,

n=1 1�i,j�n
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with an > 0, for all n, satisfying

∞∑
n=1

ann
7
4 < ∞ and

∞∑
n=1

ann
2 = ∞.

We consider the sequence {an}n = {n− 23
8 }n, which satisfies the conditions. We want to prove

that in this case the trilinear T : �2 ×�2 ×�2 → C is not 2-dominated. Let us define the sequences
{xl}l , {yl}l and {zl}l to be the formed by the standard unit vectors of �2 in “the same order” as
the coordinates of X, Y and Z appeared in the definition of T . That is:{

xl
}
l
= {eα(l)}l ,

{
yl
}
l
= {eβ(l)}l ,

{
zl
}
l
= {eγ (l)}l ,

where

α = {ρ1 + 1, ρ2 + 1, ρ2 + 1, ρ2 + 2, ρ2 + 2, ρ3 + 1, ρ3 + 1, ρ3 + 1, ρ3 + 2, ρ3 + 2, . . .},
β = {ρ1 + 1, ρ2 + 1, ρ2 + 2, ρ2 + 1, ρ2 + 2, ρ3 + 1, ρ3 + 2, ρ3 + 3, ρ3 + 1, ρ3 + 2, . . .},

γ = {ρ1 + 1 · 1 + 1, ρ2 + 2 · 1 + 1, ρ2 + 2 · 1 + 2, ρ2 + 2 · 2 + 1, ρ2 + 2 · 2 + 2, . . .}.
(Observe that there are lots of repetitions in the xl’s and in the yl’s.)

Let θn = n(n+1)(2n+1)
6 . Then

θn∑
l=1

∣∣T (xl, yl, zl
)∣∣ 2

3 =
n∑

l=1

l2a
2
3
l =

n∑
l=1

l
1
12 �

n−1∫
0

x
1
12 dx = 12

13
(n − 1)

13
12 .

It is easy to see that

w2
({

xl
}θn

l=1

)= w2
({

yl
}θn

l=1

)= √
n and w2

({
zl
}θn

l=1

)= 1.

If T is 2-dominated, we would have(
θn∑

l=1

∣∣T (xl, yl, zl
)∣∣ 2

3

) 3
2

� ‖T ‖2-domw2
({

xl
}θn

l=1

) · w2
({

yl
}θn

l=1

) · w2
({

zl
}θn

l=1

)
,

and this would imply

(n − 1)
13
8 � Cn,

for some constant C. Since this is false, T cannot be 2-dominated.
Now, the full subspace where the random bilinear form associated to T converges, cannot

contain any standard full subspace.
Let us provide a stronger version of Sjögren counterexample, namely, a non-nuclear multi-

linear form that converges on a standard full subspace. To this end, we denote by PN(kE) the
space of all nuclear k-homogeneous polynomials on the Banach space E, and endow it with the
nuclear norm (see [6] and [18] for details).
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Example 14. There are non-nuclear multilinear forms that converge on standard full subspaces.

Let us see that, for any natural number k � 3, there exists Q ∈ P (k�2) which is 2-dominated
but it is not nuclear. For n � 1, in [1] the authors show that there exist polynomials Pn ∈ P (k�n

2)

such that

‖Pn‖P (k�n
2) � Ckn

1/2

and

‖Pn‖PN(k�n
2) � Dkn

k−1/2

for suitable constants Ck and Dk , which are independent of n.
Consider the following commutative diagram:

�n
2

Pn

id

C

�n∞
id

�n
2

Pn

Since ‖id : �n∞ → �n
2‖ = √

n, applying the little Grothendieck theorem [5, p. 139] and the fac-
torization property of dominated polynomials [17, Theorem 10] we obtain an upper bound for
‖Pn‖2-dom, namely

‖Pn‖2-dom � ‖Pn‖P (k�n
2)

∥∥id : �n∞ → �n
2

∥∥k

2-sum

� 2√
π

Ckn
1/2√n

k = C̃kn
1/2+k/2,

where ‖ · ‖2-sum denotes the 2-summing norm of an operator. For 2(k−1)/2 < d < 2(2k−3)/2 we
define Qm = (2d)−mP2m ∈ P (k�2m

2 ), and obtain lower bounds for their nuclear norms:

‖Qm‖PN(k�2m

2 )
� Dk(2d)−m2m(k−1/2) > Dk2−m2−m(k−1)/22mk2−m/2

= Dk2m(k/2−1) −−−−→m→∞ ∞.

Since �2 = �2(�
2m

2 : m � 1), the polynomial Q = ⊕
m Qm : �2 → C can be defined. This poly-

nomial cannot be nuclear because the nuclear norms of Qm = Q ◦ ım, where ım is the canonical
injection �2m

2 ↪→ �2, tend to infinity. On the other hand, Q is a 2-dominated polynomial, since

∑
m

‖Qm‖2-dom � C̃k

∑
m

(2d)−m2m(1/2+k/2)

< C̃k

∑
2−m2−m(2k−3)/22m/22mk/2
m
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= C̃k

∑
m

2−m(k/2−1) < ∞,

and the space of 2-dominated polynomials is complete in the 2-dominated quasi-norm.
We end this section with an application of the polynomial Khintchine inequality to extend a

result in [17] on dominated polynomials. Note that throughout this section, dominated polyno-
mials were used to characterize some particular kind of convergence of random multi-indexed
series. Now we take the opposite direction: we will use our results on Lp-convergence of poly-
nomials in random variables to obtain properties of dominated polynomials. Theorem 3 in [17]
states that for 2 � p < ∞ and 1 � r � p, if the polynomial

P(x) =
∞∑

i1,...,ik=1

ai1,...,ik xi1 · · ·xik

is r-dominated on �p , then we have
∑∞

i1,...,ik=1 |ai1,...,ik |2 < ∞. We extend this result to any r

and to any Banach sequence space containing �2. By a Banach sequence space we understand
a Banach lattice over the natural numbers. If a Banach sequence space contains �2 (in the sense
that each element of �2 is a sequence belonging to E), then a closed graph argument shows that
the formal inclusion i : �2 → E is continuous.

Theorem 15. Let E be a Banach sequence space that contains �2. If the polynomial

P(x) =
∞∑

i1,...,ik=1

ai1,...,ik xi1 · · ·xik

on E is r-dominated for some 1 � r < ∞, then
∑∞

i1,...,ik=1 |ai1,...,ik |2 < ∞.

Note that hypotheses of the previous theorem hold for Lorentz sequence spaces d(w,p) with
p � 2 and for any 2-convex Banach sequence space (see [12,13]).

3. Integral representation of holomorphic functions

In [22], the authors presented two integral representation formulas: for entire functions and
for holomorphic functions on the unit ball of a Banach space. For this, they considered gaussian
measures on Banach spaces and the theory of abstract Wiener spaces [9]. In [19] and [21] it is
shown that many of the results stated for real separable Banach spaces in [10] remain valid in the
complex setting, which is crucial to our purposes. The papers [20] and [19] were concerned with
the study of the classes of holomorphic functions which can be represented using those formulas.
We will make use of only a few aspects of the theory. For the sake of completeness we outline
the main facts, state the known results we need and prove some new ones. We refer to [6] for the
theory of polynomials and analytic functions on infinite dimensional spaces.

Given a separable Hilbert space H , if P is a finite-rank orthogonal projector in H , a cylinder
set in H is a set of the form

C = {x ∈ H : Px ∈ �}
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where � is a Borel subset of PH . We will denote by Γ the gaussian cylinder measure defined
on cylinder sets:

Γ (C) = 1

πn

∫
�

e−|w|2 dw,

where n is the complex dimension of PH , and the integral is with respect to the Lebesgue mea-
sure. This cylinder measure is not σ -additive, however, integrals of cylinder functions F :H → C

of the form F = h ◦ P may be defined by setting∫
C

F dΓ =
∫
�

hdΓn,

where Γn is standard n-dimensional gaussian measure. A norm ‖.‖ on H with the property that
for any ε > 0 there is a finite-rank orthogonal projector Pε such that for all P ⊥ Pε ,

Γ
{
x ∈ H : ‖Px‖ > ε

}
< ε,

is called measurable [9]. Examples of measurable norms can be constructed by considering
Hilbert–Schmidt operators on H . If S : H → H is an injective Hilbert–Schmidt operator, then
‖x‖S = ‖Sx‖1/2 is a measurable norm. Upon completing (H,‖.‖) one obtains a Banach space X.
The natural inclusion ι : H ↪→ X is continuous and dense, and (ı,H,X) is called an abstract
Wiener space. A cylinder set CX in X is one which can be described as

CX = {
γ ∈ X:

(
ϕ1(γ ), . . . , ϕn(γ )

) ∈ �
}

where n ∈ N, {ϕk}nk=1 ⊂ X′ and � is a Borel set in C
n. For these sets one considers CH =

CX ∩ H , and defines

Γ̃ (CX) := Γ (CH ).

The set function Γ̃ extends to a measure W (called Wiener measure) on the Borel σ -algebra B
of X.

Since ı′ : X′ → H ′ has dense range, we can choose {zn}n∈N ⊂ X′ such that the sequence
ι′(zn) = e′

n defines an orthonormal basis {e′
n}n∈N of H ′ dual to some basis {en}n∈N ⊂ H . The

following proposition is an analogue of [10, Corollary 4.1], where the real case is studied. Since
there are not significative changes on the techniques involved for proving it, we omit the proof.

Proposition 16. With the previous notations, {zk}∞k=1 is a sequence of independent and identically
distributed complex gaussian random variables with mean 0 and variance 1. Moreover, given
ϕ ∈ X′, then ϕ is a complex gaussian variable with mean 0 and variance ‖ı′ϕ‖2

H ′ .

As usual, we can identify H ′ with H via I : H ′ → H , where for x ∈ H and φ ∈ H ′, φ(x) =
〈x, I (φ)〉. Since I is conjugate linear, in order to preserve analyticity it is necessary to define
involutions in H and H ′. If x = ∑

xnen is an element of H , we let x∗ = ∑
xnen. Similarly, if

φ ∈ H ′, define φ∗ so that I (φ∗) = I (φ)∗. Note that 〈x∗, y〉 = 〈x, y∗〉 and φ(x∗) = φ∗(x).
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The following diagram will be useful for fixing ideas:

H
ı

X

H ′
I

H ′∗
X′

ı∗

ı′
A=ı◦I◦∗◦ı′

This general construction applies to the particular case when H = �2 and, fixing a sequence
of positive real numbers (λn)n∈N ∈ �2, the measurable norm is given by the Hilbert–Schmidt
operator

S : �2 → �2

S
(
(xn)n

)= (λnxn)n.

In this way we obtain �2 ↪→ (�2,‖.‖S) = B0 ⊂ C
N and, since the finite dimensional projectors

induce the gaussian measures μn on the Borel sets of C
n, we conclude that Γ̃ extends to a

measure W, which is the same measure whose existence is ensured by Kolmogorov’s existence
theorem. Also, the sequence {zn}n∈N ⊂ X′ is explicitly determined by the set of linear functionals
in B ′

0, represented via the Riesz theorem by { 1
λ2

n
en}n∈N ⊂ B0. With this choice, it holds that

{ı′zn}n∈N = {e′
n}n∈N, where {e′

n}n∈N is the dual basis of the standard orthonormal basis for �2.

We do not need the integral formula in its general version, so we just state the following
theorem.

Theorem 17. (See [21, Teorema 3.2.7].) If {ϕj }kj=1 ⊂ B ′
0, then

∫
B0

ez(γ )
k∏

j=1

ϕj (γ ) dW(γ ) =
k∏

j=1

ϕj

(
ı ◦ I ◦ ı′(z)

)
for all z ∈ B ′

0.

Recall that a k-homogeneous polynomial p defined on B0 is of finite type if there exists
{ϕj }Nj=1 ⊂ B ′

0 such that p(γ ) = ∑N
j=1 ϕk

j (γ ). The space of finite type polynomials is denoted

by Pf (kB0). From the polarization formula, it can be seen that the product of k different linear
functionals is also of finite type.

It is possible to define on Pf (kB0) the operator

T : Pf

(
kB0

)→ Pf

(
kB ′

0

)
[

T (p)
]
(z) =

∫
B0

ez(γ )p(γ ) dW(γ ).

Since ı′ : B ′
0 → �′

2 has dense range, according to Theorem 17, there exists a unique P ∈ P (k�2)

such that the following diagram commutes:
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�2

P

�′
2

I

B ′
0∗◦ı′ T (p)

C

Namely, since

[
T (p)

]
(z) = p

(
ı ◦ I ◦ ı′(z)

)= p ◦ ı
[(

I ◦ ı∗(z)
)∗]

,

we have

P(x) = p
[
ı
(
x∗)].

From this “extension” property, we can define:

T : Pf

(
kB0

)→ P
(
k�2

)
[
T (p)

]
(x) = p

[
ı
(
x∗)].

Note that we could have defined the operator T independently of the integral representation
formula. However, we will see below that this representation approach has some advantages.

We are ready to show the link between random variables and polynomials which will allow
us to obtain the polynomial Khintchine inequalities. We will employ some usual notations. For
α = (α1, . . . , αn) a multi-index, we define �(α) = n, |α| = α1 + · · · + αn and α! = α1! · · ·αn!.
We recall that the sequence {zn}n∈N ⊂ B ′

0 was chosen satisfying ι′zn = e′
n, and that these vectors

form an orthonormal basis for �′
2.

Given a multi-index α ∈ N
(N)
0 , set

zα(γ ) =
�(α)∏
j=1

[
zj (γ )

]αj and
(
ι∗z

)α
(x) =

�(α)∏
j=1

[
e′
j (x)

]αj .

Working on a separable Hilbert space, Dwyer [7] defined Hilbert–Schmidt k-functionals and
O. Lopushansky and A. Zagorodnyuk study, in [14], the Hilbert space of k-homogeneous poly-
nomials Ph(

kH) over H , which is intimately related to the operator T . We need the following
results from [14]:

Proposition 18. The inclusion Ph(
kH) ↪→ P (kH) is continuous and ‖P ‖ � ‖P ‖h for all P ∈

Ph(
kH).

Proposition 19. Given Qn ∈ Ph(
nH) and Qm ∈ Ph(

mH), then we have QnQm ∈ Ph(
n+mH)

and ‖QnQm‖h � ‖Qn‖h‖Qm‖h.

Proposition 20. The set of polynomials {
√

k! (ι∗z)α}|α|=k forms an orthonormal basis of Ph(
kH).
α!
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For simplicity of notation the closure of the span of {zα}|α|=k in L2(W) will be denoted
by L2

k(W). Remark 1 in [20] states that it is possible to define an isomorphism T̃ : L2
k(W) →

Ph(
k�2), because { zα√

α! }|α|=k and {
√|α|!√

α! (i∗z)α}|α|=k are orthonormal bases of L2
k(W) and Ph(

k�2)

respectively, and we have T (zα) = (i∗z)α . Moreover, we have

‖gk‖2 = √
k!∥∥T̃ (gk)

∥∥
h

(4)

for any gk ∈ L2
k(W).

Note that if we are given any linear combination of products of k linear functionals, we can
compute its L2-norm in terms of the Hilbertian norm of the polynomial associated via T̃ . So, if
we think of linear functionals as complex gaussian variables, we are able to compute L2-norms
of these linear combinations as Hilbertian norms of the associated polynomials.

4. The proofs

In this section we present the proofs of the results stated in Sections 1 and 2. In order to prove
Proposition 1 it is convenient to state the following simple result:

Lemma 21. Let X be a rotation-invariant complex random variable. If for some k ∈ N0 we have
E(|X|2k) < ∞, then

E
(
XmXn

)= δm,nE
(|X|2m

)
for all m,n � k.

In particular, E(Xm) = 0 for 1 � m � k.

Proof. Let θ ∈ (0,2π), since eiθX has the same distribution law than X, it is a matter of fact
that

E
(
XmXn

)= E
([

eiθX
]m[

eiθX
]
n
)= ei(m−n)θ

E
(
XmXn

)
.

If m,n � k, then |E(XmXn)| � [E(|X|2k)](m+n)/2k < ∞. So E(XmXn) must be 0 for m �= n,
and we obtain the stated result.

Proof of Proposition 1. We need to compute

E
(|Fn|2

)=
n∑

l1,...,lk=1
j1,...,jk=1

al1,...,lk aj1,...,jk
E(Xl1 · · ·XlkXj1 · · ·Xjk

).

Given J = (l1, l2, . . . , lk) ∈ {1,2, . . . , n}k , we define R(J ) = (R(J )m)1�m�n by R(J )m =∑k
r=1 δm,lr . This new multi-index counts how many times each number is repeated in J .
The symmetry of the sequence {aj1,...,jk

} allows us to denote aR(j1,...,jk) = aj1,...,jk
. Calling

α = R(l1, . . . , lk), β = R(j1, . . . , jk), we have

E
(|Fn|2

)=
∑ ∑ (

k

α

)(
k

β

)
aαaβE

(
XαXβ

)
,

|α|=k |β|=k
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where Xα stands for X
α1
1 · · ·Xαk

k . We can use the independence of {Xj }j∈N and Lemma 21 to
obtain:

E
(|Fn|2

)=
∑
|α|=k

∑
|β|=k

(
k

α

)(
k

β

)
aαaβ

n∏
s=1

E
(
Xαs

s X
βs
s

)

=
∑
|α|=k

(
k

α

)2

|aα|2
n∏

s=1

E
(|Xs |2αs

)
.

For the left side of the inequality, observe that

n∏
s=1

E
(|Xs |2αs

)
�

n∏
s=1

E
(|Xs |

)2αs �
[

inf
j∈N

E
(|Xj |

)]2k

.

The obvious estimation 1 �
(
k
α

)
� k! gives the following:

E
(|Fn|2

)
�
[

inf
j∈N

E
(|Xj |

)]2k ∑
|α|=k

(
k

α

)
|aα|2

=
[

inf
j∈N

E
(|Xj |

)]2k
(

n∑
j1,...,jk=1

|aj1,...,jk
|2
)

.

On the other hand, for any multi-index α, since |α| = k, at most k numbers of the set {α1, . . . , αn}
are different from 0. Moreover, none of them can be greater than k, so we have:

E
(|Fn|2

)
�

∑
|α|=k

k!
(

k

α

)
|aα|2

[
sup
j∈N

E
(|Xj |2k

)]

= k!
[

sup
j∈N

E
(|Xj |2k

)]( n∑
j1,...,jk=1

|aj1,...,jk
|2
)

.

From both inequalities, we can take

A−1
k =

[
inf
j∈N

E
(|Xj |

)]k

and Bk = √
k!
[

sup
j∈N

E
(|Xj |2k

)]1/2
.

If the variables are gaussian, since

E
(|Fn|2

)=
∑
|α|=k

(
k

α

)2

|aα|2
n∏

s=1

∫
Ω

∣∣Xs(ω)
∣∣2αs dP (ω),

we must compute
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n∏
s=1

∫
Ω

∣∣Xs(ω)
∣∣2αs dP (ω) =

n∏
s=1

∫
C

|w|2αs e−|w|2 dw

π

=
n∏

s=1

2π∫
0

+∞∫
0

ρ2αs+1e−ρ2 dρ dθ

π

= α!.
Then,

E
(|Fn|2

)=
∑
|α|=k

k!
(

k

α

)
|aα|2 = k!

(
n∑

j1,...,jk=1

|aj1,...,jk
|2
)

. �

In order to prove Theorem 2, we need the following lemma, for which we adapt some ideas
from [23].

Lemma 22. Suppose that {Xj }j∈N is a sequence of independent and rotation-invariant complex
random variables which, for some k > 1, satisfies the (�)-condition. Then, there exists ε > 0 such
that for any sequence of complex numbers {aj }j∈N, we have

P

(∣∣∣∣∣
n∑

j=1

ajXj

∣∣∣∣∣
2

� ε2
n∑

j=1

|aj |2
)

� ε. (5)

Proof. By homogeneity, it is sufficient to prove that the inequality holds assuming that∑n
j=1 |aj |2 = 1. Also, since the variables Xj are independent and rotation-invariant, the dis-

tribution laws of
∑n

j=1 ajXj and
∑n

j=1 |aj |Xj coincide. Thus, we can assume that {aj }j∈N is a
sequence of non-negative real numbers.

Since ∣∣∣∣∣
n∑

j=1

ajXj

∣∣∣∣∣
2

=
(

Re

n∑
j=1

ajXj

)2

+
(

Im

n∑
j=1

ajXj

)2

=
(

n∑
j=1

aj ReXj

)2

+
(

n∑
j=1

aj ImXj

)2

,

it is enough to prove that

P

((
n∑

j=1

ajReXj

)2

� ε2

)
� ε. (6)

Since ReXj = Im(ei π
2 Xj) and Xj is rotation-invariant, ReXj and ImXj are identically dis-

tributed. In particular, E(|Xj |) � E(|ReXj |) + E(|ImXj |) = 2E(|ReXj |), and then we have
0 < infj∈N E(|ReXj |). Also, since |ReXj | � |Xj |, it follows that supj∈N E(|ReXj |2k) < ∞.
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We assume first that E(|ReXj |2) = 1, for all j ∈ N. If we show that there exists δ > 0 such
that P(|ReXj | � δ) � δ for all j ∈ N, we can apply [23, Lemma 1] to obtain (6) for some ε > 0.
Suppose the contrary: that for any δ > 0, the inequality P(|ReXj | � δ) � δ does not hold at
least for some j ∈ N. In particular, choosing a sequence {δs}s∈N such that δs → 0, let Xjs satisfy
P(|ReXjs | � δs) < δs .

For each δs , and for suitable Rs > δs , we can write

E
(|ReXjs |

)=
+∞∫
0

P
(|ReXjs | > t

)
dt

=
δs∫

0

P
(|ReXjs | > t

)
dt +

Rs∫
δs

P
(|ReXjs | > t

)
dt +

+∞∫
Rs

P
(|ReXjs | > t

)
dt.

Obviously,

δs∫
0

P
(|ReXjs | > t

)
dt � δs .

By Chebyshev inequality, we have

P
(|ReXjs | > t

)
� E(|ReXjs |2)

t2
= 1

t2
,

so we can choose Rs = 1
δ

1/2
s

to obtain

+∞∫
Rs

P
(|ReXjs | > t

)
dt �

+∞∫
Rs

1

t2
dt = 1

Rs

= δ
1/2
s .

Finally, since t �→ P(|ReXjs | > t) is a decreasing function, we have the following bound for the
remaining integral:

Rs∫
δs

P
(|ReXjs | > t

)
dt � P

(|ReXjs | > δs

)
(Rs − δs) < δs(Rs − δs).

Combining these inequalities, we get

E
(|ReXjs |

)
� δs + δ

1/2
s + δs(Rs − δs) = δs − δ2

s + 2δ
1/2
s −−−→s→∞ 0,

which is a contradiction, because we know that infj∈N E(|ReXj |) > 0.
So (5) holds whenever E(|ReXj |2) = 1.
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In the general case, the (�)-condition implies

0 <
[

inf
j∈N

E
(|ReXj |

)]2
� E

(|ReXj |2
)
� sup

j∈N

E
(|ReXj |2

)
< ∞.

So, the result is valid for the variables Yj = ReXj√
E(|ReXj |2) , which means that there exists ε > 0

such that for any sequence of real numbers {bj }j∈N,

P

(∣∣∣∣∣
n∑

j=1

bjYj

∣∣∣∣∣� ε

(
n∑

j=1

b2
j

)1/2)
� ε.

Thus, for any sequence of real numbers {aj }j∈N,

P

(∣∣∣∣∣
n∑

j=1

aj ReXj

∣∣∣∣∣� ε

(
n∑

j=1

a2
j E

(|ReXj |2
))1/2)

� ε.

Standard calculations give us the desired inequality. �
We also need the following result proved in [23, Lemma 2]:

Lemma 23. Let {Wj }j∈N be a sequence of random variables which satisfies that there is a con-
stant δ > 0 such that

P
(|Wj | � δ

)
� δ,

for all j ∈ N. Then, there exists η > 0 such that

P

(
n∑

j=1

cj |Wj |2 � η

n∑
j=1

cj

)
� η,

for every cj � 0 and every n ∈ N.

Proof of Theorem 2. Let us see that (i) implies (ii). For each n, consider the random variable

Zn =
n∑

j1,...,jk=1

aj1,...,jk
Xj1 · · ·Xjk

,

and the σ -algebra Fn = σ(X1, . . . ,Xn). We can write

Zn+1 = Zn + Xn+1A1 + X2
n+1A2 + · · · + Xk−1

n+1Ak−1 + Xk
n+1an+1,...,n+1,

where Zn,A1, . . . ,Ak−1 are Fn-measurable random variables. Then,
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E(Zn+1|Fn) = Zn + A1E(Xn+1|Fn) + A2E
(
X2

n+1

∣∣Fn

)+ · · · + Ak−1E
(
Xk−1

n+1

∣∣Fn

)
+ an+1,...,n+1E

(
Xk

n+1

∣∣Fn

)
.

Since E(X
j

n+1|Fn) = E(X
j

n+1), and from Lemma 21, E(X
j

n+1) = 0, for all 1 � j � k, it follows
that {Zn}n is a martingale relative to {Fn}n.

By (i) and Proposition 1, the martingale {Zn}n is bounded in L2, hence it is bounded in L1,
and so it converges almost surely.

To prove that (ii) implies (iii), from the sequences {Y (1)
j }i∈N, . . . , {Y (k)

j }j∈N we can construct
a sequence {Xj }j∈N of independent and rotation-invariant complex random variables, verifying
the (�)-condition. Indeed, we can identify

{
Y

(r)
j

}
j∈N

� {X(j−1)k+r}j∈N for r = 1,2, . . . , k.

Given k natural numbers {l1, l2, . . . , lk}, let

r1 ≡ l1 mod (k), r2 ≡ l2 mod (k), . . . , rk ≡ lk mod (k)

for r1, r2, . . . , rk ∈ {1,2, . . . , k}. Setting

• bl1,...,lk = 0 if {r1, r2, . . . , rk} is not a complete residue system modulo k, or else,

• bl1,...,lk =
a lτ(1)−rτ (1)+k

k
,...,

lτ (k)−rτ (k)+k

k

k! , where τ is a permutation of {1, . . . , k} satisfying 1 =
rτ(1) < rτ(2) < · · · < rτ (k) = k.

Then, the multilinear random mapping
∑n

j1,...,jk=1 aj1,...,jk
Y

(1)
j1

· · ·Y (k)
jk

can be viewed as the
random polynomial

nk∑
l1,...,lk=1

bl1,...,lkXl1 · · ·Xlk .

Note that {bl1,...,lk }ls�1 is a symmetric sequence and, since

nk∑
l1,...,lk=1

|bl1,...,lk |2 = 1

k!
n∑

j1,...,jk=1

|aj1,...,jk
|2,

we have
∑

l1,...,lk�1 |bl1,...,lk |2 < ∞. Now, applying (i) ⇒ (ii), we deduce that the random poly-

nomial
∑nk

l1,...,lk=1 bl1,...,lkXl1 · · ·Xlk is almost surely convergent and consequently the random

series
∑n

j1,...,jk=1 aj1,...,jk
Y 1

j1
· · ·Y k

jk
is almost surely convergent too.

It only remains to prove that (iii) implies (i). We will prove by induction on k that, if
{aj1,...,jk

}j1,...,jk∈N is a sequence of complex numbers, and {Y (1)
j }j∈N, . . . , {Y (k)

j }j∈N are inde-
pendent and rotation-invariant complex random variables satisfying the (�)-condition for k, then
there exists δk > 0 such that, for all n ∈ N,
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P

(∣∣∣∣∣
n∑

j1,...,jk=1

aj1,...,jk
Y

(1)
j1

· · ·Y (k)
jk

∣∣∣∣∣
2

� δ2
k

n∑
j1,...,jk=1

|aj1,...,jk
|2
)

� δk.

It is clear that from this inequality the result follows. For k = 1, if {Yj }j∈N is a sequence satisfying
the hypothesis, then from Lemma 22, there exists δ1 > 0 such that

P

(∣∣∣∣∣
n∑

i=1

aiYi

∣∣∣∣∣
2

� δ2
1

n∑
i=1

|ai |2
)

� δ1. (7)

Suppose that the result is valid for k − 1 and let {Y (1)
j }j∈N, . . . , {Y (k)

j }j∈N and
{aj1,...,jk

}j1,...,jk∈N be as in the statement. We have

n∑
j1,...,jk=1

aj1,...,jk
Y

(1)
j1

· · ·Y (k)
jk

=
n∑

j1=1

(
n∑

j2,...,jk=1

aj1,...,jk
Y

(2)
j2

· · ·Y (k)
jk

)
Y

(1)
j1

.

Conditional on the values of Y
(2)
j2

, . . . , Y
(k)
jk

(1 � j2, . . . , jk � n) we set cj1 =∑n
j2,...,jk=1 aj1,...,jk

Y
(2)
j2

· · ·Y (k)
jk

. Then we can find, as in (7), some δ1 > 0 such that

P

(∣∣∣∣∣
n∑

j1=1

cj1Y
(1)
j1

∣∣∣∣∣
2

� δ2
1

n∑
j1=1

|cj1 |2
)

� δ1. (8)

Let us define Wj1 =∑n
j2,...,jk=1 ãj1,...,jk

Y
(2)
j2

· · ·Y (k)
jk

, where

ãj1,...,jk
= aj1,...,jk∑n

j2,...,jk=1 |aj1,...,jk
|2 .

By the inductive hypothesis, the sequence {Wj1}j1 satisfies the hypothesis of Lemma 23 with
some δk−1 (note that the (�)-condition for k implies the (�)-condition for k − 1). We can write

n∑
j1=1

∣∣∣∣∣
n∑

j2,...,jk=1

aj1,...,jk
Y

(2)
j2

· · ·Y (k)
jk

∣∣∣∣∣
2

=
n∑

j1=1

(
n∑

j2,...,jk=1

|aj1,...,jk
|2
)

|Wj1 |2.

By Lemma 23, there exists some η > 0 such that

P

(
n∑

j1=1

(
n∑

j2,...,jk=1

|aj1,...,jk
|2
)

|Wj1 |2 � η

(
n∑

j1,...,jk=1

|aj1,...,jk
|2
))

� η. (9)

The result follows from (8) and (9) with δk = δ1η. �
Proof of Theorem 3. Proposition 1 shows that E(|Fn|2)1/2 = √

k!(∑n
i1,...,ik=1 |ai1,...,ik |2)1/2.

Since for any q > 2, we have the inclusions
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Lq(Ω1,A1,P1) ⊂ L2(Ω1,A1,P1) ⊂ L1(Ω1,A1,P1).

It is sufficient to prove the left inequality for p = 1 and the right one for infinitely many p > 2.

Let us first show that for any even integer p > 2 and n ∈ N, we have:

E
(|Fn|p

)1/p � Bk,p

(
n∑

i1,...,ik=1

|ai1,...,ik |2
)1/2

.

We define the function

Φ : B0 → C

Φ(γ ) =
n∑

i1,...,ik=1

ai1,...,ik zi1(γ ) · · · zik (γ ),

where B0 and the zj ’s are defined in Section 3. By Proposition 16, Fn and Φ are identically
distributed, so it is enough to check that

‖Φ‖p � Bk,p

(
n∑

i1,...,ik=1

|ai1,...,ik |2
)1/2

.

Write p = 2r for r a natural number greater than 1. Now we can use (4) and Theorem 17 to get

‖Φ‖p =
[∫

B0

∣∣Φ(γ )
∣∣2r

dW(γ )

]1/2r

= ∥∥Φr
∥∥2/p

2 = [
(kr)!∥∥T̃ (Φr

)∥∥2
h

]1/p = [
(kr)!∥∥T̃ (Φ)r

∥∥2
h

]1/p
.

Now we use Proposition 19 and (4) to obtain

[
(kr)!∥∥T̃ (Φ)r

∥∥2
h

]1/p �
[
(kr)!∥∥T̃ (Φ)

∥∥2r

h

]1/p = p
√

(kr)!∥∥T̃ (Φ)
∥∥

h
=

p
√

(kr)!√
k! ‖Φ‖2.

Since ‖Φ‖2 = √
k!(∑n

i1,...,ik=1 |ai1,...,ik |2)1/2 as in Proposition 1, we conclude that:

E
(|Fn|p

)1/p = ‖Φ‖p � p
√

(kr)!
(

n∑
i1,...,ik=1

|ai1,...,ik |2
)1/2

.

It remains to prove the left inequality for p = 1. This is a consequence of Hölder’s inequality:

E
(|Fn|2

)=
∫
Ω1

∣∣Fn(ω)
∣∣2 dP1(ω) =

∫
Ω1

∣∣Fn(ω)
∣∣2/3∣∣Fn(ω)

∣∣4/3
dP1(ω)

�
(∫ ∣∣Fn(ω)

∣∣dP1(ω)

)2/3(∫ ∣∣Fn(ω)
∣∣4 dP1(ω)

)1/3

.

Ω1 Ω1
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Hence, we have

E
(|Fn|2

)3/2 =
(∫

Ω1

∣∣Fn(ω)
∣∣2 dP1(ω)

)3/2

� E
(|Fn|

)
E
(|Fn|4

)1/2 �
B2

k,4

k! E
(|Fn|

)
E
(|Fn|2

)
,

which is E(|Fn|2)1/2 � B2
k,4
k! E(|Fn|) � B2

k,4
k! E(|Fn|p)1/p for p � 1. �

Proof of Corollary 4. We can construct a sequence {Xi}i∈N of independent standard com-
plex gaussian variables, just as we did in the proof of Theorem 2, to obtain the identification
{Z(r)

i }i∈N � {X(i−1)k+r}i∈N for r = 1,2, . . . , k. Then, the multilinear random mapping Gn can
be thought of, for suitable {aj1,...,jk

}js�1, as the random polynomial

Fn =
nk∑

j1,...,jk=1

aj1,...,jk
Xi1 · · ·Xik .

Therefore, E(|Fn|p)1/p = E(|Gn|p)1/p for any 1 � p < ∞. Since {aj1,...,jk
}j1,...,jk∈N is a sym-

metric sequence, we can apply Theorem 3 to conclude that E(|Fn|p)1/p is asymptotically equiv-
alent to (

nk∑
j1,...,jk=1

|aj1,...,jk
|2
)1/2

= 1√
k!

(
n∑

j1,...,jk=1

|bj1,...,jk
|2
)1/2

,

and the result follows. �
In the proof of Theorem 6 we will use the following result, the proof of which is a simple

exercise:

Lemma 24. Given two independent random variables ϕ and X, ϕ a Steinhaus variable and X a
standard complex gaussian variable, then Y = ϕ|X| is a standard complex gaussian variable.

Proof of Theorem 6. Following the ideas of Theorem 3, it is sufficient to prove that for p � 2,
we have: [

E

(∣∣∣∣∣
n∑

j1,...,jk=1

aj1,...,ik ϕj1 · · ·ϕjk

∣∣∣∣∣
p)]1/p

� B̃k,p

(
n∑

j1,...,jk=1

|aj1,...,jk
|2
)1/2

.

From Theorem 3, we know that for every sequence {Zi}i∈N of independent standard complex
gaussian variables,

[
E

(∣∣∣∣∣
n∑

bj1,...,ikZj1 · · ·Zjk

∣∣∣∣∣
p)]1/p

� Bk,p

(
n∑

|bj1,...,ik |2
)1/2

.

j1,...,jk=1 j1,...,jk=1
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Take {Xi}i∈N a sequence of independent standard complex gaussian variables, which is indepen-
dent from the sequence {ϕi}i∈N of Steinhaus random variables. We will consider a new symmetric
sequence defined by

bj1,...,jk
= aj1,...,jk

E(|Xj1 | · · · |Xjk
|) .

From Lemma 24, we have ϕi |Xi | ∼ Zi for all i � 1. So, letting Qn = ∑n
j1,...,jk=1 bj1,...,jk

×
Zj1 · · ·Zjk

, we can compute

E
(|Qn|p

)=
∫
Ω1

∫
Ω2

∣∣∣∣∣
n∑

j1,...,jk=1

bj1,...,jk

k∏
j=1

ϕjj
(w1)

∣∣Xjj
(w2)

∣∣∣∣∣∣∣
p

dμ2(w2) dμ1(w1)

�
∫
Ω1

( ∫
Ω2

∣∣∣∣∣
n∑

j1,...,jk=1

bj1,...,jk

k∏
j=1

ϕjj
(w1)

∣∣Xjj
(w2)

∣∣∣∣∣∣∣dμ2(w2)

)p

dμ1(w1)

�
∫
Ω1

∣∣∣∣∣
∫
Ω2

n∑
j1,...,jk=1

bj1,...,jk

k∏
j=1

ϕjj
(w1)

∣∣Xjj
(w2)

∣∣dμ2(w2)

∣∣∣∣∣
p

dμ1(w1)

=
∫
Ω1

∣∣∣∣∣
n∑

j1,...,jk=1

bj1,...,jk
E
(|Xj1 | · · · |Xjk

|)ϕj1(w1) · · ·ϕjk
(w1)

∣∣∣∣∣
p

dμ1(w1)

= E

(∣∣∣∣∣
n∑

j1,...,jk=1

aj1,...,jk
ϕj1 · · ·ϕjk

∣∣∣∣∣
p)

.

Therefore,

E

(∣∣∣∣∣
n∑

j1,...,jk=1

aj1,...,jk
ϕj1 · · ·ϕjk

∣∣∣∣∣
p)1/p

� Bk,p

(
n∑

j1,...,jk=1

|bj1,...,jk
|2
)1/2

= Bk,p

(
n∑

j1,...,jk=1

|aj1,...,jk
|2

E2(|Xj1 | · · · |Xjk
|)

)1/2

� Bk,p

min1�j1,...,jk�n E(|Xj1 | · · · |Xjk
|)

(
n∑

j1,...,jk=1

|aj1,...,jk
|2
)1/2

. �

Proof of Theorem 9. Let us write T in its spectral decomposition: T (x) =∑
j λj 〈x, ej 〉fj , for

suitable orthonormal bases (ej )j and (fj )j .
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From the following iterated limit:

lim
N→∞

(
lim

k→∞ e
− 1

N

∑k
j=1 λ2

j |xj |2)=
{

limN→∞ e− |||x|||2
N = 1, x ∈ XT ,

limN→∞ 0 = 0, x /∈ XT ,

we have:

lim
N→∞

(
lim

k→∞ e
− 1

N

∑k
j=1 λ2

j |xj |2)= χXT
(x).

Fix N ∈ N, the sequence of functions

gN,k : K
N → R

gN,k(x) = e
− 1

N

∑k
j=1 λ2

j |xj |2

converges to the function

gN(x) =
{

e− |||x|||2
N , x ∈ XT ,

0, x /∈ XT .

Since we have the bound |e− 1
N

∑k
j=1 λ2

j |xj |2 | � 1 for all k ∈ N, applying the Lebesgue dominated
convergence theorem, we conclude that:∫

KN

gN(x)dμ(x) = lim
k→∞

∫
KN

gN,k(x) dμ(x).

Also, {gN(x)}N∈N is an increasing sequence of non-negative functions converging to χXT
(x).

From the monotone convergence theorem we obtain:∫
KN

χXT
(x) dμ(x) = lim

N→∞

∫
KN

gN(x)dμ(x) = lim
N→∞

(
lim

k→∞

∫
KN

gN,k(x) dμ(x)

)
.

Since gN,k are cylinder functions, these integrals are computed as

lim
N→∞

(
lim

k→∞

∫
Kk

gN,k(x) dμk(x)

)
= lim

N→∞

(
lim

k→∞

k∏
j=1

∫
K

e
−λ2

j |xj |2/N
dμ1(xj )

)
.

Since t �→ e
−λ2

j t/N is a convex function, from Jensen inequality we have∫
K

e
−λ2

j |xj |2/N
dμ1(xj ) � e

−λ2
j

∫
K

|xj |2 dμ1(xj )/N = e
−λ2

j σ 2/N
.

Therefore,
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lim
N→∞

(
lim

k→∞

∫
Kk

gN,k(x) dμk(x)

)
� lim

N→∞

(
lim

k→∞

k∏
j=1

e
−λ2

j σ 2/N

)
= 1.

Consequently, μ(XT ) = 1 = μ(KN). �
Proof of Theorem 10. First, we prove the equivalence between (i) and (ii). Let XT be a stan-
dard full subspace such that

∑
i1�N1,...,ik�Nk

ai1,...,ikXi1 · · ·Xik converges in XT to a polynomial

P̃ as N1, . . . ,Nk → ∞. By the polynomial Banach–Steinhaus theorem, P̃ is a continuous k-
homogeneous polynomial on XT .

Let us define on T̃ (XT ) ⊂ �2 the following polynomial g(T̃ x) = P̃ (x). Since

∣∣g(y)
∣∣= ∣∣g(T̃ x)

∣∣= ∣∣P̃ (x)
∣∣� ‖P̃ ‖|||x|||k = ‖P̃ ‖‖T̃ x‖k

�2
= ‖P̃ ‖‖y‖k

�2
,

we can continuously extend g to �2, preserving its norm.
Then, P̃ = g ◦ T̃ , and we can define P : �2 → C by P = g ◦ T̃ ◦ i. Since T̃ ◦ i = T and

the Hilbert–Schmidt operators on �2 are absolutely 2-summing, it follows that P = g ◦ T is
2-dominated.

Conversely, being P : �2 → C 2-dominated, by [17, Theorem 14], there exist a regular Borel
probability measure μ on (B�2 ,w

∗) and a k-homogeneous polynomial Q : L2(μ) → C such that
the following diagram commutes:

�2
P

iX

C

C(B�2 ,w∗)
j2

L2(μ)

Q

The operator j2 is absolutely 2-summing and so is j2 ◦iX . We can identify the image j2 ◦iX(�2) ⊂
L2(μ) with �2 and thus we have an injective Hilbert–Schmidt operator T : �2 → �2 that verifies
P = Q|�2 ◦ T . To see that the series converges in XT we have to show that there exists a contin-
uous k-homogeneous polynomial P̃ : XT → C that coincides with P in X0. Let P̃ = Q|�2 ◦ T̃ .
From the following inequality

∣∣P̃ (x)
∣∣= ∣∣Q(T̃ x)

∣∣� ‖Q‖‖T̃ x‖k � ‖Q‖|||x|||k,

the result follows.
Using polarization formula it is clear that (i) implies (iii). That (iii) implies (iv) follows just

as the implication from (i) to (ii). By [17, Theorem 6], (ii) and (iv) are equivalent, and this ends
the proof. �
Proof of Theorem 15. Since any r-dominated polynomials is also r ′-dominated for any r ′ > r ,
we can assume r � n. Take {Xi}i∈N a sequence of independent standard complex gaussian vari-
ables and put Zn = (X1, . . . ,Xn,0, . . .). For each n ∈ N we can use Khintchine’s inequality with
p = r � 1 to obtain:
k
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[
n∑

i1,...,ik=1

|ai1,...,ik |2
] 1

2

� Ak,p

[
E
(∣∣P (

Zn
)∣∣p)] 1

p

� Ak,p‖P ‖r-dom

[
E

[[ ∫
BE′

∣∣〈x′,Zn
〉∣∣r dμ

(
x′)] kp

r
]] 1

p

= Ak,p‖P ‖r-dom

[
E

( ∫
BE′

∣∣〈x′,Zn
〉∣∣r dμ

(
x′))] 1

p

= Ak,p‖P ‖r-dom

[ ∫
BE′

E
(∣∣〈x′,Zn

〉∣∣r)dμ
(
x′)] 1

p

= Ak,p‖P ‖r-domE
(|X1|r

) 1
p

[ ∫
BE′

∥∥x′∥∥r

�2
dμ

(
x′)] 1

p

� Ak,p‖P ‖r-domE
(|X1|r

) 1
p
∥∥i′ : E′ → �2

∥∥r/p
.

Since the last bound is independent of n, the result follows. �
Acknowledgments

The authors wish to thank Inés Armendáriz, Marcela Svarc and Pablo Groisman for helpful
conversations and the anonymous referee for his/her suggestions that improved the presentation
of the article.

References

[1] Daniel Carando, Verónica Dimant, Extension of polynomials and John’s theorem for symmetric tensor products,
Proc. Amer. Math. Soc. 135 (6) (2007) 1769–1773 (electronic).

[2] Alejandro de Acosta, A decoupling inequality for multilinear functions of stable vectors, Probab. Math. Statist. 8
(1987) 71–76.

[3] Victor H. de la Peña, Decoupling inequalities: a second generation of martingale inequalities, in: Probability To-
wards 2000, New York, 1995, in: Lecture Notes in Statist., vol. 128, Springer, New York, 1998, pp. 151–164.

[4] Victor H. de la Peña, Stephen J. Montgomery-Smith, Jerzy Szulga, Contraction and decoupling inequalities for
multilinear forms and U -statistics, Ann. Probab. 22 (4) (1994) 1745–1765.

[5] Andreas Defant, Klaus Floret, Tensor Norms and Operator Ideals, North-Holland Math. Stud., vol. 176, North-
Holland, Amsterdam, 1993, xi, 566 pp.

[6] Seán Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer Monogr. Math., Springer, London, 1999,
xv, 543 pp., DM 179.00.

[7] Thomas A.W. Dwyer, Partial differential equations in generalized Fischer spaces for Hilbert–Schmidt holomorphy
type, PhD thesis, University of Maryland, 1971.

[8] Victor Goodman, A divergence theorem for Hilbert space, Trans. Amer. Math. Soc. 164 (1972) 411–426.
[9] Leonard Gross, Abstract Wiener spaces, in: Proc. Fifth Berkeley Sympos. Math. Statist. and Probability, vol. II:

Contributions to Probability Theory, Berkeley, CA, 1965/1966, Univ. California Press, Berkeley, CA, 1967, pp. 31–
42 (Part 1).

[10] Hui Hsiung Kuo, Gaussian Measures in Banach Spaces, Lecture Notes in Math., vol. 463, Springer-Verlag, Berlin,
1975.



D. Carando et al. / Journal of Functional Analysis 261 (2011) 2135–2163 2163
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