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In this work we study the sequence of variational eigenvalues of
a system of resonant type involving p- and q-Laplacians on Ω ⊂
R

N , with a coupling term depending on two parameters α and β

satisfying α/p + β/q = 1. We show that the order of growth of the

kth eigenvalue depends on α + β , λk = O (k
α+β

N ).
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1. Introduction

This paper is devoted to the study of the asymptotic behavior of eigenvalues of resonant quasilin-
ear systems

{−�pu = λα|u|α−2u|v|β
−�q v = λβ|u|α |v|β−2 v

in Ω, (1.1)

with Dirichlet boundary condition
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u(x) = v(x) = 0 on ∂Ω. (1.2)

Here, Ω ⊂ R
N is a bounded domain with smooth boundary ∂Ω , the s-Laplace operator is �su =

div(|∇u|s−2∇u), the exponents satisfy 1 < p,q < +∞, and the positive parameters α,β satisfy

α

p
+ β

q
= 1. (1.3)

The study of resonant systems has deserved a great deal of attention in recent years, and we may
cite the works of Boccardo and de Figueiredo [5], Manásevich and Mawhin [24], Felmer, Manásevich
and de Thèlin [16], Stavrakakis and Zographopoulos [26], among several others.

In several applications, such as bifurcation problems, anti-maximum principles, and existence or
non-existence of solutions (see, for example, [4,14,16,21,26–28]) it is desirable to have precise bounds
on the eigenvalues. In general this information is not well understood for elliptic systems, except for
the first or principal eigenvalue. Several properties of this first eigenvalue were analyzed (existence,
uniqueness, positivity, and isolation in bounded or unbounded domains, with different boundary con-
ditions and with or without weights) and we refer the interested reader to [1,12,17,28] among others.

Let us recall briefly that the existence of a sequence of variational eigenvalues for problem
(1.1)–(1.2) was proved in [10], and the values λk are defined as

λk := inf
C∈Ck

sup
(u,v)∈C

1
p

∫
Ω

|∇u|p dx + 1
q

∫
Ω

|∇v|q dx∫
Ω

|u|α |v|β dx
,

where Ck is the class of compact symmetric (C = −C ) subsets of W 1,p
0 (Ω) × W 1,q

0 (Ω) of (Krasnosel-
skii) genus greater than or equal to k.

Throughout this work, the eigenvalues are counted repeated according to their multiplicity. We
say that λk has multiplicity r if λk−1 < λk = λk+1 = · · · = λk+r−1 < λk+r . In this case, it is a well-know
fact that the set of eigenfunctions corresponding to λk has genus greater than or equal to r (see, for
instance, [23]).

In the case of a single equation the existence of a sequence of variational eigenvalues together
with the correct order of growth for these eigenvalues was first obtained by Garcia Azorero and Peral
Alonso in [23]. The constants in the asymptotic behavior were improved by Friedlander in [22]. Let us
note that for the one-dimensional problem, these bounds can be refined, see [19,20].

As for elliptic systems, the asymptotic growth of the eigenvalues is less understood even in the
linear case. We may cite here the work of Protter [25], and also the works of Cantrell and Cosner
[6–8] were lower bounds for the first eigenvalue were obtained. The exception for the lack of results
in this direction comes from linear and nonlinear elasticity theory (see the survey of Antman [3]).

For nonlinear elliptic systems, up to our knowledge, the first work where this problem was ad-
dressed was [11] where the authors obtained a generalization of the Lyapunov inequality together
with an upper bound of the variational eigenvalues in terms of the ones of a single p-Laplace equation
for the one-dimensional case. Later, in [18] we obtained lower and upper bounds for the eigenvalues
of problem (1.1)–(1.2) in terms of the eigenvalues of a single p-Laplace and q-Laplace equations in
any dimension N � 1. More precisely, for each k we prove that

c

(
k

|Ω|
) q

N

� λk � C

(
k

|Ω|
) p

N

for suitable positive constants c, C depending on p and q.
We refer the interested reader to the introductions of [11,18] for more information and references

about the eigenvalues of quasilinear elliptic equations and resonant systems.
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However, our previous bounds fail to reflect the coupling strength of the system which is given by
the parameters α and β . Formally, by taking α = p and β = 0, we obtain a single p-Laplace equation
replacing the system, namely

−�pu = λp|u|p−2u,

and similarly, for α = 0 and β = q we have

−�q v = λq|v|q−2 v.

Hence, the order of growth of our upper (resp., lower) bound given in [18] is sharp for the case α = p
(resp., β = q), since coincides with the true upper (resp., lower) order of growth of the eigenvalues
(see [23]). On the other hand, both orders do not hold simultaneously even for those limit cases.

We can suspect that there exists a smooth transition for the order of growth of the eigenvalues
between both limiting cases, and the main result of this work is to prove it. Namely, our main theorem
is

Theorem 1.1. Let {λk}k∈N be the sequence of variational eigenvalues of problem (1.1)–(1.2). Then, there exist
positive constants c < C depending on p, q, α, β and N, such that

c

(
k

|Ω|
) α+β

N

� λk � C

(
k

|Ω|
) α+β

N

when k → ∞.

Observe that if one considers linear operators, or even the same p-Laplace operator in both
equations (i.e. p = q), the coupling parameters α and β are not reflected in the asymptotics of the
eigenvalues since α + β = p in this case. We believe that this fact may be the reason why this phe-
nomenon was not discovered earlier.

The proof of Theorem 1.1 follows directly from Weyl-type bounds for the spectral counting function
N(λ) which gives the number of eigenvalues less than a given value, that is

N(λ) = #{k: λk � λ}.

Theorem 1.1 is equivalent to the following asymptotic bound for N(λ):

C−1λ
N

α+β � N(λ) � c−1λ
N

α+β .

Up to our knowledge, this is the first case in the literature where the coupling parameters of
an elliptic system appear explicitly modifying the power on the asymptotic order of growth of the
eigenvalues.

1.1. Organization of the paper

The paper is organized as follows. In Section 2 we review some facts about the eigenvalue problem
for the single s-Laplace equation in one space dimension

−(∣∣u′∣∣s−2
u′)′ = |u|s−2u,

which can be found, for example, in [13], or [15].
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In Section 3 we prove Theorem 1.1 by using a scaling argument as in [22]. The main drawback of
this approach is the fact that the constants on the asymptotic expansion remain unknown since they
depend on the first Dirichlet eigenvalue and the second Neumann eigenvalue of problem (1.1)–(1.2)
when Ω is the unit cube Q 1.

So, we are left with the problem of finding lower and upper bounds for those eigenvalues, which
is a problem of independent interest. Thus, we consider the one-dimensional problem

{
−(∣∣u′(x)

∣∣p−2
u′(x)

)′ = λα|u|α−2u|v|β,

−(∣∣v ′(x)
∣∣q−2

v ′(x)
)′ = λβ|u|α|v|β−2 v

(1.4)

on the interval (a,b), and we will focus on the Dirichlet boundary condition.
In Section 4 we prove the following lower bound for the first Dirichlet eigenvalue λ1(p,q) of the

one-dimensional problem (1.4):

Theorem 1.2. Let Λ1(s) be the first Dirichlet eigenvalue of

−(∣∣ϕ′∣∣s−2
ϕ′)′ = Λ|ϕ|s−2ϕ

on (a,b). Then,

(
α

α
p β

β
q
)−1

(
2

πα+β

)α+β
Λ1(α + β)

α + β − 1
� λ1(p,q).

The proof follows by using the Lyapunov inequality obtained in [11].
In [11] we obtained an upper bound of the first eigenvalue of the one-dimensional problem (1.4) in

terms of the first eigenvalue of the single p-Laplace equation. Moreover, upper bounds were obtained
for all the variational eigenvalues, namely

λk � Λk(p)

p

[
1 +

(
p

q

)q+1(
Λk(p)

)(q−p)/p
]
. (1.5)

Here, Λk(p) stands for the kth eigenvalue of the p-Laplace with Dirichlet boundary conditions. Let us
note that (1.5) holds for the one-dimensional problem. In the N-dimensional case, (1.5) holds only for
the first eigenvalue.

In this paper we improve this explicit upper bound for the first eigenvalue, and we use it to obtain
asymptotic bounds for the kth eigenvalue of a system in Ω ⊂ R

N depending on the eigenvalues of the
(α + β)-Laplace operator.

Section 5 is devoted to the proof of the following upper bound of the first Dirichlet eigenvalue of
problem (1.4):

Theorem 1.3. Assume q < p. Then, with the notation of Theorem 1.2, we have

λ1(p,q) � Λ1(α + β)

[
1

p
+ 1

q

(
πα+β

(α + β − 1)
∫ πα+β

0 sinα+β
α+β(t)dt

)1− q
α+β

]
.

Here sins(x) is defined implicitly as

x =
sins(x)∫

dt

(1 − ts)1/s
0
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and πs is given by

πs = 2

1∫
0

dt

(1 − ts)1/s
.

See Section 2 for more details and see also the paper [13].
For the N-dimensional problem we prove the following

Theorem 1.4. Let λ1(p,q) be the first eigenvalue of (1.1) in the unit cube Q 1 ⊂ R
N . Assume again that q < p.

Then we have the explicit upper bound

λ1(p,q) � C

(
N(s − 1)

p
π

p
s + (s − 1)q/sπ

q
s

( 1∫
0

∣∣φs(t)
∣∣s

dt

)−N(1−q/s))
,

where s = α + β , C = max{1; N(p−2)/2; N(q−2)/2} and φs(t) is the first eigenfunction of the one-dimensional
s-Laplace operator with Dirichlet boundary conditions in the unit interval, that is

φs(t) = sins(πst).

Finally, in Section 6 we close this paper with some remarks on possible improvements on our
result and some open questions.

2. Some known facts

In this section we recall some previous results which will be needed in the rest of the paper.

2.1. Variational setting

The variational characterization of eigenvalues follows from the abstract theory developed by
H. Amann (see [2]). In [15] the authors showed the existence of infinitely many eigenpairs, i.e.
(u, v) ∈ W 1,p

0 (Ω) × W 1,q
0 (Ω) and λ ∈ R such that

∫
Ω

|∇u|p−2∇u∇ϕ + |∇v|q−2∇v∇ψ dx = λ

∫
Ω

(
α|u|α−2uφ|v|β + β|u|α|v|β−2 vψ

)
dx

for any test-function pair (φ,ψ) ∈ W 1,p
0 (Ω) × W 1,q

0 (Ω).
It is convenient to work with the variational characterization of the eigenvalues, defined through

the Rayleigh quotient,

λk = inf
C∈Ck

sup
(u,v)∈C

1
p

∫
Ω

|∇u|p dx + 1
q

∫
Ω

|∇v|q dx∫
Ω

|u|α |v|β dx
, (2.1)

where Ck is the class of compact symmetric (C = −C ) subsets of W 1,p
0 (Ω) × W 1,q

0 (Ω) of (Krasnosel-
skii) genus greater than or equal to k.
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2.2. One-dimensional case

For the one-dimensional s-Laplace operator in Ω = (0, L)

−(∣∣u′∣∣s−2
u′)′ = Λ|u|s−2u, (2.2)

with Dirichlet boundary conditions, we have

Λk(s) = inf
C∈Ck

sup
u∈C

∫ b
a |u′|s dx∫ b
a |u|s dx

, (2.3)

with u ∈ W 1,s
0 (0, L).

Here, all the eigenvalues and eigenfunctions can be found explicitly (see [15]):

Theorem 2.1. (See Del Pino, Drábek and Manásevich [13].) The eigenvalues Λk(s) and eigenfunctions us,k of
Eq. (2.2) on the interval [0, L] are given by

Λk(s) = (s − 1)
π s

s ks

Ls
,

us,k(x) = sins(πskx/L).

Remark 2.2. It was proved in [15] that they coincide with the variational eigenvalues given by
Eq. (2.3). However, let us observe that the notation is different in both papers.

The function sins(x) is the solution of the initial value problem

−(∣∣u′∣∣s−2
u′)′ = (s − 1)|u|s−2u,

u(0) = 0, u′(0) = 1,

and is defined implicitly as

x =
sins(x)∫

0

dt

(1 − ts)1/s
.

Moreover, its first zero is πs , given by

πs = 2

1∫
0

dt

(1 − ts)1/s
.

Let us note that both sins(x) and sin′
s(x) satisfy

∣∣sins(x)
∣∣ � 1,

∣∣sin′
s(x)

∣∣ � 1,

due to the Pythagorean-like identity

∣∣sins(x)
∣∣s + ∣∣sin′

s(x)
∣∣s = 1. (2.4)
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Finally, let us observe that the following integral is a constant depending only on s:

πs∫
0

sins
s(t)dt = K (s).

2.3. The spectral counting function

Given the sequence {λk}k∈N , we introduce the spectral counting function N(λ) defined as

N(λ) = #{k: λk � λ}.

To avoid confusion, we will use Nsys(λ) or Ns(λ) to denote the eigenvalue counting functions of
the system and the s-Laplace respectively. If necessary, we will write N(λ,Ω) to denote explicitly the
set Ω where the eigenvalue problem is considered, and even N D(λ) or N N (λ) to indicate the Dirichlet
and Neumann boundary conditions.

The main tool in order to obtain the asymptotic expansion of N(λ) is the classical Dirichlet–
Neumann bracketing introduced by Courant [9] in a version due to [19]:

Proposition 2.3. (See [19, Theorem 2.1].) Let U1, U2 ∈ R
N be disjoint open sets such that (U1 ∪ U2)

int = U
and |U \ U1 ∪ U2| = 0. Then,

N D(λ, U1) + N D(λ, U2) = N D(λ, U1 ∪ U2)

� N D(λ, U )

� N N(λ, U )

� N N(λ, U1 ∪ U2)

= N N(λ, U1) + N N(λ, U2).

3. Estimates for the spectral counting function

Let us begin with the following scaling argument. We denote by Q 1 the unit cube in R
N and by

Q t the scaled cube of side length t .

Lemma 3.1. Let λ1
1(p,q) (resp., λt

1(p,q)) be the first Dirichlet eigenvalue of problem (1.1) when Ω = Q 1 (resp.,
Ω = Q t ). Then,

tα+βλt
1(p,q) = λ1

1(p,q).

Proof. First, observe that given any pair (u, v) ∈ W 1,p
0 (Q 1) × W 1,q

0 (Q 1), if we define

ut = tu

(
x

t

)
, vt = tv

(
x

t

)
,

then, (ut , vt) ∈ W 1,p
0 (Q t) × W 1,q

0 (Q t). Also, it is clear that (u, v) 
→ (ut , vt) is a bijection between

W 1,p
0 (Q 1) × W 1,q

0 (Q 1) and W 1,p
0 (Q t) × W 1,q

0 (Q t).
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Now, by simple change of variables, we get

1
p

∫
Q t

|∇ut |p dx + 1
q

∫
Q t

|∇vt |q dx∫
Q t

|ut |α|vt |β dx
= 1

tα+β

1
p

∫
Q 1

|∇u|p dx + 1
q

∫
Q 1

|∇v|q dx∫
Q 1

|u|α |v|β dx
.

Finally, the variational characterization of the first eigenvalue gives the desired result, namely

λt
1(p,q) = λ1

1(p,q)

tα+β
.

This finishes the proof. �
Remark 3.2. The argument used in the proof shows that if (u, v) is an eigenfunction associated to
λ1

1(p,q) then (ut , vt) is an eigenfunction associated to λt
1(p,q).

By applying the very same argument we obtain the following relation between the second Neu-
mann eigenvalues (recall that the first Neumann eigenvalue is μt

1(p,q) = 0).

Lemma 3.3. Let μ1
2(p,q) (resp., μt

2(p,q)) be the second Neumann eigenvalue of problem (1.1) when Ω = Q 1
(resp., Ω = Q t ). Then,

μt
2(p,q) = μ1

2(p,q)

tα+β
.

Proof. The proof follows exactly as the one in Lemma 3.1 and the variational characterization of the
second Neumann eigenvalue, namely

μt
2(p,q) = inf

Ct∈C2
sup

(ut ,vt )∈Ct

1
p

∫
Ω

|∇ut |p dx + 1
q

∫
Ω

|∇vt |q dx∫
Ω

|ut |α |vt |β dx
. (3.1)

The proof is now completed. �
Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. For any λ fixed, we take a lattice of cubes of side length t � 1 in R
N with t

depending on λ.
First we derive a lower bound for N(λ) (equivalently, an upper bound for λk). From Lemma 3.1,

λt
1(p,q) = t−(α+β)λ1

1(p,q), and taking

t =
(

λ

λ1
1(p,q)

)− 1
α+β

,

we have

λt
1(p,q) = λ.

Hence, since the first eigenvalue λt
1(p,q) has multiplicity two (observe that (u, v) is an eigenfunction

if and only if (u,−v) is an eigenfunction), we have N D(λ, Q t) = 2.
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By using the Dirichlet Neumann bracketing, a lower bound for N(λ) is given by 2M , where M is
the number of cubes of the lattice contained in Ω . Since

tN M → |Ω|
when t → 0, we have

N(λ) � 2M ∼ 2
|Ω|
tN

= 2|Ω|
(

λ

λ1
1(p,q)

) N
α+β

.

The upper bound for λk(p,q) follows since

k = N
(
λk(p,q)

)
� 2|Ω|

λ1
1(p,q)

N
α+β

λk(p,q)
N

α+β .

Let us find an upper bound for N(λ). We use the bound for the second Neumann eigenvalue
proved in Lemma 3.3, μt

2(p,q) = t−(α+β)μ1
2(p,q). Hence, taking

t =
(

cλ

μ1
2(p,q)

)− 1
α+β

,

for any c > 1, we have

μt
2(p,q) = cλ > λ.

Therefore, for each cube we have N N (λ, Q t) = 1.
By using again the Dirichlet Neumann bracketing, an upper bound for N(λ) is given by M , where

M is the number of cubes covering Ω . As before, we have

N(λ) � M ∼ |Ω|
tN

= |Ω|
(

cλ

μ1
2(p,q)

) N
α+β

.

The lower bound for λk(p,q) follows since

k = N
(
λk(p,q)

)
� |Ω|

μ1
2(p,q)

N
α+β

(
cλk(p,q)

) N
α+β .

The theorem is proved. �
4. A lower bound for the first eigenvalue

In this section we restrict ourselves to the one-dimensional case and prove Theorem 1.2. For that
purpose, we use the following Lyapunov inequality for systems proved in [11]:

Theorem 4.1. (See [11, Theorem 1.5].) Let us assume that there exists a positive solution of the system

{
−(∣∣u′(x)

∣∣p−2
u′(x)

)′ = f (x)|u|α−2u|v|β,

−(∣∣v ′(x)
∣∣q−2

v ′(x)
)′ = g(x)|u|α |v|β−2 v
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on the interval (a,b), with Dirichlet boundary conditions. Then, we have that:

2α+β � (b − a)
α
p′ + β

q′
( b∫

a

f (x)dx

) α
p
( b∫

a

g(x)dx

) β
q

. (4.1)

This result gives Theorem 1.2 after replacing f (x) = αλ1(p,q) and g(x) = βλ1(p,q). In fact, we
have

2α+β � α
α
p β

β
q (b − a)

α
p′ + β

q′ + α
p + β

q λ1(p,q), (4.2)

and let us note that

α

p′ + β

q′ + α

p
+ β

q
= α

(
1

p
+ 1

p′

)
+ β

(
1

q
+ 1

q′

)
= α + β.

So,

2α+β � α
α
p β

β
q (b − a)α+βλ1(p,q).

The desired result follows from this inequality and the explicit formula for Λ1(α + β) in Theo-
rem 2.1, since:

2α+β

(b − a)α+β

α + β − 1

α + β − 1

(
πα+β

πα+β

)α+β

= 1

α + β − 1

(
2

πα+β

)α+β

Λ1(α + β),

and therefore

1

α + β − 1

(
2

πα+β

)α+β

Λ1(α + β) � α
α
p β

β
q λ1(p,q).

This completes the proof of Theorem 1.2.

5. An upper bound for the first eigenvalue

In this section, we first consider the one-dimensional case and prove Theorem 1.3. Then, we extend
the bound to the n-dimensional case by means of comparing the eigenvalue of the p-Laplacian with
that of the pseudo p-Laplacian.

For the upper bound of the first eigenvalue, we need to improve the bound given in [11].
Given the variational characterization of the first eigenvalue,

λ1(p,q) �
1
p

∫ L
0 |u′|p dx + 1

q

∫ L
0 |v ′|q dx∫ L

0 |u|α |v|β dx
.

We denote s = α + β and choose u = v = ϕ1, which is a multiple of the first Dirichlet eigenfunction
of the single equation

−(∣∣w ′∣∣s−2
w ′)′ = Λ|w|s−2 w,

with Dirichlet boundary conditions, that is
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ϕ1(x) = L

πs
sins(πsx/L).

Due to the Pythagorean-like identity (2.4) we have

∣∣ϕ′
1(x)

∣∣ � 1.

So, taking u = v = ϕ1 in the Rayleigh quotient we get

λ1(p,q) �
1
p

∫ L
0 |ϕ′

1|p dx + 1
q

∫ L
0 |ϕ′

1|q dx∫ L
0 |ϕ1|s dx

.

Now, as q < p we have that s = α + β < p. Moreover, as |ϕ′
1(x)| � 1, the inequality

∣∣ϕ′
1(x)

∣∣p �
∣∣ϕ′

1(x)
∣∣s

holds. On the other hand, by Hölder’s inequality we obtain

L∫
0

∣∣ϕ′
1

∣∣q
dx �

( L∫
0

∣∣ϕ′
1

∣∣s
dx

) q
s

L1− q
s .

Collecting all these facts, we have

λ1(p,q) � 1

p

∫ L
0

∣∣ϕ′
1

∣∣s
dx∫ L

0

∣∣ϕ1
∣∣s

dx
+ 1

q

(
∫ L

0 |ϕ′
1|s dx)

q
s L1− q

s∫ L
0 |ϕ1|s dx

.

� 1

p
Λ1(s) + 1

q
Λ1(s)

q
s

L1− q
s

(
∫ L

0 |ϕ1|s dx)1− q
s

.

Now we need an upper bound for

(
L∫ L

0 |ϕ1|s dx

)1− q
s

.

Indeed, we can compute the integral explicitly, obtaining

L∫
0

|ϕ1|s dx =
(

L

πs

)s L∫
0

sins
s(πsx/L)dx

=
(

L

πs

)s+1 πs∫
0

sins
s(t)dt

=
(

L

πs

)s+1

K (s).
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Then,

λ1(p,q) � 1

p
Λ1(s) + 1

q
Λ1(s)

q
s

(
π s+1

s

Ls K (s)

)1− q
s

.

Now, by using the explicit formula for Λ1(s), we have

λ1(p,q) � Λ1(s)

[
1

p
+ 1

q

(
πs

(s − 1)K (s)

)1− q
s
]
.

The proof of Theorem 1.3 is finished.
Now we go back to the N-dimensional problem and try to find an explicit upper bound for the

first eigenvalue λ1(p,q) in the unit cube Q 1. That is, we prove Theorem 1.4.
In order to do this, we recall the pseudo p-Laplace operator

�̂pu =
N∑

i=i

(|uxi |p−2uxi

)
xi

and consider the eigenvalue problem associated to �̂p

ν1 = inf
(u,v)∈W 1,p

0 (Q 1)×W 1,q
0 (Q 1)

∫
Q 1

1
p |∇u|p

p + 1
q |∇v|qq dx∫

Q 1
|u|α |v|β dx

,

where |x|s
s = ∑N

i=1 |xi |s .
By the equivalence of norms

|x|2 � N(s−2)/2|x|s if p > 2,

|x|2 � |x|s if 1 < p � 2,

we have that λ1(p,q) � Cν1, where C = max{1; N(p−2)/2; N(q−2)/2}. So we need to bound ν1.
Recall that the first eigenfunction of

−�̂su = ν1|u|s−2u in Q 1

with Dirichlet boundary conditions can be computed explicitly by separation of variables.
In fact, let φs(x) = sins(πsx) be the first eigenfunction of the one-dimensional s-Laplace operator

with Dirichlet boundary conditions in the interval (0,1), then

ws(x) =
n∏

i=1

φs(xi)

is the first eigenfunction of the N-dimensional pseudo s-Laplacian in the cube Q 1.
Now, as in the one-dimensional case, we use (ws, ws), with s = α + β as a test function for ν1 to

get

ν1 �
N
p (

∫ 1
0 |φs(t)|p dt)N−1

∫ 1
0 |φ′

s(t)|p dt

(
∫ 1 |φ (t)|s dt)N

+
N
q (

∫ 1
0 |φs(t)|q dt)N−1

∫ 1
0 |φ′

s(t)|q dt

(
∫ 1 |φ (t)|s dt)N

.

0 s 0 s
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By the Pythagorean-like identity

∣∣sins(t)
∣∣s + ∣∣sin′

s(t)
∣∣s = 1

we conclude that | sins(t)|, | sin′
s(t)| � 1.

Also, as q < s < p we get |φs(t)|p � |φs(t)|s and |φ′
s(t)|p � π

p−s
s |φ′

s(t)|s .
So,

ν1 � N

p
π

p−s
s (s − 1)π s

s +
N
q (

∫ 1
0 |φs(t)|q dt)N−1

∫ 1
0 |φ′

s(t)|q dt

(
∫ 1

0 |φs(t)|s dt)N

= N(s − 1)

p
π

p
s +

N
q (

∫ 1
0 |φs(t)|q dt)N−1

∫ 1
0 |φ′

s(t)|q dt

(
∫ 1

0 |φs(t)|s dt)N
.

To bound the other term, we use Hölder’s inequality to get

( 1∫
0

∣∣φs(t)
∣∣q

dt

)N−1

�
( 1∫

0

∣∣φs(t)
∣∣s

dt

)(N−1)q/s

,

1∫
0

∣∣φ′
s(t)

∣∣q
dt �

( 1∫
0

∣∣φ′
s(t)

∣∣s
dt

)q/s

=
(

(s − 1)π s
s

1∫
0

∣∣φs(t)
∣∣s

dt

)q/s

.

So,

ν1 � N(s − 1)

p
π

p
s + (s − 1)q/sπ

q
s

( 1∫
0

∣∣φs(t)
∣∣s

dt

)−N(1−q/s)

which is an explicit bound for ν1.

6. An explicit lower bound on the main theorem

In Section 3 we obtained the following asymptotic bounds for the spectral counting function:

2|Ω|
λ1

1(p,q)
N

α+β

λ
N

α+β � N(λ) � |Ω|
μ1

2(p,q)
N

α+β

(cλ)
N

α+β .

An explicit lower bound was given in the previous section by means of the explicit upper bound
for λ1

1(p,q).
Although the previous formula holds for any constant c > 1, it is convenient to take c = 1 + λ−1,

since in this case we can rewrite the upper bound as

2|Ω|
μ1

2(p,q)
N

α+β

λ
N

α+β + O (1).

We conjecture that a stronger result holds, namely,

N(λ) = c(Ω,α,β)λ
N

α+β + o
(
λ

N
α+β

)
.
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Indeed, the proof follows immediately if it is true that

λ1
1(p,q) = 2μ1

2(p,q).

For a single equation, the factor 2 does not enter since the first eigenvalue is simple. In this case, the
equality λ1 = μ2 holds for a single equation in dimension one. Up to our knowledge, it is not known
for systems, nor in the case N > 1 even for a single p-Laplace equation.
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