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Abstract

As interactive voice response systems become more prevalent and provide increasingly more complex functionality, it becomes
clear that the challenges facing such systems are not solely in their synthesis and recognition capabilities. Issues such as the
coordination of turn exchanges between system and user also play an important role in system usability. In particular, both systems
and users have difficulty determining when the other is taking or relinquishing the turn. In this paper, we seek to identify turn-taking
cues correlated with human–human turn exchanges which are automatically computable. We compare the presence of potential
prosodic, acoustic, and lexico-syntactic turn-yielding cues in prosodic phrases preceding turn changes (smooth switches) vs. turn
retentions (holds) vs. backchannels in the Columbia Games Corpus, a large corpus of task-oriented dialogues, to determine which
features reliably distinguish between these three. We identify seven turn-yielding cues, all of which can be extracted automatically,
for future use in turn generation and recognition in interactive voice response (IVR) systems. Testing Duncan’s (1972) hypothesis
that these turn-yielding cues are linearly correlated with the occurrence of turn-taking attempts, we further demonstrate that, the
greater the number of turn-yielding cues that are present, the greater the likelihood that a turn change will occur. We also identify
six cues that precede backchannels, which will also be useful for IVR backchannel generation and recognition; these cues correlate
with backchannel occurrence in a quadratic manner. We find similar results for overlapping and for non-overlapping speech.
© 2010 Elsevier Ltd. All rights reserved.
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1. Introduction

Interactions with state-of-the-art interactive voice response (IVR) systems are often described by users as “con-
fusing” and even “intimidating”. As speech technology continues to improve, it is becoming clear that such negative
judgments are not due solely to errors in the speech recognition and synthesis components. Rather, coordination prob-
lems in the exchange of speaking turns between system and user are a plausible explanation for part of the deficient
user experience (Ward et al., 2005; Raux et al., 2006).

Currently the most common method for determining when the user is willing to yield the conversational floor consists
in waiting for a silence longer than a prespecified threshold, typically ranging from 0.5 to 1 s (Ferrer et al., 2002).
However, this strategy is rarely used by humans, who rely instead on cues from sources such as syntax, acoustics and
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prosody to anticipate turn transitions (Yngve, 1970). If such turn-yielding cues can be modeled and incorporated
in IVR systems, it should be possible to make faster, more accurate turn-taking decisions, thus leading to a more fluent
interaction. Additionally, a better understanding of the mechanics of turn-taking can be used to inform the output of
IVR systems to produce turn-yielding cues at the end of the system’s turn and to avoid producing such cues when the
system intends to continue the turn.

Another source of difficulty for state-of-the-art IVR systems are backchannel responses uttered by the user.
Backchannels are short expressions, such as uh-huh or mm-hm, uttered by listeners to convey that they are pay-
ing attention, and to encourage the speaker to continue (Duncan, 1972; Ward and Tsukahara, 2000). Particularly when
users are expected to provide large amounts of information, such as lists or long descriptions, the ability for systems
to produce backchannel responses should improve the coordination between the two parties, letting the user know that
the system is still attending. To achieve this, a system must first be able to detect points in the user’s input where it will
be appropriate to produce backchannels. We hypothesize that such points may be indicated by the user’s production of
backchannel-inviting cues, by which we mean simply indicators that a backchannel may felicitously be produced
by the system. Conversely, when the user utters a backchannel during a system turn, current IVR systems typically
interpret such input as a turn-taking attempt, or barge-in, thus leading the system to stop and listen—the opposite of
the user’s intention. Therefore, knowing when to interpret user input as a backchannel should also be a valuable tool
for IVR systems.

In this paper we provide new information on the mechanisms used in human–human conversation to signal the end of
a turn and to identify situations in which a backchannel is appropriate. We believe that such information will be useful for
designers of IVR systems, both for system output production and for user input recognition, in the following situations:

Q1. The system wants to keep the floor: how should it formulate its output to avoid an interruption from the user?
Q2. The system wants to keep the floor but to ensure that the user is paying attention: how should it produce output

encouraging the user to utter a backchannel?
Q3. The system is ready to yield the floor: how should it convey this to the user?
Q4. The user is speaking but pauses: how can the system decide whether the user is giving up the turn?
Q5. The user is speaking: how does the system decide whether and when to produce a backchannel as positive feedback

to the user?

In this paper, we examine potential turn-taking cues correlated with human–human turn exchanges which are
automatically computable. We compare acoustic, prosodic and lexico-syntactic features of pause-separated phrases
which precede turn changes, turn retentions, and backchannels from the interlocutor in overlapping and non-overlapping
speech to see which features best distinguish among these different situations. We also test Duncan’s (1972) often-
cited but as yet unverified hypothesis that turn-yielding cues are linearly correlated with the occurrence of turn-taking
attempts—i.e., the more turn-yielding cues that are present in a phrase, the more likely that phrase is to be followed
by a turn change. We examine the same question for backchannels.

In Section 2 we discuss previous work on modeling turn-taking and on end-of-turn detection. In Section 3 we
describe the corpus we use for our studies, the Columbia Games Corpus, a corpus of task-oriented human–human
dialogues. We describe the turn-yielding cues and the backchannel-inviting cues in non-overlapping speech that we
have identified as reliable cues in Sections 4 and 5. In Section 6 we extend this analysis to overlapping speech. We
conclude in Section 7 and discuss future research.

We note that, in examining features of phrases that precede turn changes, retentions, and backchannels, we make no
strong cognitive claims about speaker awareness that they are ‘signalling’ an end of turn or of listener awareness that
they are being ‘signalled’. Our goal is only to identify correlations between turn-taking behaviors and automatically
extractable features of human–human conversation which can be used to inform production and recognition in IVR
systems. However, we hope that our findings will also be of value in understanding some of the mechanisms of
human–human conversation.

2. Previous research on turn-taking

In influential work in conversational analysis, Sacks et al. (1974) present a characterization of turn-taking in conver-
sations between two or more persons. Based on their identification of fourteen “grossly apparent facts” about human
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Fig. 1. Examples of syntactic completion points, indicated by slashes. Taken from Ford and Thompson (1996, p. 144).

conversation, such as “speaker change recurs” or “one party talks at a time”, they propose a basic set of rules governing
turn allocation: at every transition-relevance place (TRP),

(a) if the current speaker (CS) selects a conversational partner as the next speaker, then such partner must speak next;
(b) if CS does not select the next speaker, then anyone may take the next turn;
(c) if no one else takes the next turn, then CS may take the next turn.

The authors do not provide a formal definition of TRPs, but conjecture that these tend to occur at syntactic “possible
completion points”, with intonation playing a decisive role.

More detailed discussion of the types of cues humans exploit for engaging in synchronized conversation has been
addressed extensively in subsequent decades. In a descriptive study of a face-to-face dialogue in American English,
Yngve (1970) observes that pausing in itself is not a turn-yielding signal, in clear opposition to the strategy used in
most of today’s IVR systems.

In a series of analyses of face-to-face American English conversations, Duncan (1972, 1973, 1974, 1975) and
Duncan and Fiske (1977) conjecture that speakers display complex signals at turn endings, composed of one or more
of six behavioral cues: (1) any phrase-final intonation other than a sustained, intermediate pitch level; (2) a drawl on
the final syllable of a terminal clause; (3) the termination of any hand gesticulation; (4) a stereotyped expression like
you know; (5) a drop in pitch and/or loudness in conjunction with such a stereotyped expression; (6) the completion of
a grammatical clause. He further proposes that the likelihood of a turn-taking attempt by a listener increases linearly
with the number of turn-yielding cues conjointly displayed. This work has been criticized for two reasons (Beattie,
1981; Cutler and Pearson, 1986). First, it lacks a formal, objective description of the cues observed; his data are
merely his own subjective impressions. Second, the robustness of its statistical analysis is questionable. For example,
while he reports a correlation of 0.96 (p < 0.01) between number of turn-yielding cues displayed and percentage of
interlocutor turn-taking attempts, this computation is based on a very small sample size. As few as nine instances of
the simultaneous display of five cues are reported; therefore, a small fluctuation in the data may change the results
substantially. Nonetheless, Duncan is the first to posit the existence of complex turn-yielding signals combined such
that, the more complex the signal, the higher the likelihood of a speaker change. This crucial finding has laid the
groundwork for a number of subsequent investigations.

In one such study, Ford and Thompson (1996) examine two of Duncan’s individual cues, grammatical completion
and intonation, and their correlation with speaker change in two naturally occurring conversations in American English.
They define grammatical completion in terms of syntactic completion points—those points at which an utterance
could be interpreted as syntactically complete “so far” in the discourse context, independent of intonation or pause (see
Fig. 1 for examples). For intonation, they consider a binary distinction between final (either rising or falling) or non-
final (all other) pitch contours. They find that syntactic completion points operate together with a rising or falling final
intonation as an important turn-yielding cue. Also, they show that, while almost all (98.8%) intonationally complete
utterances are also syntactically complete,1 only half (53.6%) of syntactically complete utterances are intonationally
complete, thus highlighting the prominent role played by intonation in marking discourse and dialogue structure.

Wennerstrom and Siegel (2003) enrich Ford and Thompson’s approach with a more precise definition of final
intonation based on the system developed by Pierrehumbert (1980), a predecessor of the ToBI transcription framework
(Pitrelli et al., 1994; Beckman and Hirschberg, 1994).2 They use six phrase-final intonational categories: high rise

1 Ford and Thompson use a perceptual definition of intonational unit by Du Bois et al. (1993): “a stretch of speech uttered under a single coherent
intonation contour”; and rely on acoustic, prosodic and timing cues to manually identify unit boundaries, independently of syntax.

2 See Section 3.3 for a full description of the ToBI framework.
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(H–H% in the ToBI system), low (L–L%), plateau (H–L%), low rise (L–H%), partial fall (also L–L%),3 and no
boundary. They find high rise intonation to be a strong cue of turn finality, with 67% of its occurrences coinciding with
turn shifts, followed by low, with 40%. The remaining four intonational categories strongly correlate with turn holds.
Additionally, Wennerstrom and Siegel analyze the interaction between intonation and Ford and Thompson’s syntactic
completion, and report similar findings.

A potential problem of observational studies such as the ones presented above is that they only collect indirect
evidence of turn-yielding cues, arising from the fact that conversational decisions are optional. A listener who intends
to let the speaker continue to hold the floor may choose not to act on turn-yielding cues displayed by the speaker.
Furthermore, when using corpora of spontaneous conversations, it is extremely difficult to obtain a balanced set of
utterances controlling for the diverse features under study; e.g., utterance pairs from the same speaker, with the same
syntactic and semantic meaning, but one half in turn-medial position and the other half in turn-final position. To address
these issues, there have been several production and perception experiments aimed at replicating in the laboratory the
turn-taking decisions made by speakers in normal conversation. In a typical production study, participants read or enact
fabricated dialogues with controlled target utterances; in a typical perception study, subjects classify a set of utterances
into turn-medial or turn-final according to the believed speaker’s intentions. These settings give the experimenter a
great amount of control over the experimental conditions.

For instance, Schaffer (1983) presents a perception study to compare non-visual turn-taking cues in face-to-face and
non-face-to-face conversations in American English. She reports that syntactic and lexical information appears to be
more useful to listeners than prosodic information in judging turn boundaries in both conditions. Also, listeners show a
great amount of variability in their perception of intonation as a turn-yielding cue. In a production and perception study
of turn-taking in British English, Cutler and Pearson (1986) obtain similar results: wide listener variability in perception
of intonation as a turn-yielding cue. They also find a slight tendency to characterize a phrase-final “downstep in pitch”
as a turn-yielding cue, and an “upstep in pitch” as a turn-holding cue (that is, a cue that typically prevents turn-taking
attempts from the listener). While this is contra Duncan’s hypothesis for American English, it is not surprising to find
differences between the two varieties in intonation.

In two perception experiments designed to study intonation and syntactic completion in British English turn-taking,
Wichmann and Caspers (2001) find only mild support for Duncan’s claim that both syntactic completion and anything
but a high level tone work as turn-yielding cues. Again, it is important to note that it is reasonable to expect different
dialects and cultures to have different turn-taking behaviors. Therefore, findings even for languages within the same
group, like British vs. American English, may differ substantially.

Recent perception studies in Swedish by Hjalmarsson (2009) indicate the existence of an additive effect of turn-
yielding and turn-holding cues on the judgment of turn finality by non-participating listeners: the higher the number
of cues displayed on a speech stimulus, the higher the inter-subject agreement regarding whether a turn change has
occurred after a given turn. Additionally, Hjalmarsson finds a similar effect on listeners’ perceptions when turn-yielding
and turn-holding cues are included in synthesized speech, a result with important implications for the development of
IVR systems.

Backchannel-inviting cues – that is, events in the current speaker’s speech that precede a backchannel response – have
received less attention in the literature than turn-yielding cues, although they have been examined extensively for other
purposes. They constitute a type of linguistic feedback in the conversational analysis literature and are also sometimes
referred to as continuers, indicating that the current speaker should continue talking (Yngve, 1970; Duncan, 1972;
Kendon, 1967; Schegloff, 1982; Jefferson, 1984). Novick and Sutton (1994) propose an alternative categorization of
linguistic feedback in task-oriented dialogue, which is based on the structural context of exchanges, rather than on
the characteristics of the preceding utterance, and include: (i) other → ackn, where an acknowledgment immediately
follows a contribution by other speaker; (ii) self → other → ackn, where self initiates an exchange, other eventually
completes it, and self utters an acknowledgment; and (iii) self + ackn, where self includes an acknowledgment in an
utterance independently of other’s previous contribution. Mushin et al. (2003) study the prosody of acknowledgments
in an Australian English Map Task corpus, finding that acknowledgments such as okay or yeh are often produced with
a ‘non-final’ intonational contour and followed by speech by the same speaker continuing an intonational phrase. As

3 The partial fall category is described as a “downward sloping pitch contour that subsided before reaching the bottom of the speaker’s range” [p.
84], and corresponds to a special type of L–L% in the ToBI system called ‘suspended fall’ (Pierrehumbert, 1980).
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part of a larger project on modeling discourse structure in American English, Jurafsky et al. (1998) examine utterances
identified as backchannels in 1155 conversations in the Switchboard Corpus (Godfrey et al., 1992), finding that the
lexical realization of the dialogue act is the strongest cue to its identity; e.g., backchannel is the preferred function
for uh-huh and mm-hm. They also find that backchannels are shorter in duration, have lower pitch and intensity, and
are more likely to end in a rising intonation than agreements. Two related studies on the automatic classification of
dialogue act classification on a subset of the same corpus (Shriberg et al., 1998; Stolcke et al., 2000) also find that the
disambiguation of backchannels and agreements can be improved by using duration, pause and intensity information
as well as lexical identity. There is also considerable evidence that linguistic feedback does not take place at arbitrary
locations in conversation; rather, it mostly occurs at or near TRPs (Sacks et al., 1974; Goodwin, 1981).

Ward and Tsukahara (2000) describe a region of low pitch lasting at least 110 ms as a backchannel-inviting cue.
They show that, in a corpus of spontaneous non-face-to-face dyadic conversations in American English, 48% of
backchannels follow a low-pitch region, while only 18% of such regions precede a backchannel response. In a corpus
study of Japanese dialogues, Koiso et al. (1998) find that both syntax and prosody play a central role in predicting the
occurrence of backchannels, and Cathcart et al. (2003) propose a method for automatically predicting the placement of
backchannels in conversation, based on pause durations and part-of-speech tags, that outperforms a random baseline
model.

Recent studies investigate ways of improving the turn-taking decisions made by IVR systems, by incorporating
some of the features shown in previous studies to correlate with turn or utterance endings. Ferrer et al. (2002, 2003)
present an approach for online detection of utterance boundaries in the ATIS corpus (Hemphill et al., 1990), combining
decision trees trained with prosodic features (related mainly to pitch range, pitch slope and duration) and n-gram
language models. They train different classifiers to detect utterance endings at different pausal durations (from 30 to
800 ms) and report that speaker-normalized pitch range and normalized syllable durations appear to be the strongest
predictors of speaker change, although no detailed analysis of features is presented. Edlund et al. (2005) experiment
with a hand-crafted rule for detecting utterance boundaries: if a long-enough pause follows a long-enough speech
segment that does not end in a level pitch slope, then mark the pause as an utterance end. Speech and silence segments
are determined using intensity-based voice activity detection; pitch slope levels are discretized from the pitch track
into three categories: rising, falling and level tones. This simple end-of-utterance predictor significantly outperforms a
silence-based baseline system in a corpus consisting of 5 min of read English speech produced by one German speaker.

Schlangen (2006) trains a set of machine learning classifiers to detect turn-medial and turn-final utterance boundaries
at different pausal durations after the target word (0, 100, 250 and 500 ms) – an approach similar to Ferrer et al.’s –
on a subset of English Switchboard. All four classifiers significantly outperform a simple majority-class baseline;
furthermore, the performance increases monotonically with the pausal duration considered. Schlangen reports word-
final pitch and intensity levels and n-gram based features as the most predictive ones. This work is continued by
Atterer et al. (2008), who improve performance on classifying each word as utterance final or non-final, independent
of subsequent pauses. They report lexico-syntactic information such as word and part-of-speech n-grams to be most
powerful predictors, and intensity-based features as the most useful prosodic features.

Raux and Eskenazi (2008) present an algorithm to dynamically set the threshold used for determining that a silence
follows a turn boundary, based on a number of features extracted from the preceding turns. These include discourse
structure information, captured by the system’s dialogue act immediately preceding the current user turn; semantic
information, drawn from the interpretation of partial speech recognition results in the current dialogue context; prosodic
features, such as pitch and intensity slope and mean computed over the final part of the current user turn; and timing
features, such as the time elapsed since the beginning of the utterance and the number of pauses observed so far in the
current user turn. Raux and Eskenazi report that each of these feature types provides information useful in predicting
turn finality.

All of these studies attack the problem of automatically detecting TRPs by exploiting knowledge based on previous
descriptive studies, such as those mentioned earlier in this section. They rely upon a handful of hypothesized turn-
yielding cues, especially on those related to pitch and intensity levels, and on some notion of syntactic or semantic
completion. However, the evidence that these hypothesized cues do indeed correlate reliably with turn shifts is still
lacking, due to (a) the small size of the corpora considered in most previous descriptive studies, and (b) the reliance
of such studies on subjective impressions rather than on objective measurements. For instance, even though Duncan’s
(1972) work hypothesizing a linear relation between the number of co-occurring turn-yielding cues and the likelihood
of a turn-taking attempt has been frequently cited and discussed, no study has yet tested this hypothesis on large
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corpora using objective measures of features and statistical techniques. Duncan and others’ descriptions of turn-taking
behavior often fail to define features precisely and objectively. Another deficiency in previous descriptive studies
consists in failing to distinguish between three radically different turn-taking phenomena: turn switches, backchannels,
and interruptions, all of which are usually collapsed into a single class of turn changes.

Our work addresses these open questions, investigating a larger and more varied set of potential turn-yielding and
backchannel-inviting cues than previous descriptive studies, comparing phrases preceding turn changes, backchannels,
and turn-retentions to see whether they can be reliably distinguished from one another by automatically extractable cues.
We provide objective definitions of our features and detailed information about the predictive power of each cue type,
to expand knowledge of human–human cues. Our study also tests Duncan’s hypothesis that there is a linear correlation
between turn-yielding and backchannel-inviting cues and the subsequent likelihood of a turn change or a backchannel.
We also examine overlapping speech separately in these categories, comparing it to non-overlapping tokens. Our
corpus is also larger than that of most previous studies, permitting more statistically robust results, and has been
annotated to distinguish between the three main dialogical categories mentioned above: turn switches, backchannels
and interruptions. It also involves conversational partners engaged in collaborative tasks with performance incentives
to enhance participant engagement, naturalness and spontaneity.

3. The Columbia Games Corpus

The materials for all experiments in this study were taken from the Columbia Games Corpus, a collection of 12
spontaneous task-oriented dyadic conversations elicited from native speakers of Standard American English (SAE). The
corpus was collected and annotated jointly by the Spoken Language Group at Columbia University and the Department
of Linguistics at Northwestern University, as part of an ongoing study of prosodic variation in SAE.

In each of the 12 sessions, two subjects were paid to play a series of computer games requiring verbal communication
to achieve joint goals of identifying and moving images on the screen. Each subject used a separate laptop computer
and could not see the screen of the other subject. Subjects sat facing each other in a soundproof booth, with an opaque
curtain hanging between them, so that all communication was verbal. The subjects’ speech was not restricted in any
way, and it was emphasized at the session beginning that the game was not timed. Subjects were told that their goal
was to accumulate as many points as possible over the entire session, since they would be paid additional money for
each point they earned.

3.1. Game tasks

Subjects were first asked to play three instances of a Cards game, where they were shown cards with one to four
images on them. Images were of two sizes (small or large) and various colors, and were selected to contain primarily
voiced consonants, which facilitates pitch track computation (e.g., yellow lion, blue mermaid), to improve pitch track
computation. There were two parts to each Cards game, designed to vary genre from primarily monologue to dialogue.

In the first part of the Cards game, each player’s screen displayed a stack of 9 or 10 cards (Fig. 2a). Player A was
asked to describe the top card on her pile, while Player B was asked to search through his pile to find the same card,
clicking a button when he found it. This process was repeated until all cards in Player A’s deck were matched. In all
cases, Player B’s deck contained one additional card that had no match in Player A’s deck, to ensure that she would
need to describe all cards.

In the second part of the Cards game, each player saw a board of 12 cards on the screen (Fig. 2b), all initially face
down. As the game began, the first card on one player’s (the Describer’s) board was automatically turned face up.
The Describer was told to describe this card to the other player (the Searcher), who was to find a matching card from
the cards on his board. If the Searcher could not find a card exactly matching the Describer’s card, but could find a
card depicting one or more of the objects on that card, the players could decide whether to declare a partial match
and receive points proportional to the numbers of objects matched on the cards. At most three cards were visible to
each player at any time, with cards seen earlier being automatically turned face down as the game progressed. Players
switched roles after each card was described and the process continued until all cards had been described. The players
were given additional opportunities to earn points, based on other characteristics of the matched cards, to make the
game more interesting and to encourage discussion.
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Fig. 2. Sample screens from the Cards games.

After completing all three instances of the Cards game, subjects were asked to play a final game, the Objects game.
As in the Cards game, all images were selected to have likely descriptions which were as sonorant as possible. In the
Objects game, each player’s laptop displayed a game board with 5–7 objects (Fig. 3). Both players saw the same set of
objects at the same position on the screen, except for one (the target). For the Describer, the target object appeared
in a random location among other objects on the screen; for the Follower, the target object appeared at the bottom of
the screen. The Describer was instructed to describe the position of the target object on her screen so that the Follower
could move his representation to the same location on his own screen. After players negotiated what they believed to be
their best location match, they were awarded 1–100 points based on how well the Follower’s target location matched
the Describer’s.

The Objects game proceeded through 14 tasks. In the initial four tasks, one of the subjects always acted as the
Describer, and the other one as the Follower. In the following four tasks their roles were inverted: the subject that
played the Describer role in the initial four tasks was now the Follower, and vice versa. In the final six tasks, they
alternated the roles with each new task.

3.2. Subjects and sessions

Thirteen subjects (six female, seven male) participated in the study, which took place in October 2004 in the Speech
Lab at Columbia University. Eleven of the subjects participated in two sessions on different days, each time with a
different partner. All subjects reported being native speakers of Standard American English and having no hearing
impairments. Their ages ranged from 20 to 50 years (mean: 30.0; standard deviation: 10.9), and all subjects lived in

Fig. 3. Sample screen from the Objects games.
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Fig. 4. Sample pitch track with three linear regressions: computed over the whole IPU (bold line), and over the final 300 ms (A) and 200 ms (B).

the New York City area at the time of the study. They were contacted through the classified advertisements website
craigslist.org.

We recorded 12 sessions, each containing an average of 45 min of dialogue, totaling roughly 9 h of dialogue in the
corpus. Of those, 70 min correspond to the first part of the Cards game, 207 min to the second part of the Cards game,
and 258 min to the Objects game. On average, the first part of each Cards game took 1.9 min; the second part, 5.8 min;
and the Objects game, 21.5 min. Each subject was recorded on a separate channel of a DAT recorder, at a sampling
rate of 48 kHz with 16-bit precision, using a Crown head-mounted close-talking microphone. Each session was later
downsampled to 16 kHz, and saved as one stereo wav file with one player per channel, and also as two separate mono
wav files, one for each player.

Trained annotators orthographically transcribed the recordings of the Games Corpus and manually aligned the words
to the speech signal, yielding a total of 70,259 words and 2037 unique words in the corpus. Additionally, self-repairs
and certain non-word vocalizations, including laughs, coughs and breaths, were marked.

3.3. Feature extraction

We extracted a number of lexical, discourse, timing, acoustic and prosodic features from the speech, which we used
in the experiments presented in the following sections. Part-of-speech tags were labeled automatically for the whole
corpus using Ratnaparkhi’s et al. (1996) maxent tagger trained on a subset of the Switchboard Corpus (Charniak and
Johnson, 2001) in lower-case with all punctuation removed, to simulate spoken language transcripts. Each word had
an associated POS tag from the full Penn Treebank tag set (Marcus et al., 1993), and one of the following simplified
tags: noun, verb, adjective, adverb, contraction or other.

All acoustic features were extracted automatically for the whole corpus using the Praat toolkit (Boersma and
Weenink, 2001). These include pitch, intensity, stylized pitch, ratio of voiced frames to total frames, jitter, shimmer,
and noise-to-harmonics ratio. Pitch slopes were computed by fitting least-squares linear regression models to the F0
data points extracted from given portions of the signal, such as a full word or its last 200 ms. This procedure is illustrated
in Fig. 4, which shows the pitch track of a sample utterance (dotted line) with three linear regressions, computed over
the whole utterance (solid black line), and over the final 300 and 200 ms (‘A’ and ‘B’ dashed lines, respectively).

We used a similar procedure to compute the slope of intensity and stylized pitch measurements. Stylized pitch curves
were obtained using the algorithm provided in Praat: look up the pitch point p that is closest to the straight line L that
connects its two neighboring points; if p is further than 4 semitones away from L, end; otherwise, remove p and start
over. All normalizations were calculated using z-scores: z = (x − μ)/σ, where x is a raw measurement to be normalized
(e.g., the duration of a particular word), and μ and σ are the mean and standard deviation of a certain population (e.g.,
all instances of the same word by the same speaker in the whole conversation).

For the calculation of turn units, we define an inter-pausal unit (IPU) as a maximal sequence of words surrounded
by silence longer than 50 ms. A turn is a maximal sequence of IPUs from one speaker, such that between any two
adjacent IPUs there is no speech from the interlocutor. Boundaries of IPUs and turns are computed automatically from
the time-aligned transcriptions. A task in the Cards games corresponds to matching a card, and in the Objects games
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Fig. 5. A standard declarative contour (left), and a standard yes–no question contour. The top panes show the waveform and the fundamental
frequency (F0) track.

to placing an object in its correct position. Task boundaries were extracted from the logs collected automatically during
the sessions, and subsequently checked by hand.

Intonational patterns and other aspects of the prosody were identified using the ToBI transcription framework.
All of the Objects portion of the corpus (258 min of dialogue) and roughly one third of the Cards portion (90 min)
were intonationally transcribed by trained annotators. The ToBI system consists of annotations at four time-linked
levels of analysis: an orthographic tier of time-aligned words; a tonal tier describing targets in the fundamental
frequency (F0) contour; a break index tier indicating degrees of juncture between words; and a miscellaneous
tier, in which phenomena such as disfluencies may be optionally marked. The tonal tier describes events such as pitch
accents, which make words intonationally prominent and are realized by increased F0 height, loudness, and duration
of accented syllables. A given word may be accented or not and, if accented, may bear different tones, or different
degrees of prominence, with respect to other words.

Five types of pitch accent are distinguished in the ToBI system for American English: two simple accents H* and
L*, and three complex ones, L* + H, L + H*, and H + !H*. An L indicates a low tone and an H, a high tone; the
asterisk indicates which tone of the accent is aligned with the stressable syllable of the lexical item bearing the accent.
Some pitch accents may be downstepped, such that the pitch range of the accent is compressed in comparison to a
non-downstepped accent. Downsteps are indicated by the ‘!’ diacritic (e.g., !H*, L + !H*). Break indices define two
levels of phrasing: level 3 corresponds to Pierrehumbert’s (1980) intermediate phrase and level 4, to Pierrehumbert’s
intonational phrase. Level 4 phrases consist of one or more level 3 phrases, plus a high or low boundary tone
(H% or L%) indicated in the tonal tier at the right edge of the phrase. Level 3 phrases consist of one or more pitch
accents, aligned with the stressed syllable of lexical items, plus a phrase accent, which also may be high (H–) or low
(L–). For example, a standard declarative contour consists of a sequence of H* pitch accents ending in a low phrase
accent and low boundary tone (L–L%); likewise, a standard yes-no question contour consists of a sequence of L* pitch
accents ending in H–H%. These are illustrated in Fig. 5.

3.4. Turn-taking in the Games Corpus

The Games Corpus offers an excellent opportunity to study the turn-taking management mechanisms occurring in
spontaneous conversation, and to provide answers to the research questions posited in Section 1. A superficial analysis
of the corpus reveals it to be rich in all kinds of turn-taking phenomena, as all subjects became engaged in active
conversation to achieve the highest possible performance in the various game tasks.

All conversations in the corpus are between two people collaborating on a common task, and take place with no
visual contact between the participants. These conditions roughly replicate the typical settings of current telephone
IVR systems, in which a person is assisted by a remote computer using natural speech over the telephone to perform
relatively simple tasks, such as making travel reservations or requesting banking information.

When visual contact is permitted between the conversation participants, a whole new dimension of complexity is
introduced to the analysis of turn-taking phenomena. For instance, eye gaze and hand gesticulation are known to be
strong turn-taking cues (Duncan, 1972; Kendon, 1972; McNeill, 1992). When collecting the Games Corpus, visual
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Fig. 6. Simple 3-way definition of turn exchanges. Black segments represent speech; white segments, silence. (i) Hold, (ii) change without overlap,
and (iii) change with overlap.

contact was impeded by a curtain between the two participants, thus forcing all communicational to be verbal. The
lack of visual contact allows us to effectively isolate audio-only cues, the central object of study in our experiments.

Finally, we take several steps to achieve results as general as possible—i.e., not true only for a specific set of speakers,
but generalizable to a larger population. First, the corpus contains 12 conversations recorded from 13 different people.
Second, the participants of each conversation had never met each other before the recording session. This allows us to
avoid any potential communicational codes or behaviors arising from pre-existing acquaintances between the subjects,
which are also beyond the scope of our study. Third, in the statistical studies presented in the following sections, we
pay great attention to speaker variation. Specifically, for each result holding for all 13 speakers together, we report
whether the same results holds for each individual speaker.

3.4.1. Labeling scheme
Our main research goal is to investigate the existence of acoustic, prosodic, lexical and syntactic turn-yielding and

backchannel-inviting cues. That is, we search for events in the speech produced by the person holding the conversational
floor that may cue the listener about an imminent turn yielding event, or that may instead invite the listener to utter a
backchannel response. With this goal in mind, we need first to define various types of turn-taking phenomena in the
corpus, which we will later analyze. For example, in our search for turn-yielding cues, we need to define and identify
turn boundaries, to later compare turn-final utterances against turn-medial ones. In this section we consider a number
of labeling systems used in previous work, and describe in detail the one we choose for our experiments.

In an approach adopted by several studies, all exchanges are collapsed into a single change category, defined as a
transition from a turn by the participant currently holding the floor to a new turn by the other participant. Typically, this
category is further subdivided into change with overlap and change without overlap, depending on whether
the two contributions have a non-empty temporal intersection, as shown in Fig. 6 (Koiso et al., 1998; Edlund et al.,
2005, inter alia). The second main class in this approach is the hold category, defined as a transition between two
adjacent IPUs within a turn by the same speaker. The change and hold categories are typically contrasted to look for
turn-yielding cues, with the assumption that instances of the former are more likely to contain such cues than instances
of the latter.

The main advantage of these simple binary and ternary distinctions is that they can be computed automatically from
the speech signal: turn boundaries can be estimated using an energy-based silence detector, provided that each speaker
has been recorded on a separate channel. In our case, this labeling system oversimplifies the problem, since we need to
be able to differentiate phenomena such as backchannels and interruptions from regular turn changes. In other words,
we need a finer grained categorization of speaker changes.

One such categorization is introduced by Ferguson (1977) for a study of behavioral psychology that investigates
simultaneous speech and interruptions as measures of dominance in family interaction. Beattie (1982) revises Fergu-
son’s system to a decision tree in a study of two political interviews comparing the turn-taking styles of former British
Prime Ministers Jim Callaghan and Margaret Thatcher. Beattie reports an almost perfect inter-labeler agreement using
this scheme, with a Cohen’s κ score (Cohen, 1960) of 0.89.4 We adopt a slightly modified version of Beattie’s scheme,
as depicted in Fig. 7. This system is better suited to our experiments on turn-yielding cues than those using only binary
and ternary distinctions.5

4 The κ measure of agreement above chance is interpreted as follows: 0 = none, 0–0.2 = small, 0.2–0.4 = fair, 0.4–0.6 = moderate,
0.6–0.8 = substantial, 0.8–1 = almost perfect.

5 For example, it distinguishes two exchange types (smooth switch and overlap) in which turn-yielding cues are likely to be present, given that
a turn exchange occurs and the first speaker (i.e., the one originally holding the floor) manages to finish the utterance. The remaining three types
(interruption, pause interruption and butting-in) are less likely to contain turn-yielding cues, given that the first speaker is interrupted at
arbitrary times.
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Fig. 7. Turn-taking labeling scheme used in the present study, with seven turn-taking categories.

Fig. 8. Simultaneous start: B1 occurs in response to A1, rather than A2.

Backchannels play an important role in our research goals, but Beattie explicitly excludes them from his study.
Therefore, we incorporate backchannels into our labeling scheme by adding the decision marked (1) at the root of
the decision tree. All backchannels in the corpus were identified as part of a study of affirmative cue words (Gravano
et al., 2007); thus, we use these labels, and annotators of turn-taking are not asked to make this decision. For the
decision marked (2) in Fig. 7, we use Beattie’s informal definition of utterance completeness: “Completeness [is]
judged intuitively, taking into account the intonation, syntax, and meaning of the utterance” [p. 100]. The decision
“Simultaneous speech present?” is placed high up in the tree, as it is pre-computed automatically based on the manual
orthographic transcripts of the conversations. Additionally, we identify three cases that do not correspond to actual
turn exchanges, and thus receive special labels:

• Task beginning: Turns beginning a new game task are labeled X1.
• Continuation after a backchannel: If a turn t is a continuation after a BC or BC O from the other speaker, it is

labeled X2 O if t overlaps the backchannel, or X2 if not.
• Simultaneous start: Fry (1975) reports that humans require at least 210 ms to react verbally to a verbal stimulus.

Thus, if two turns begin within 210 ms of each other, they are most probably connected to preceding events than
to one another. In Fig. 8, A1, A2 and B1 represent turns from speakers A and B. Most likely, A2 is simply a con-
tinuation from A1, and B1 occurs in response to A1. Thus, B1 is labeled with respect to A1 (not A2), and A2 is
labeled X3.

Finally, all continuations from one IPU to the next within the same turn are labeled automatically with the special label
H, for ‘hold’.

Needless to say, the categories defined in this taxonomy are too broad to accommodate the wide spectrum of
variation in human conversation. However, they are well suited for our turn-taking experiments, as they allow us
to look for turn-yielding cues by contrasting the places where such cues are likely to occur (e.g., before smooth
switches) against the places where they are not likely to occur (e.g., before holds or interruptions). Further-
more, more fine-grained distinctions, albeit closer to representing the full diversity of turn-taking events present
in spontaneous dialogue, would have the cost of data sparsity, thus compromising the statistical significance of the
results.
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Table 1
Distribution of turn-taking labels in the Games Corpus.

Label Count Percentage

BC 553 6.8
BC O 202 2.5
BI 104 1.3
I 158 1.9
O 1067 13.1
PI 275 3.4
S 3247 39.9
X1 1393 17.1
X2 449 5.5
X2 O 59 0.7
X3 590 7.3
? 37 0.5

Total 8134 100.0

Two trained annotators labeled the whole Objects portion of the corpus separately, with a Cohen’s κ score (Cohen,
1960) of 0.913 corresponding to ‘almost perfect’ agreement.6 Subsequently, we performed the following steps to
correct potential labeling errors. Cases with dissimilar judgments were marked for revision and given back to one of
the annotators (ANN1), without specifying the labels assigned by the other annotator (ANN2). ANN1 corrected what he
considered were errors in his labels, and the process was repeated for ANN2, who revised the remaining differences,
again blind to ANN1’s choices. At the end of this process, the κ score improved to 0.9895. Given the high inter-labeler
agreement obtained in the Objects portion of the corpus, the Cards portion was labeled by just one trained annotator.
Table 1 shows the distribution of turn-taking labels in the entire corpus. Additionally, there are 8123 instances of ‘hold’
transitions (H) in the Games Corpus, as defined above.7

4. Turn-yielding cues

We begin our study of turn-taking in the Columbia Games Corpus by investigating turn-yielding cues—events from
acoustic, prosodic or syntactic sources, inter alia, produced by the speaker when approaching the potential end of a
conversational turn, that may be used by the listener to detect, or even anticipate, an opportunity to take the floor.
We adopt the assumption proposed by Duncan (1972) that individually identifiable cues may be combined together to
form a complex turn-yielding signal. As discussed in the previous sections, a number of non-visual turn-yielding cues
have been hypothesized in the literature: any final intonation other than a sustained pitch level; a drawl on the final
syllable of a terminal clause; a drop in intensity and pitch levels; stereotyped expressions such as you know or I think;
and the completion of a grammatical clause. In this section we examine these cues in our corpus, and present results
introducing two turn-yielding cues mentioned only rarely in the literature, related to voice quality (Ogden, 2002) and
IPU duration (Cutler and Pearson, 1986). After considering individual cues, we describe how they combine to form
a complex signal, and show the manner in which the likelihood of a turn switch increases with the number of cues
present in such a signal.

6 Note that this κ score does not include the identification of backchannels, performed by different annotators as described in Gravano et al. (2007).
7 An analysis of the distribution of gap durations in smooth switches shows that 30% of such gaps are 200 ms or shorter, 63% are 200 ms to 2 s

long, and the remaining 7% are longer than 2 s. In our study we considered using only a subset of the data, discarding smooth switches with too short
or too long gaps. However, in both cases it is unclear what thresholds should be used. For too short gaps, even though Fry (1975) and other studies
show that humans need roughly 200 ms to react to the occurrence of a verbal stimulus, they do not say anything about the opposite phenomenon: the
reaction time to the termination of an ongoing stimulus, such as a conversational turn. Thus, the choice of such a threshold would be arbitrary. For
very long gaps, it is even harder to set a threshold that will effectively separate speaker-shifts elicited by cues in the previous utterance from those
that are not, since it would be difficult to be certain that, e.g., the speaker has not just taken a few seconds to think about his/her contribution. In fact,
hesitations are common in our corpus, due to the nature of the game tasks. In consequence, we decided to take the simplest option of including all
instances of smooth switches in our analysis.
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Table 2
ToBI phrase accent and boundary tone for IPUs preceding S and H.

S H

H–H% 484 (22.1%) 513 (9.1%)
[!]H–L% 289 (13.2%) 1680 (29.9%)
L–H% 309 (14.1%) 646 (11.5%)
L–L% 1032 (47.2%) 1387 (24.7%)
No boundary tone 16 (0.7%) 1261 (22.4%)
Other 56 (2.6%) 136 (2.4%)

Total 2186 (100%) 5623 (100%)

Our general approach consists in contrasting IPUs immediately preceding smooth switches (S) with those imme-
diately preceding holds (H). We hypothesize that turn-yielding cues are more likely to occur before S than before
H. It is important to emphasize the optionality of all turn-taking phenomena and decisions: for H, turn-yielding cues
– whatever their nature – may still be present; and for S, they may be sometimes absent. However, we hypothesize
that their likelihood of occurrence should be much higher before S. Finally, as mentioned above, we make no claims
regarding whether speakers intend to produce turn-yielding cues, or whether listeners consciously perceive and/or use
them to aid their turn-taking decisions.

4.1. Intonation

The literature contains frequent mention of the propensity of speaking turns to end in any intonation contour other
than a plateau (a sustained pitch level, neither rising nor falling). We first analyze the categorical prosodic labels in the
portion of the Columbia Games Corpus annotated using the ToBI annotations.

We tabulate the phrase accent and boundary tone labels assigned to the end of each IPU, and compare their distribution
for the S and H turn exchange types, as shown in Table 2. A chi-square test indicates that there is a significant departure
from a random distribution (χ2 = 1102.5, d.f. = 5, p ≈ 0). Only 13.2% of all IPUs immediately preceding a smooth
switch (S) – where turn-yielding cues are most likely present – end in a plateau ([!]H–L%); most of the remaining IPUs
end in either a falling pitch (L–L%) or a high rise (H–H%). For IPUs preceding a hold (H) the counts approximate a
uniform distribution, with the plateau contours being the most common; this supports the hypothesis that this contour
functions as a turn-holding cue (that is, a cue that typically prevents turn-taking attempts from the listener). The
high counts for the falling contour preceding a hold (24.7%) may be explained by the fact that, as discussed above,
taking the turn is optional for the listener, who may choose not to act despite hearing some turn-yielding cues. It is not
entirely clear what the role is of the low-rising contour (L–H%), as it occurs in similar proportions before S and before
H. Finally, we note that the absence of a boundary tone works as a strong indication that the speaker has not finished
speaking, since nearly all (98%) IPUs without a boundary tone precede a hold transition.

Next, we examine four objective acoustic approximations of this perceptual feature: the absolute value of the
speaker-normalized F0 slope, both raw and stylized, computed over the final 200 and 300 ms of each IPU. The case of a
plateau corresponds to a value of F0 slope close to zero; the other case, of either a rising or a falling pitch, corresponds
to a high absolute value of F0 slope. As shown in Fig. 9, we find that the final slope before S is significantly higher
than before H in all four cases. These findings provide additional support for the hypothesis that turns tend to end in
falling and high-rising final intonations, and provide automatically identifiable indicators of this turn-yielding cue.

4.2. Speaking rate and IPU duration

Duncan (1972) hypothesizes a “drawl on the final syllable or on the stressed syllable of a terminal clause” [p.
287] as a turn-yielding cue, which would probably correspond to a noticeable decrease in speaking rate. We examine
this hypothesis in our corpus using two common definitions of speaking rate: syllables per second and phonemes per
second. Syllable and phoneme counts were estimated from dictionary lookup, and word durations were extracted from
the manual orthographic alignments.
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Fig. 9. Individual turn-yielding cues: intonation, speaking rate and IPU duration. In all cases, the difference between the two groups is significant
(one-way anova, p < 0.01).

Fig. 9 shows that the speaking rate is significantly slower over the final word than over the whole IPU both before
S and before H. This result is in line with phonological theories that predict a segmental lengthening near prosodic
phrase boundaries (Wightman et al., 1992). This finding may indeed correspond to the drawl or lengthening described
by Duncan before turn boundaries. However, it seems to be the case – at least for our corpus – that the final lengthening
tends to occur at all phrase final positions, not just at turn endings. In fact, Fig. 9 shows that both measures, computed
over either the whole IPU or its final word, are significantly higher before S than before H, which indicates an increase in
speaking rate before turn boundaries. In other words, these results indicate that the final lengthening is more prominent
in turn-medial IPUs than in turn-final ones.

We also find that turn-final IPUs tend to be significantly longer than turn-medial ones, both when measured in
seconds and in number of words (Fig. 9). This suggests that IPU duration could function as a turn-yielding cue,
supporting similar findings in perceptual experiments by Cutler and Pearson (1986).

4.3. Acoustic cues

In the Columbia Games Corpus, we find that IPUs followed by S have a mean intensity significantly lower than IPUs
followed by H, where intensity is computed over the IPU-final 500 and 1000 ms (see Fig. 10). Also, the differences
increase toward the end of the IPU. This suggests that speakers tend to lower their voices when approaching potential
turn boundaries, whereas they reach turn-internal pauses with a higher intensity.

Phonological theories conjecture a declination in the pitch level, which tends to decrease gradually within utterances
and across utterances within the same discourse segment as a consequence of a gradual compression of the pitch range
(Pierrehumbert and Hirschberg, 1990). For conversational turns, then, we would expect to find that speakers tend to
lower their pitch level as they reach potential turn boundaries. This hypothesis is verified by the dialogues in our
corpus, where we find that IPUs preceding S have a significantly lower mean pitch than those preceding H (Fig. 10).
In consequence, pitch level may also work as a turn-yielding cue.

Next we examine three acoustic features, jitter, shimmer and noise-to-harmonics ratio (NHR), which have been
associated with the perception of voice quality (Eskenazi et al., 1990; Kitch et al., 1996; Bhuta et al., 2004). Jitter and
shimmer correspond to variability in the frequency and amplitude of vocal-fold vibration, respectively; NHR is the
energy ratio of noise to harmonic components in the voiced speech signal. We compute jitter and shimmer only over
voiced frames for improved robustness. Fig. 10 summarizes the results for these features, computed over the IPU-final

Fig. 10. Individual turn-yielding cues: intensity, pitch and voice quality. In all cases, the difference between the two groups is significant (one-way
anova, p < 0.01).
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Table 3
Twenty-five most frequent final bigrams preceding each turn-taking type.

S Count Perc. H Count Perc.

1 okay 241 7.4 okay 402 4.9
2 yeah 167 5.1 on top 172 2.1
3 lower right 85 2.6 um 136 1.7
4 bottom right 74 2.3 the top 117 1.4
5 the right 59 1.8 of the 67 0.8
6 hand corner 52 1.6 blue lion 57 0.7
7 lower left 43 1.3 bottom left 56 0.7
8 the iron 37 1.1 with the 54 0.7
9 the onion 33 1.0 the um 54 0.7

10 bottom left 31 1.0 yeah 53 0.7
11 the ruler 30 0.9 the left 48 0.6
12 mm-hm 30 0.9 and 48 0.6
13 right 28 0.9 lower left 46 0.6
14 right corner 27 0.8 uh 45 0.6
15 the bottom 26 0.8 oh 45 0.6
16 the left 24 0.7 and a 45 0.6
17 crescent moon 23 0.7 alright 44 0.5
18 the lemon 22 0.7 okay um 43 0.5
19 the moon 20 0.6 the uh 42 0.5
20 tennis racket 20 0.6 the right 41 0.5
21 blue lion 19 0.6 the bottom 39 0.5
22 the whale 18 0.6 I have 39 0.5
23 the crescent 18 0.6 yellow lion 37 0.5
24 the middle 17 0.5 the middle 37 0.5
25 of it 17 0.5 I’ve got 34 0.4

500 and 1000 ms. For all three features, the mean value for IPUs preceding S is significantly higher than for IPUs
preceding H, with the difference increasing towards the end of the IPU. Therefore, voice quality seems to play a clear
role as a turn-yielding cue.

4.4. Lexical cues

Stereotyped expressions such as you know or I think have been proposed in the literature as lexical turn-yielding
cues. However, in the Games Corpus we find that none of the most frequent IPU-final unigrams and bigrams, preceding
either S or H, correspond to such expressions (Table 3 lists the 25 most frequent IPU-final bigrams). Instead, most of
such unigrams and bigrams are specific to the computer games in which the subjects participated. For example, the
game objects tended to be spontaneously described by subjects from top to bottom and from left to right, as shown in
the following excerpt (pauses are indicated with #):

A: I have a blue lion on top # with a lemon in the bottom left # and a yellow crescent moon in- # i- # in the bottom
right

B: oh okay [...]

In consequence, bigrams such as lower right and bottom right are common before S, while on top or bottom left
are common before H. These are all task-specific lexical constructions and do not constitute stereotyped expressions
in the traditional sense. Also very common among the most frequent IPU-final expressions are affirmative cue
words—heavily overloaded words, such as okay or yeah, that are used both to initiate and to end discourse segments,
among other functions (Gravano et al., 2007). The occurrence of these words does not constitute a turn-yielding or
turn-holding cue per se; rather, additional contextual, acoustic and prosodic information is needed to disambiguate
their meaning.
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Affirmative cue words and game-specific expressions cover the totality of the 25 most frequent IPU-final bigrams
listed in Table 3. Further down in the list, we find some rare uses of stereotyped expressions preceding smooth
switches, all with only marginal counts: I guess (6 instances, or 0.18% of the total), I think (4), and you know (2).
Notably, there were more instances of each of these expressions before holds: 6, 5 and 21, respectively, challenging
the idea that the mere occurrence of these expressions works as a strong turn-yielding cue. As with affirmative cue
words, more information from other sources seems to be necessary to disambiguate the meaning of these expres-
sions.

While we do not find clear examples of lexical turn-yielding cues in our task-oriented corpus, we do find
two lexical turn-holding cues: word fragments (e.g., incompl-) and filled pauses (e.g., uh, um). Of the 8123
IPUs preceding H, 6.7% end in a word fragment, and 9.4% in a filled pause. By contrast, only 0.3% of the
3246 IPUs preceding S end in a word fragment, and 1% in a filled pause. These differences are significant
(χ2 = 491.6, d.f. = 2, p ≈ 0) and suggest that, after either a word fragment or a filled pause, the speaker is much
more likely to intend to continue holding the floor. This notion of disfluencies functioning as a turn-taking cue
has been studied by Goodwin (1981), who shows that they may be used to secure the listener’s attention at turn
beginnings.

4.5. Textual completion

Several authors claim that some sort of completion independent of intonation and interactional import functions as
a turn-yielding cue (Duncan, 1972; Sacks et al., 1974; Ford and Thompson, 1996; Wennerstrom and Siegel, 2003).
Although some call this syntactic completion, all authors acknowledge the need for semantic and discourse infor-
mation in judging utterance completion. Therefore, we choose the more neutral term textual completion for this
phenomenon. We manually annotated a portion of our corpus with respect to textual completion and trained a machine
learning (ML) classifier to automatically label the whole corpus. From these annotations we then examined how textual
completion labels relate to turn-taking categories in the corpus.

4.5.1. Manual labeling
In conversation, listeners judge textual completion incrementally and without access to later material. To simulate

these conditions in the labeling task, annotators were asked to judge the textual completion of a turn up to a target
pause from the written transcript alone, without listening to the speech. They were allowed to read the transcript of the
full previous turn by the other speaker (if any), but they were not given access to anything after the target pause. These
are a few sample tokens:

A: the lion’s left paw our front
B: yeah and it’s th- right so the

A: and then a tea kettle and then the wine
B: okay well I have the big shoe and the wine

A: —
B: okay there is a belt in the lower right a microphone in the lower left

We selected 400 tokens at random from the Games Corpus; the target pauses were also chosen at random. To obtain
good coverage of the variation present in the corpus, tokens were selected in such a way that 100 of them were followed
by a hold transition (H), 100 by a backchannel (BC), 100 by a smooth switch (S), and 100 by a pause interruption (PI).
Three annotators labeled each token independently as either complete or incomplete according to these guidelines:
“Determine whether you believe what speaker B has said up to this point could constitute a complete response to what
speaker A has said in the previous turn/segment. Note: if there are no words by A, then B is beginning a new task,
such as describing a card or the location of an object.” To avoid biasing the results, annotators were not given the
turn-taking labels of the tokens. Inter-annotator reliability is measured by Fleiss’ κ at 0.814, which corresponds to the
‘almost perfect’ agreement category. The mean pairwise agreement between the three subjects is 90.8%. For the cases
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Table 4
Mean accuracy of each classifier for the textual completion labeling task, using 10-fold cross validation on the training data.

Classifier Accuracy

Majority-class (‘complete’) 55.2%
C4.5 55.2%
Ripper 68.2%
Bayesian networks 75.7%
SVM, RBF kernel 78.2%
SVM, linear kernel 80.0%
Human labelers (mean agreement) 90.8%

in which there is disagreement between the three annotators, we adopt the majority label as our gold standard; that
is, the label chosen by two annotators.

4.5.2. Automatic classification
Next, we trained a machine learning model using the 400 manually annotated tokens as training data to automatically

classify all IPUs in the corpus as either complete or incomplete. For each IPU u we extracted a number of lexical and
syntactic features from the beginning of the turn containing u up to u itself: the lexical identity of the IPU-final word
(w); POS tags and simplified POS tags (N, V, Adj, Adv, other) of w and of the IPU-final bigram; number of words in
the IPU; a binary flag indicating if w is a word fragment; size and type of the biggest (bp) and smallest (sp) phrase
that end in w; binary flags indicating if each of bp and sp is a major phrase (NP, VP, PP, ADJP, ADVP); binary flags
indicating if w is the head of each of bp and sp.

We chose these features in order to capture as much lexical and syntactic information as possible from the transcripts.
The motivation for lexical identity and part-of-speech features is that complete utterances are unlikely to end in
expressions such as the or but there, and more likely to finish in nouns, for example. Since fragments indicate almost
by definition that the utterance is incomplete, we also included a flag indicating if the final word is a fragment. As
for the syntactic features, our intuition is that the boundaries of textually complete utterances tend to occur between
large syntactic phrases; a similar approach is used by Koehn et al. (2000) for predicting intonational phrase boundaries
in raw text. Our syntactic features were computed using two different parsers: Collins, a high-performance statistical
parser (Collins, 2003); and CASS, a partial parser especially designed for use with noisy text (Abney, 1996).

We experimented with several learners, including the propositional rule learner Ripper (Cohen, 1995), the decision
tree learner C4.5 (Quinlan, 1993), Bayesian networks (Heckerman et al., 1995; Jensen, 1996) and support vector
machines (SVM) (Vapnik, 1995; Cortes and Vapnik, 1995). We used the implementation of these algorithms provided
in the Weka machine learning toolkit (Witten and Frank, 2000). Table 4 shows the accuracy of the majority-class
baseline and of each classifier, using 10-fold cross validation on the 400 training data points, and the mean pairwise
agreement by the three human labelers. The linear-kernel SVM classifier achieved the highest accuracy, significantly
outperforming the majority-class baseline (Wilcoxon signed rank sum test, p < 0.001), and approaching the mean
agreement of human labelers. However, there is still room for further improvement. New approaches could include
features capturing information from the previous turn by the other speaker, which was available to the human labelers
but not to the ML classifiers. Also, the sequential nature of this classification task might be better exploited by more
advanced graphical learning algorithms, such as Hidden Markov Models (Rabiner, 1989) and conditional random fields
(Lafferty et al., 2001).

4.5.3. Results
First we examine the 400 tokens that were manually labeled by three human annotators, considering the majority

label as the gold standard. Of the 100 tokens followed by a smooth switch, 91 were labeled textually complete, a
significantly higher proportion than the 42% followed by H that were labeled complete (χ2 = 51.7, df = 1, p ≈ 0).
Next, we used our highest performing classifier, the linear-kernel SVM, to automatically label all IPUs in the corpus.
Of the 3246 IPUs preceding a smooth switch, 2649 (81.6%) were labeled textually complete, and about half of all
IPUs preceding a hold (4272/8123, or 52.6%) were labeled complete. The difference is also significant (χ2 = 818.7,
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Table 5
Features used to estimate the presence of individual turn-yielding cues. All features were speaker normalized using z-scores.

Individual cues Features

Intonation Absolute value of the F0 slope over the IPU-final 200 ms
Absolute value of the F0 slope over the IPU-final 300 ms

Speaking rate Syllables per second over the whole IPU
Phonemes per second over the whole IPU

Intensity level Mean intensity over the IPU-final 500 ms
Mean intensity over the IPU-final 1000 ms

Pitch level Mean pitch over the IPU-final 500 ms
Mean pitch over the IPU-final 1000 ms

IPU duration IPU duration in ms
Number of words in the IPU

Voice quality Jitter over the IPU-final 500 ms
Shimmer over the IPU-final 500 ms
Noise to harmonics ratio over the IPU-final 500 ms

df = 1, p ≈ 0). These results suggest that textual completion as defined above constitutes a necessary, but not sufficient,
turn-yielding cue.

4.6. Combining turn-yielding cues

So far, we have shown strong evidence supporting the existence of individual acoustic, prosodic and textual turn-
yielding cues. Now we shift our attention to the manner in which they combine together to form more complex
turn-yielding signals. For each individual cue type, we choose two or three features shown to correlate strongly with
smooth switches, as shown in Table 5 (e.g., the speaking rate cue is represented by two automatic features: syllables
and phonemes per second over the whole IPU).

We consider a cue c to be present on IPU u if, for any feature f modeling c, the value of f on u is closer to fS than
to fH, where fS and fH are the mean values of f across all IPUs preceding S and H, respectively. Otherwise, we say c is
absent on u. For the IPUs in the corpus automatically annotated for textual completion, IPUs classified as complete
are considered to contain the textual completion turn-yielding cue.

Table 6
Top 10 frequencies of complex turn-yielding cues for IPUs preceding S, H, PI and BC. For each of the seven cues, a digit indicates presence, and a
dot, absence. 1: intonation; 2: speaking rate; 3: intensity level; 4: pitch level; 5: IPU duration; 6: voice quality; 7: textual completion.

S H PI BC

Cues Count Cues Count Cues Count Cues Count

1234567 267 ...4... 392 .23456. 17 .2..5.7 53
.234567 226 ......7 247 ...4... 13 .2....7 29
1234.67 138 ....... 223 ...45.. 12 12..5.7 23
.234.67 109 ...4..7 218 ....... 9 .2.45.7 23
.23..67 98 ...45.. 178 123..6. 7 12..567 21
..34567 94 .2....7 166 .234.6. 7 .2..5.. 21
123..67 93 1234.67 163 .2.4.6. 7 12.4567 18
.2.4567 73 .2..5.7 157 ..3456. 7 .2.4567 17
.2.45.7 73 123..67 133 ..34.6. 7 1234567 16
12.4.67 70 1234567 130 ...4..7 7 12....7 16

. . . . . . . . . . . .

Total 3246 Total 8123 Total 274 Total 553
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Table 7
Distribution of number of turn-yielding cues displayed in IPUs preceding S, H, PI and BC.

# Cues S H PI BC

0 4 (0.1%) 223 (2.7%) 9 (3.3%) 1 (0.2%)
1 52 (1.6%) 970 (11.9%) 33 (12.0%) 15 (2.7%)
2 241 (7.4%) 1552 (19.1%) 59 (21.5%) 82 (14.8%)
3 518 (16.0%) 1829 (22.5%) 59 (21.5%) 140 (25.3%)
4 740 (22.8%) 1666 (20.5%) 53 (19.3%) 137 (24.8%)
5 830 (25.6%) 1142 (14.1%) 46 (16.8%) 113 (20.4%)
6 594 (18.3%) 611 (7.5%) 12 (4.4%) 49 (8.9%)
7 267 (8.2%) 130 (1.6%) 3 (1.1%) 16 (2.9%)

Total 3246 (100%) 8123 (100%) 274 (100.0%) 553 (100.0%)

Fig. 11. Percentage of turn-taking attempts (either S or PI) following IPUs with 0–7 turn-yielding cues.

We first analyze the frequency of occurrence of conjoined individual turn-yielding cues. Table 6 shows the top 10
frequencies for IPUs immediately before smooth switches (S), holds (H), pause-interruptions (PI) and backchannels
(BC). For IPUs preceding a smooth switch (S), the most frequent cases correspond to all, or almost all, cues present at
once. For IPUs preceding a hold (H), the opposite is true: those with no cues, or with just one or two, represent the most
frequent cases. Two different conditions seem to occur before pause interruptions (PI): some of the IPUs exhibit four
or even five conjoined cues; others show evidence of almost none, as before H. This is consistent with two plausible
explanations for a PI to occur in the first place: (1) that the speaker displays – possibly involuntarily – one or more
turn-yielding cues, thus leading the listener to believe that a turn boundary has been reached; or (2) that the listener
chooses to break in, regardless of any turn-yielding cues. Finally, the distribution of cues before a BC does not show a
clear pattern, suggesting that backchannel-inviting cues do indeed differ from turn-yielding cues. Backchannel-inviting
cues are discussed in detail in Section 5.

Table 7 shows similar results, now grouping together all IPUs with the same number of cues, independently of
the cue types. Again, we observe that larger proportions of IPUs preceding S present more conjoined cues than IPUs
preceding H, PI and BC.

Next we look at how the likelihood of a turn-taking attempt varies with respect to the number of individual cues
displayed by the speaker, a relation hypothesized to be linear by Duncan (1972). Fig. 11 shows the proportion of IPUs
with 0–7 cues present that are followed by a turn-taking attempt from the interlocutor. The proportion of turn-taking
attempts is computed for each cue count as the number of S and PI divided by the number of S, PI, H and BC,
according to our labeling scheme.8 The dashed line in Fig. 11 corresponds to a linear model fitted to the data (Pearson’s
correlation test: r2 = 0.969), and the continuous line, to a quadratic model (r2 = 0.995). The high correlation coefficient

8 In this analysis we only consider non-overlapping exchanges, thus leaving out O, I, BI and BC O; overlapping exchanges are addressed in
Section 6. Also, note that backchannels are not considered turn-taking attempts.
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Table 8
Multiple logistic regression model fit to the data in our corpus: coefficient estimates, standard errors, and t and p values.

Xi β̂i SE t p

Textual completion 0.988 0.047 20.819 ≈0
Voice quality 0.698 0.049 14.350 ≈0
Speaking rate 0.531 0.047 11.251 ≈0
Intensity level 0.470 0.048 10.496 ≈0
Pitch level 0.378 0.045 8.357 ≈0
IPU duration 0.249 0.044 5.668 ≈0
Intonation -0.044 0.046 -0.967 0.333

of the linear model supports Duncan’s hypothesis of a linear relation. An anova test reveals that the quadratic model
fits the data significantly better than the linear model (F(1, 5) = 23.014; p = 0.005), even though the curvature of the
quadratic model is only moderate, as can be observed in the figure. We may conclude that, in our corpus, the observed
likelihood of a turn-taking attempt by the interlocutor increases in a nearly linear fashion with respect to the number
of cues displayed by the speaker.

Lastly, we fit a multiple logistic regression model to the data in our corpus to assess the relative importance
of each of the seven turn-yielding cues. The model can be expressed as Y = β0 + β1X1 + β2X2 + · · · + β7X7, where
Y ∈ {0, 1} represents whether a turn-taking attempt took place after an IPU, Xi ∈ {0, 1} captures the presence of
the ith cue on the IPU, and βi is the corresponding regression coefficient. Table 8 lists the seven turn-yielding
cues sorted by their regression coefficients. According to this model, the textual completion cue ranks first in
importance, followed by voice quality, speaking rate, intensity level, pitch level and IPU duration. Notably, for
intonation we find no evidence that its coefficient differs significantly from 0 (p = 0.333); i.e., the intonation cue
plays no role in the model. When we fit a simple logistic model Y = β0 + β1X1 to the data, with X1 correspond-
ing to the intonation cue, we obtain β̂1 = 0.349 (SE = 0.041, t = 8.48, p ≈ 0). This indicates that the intonation
cue has a positive and significant correlation with the likelihood of a turn-taking attempt; however, in a mul-
tiple logistic regression model this cue seems to be redundant with the information contained in the other six
cues.

4.7. Speaker variation

To investigate possible speaker dependence in our turn-yielding cues, we examine evidence for each cue for each
of our 13 speakers. Table 9 summarizes these data. For each speaker, a check (

√
) indicates that there is significant

evidence of the speaker producing the corresponding individual turn-yielding cue (at p < 0.05, using the same statistical
tests described in the previous sections). Five speakers show evidence of all seven cues, while the remaining eight
speakers show either five or six cues. Pitch level is the least reliable cue, present only for seven subjects. Notably,
the cues related to speaking rate, textual completion, voice quality, and IPU duration are present for all thirteen
speakers.

Table 9
Summary of results for each individual speaker.

Speaker 101 102 103 104 105 106 107 108 109 110 111 112 113

Intonation
√ √ √ √ √ √ √ √ √ √ √

Spk. rate
√ √ √ √ √ √ √ √ √ √ √ √ √

Intensity
√ √ √ √ √ √ √ √ √ √ √ √

Pitch
√ √ √ √ √ √ √

Completion
√ √ √ √ √ √ √ √ √ √ √ √ √

Voice quality
√ √ √ √ √ √ √ √ √ √ √ √ √

IPU duration
√ √ √ √ √ √ √ √ √ √ √ √ √

LM r2 .92 .93 .82 .88 .97 .96 .95 .95 .97 .91 .95 .97 .89
QM r2 .98 .95 .95 .92 .98 .98 .96 .95 .99 .94 .98 .99 .90
LM vs. QM � � · � · �
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Fig. 12. Individual backchannel-inviting cues: intonation, pitch, intensity, IPU duration and voice quality. In all cases, the difference between the
BC and H groups is significant (anova, p < 0.01).

The bottom part of Table 9 shows the correlation coefficients (r2) of linear and quadratic regressions performed
on the data from each speaker. In all cases, the coefficients are very high, indicating that the models explain most
of the variation in the data. The fit is significantly better for the quadratic model than for the linear model for four
speakers (marked with a star on the final row: anova, p < 0.05), and this difference approaches significance for two
other speakers (marked with a dot: anova, p < 0.1). For the remaining seven speakers, both models provide statistically
indistinguishable explanations of the data. This further supports the hypothesis that the likelihood of a turn-taking
attempt increases almost linearly with the number of displayed cues.

5. Backchannel-inviting cues

We continue our study of turn-taking phenomena by focusing on a second set of cues produced by the speaker that
may induce a particular behavior from the listener, which we term backchannel-inviting cues. Backchannels are
short expressions, such as uh-huh or mm-hm, uttered by the listener to convey that they are paying attention, and to
encourage the speaker to continue. Normally, they are neither disruptive nor acknowledged by the speaker holding the
conversational floor. Hypothetically, speakers produce a set of cues marking specific moments within speaking turns
at which listeners are welcome to produce backchannel responses.

Finding out whether such cues exist and being able to model them could help answer two of the empiri-
cal questions discussed in Section 1: Q2. The system wants to keep the floor but to ensure that the user is
paying attention: how should it produce output encouraging the user to utter a backchannel? Q5. The user is
speaking: how does the system decide whether and when to produce a backchannel as positive feedback to the
user?

In this section we investigate the existence of lexical, acoustic and prosodic backchannel-inviting cues. Using the
turn-taking categories available in our corpus, we compare IPUs preceding a backchannel (BC) to IPUs preceding a
hold (H), making the assumption that such cues, if they exist, are more likely to occur in the former group. Additionally,
we contrast IPUs before a BC with those before a smooth switch (S), to study how backchannel-inviting cues differ
from turn-yielding cues.

5.1. Individual cues

We repeat the procedures described in Section 4, now looking for individual backchannel-inviting cues instead of
turn-yielding cues. We find significant differences between IPUs preceding BC and H for final intonation, pitch and
intensity levels, IPU duration, and voice quality. These results are summarized in Fig. 12.

IPUs immediately preceding backchannels show a clear tendency towards a final rising intonation. All pitch slope
measures (raw and stylized, over the IPU-final 200 and 300 ms) are significantly higher before BC than before S or H.
Categorical ToBI labels support this finding, as seen in Table 10. More than half of the IPUs preceding a backchannel
end in a high-rise contour (H–H%), and about a quarter in a low-rise contour (L–H%). Together, these two contours
account for more than 81% of all IPUs before BC, but only 36.2% and 20.6% of those before S and H, respectively.
Thus, final intonation presents significantly different patterns in IPUs preceding these three turn-taking categories:
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Table 10
ToBI phrase accent and boundary tone for IPUs preceding BC, S and H.

BC S H

H–H% 257 55.7% 484 (22.1%) 513 (9.1%)
[!]H–L% 27 5.9% 289 (13.2%) 1680 (29.9%)
L–H% 119 25.8% 309 (14.1%) 646 (11.5%)
L–L% 52 11.3% 1032 (47.2%) 1387 (24.7%)
No boundary tone 4 0.9% 16 (0.7%) 1261 (22.4%)
Other 2 0.4% 56 (2.6%) 136 (2.4%)

Total 461 100.0% 2186 (100.0%) 5623 (100.0%)

either high-rising or low-rising before backchannels, either falling or high-rising before smooth switches, and plateau
before holds (chi-square test, χ2 = 1903, d.f. = 10, p ≈ 0).

Mean pitch and mean intensity levels are significantly higher for IPUs before BC than before the other two categories.
This suggests that backchannel-inviting cues related to these two features function in a manner opposite to turn-yielding
cues. We also find that IPUs followed by backchannels are significantly longer than IPUs followed by either smooth
switches or holds, both when measured in seconds and in number of words. Thus, IPU duration works not only as a
potential turn-yielding cue, as we saw in previous sections, but also as a backchannel-inviting cue.

For voice quality, we find differences for just one of the three features under consideration. Noise-to-harmonics
ratio (NHR) is significantly lower in IPUs preceding BC than in those preceding H. Again, this backchannel-inviting
cue is the opposite of the related turn-yielding cue, which corresponds to a high level of NHR. For the other two voice
quality features, jitter and shimmer, the two groups are statistically indistinguishable.

Next we look at lexical backchannel-inviting cues. We examine the distribution of part-of-speech tags in IPU-final
phrases, and find that as many as 72.5% of all IPUs preceding backchannels end in either ‘DT NN’, ‘JJ NN’, or ‘NN
NN’ (see Table 11)—that is, ‘determiner noun’ (e.g., the lion), ‘adjective noun’ (blue mermaid), or ‘noun noun’ (top
point). In comparison, the same three final POS bigrams account for only 31.1% and 21.3% of IPUs preceding S and H,
respectively. Furthermore, the three most frequent final POS bigrams before S and H add up to just 43.7% and 29.0%,
showing more spread distributions, and suggesting that the part-of-speech variability for IPUs before a BC is relatively
very low. These results strongly suggest the existence of a backchannel-inviting cue related to the part-of-speech tags
of the IPU-final words.

Table 11
Count and cumulative percentage of the 10 most frequent IPU-final POS bigrams preceding BC, S and H.

BC S H

POS # % POS # % POS # %

DT NN 234 42.3% DT NN 600 18.5% DT NN 1093 13.5%
JJ NN 100 60.4% UH 578 36.3% UH 832 23.7%
NN NN 67 72.5% JJ NN 242 43.7% JJ NN 430 29.0%
IN NN 12 74.7% NN NN 168 48.9% IN DT 374 33.6%
DT JJ 12 76.9% DT JJ 111 52.3% UH UH 243 36.6%
IN PRP 9 78.5% NN UH 96 55.3% DT JJ 225 39.4%
NN RB 7 79.7% IN PRP 90 58.1% IN NN 214 42.0%
DT NNP 7 81.0% UH UH 83 60.6% NN NN 211 44.6%
VBZ VBG 6 82.1% JJR NN 83 63.2% DT UH 154 46.5%
NNS NN 5 83.0% IN DT 67 65.2% NN IN 112 47.9%

. . . . . . . . .

Total 553 100% Total 3246 100% Total 8123 100%
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Table 12
Acoustic features used to estimate the presence of individual backchannel-inviting cues. All features were speaker normalized using z-scores.

Individual cues Features

Intonation F0 slope over the IPU-final 200 ms
F0 slope over the IPU-final 300 ms

Intensity level Mean intensity over the IPU-final 500 ms
Mean intensity over the IPU-final 1000 ms

Pitch level Mean pitch over the IPU-final 500 ms
Mean pitch over the IPU-final 1000 ms

IPU duration IPU duration in ms
Number of words in the IPU

Voice quality Noise to harmonics ratio over the IPU-final 500 ms
Noise to harmonics ratio over the IPU-final 1000 ms

5.2. Combining cues

After finding evidence of the existence of individual acoustic, prosodic and textual backchannel-inviting cues, we
replicate the procedures described in previous sections to investigate how such cues combine together to form complex
signals. For each individual cue, we choose two features shown to strongly correlate with IPUs preceding backchannels,
as seen above. These features are shown in Table 12. For example, the individual cue related to IPU-final intonation is
represented by two objective measures of the F0 slope, computed over the final 200 and 300 ms of the IPU.

Next, we estimate the presence or absence in a given IPU of each of the individual cues in the left column of Table 12
using the same procedure described in the Section 4.6. Additionally, we annotate automatically all IPUs in the corpus
according to whether they end in one of the three POS bigrams found to strongly correlate with IPUs preceding a
backchannel: ‘DT NN’, ‘JJ NN’ and ‘NN NN’. IPUs ending in any such POS bigram are considered to contain the
‘POS bigram’ backchannel-inviting cue. Since this feature is essentially binary, no further processing is necessary.

We first analyze the frequency of occurrence of conjoined individual cues before each turn-taking category. Table 13
shows the top ten frequencies for IPUs immediately before a backchannel (BC), a smooth switch (S), and a hold (H).
For IPUs preceding BC, the most frequent cases correspond to all, or almost all, cues present at once. Very different are
IPUs preceding H, which show few to no cues. For IPUs preceding S, those with no cues, or just one or two, represent the
most frequent cases. This suggests that signals produced by speakers to yield the turn differ considerably from signals
that invite the interlocutor to utter a backchannel response. Table 14 shows similar results, now grouping together all

Table 13
Top 10 frequencies of complex backchannel-inviting cues for IPUs preceding BC, S and H. For each of the six cues, a digit indicates presence, and
a dot, absence. 1: intonation; 2: intensity level; 3: pitch level; 4: IPU duration; 5: voice quality; 6: final POS bigram.

BC S H

Cues Count Cues Count Cues Count

123456 83 ...... 243 .2..5. 865
12.456 49 ...4.. 195 .23.5. 533
123.56 47 ..3... 172 ...... 513
.23456 27 1..... 153 ..3... 414
12345. 24 1..4.. 123 ....5. 368
123.5. 19 1.3... 113 .2.45. 344
12.45. 16 ...4.6 111 .2.... 330
12..56 16 1..4.6 108 1..... 256
1.3456 14 ...45. 107 ...45. 237
.2.456 14 .2.... 94 ...4.. 218

. . . . . . . . .

Total 553 Total 3246 Total 8123
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Table 14
Distribution of number of backchannel-inviting cues displayed in IPUs preceding BC, S and H.

# Cues BC S H

0 4 (0.7%) 243 (7.5%) 513 (6.3%)
1 17 (3.1%) 746 (23.0%) 1634 (20.1%)
2 57 (10.3%) 912 (28.1%) 2364 (29.1%)
3 90 (16.3%) 723 (22.3%) 1960 (24.1%)
4 139 (25.1%) 379 (11.7%) 1010 (12.4%)
5 163 (29.5%) 192 (5.9%) 501 (6.2%)
6 83 (15.0%) 51 (1.6%) 141 (1.7%)

Total 553 (100%) 3246 (100%) 8123 (100%)

Fig. 13. Percentage of backchannels following IPUs with 0–6 backchannel-inviting cues.

IPUs with the same number of cues, independently of the cue types. Again, we observe that larger proportions of IPUs
preceding BC show more conjoined cues than IPUs preceding S and H.

Next we look at how the likelihood of occurrence of a backchannel varies with respect to the number of individual
cues conjointly displayed by the speaker. Fig. 13 shows the proportion of IPUs with 0–6 cues present that are followed
by a backchannel from the interlocutor—namely, the number of BC divided by the number of S, PI, H and BC, for
each cue count.9 The dashed line in the plot corresponds to a linear model fitted to the data (r2 = 0.812); the continuous
line, to a quadratic model (r2 = 0.993). The fit of the quadratic model is significantly better than that of the linear model
(anova, F(1, 4) = 110.0, p < 0.001). In this case, the fit of the linear model is not as good as in the case of turn-yielding
cues. The quadratic model, on the other hand, achieves an almost perfect fit and shows a marked curvature, confirming
that a quadratic model provides a plausible explanation for the relation between number of backchannel-inviting cues
and occurrence of a backchannel.

Lastly, we fit a multiple logistic regression model to the data in our corpus to assess the relative importance of each of
the six backchannel-inviting cues. The model can be expressed as Y = β0 + β1X1 + β2X2 + · · · + β6X6, where Y ∈ {0, 1}
represents whether a backchannel was uttered after an IPU, Xi ∈ {0, 1} captures the presence of the ith cue on the
IPU, and βi is the corresponding regression coefficient. Table 15 lists the six backchannel-inviting cues sorted by their
regression coefficients. According to this model, the POS bigram cue ranks first in importance, followed by intonation,
intensity level, IPU duration, voice quality and pitch level. Note that in this case all six cues are included in the model,
as opposed to the case of turn-yielding cues, for which intonation was excluded—in fact, in this case the intonation
cue ranks second in relevance.

9 Again, we only consider non-overlapping exchanges, thus leaving out O, I, BI and BC O.
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Table 15
Multiple logistic regression model fit to the data in our corpus: coefficient estimates, standard errors, and t and p values.

Xi β̂i SE t p

POS bigram 1.499 0.100 14.972 ≈0
Intonation 1.153 0.099 11.667 ≈0
Intensity level 0.649 0.109 5.946 ≈0
IPU duration 0.626 0.097 6.479 ≈0
Voice quality 0.618 0.121 5.104 ≈0
Pitch level 0.366 0.095 3.840 0.0001

Table 16
Summary of results for individual speakers.

Speaker 102 103 105 106 108 110 111 112 113

Intonation
√ √ √ √ √ √ √

Pitch level
√ √ √

Intensity level
√ √ √ √ √ √

IPU duration
√ √ √ √ √ √ √ √

Voice quality
√ √ √ √ √ √ √

POS bigram
√ √ √ √ √ √ √ √ √

LM r2 0.63 0.88 0.72 0.80 0.63 0.70 0.84 0.80 0.85
QM r2 0.70 0.96 0.95 0.80 0.87 0.95 0.93 0.99 0.99
LM vs. QM � � · � · � �

5.3. Speaker variation

We investigate the existence of the hypothesized backchannel-inviting cues for each individual speaker. Four subjects
have fewer than 20 instances of IPUs preceding BC, a count too low for statistical tests, and are thus excluded from
the analysis. Table 16 summarizes the evidence found for the remaining nine speakers. For each speaker, a check (

√
)

means there is significant evidence of the existence of the corresponding cue.
Differences in intonation, duration and voice quality are significant for the great majority of speakers, and a smaller

proportion of speakers display differences in pitch and intensity. Also, all nine speakers show a marked preference for
at least two of the three final POS bigrams mentioned above before backchannels. Notably, no single acoustic/prosodic
cue is used by all speakers; rather, each seems to use their own combination of cues. For example, speaker 102 varies
only intonation, while speaker 108 varies only intensity level and IPU duration. The bottom rows in Table 16 show the
correlation coefficient (r2) of the linear and quadratic regressions performed separately on the data from each speaker.
The fit of the linear models ranges from moderate at 0.625 to high at 0.884. In seven out of nine cases, the fit of the
quadratic models is significantly better, ranging from 0.702 to 0.990 (anova, star: p < 0.05, dot: p < 0.1). Thus, even
though speaker variation in the production of backchannel-inviting cues is not insignificant, a quadratic model seems
to successfully explain the relation between the number of backchannel-inviting cues conjointly displayed, and the
likelihood of occurrence of a backchannel.

6. Overlapping speech

Often in conversation speakers take the turn just before the end of their interlocutors’ contribution, without inter-
rupting the conversational flow (Sacks et al., 1974). There is evidence of the occurrence of these events in multiple
languages, including Arabic, English, German, Japanese, Mandarin and Spanish (Yuan et al., 2007), and previous
studies also report situational and genre differences. For example, non-face-to-face dialogues have significantly fewer
speech overlaps than face-to-face ones (ten Bosch et al., 2005); people make fewer overlaps when talking with strangers
(Yuan et al., 2007); and speakers tend to make fewer overlaps and longer pauses when performing difficult tasks (Bull
and Aylett, 1998). The existence of this phenomenon suggests that listeners are capable of anticipating possible turn
endings, and poses the question of how they manage to do this. One possible explanation could be the occurrence of
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Fig. 14. Full and partial overlap types.

early turn-taking cues in the speaker’s turn. Such cues might be perceived by listeners, allowing them to anticipate
upcoming places for either taking the turn or producing a backchannel response.

Simultaneous speech poses serious difficulties for the ASR components of IVR systems (Shriberg et al., 2001).
It is possible that knowledge about the nature of previous turn-taking cues could enable IVR systems to reduce
the likelihood of occurrence of simultaneous speech by avoiding the production of utterances containing speech
events that could be interpreted by the user as early turn-yielding or backchannel-inviting cues. Hypothetically,
this strategy could prevent the user from taking the turn or backchanneling before the system has completely fin-
ished producing its current utterance, although clearly it could be difficult to separate early from late cues in a short
utterance.

In this section we look for evidence of the occurrence of early turn-taking cues in conversation. For this, we first
review the different patterns of overlapping speech defined by our labeling scheme, and examine their frequencies in
the Games Corpus. Second, we compare IPUs preceding transitions with and without overlapping speech, exploring
whether both groups present similar occurrence patterns of turn-yielding and backchannel-inviting cues. Third, we
study the durational distribution of overlapping speech segments, aiming at identifying plausible locations to search
for early turn-taking cues. Finally, we look for evidence of early turn-taking cues in turn-medial speech segments.

6.1. Types of overlapping speech in the Games Corpus

The turn-taking labeling scheme presented in Section 3.4 includes four categories of turn exchanges with simulta-
neous speech present: overlap (O), backchannel with overlap (BC O), interruption (I) and butting-in (BI). In this study
we consider only the first two classes (O and BC O), and ignore the last two, since they correspond to disruptions
of the conversational flow at arbitrary points during the speaker’s turn, rather than unobtrusive overlap during fluent
exchanges. Note that the existence of overlapping speech is the only difference between O and smooth switches (S),
and between BC O and backchannels (BC).

Instances of O can be divided into two cases: full overlaps, which take place completely within the interlocutor’s
turn (as depicted in the left part of Fig. 14); and partial overlaps, which begin during the interlocutor’s turn but
extend further after its end (right part of Fig. 14). Fully and partially overlapping backchannels are defined analogously.
In this study we consider only instances of partial O and BC O, which are clear cases of utterance endings overlapped
by new utterances from the interlocutor. For fully overlapping instances, we have as yet no firm hypothesis of where
in the prior speech we should look for cues that might trigger the fully overlapping contribution. Furthermore, full
overlaps correspond to complex events in which the current speaker talks – without pausing – before, during and after
a complete utterance from the interlocutor. In such occasions, one might say that the two speakers briefly share the
conversational floor, an interesting phenomenon we will address specifically in future research.

In the Games Corpus, 767 of the 1067 instances of O, as well as 104 of the 202 tokens of BC O, are partially
overlapping. We use only these data in the present study. For clarity, we hereafter refer to partially overlapping O and
BC O simply as O and BC O. To illustrate the procedures we describe below for investigating potential cues to turn
changes and backchannel productions in speech preceding overlaps, we provide a schematic in Fig. 15.

6.2. Existence of cues in IPUs overlapped by O or BC O

In Section 4 we presented a procedure to estimate the existence of seven turn-yielding cues before smooth switches
(S). We begin our study of overlapping speech by searching for evidence of the same cues in the IPUs that are themselves

Fig. 15. Two inter-pausal units (IPU1, IPU2), each with three intermediate phrases (ip1, ip2, ip3); ip3 of IPU2 is overlapped by speech from the
interlocutor.
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Table 17
Top: top 10 frequencies of complex turn-yielding cues for IPUs overlapped by O (cf. Table 6). Bottom: distribution of number of turn-yielding cues
in IPUs overlapped by O (cf. Table 7).

Cues Count

1234567 61
.234567 50
.234.67 26
.23456. 24
..34567 24
1234.67 22
..3..67 22
123456. 21
.2.4567 20
..34.67 20

. . .

# Cues O

0 1 (0.1%)
1 15 (2.0%)
2 55 (7.2%)
3 111 (14.5%)
4 163 (21.3%)
5 213 (27.8%)
6 148 (19.3%)
7 61 (8.0%)

Total 767 (100%)

overlapped (corresponding to IPU2 in Fig. 15) (O)—to see whether upcoming cues are present very close to the point
of overlap. Results are summarized in Table 17. The table at the top lists the top ten frequencies of complex cues (1:
intonation; 2: speaking rate; 3: intensity level; 4: pitch level; 5: IPU duration; 6: voice quality; 7: textual completion).
Similarly to what we observe for IPUs followed by S (see Table 6), the most frequent cases correspond to all, or
almost all, cues present at once. The bottom part of Table 17 shows the same results, now grouping together all IPUs
with the same number of cues, independent of cue types (see Table 7). Again, we observe a marked tendency of
IPUs preceding O to present a high number of conjoined turn-yielding cues. These results indicate that entire IPUs
immediately preceding smooth switches (S) and overlaps (O) show a similar behavior in terms of the occurrence of
our posited turn-yielding cues.

We repeat the same analysis to study the presence of backchannel-inviting cues in IPUs overlapped by backchannels
(BC O; again, corresponding to IPU2 in Fig. 15). The results are summarized in Table 18, and are comparable to the
results obtained for backchannels without overlap (BC), shown in Tables 13 and 14. In both cases, we observe that
IPUs preceding BC or BC O tend to have a high number of conjointly displayed cues. These results indicate that IPUs
immediately preceding backchannels (BC) and IPUs overlapped by backchannels (BC O) also show considerably
similar patterns of occurrence of backchannel-inviting cues. We now turn to the question of where in the overlapped
turn such cues may be found.

6.3. Early turn-yielding cues

In Section 6.2 we compared the occurrence of turn-yielding cues in (entire) IPUs preceding S and (entire) IPUs
overlapped by O, and also compared the occurrence of backchannel-inviting cues in (entire) IPUs preceding BC
and (entire) IPUs overlapped by BC O. In this section we investigate the location of cues within smaller portions of
overlapped IPUs. First, we examine the durational distribution of the overlapped portion of overlapped/overlapping
IPUs in our corpus, looking for reasonable places to search for such cues. We then identify possible early turn-yielding
cues by comparing features in different portions of the preceding IPUs. Given the low number of backchannels with
overlap (BC O) in the corpus, we restrict this study to turn-shifting overlaps (O).
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Table 18
Top: top 10 frequencies of complex backchannel-inviting cues for IPUs overlapped by backchannels BC O (cf. Table 13). Bottom: distribution of
number of backchannel-inviting cues in IPUs preceding BC O (cf. Table 14).

Cues Count

123456 14
12.456 9
.23456 8
12345. 6
123.56 6
1..456 5
123.5. 4
12.45. 4
.2.456 3
.2.45. 3

. . .

# Cues BC O

0 1 (1.0%)
1 3 (2.9%)
2 8 (7.7%)
3 20 (19.2%)
4 28 (26.9%)
5 30 (28.8%)
6 14 (13.5%)

Total 104 (100%)

6.3.1. Onset of overlaps
The annotation of turn-taking phenomena in the Games Corpus specifies only the presence or absence of overlapping

speech (e.g., O vs. S). However, it does not provide information about the duration of the overlapping segments,
knowledge important for locating cues that could be perceived by listeners early enough to anticipate turn endings. We
first examine the distribution of overlapped segments that occur in the corpus.

Fig. 16 shows the cumulative frequency distribution of the duration of overlapping speech segments in overlaps
(O). Approximately 60% of Os have 200 ms or less of simultaneous speech, and 10% have 500 ms or more, although
only a small number have more than one second. If we look at lexical rather than temporal units, we find that 613
(80%) of all instances begin during the last word in the previous turn; 100 (13%), during the penultimate word; and
the remaining 54 (7%), still earlier. The mean duration of the final word before overlaps is 384 ms (stdev = 180 ms);

Fig. 16. Cumulative frequency distribution of the duration of overlapping speech segments in turn exchanges labeled O.
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Fig. 17. Individual turn-yielding cues in switch ips, target ips, and in contrast ips: speaker-normalized speaking rate, intensity and voice quality
features. In all cases, the difference between contrast ips and the other two groups is significant (anova, p < 0.05).

and of the penultimate word, 376 ms (stdev = 170 ms). Finally, in terms of prosodic units, we find that over 95% of
overlaps begin during the turn-final intermediate phrase (ip) of the IPU; we use our hand-annotated ToBI labels in this
calculation.10 The mean duration of the final ip before overlaps is 747 ms (stdev = 418 ms).

These results indicate that, while in most cases the overlapping turn begins just before the end of the previous turn,
in some cases the overlapping speech spans up to several words. Nonetheless, since nearly all overlaps occur during the
turn-final ip, the penultimate ip– occurring just before the overlapped ip– appears to be a plausible place to search for
early turn-yielding cues. These ips represent linguistically motivated units, which are better suited to the calculation
of our F0 features in particular.

6.3.2. Cues in penultimate intermediate phrases
We search for early turn-yielding cues in penultimate ips preceding overlaps (O), using a slightly modified version

of the procedure described in the previous sections. This intermediate phrase corresponds to ip2 of IPU2 in Fig. 15,
and will in every case precede the overlapped speech in our corpus; we term these ips target ips. To identify possible
turn-yielding cues as such, we contrast these target ips with all ips occurring before penultimate position for IPUs of
any turn type; i.e., in Fig. 15, this would mean that ip2 of IPU2 would be contrasted with ip1 from IPU2 and ip1, ip2,
ip3 from IPU1. For ease of reference, we call this set of ips contrast ips. (Note that, in cases when the overlapping
IPU contains only a single ip, we locate the target ip as the last ip in the previous IPU within the same turn. If such
instances have no preceding IPU within the same turn, they are excluded from consideration.) The question is, can
we determine if the ip just before the onset of overlapped speech (the target ip) does itself contain characteristics
that are distinct from ips occurring either earlier in the overlapped IPU itself or in even earlier speech in the turn (the
contrast ips)? We propose that any significant difference found between the two groups in acoustic, prosodic, lexical
and syntactic features might indicate the existence of a potential turn-yielding cue before O.

Additionally, we examine ips in the same penultimate position before smooth switches (S), which we term switch ips
to determine whether any such cues tend to occur in all turn endings, or whether they constitute a distinct phenomenon
that typically occurs only before overlaps. In cases where the final IPU preceding S contains only a single ip, we follow
the same procedure as described above and locate the switch ip in the final ip of the preceding IPU in the same speaker
turn; when there is only a single IPU with a single ip, we exclude this item from our calculations. Note that 58% of
IPUs preceding S and 48% of IPUs preceding O contain exactly one ip.

We find significant differences in speaking rate, measured in number of syllables and phonemes per second, over
the whole target ip and over its final word, as shown in Fig. 17. The speaking rate of target ips is significantly faster
than that of contrast ips. We also find that target ips are produced with significantly lower intensity, and with higher
values of three voice quality features—jitter, shimmer and NHR. Additionally, target ips and switch ips show no
significant differences with respect to all these features. In fact, these target ips do indeed appear to exhibit similar
cues to those we find over the entire IPU preceding S, as described in Section 4. Recall that these IPUs preceding S tend
to be produced with faster speaking rate, lower intensity, and higher jitter, shimmer and NHR than IPUs preceding H.

10 This computation, as well as the subsequent analysis of early turn-yielding cues, considers only the portion of the Games Corpus that is annotated
using the ToBI framework, which includes 538 instances of partially-overlapping O.
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In sum, it does appear that there are cues in the ips preceding O that are similar to those characterizing entire IPUs
preceding S —and that switch ips of IPUs preceding S closely reflect the characteristics of entire IPUs preceding S.
That is, there appear to be local turn-yielding signals in penultimate ips of IPUs preceding S and in penultimate ips of
IPUs preceding O.

7. Discussion

In this study we have examined a number of turn-taking phenomena in human–human conversation, with the
ultimate goal of improving the performance and naturalness of practical applications such as IVR systems. To discover
possible cues to upcoming turn shifts and backchannels, we have investigated a larger and more varied set of acoustic,
prosodic, and lexico-syntactic cues than previous descriptive studies, providing objective definitions of our features
and detailed information about the predictive power of each cue type. Our corpus is larger than that of most previous
studies, permitting more statistically robust results. Furthermore, in our corpus we have distinguished three importantly
distinct phenomena: turn switches, backchannels and interruptions to provide a clearer picture of the different types of
speech that precede them. We have examined these in both overlapping and non-overlapping speech.

We have presented evidence of the existence of seven measurable events that take place with a significantly higher
frequency on IPUs preceding smooth switches (when the current speaker completes an utterance and the interlocutor
takes the turn after a short pause) than on IPUs preceding holds (when the current speaker continues speaking after a
short pause). These events may be summarized as follows: a falling or high-rising intonation at the end of the IPU; a
reduced lengthening of IPU-final words; a lower intensity level; a lower pitch level; a point of textual completion; a
higher value of three voice quality features: jitter, shimmer, and NHR; and a longer IPU duration. These seven events
represent potential turn-yielding cues, such that when several cues occur simultaneously, the likelihood of a subsequent
turn-taking attempt by the interlocutor increases in a linear manner. Our findings represent the first support for Duncan’s
(1972) general hypothesis from a large corpus of spontaneous dialogue—although the features we find correlated with
turn shifts are somewhat different from those proposed by Duncan and other researchers. In the Games Corpus, the
percentage of IPUs followed by a turn-taking attempt ranges from 5% when no turn-yielding cues are present, to 65%
when all seven cues are present.

We believe that these findings could be used to improve the turn-taking decisions of state-of-the-art IVR systems.
In particular, our model of turn-taking provides answers to three of the questions posed in Section 1:

Q1. The system wants to keep the floor: how should it formulate its output to avoid an interruption from the user?

According to our model, including as few as possible of the described turn-yielding cues in the system’s output
will decrease the likelihood that the user will take the turn. Therefore, when the system intends to continue holding
the floor, it should end its IPUs in plateau intonation, with high intensity and pitch levels, leaving utterances textually
incomplete (e.g., preceding pauses with expressions such as and or also), and so on.

Q3. The system is ready to yield the floor: how should it convey this to the user?

This situation represents the opposite of Q1. If the system includes in its output as many of the described turn-
yielding cues as it can produce given its generation component, a turn-taking attempt by the user will be more likely
to take place. Thus, if the system intends to cede the floor to the user, it should end its final IPU in either falling
or high-rising intonation (depending on whether the system’s message is a statement or a direct question), with low
intensity and pitch levels, and so on.

Q4. The user is speaking but pauses: how can the system decide whether the user is giving up the turn?

Most current systems simply wait for a pause from the user above a system-defined threshold before attempting to
take the turn. It should be possible to improve upon this simple and often unnatural technique using the findings in
our study. Although the difficulty of estimating each turn-yielding cue will vary according to the implementation, we
may draft a high-level description of a possible turn-taking decision procedure: at every pause longer than 50 ms, the
system estimates the presence of as many of the cues we have described as possible over the user’s preceding IPU. If
the number of detected cues is high, relative to a predefined threshold, it may choose to conduct a turn-taking attempt
immediately; otherwise, it may continue to wait, either for a longer pause (defaulting to traditional procedures) or for
an IPU with a higher number of perceived cues.
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We have also presented evidence of the existence of six backchannel-inviting cues—six measurable events present
with a significantly higher frequency in IPUs preceding backchannels than in IPUs preceding holds or smooth switches.
These events may be summarized as follows: a rising intonation at the end of the IPU, a higher intensity level, a higher
pitch level, a final POS bigram equal to ‘DT NN’, ‘JJ NN’ or ‘NN NN’; a lower value of noise-to-harmonics ratio (NHR);
and a longer IPU duration. We have also shown that, when several backchannel-inviting cues occur simultaneously,
the likelihood of occurrence of a backchannel from the interlocutor increases in a quadratic fashion, ranging from only
0% of IPUs followed by a backchannel when no cues are present, to more than 30% when all six cues are present. This
latter low proportion of backchannels occurring even when all six cues are present may be explained by the optionality
of backchannels in SAE as in other conversational speech: speakers do not backchannel at every opportunity and some
speakers backchannel less than others; and it is even possible that an entire successful conversation can be completed
without the production of any backchannels at all. However, our findings can still be of use in IVR systems in several
ways.

We believe these results can help answer two of the IVR-related questions we posed initially:

Q2. The system wants to keep the floor but to ensure that the user is paying attention: how should it produce
output encouraging the user to utter a backchannel?

According to our model, if the system includes in its output as many of the described cues as possible, the likelihood
of a backchannel from the user will increase. Thus, if the system intends to elicit a backchannel response from the user,
it should end the final IPU in one of the listed part-of-speech bigrams, with rising intonation (preferably high-rising),
high pitch and intensity levels, and so on.

Q5. The user is speaking: how does the system decide whether and when to produce a backchannel as positive
feedback to the user?

The decision about when the system should produce a backchannel might be coupled with the procedure described
above for detecting turn endings based on turn-yielding cues. Every time the system estimates the presence of turn-
yielding cues over the user’s final IPU, it can also estimate the presence of backchannel-inviting cues. (Note that some
features may be reused, as they belong to both cue sets.) If the number of detected backchannel-inviting cues is high
enough, then the system may utter a backchannel; otherwise, it may keep silent. Since at least three backchannel-
inviting cues differ in valence from corresponding turn-yielding cues (intensity, pitch and NHR) there may be less risk
that the system will confuse turn-taking opportunities with backchannel-producing opportunities.

In an examination of overlapping speech in conversation, we have shown that IPUs preceding overlaps and those
preceding smooth switches show comparable patterns of turn-yielding cues. Similarly, IPUs preceding backchannels
with and without overlap show comparable patterns of backchannel-inviting cues. Additionally, we observe that some
of the turn-yielding cues described in Section 4 appear to occur earlier in the turn, in the penultimate intermediate
phrase (target ip) of the overlapped IPU. Thus it even appears possible for future IVR systems to imitate common
human propensity to overlap speech in conversation by detecting turn-yielding intentions before the user has completed
their turn.

We believe that these findings can benefit future IVR systems, identifying cues that will be useful in improving
turn-taking behaviors in them. Such improvements should improve the naturalness and usability of such systems by
offering users a turn-taking experience that more closely resembles normal interaction in human–human conversation.

7.1. Directions for future research

Our studies have shown very low speaker variability in turn-yielding cues, with almost all speakers producing all
seven cues, but a considerably higher speaker variation for backchannel-inviting cues—in fact, each speaker seems
to use their own combination of such cues. Still, some characteristics are true across all speakers for utterances
preceding backchannels: all tend to display at least two cues, and all share the POS bigram cue. In the future, we
are interested in investigating how, when, and why speakers choose to use a particular set of backchannel-inviting
cues.

Another topic of our future research is to investigate additional turn-taking cues related to voice quality. Features
such as relative average perturbation (RAP), soft phonation index (SPI), and amplitude perturbation quotient (APQ),
all of which have been shown to capture different aspects of voice quality, should be studied. Furthermore, we have
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chosen to collapse jitter, shimmer and NHR into one simple voice quality cue, but these features could instead be used
individually as finer grained cues.

Also, there is room for improvement in our automatic classification of textual completion. Our best performing
classifier, based on support vector machines, achieves an accuracy of 80%, while the agreement for humans is 90.8%.
New approaches could incorporate features capturing information from the previous turn by the other speaker, which
was available to the human labelers but not to the machine learning classifiers. In addition, the sequential nature of this
classification task might be better exploited by more advanced graphical learning algorithms, such as Hidden Markov
Models and Conditional Random Fields.

Users of IVR systems sometimes engage in an uninterrupted flow of speech which the system might want to interrupt,
either because it has already collected the information needed for the task at hand, or simply because it has lost track of
what the user is saying and needs to start over. In such occasions, it is crucial for the system to interrupt in an acceptable
manner. Modeling the way people interrupt in spontaneous, collaborative conversations should aid IVR systems in this
aspect of turn-taking. Another direction for our future research is to examine the three types of interruptions we have
annotated in our corpus (simple I, pause PI, and barge-in BI interruptions) to identify places where these are more
likely to occur, and to describe the acoustic and prosodic properties of the interrupter’s speech.

An additional future research direction will involve further examination of the location of early turn-yielding and
backchannel-inviting cues. Since ips are difficult to identify automatically, it will be useful to investigate different
possible segmentations of speech preceding overlaps to see how early cues can most reliably be identified. We also
want to investigate whether we can see patterns in cues across segmentations of IPUs preceding overlaps, to test the
hypothesis that cues become more pronounced across the course of the IPU.

Finally, in future research we plan to use the information obtained in these studies to experiment with the automatic
classification of turn types such as smooth switches and backchannels using information from the speech that precedes
such phenomena. By predicting where a speaker’s turn is likely to end or where a backchannel is likely to be produced
and which of the features we have found to occur in such speech are most effective in predicting different types of
turn-taking behavior, we believe we will develop even more practical methods for future IVR systems to employ in
managing system-user dialogue.
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