
F.V. Cipolla-Ficarra et al. (Eds.): ADNTIIC 2011, LNCS 7547, pp. 176–185, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Towards Software Architecture Documents Matching
Stakeholders’ Interests

Matías Nicoletti1,2, J. Andres Diaz-Pace1,2, and Silvia N. Schiaffino1,2

1 ISISTAN Research Institute, Facultad de Cs. Exactas, UNICEN University,
Campus Universitario, Pje. Arroyo Seco - (7000) Tandil, Buenos Aires, Argentina

2 CONICET-Argentina
{mnicolet,adiaz,sschia}@exa.unicen.edu.ar

Abstract. Architecture documentation is a crucial activity in any software
development project. In practice, architecture documenters face two problems:
how to generate relevant documentation contents for the main stakeholders, and
how to avoid documenting too much about the architecture. We propose a
personalization approach based on stakeholders' interests to tackle these
problems. The expected contribution is to facilitate the documenter’s tasks,
while making the resulting documentation useful to the stakeholders. We
specifically describe a user profiling tool that builds stakeholders’ profiles,
which serve to link the stakeholders to sections of the architectural documents.
These links help the documenter to prioritize sections that are potentially
relevant to those stakeholders. The tool has been implemented as a semi-
automated pipeline based on text mining techniques. The results, although
preliminary, show that our proposal is helpful for a stakeholder-centric
architecture documentation process.

Keywords: Architecture Documentation, User Profiling, Text Mining,
Stakeholders.

1 Introduction

Documentation is a common activity of any software development project, and it is
important in early development stages because the decisions made at those stages will
shape the rest of the development and the quality of the software product.
Documentation is also useful for knowledge sharing and communication among
project stakeholders. A relevant documentation artifact is the so-called Software
Architecture Document (SAD), which captures the key design decisions that enable
the system to satisfy its main quality attributes, and therefore, the business goals
posed by the system stakeholders [4]. Basically, architectural decisions refer to a
number of high-level software structures and patterns (e.g., layers, client-server, etc.),
normally depicted via architectural views, and their justification in terms of quality-
attributes and functional requirements.

Producing good architectural documentation and keeping it up-to-date is
challenging, particularly in the context of iterative development processes. On one

 Towards Software Architecture Documents Matching Stakeholders’ Interests 177

side, documentation consumers (e.g., stakeholders) want to access to the “right
architectural contents” of the SAD, with as less information overloading as possible.
Unfortunately, these consumers are often swamped with architectural knowledge that
not always satisfies their information needs. Recent studies [8, 11] have shown that
many individual stakeholder concerns are addressed by a fraction (less than 25%) of
the SAD, but for each stakeholder a different SAD subset is needed. On the other
hand, the documentation writer (or documenter) faces several forces that constraint
his/her task, such as: how to generate timely documentation for the main stakeholders,
how to keep up with the features being added in development iterations, and how to
avoid documenting “too much” about the architecture. In addition, the value of
documentation writing is often not clearly perceived by upper levels of management.

In this context, we see the SAD management process as a balancing act between
having “good enough” documentation (for the stakeholders) and creating it in a cost-
effective manner. By good enough, we mean the degree to which the documentation
supports the stakeholders’ tasks, while also exposing concerns such as architectural
risks or quality-attribute tradeoffs. By cost-effective, we imply that the documentation
is delivered incrementally, and its contents are prioritized according to some
economic strategy. Over the last years, several architecture documentation approaches
have been developed [12] and tool support has become a key asset (e.g., CASE tools,
Wikis, collaborative platforms). These efforts have mainly targeted the consumer’s
perspective of the documentation process. In this article, we focus on the
documenter’s perspective, that is, how the documenter can produce SAD contents that
are actually informed by the stakeholders’ information needs.

Certainly, having a SAD with the necessary architectural views to satisfy all the
stakeholders would be ideal, but this is seldom the case in real projects, due to
economic reasons, schedule pressures, and also conflicting stakeholders’ interests,
among others. A more practical approach is to select a set of views addressing the
concerns of the most relevant stakeholders, and then adjust the view contents and
level of details accordingly [2]. In order words, we argue for a personalization of the
SAD contents. To do so, we propose capturing the main characteristics of each
stakeholder by means of user profiling techniques [9]. The expected contribution of
our approach is to facilitate the documenter’s tasks, making the documentation
process both cost-effective and more useful to the stakeholders. In this article, we
specifically describe a tool approach that builds stakeholders profiles based on topics
of interest, which serve to link the stakeholders to sections of the architectural
documents. Along this line, we have implemented a semi-automated pipeline based
on text mining techniques. The outputs of this pipeline help the documenter to
prioritize the sections of a SAD based on their stakeholder relevancy. The results,
although preliminary, show that our approach is helpful for the whole architecture
documentation process.

The rest of the article is organized around 4 sections. Section 2 discusses
background and related work. Section 3 presents the main components of the
proposed approach. Section 4 describes the current prototype for the detection of
stakeholders’ interests and their linkage to architecture documents. This section also
includes an experimental evaluation of the prototype. Finally, section 5 gives the
conclusions and outlines future work.

178 M. Nicoletti, J.A. Diaz-Pace, and S.N. Schiaffino

2 Related Work

Several approaches have investigated how to codify and make (better) use of
architectural knowledge. In fact, the IEEE Standard 1471-2000 about Recommended
Practice for Architecture Description of Software-Intensive Systems [6] recognizes
the need of supporting the understanding of the SAD. However, few approaches have
targeted the personalization of these documents by means of user profiles.

Farenhorst et al. [3] analyzed the requirements for a tool to capture architectural
knowledge and share it among a group of architects. Based on these requirements, the
authors also created a web portal called JIT AK Portal that includes some
personalization functions. These functions are mostly oriented to the documentation
reader, and particularly to a single stakeholder type (i.e., the architects). In JIT AK
Portal, the documenter is responsible for providing a web interface with structure and
contents that match the architects’ interests. The approach provides no guidelines for
this task. Another related tool is Knowledge Architect [7], developed by Jansen et al.
The goals of this approach are to facilitate the access to a base of architectural
knowledge and the search for specific issues in the knowledge base. A difference with
JIT AK Portal is that Jansen’s approach uses a codification strategy that supports the
retrieval of knowledge for multiple types of stakeholders, although still concentrated
on the reader’s side. In addition, Knowledge Architect does not consider
personalization techniques regarding the generation of documentation contents.

In [11], the authors propose an automated approach to deal with chunks of
architectural information. These chunks are the result of specific exploration paths
followed by a stakeholder when reading a SAD. The relevance of a given chunk is
determined by factors such as the time spent by a reader on a section, or the access
frequency for a section. The idea is to recommend candidate sections to new
stakeholders by reusing previous (similar) exploration paths of the SAD. A prototype
supporting the approach has been recently published [10]. This approach is interesting
in the sense that assists a reader to find relevant information. However, the
characteristics of that reader are neither explicitly captured nor used in the assistance.

A limiting aspect of the approaches above is that they are general-purpose in that
they do not leverage on available architectural documentation methods. Currently,
there are several documentation methods available for software architectures. A few
relevant examples include: Views and Beyond (V&B) developed by the Software
Engineering Institute, Viewpoints and Perspectives proposed by Rozanski and
Woods, and Siemens’ 4 Views [4]. These methods basically prescribe the structure of
the SAD (i.e., a template), the kind of views to be used, and sometimes the
relationships of these views with stakeholder types. Guidelines about the
documentation process are usually not part of these methods. One exception is the
V&B method, which provides a few rules for combining views or adjusting the level
of detail of these views, based on the different stakeholders’ roles [2]. A drawback of
V&B is that the view templates are general and the stakeholders’ roles are static. In
practice, the documenter is expected to determine the “right contents” in order to fill
in those view templates. V&B is often viewed by practitioners as being bureaucratic
(or high-ceremony) with respect to the amount of documentation to be generated.

 Towards Software Architecture Documents Matching Stakeholders’ Interests 179

There have been experiments with Wikis as a mechanism to support architecture
documentation. JIT AK Portal and the Knowledge Architect are examples of this kind
of tool support. In fact, the V&B method has been also implemented on top of a Wiki.
Some lessons learned of this experience are discussed in [1].

3 Proposed Approach

A well-known rule for producing good documentation is to write its contents from the
reader's perspective, rather than from writer's perspective [4]. In the architecture
documentation process, we interpret this rule as a feedback loop in which the
documenter produces incremental versions of the SAD to fulfill the information needs
of (most of) the stakeholders. Figure 1 shows a conceptual schema of our approach.

Fig. 1. Actors and components of our approach

We assume a community of stakeholders working on a given project, and
interacting with each other through a collaborative platform (including tools such as:
chat, forums and shared repositories). For their daily work, these stakeholders have
access to a Wiki that contains the architectural documentation (i.e., the SAD) of the
project. The documenter periodically delivers new SAD versions in the Wiki. The
stakeholders may send feedback about a given SAD version, which will trigger
updates in subsequent versions. Along this line, the main goal of the documenter is to
decide which documentation tasks should be prioritized (and performed) for the next
SAD version, in such a way the most relevant stakeholders are satisfied.

The approach involves three activities. First, the stakeholders access different
sections of the current SAD hosted by the Wiki. We assume the SAD is structured
around templates for predefined architectural views (e.g., module views, allocation
views) and accompanying text. We base our approach on the V&B method, which
already provides templates for the SAD. Stakeholders playing different project roles
will have different concerns with respect to the SAD. For instance, project managers

180 M. Nicoletti, J.A. Diaz-Pace, and S.N. Schiaffino

are mainly interested in allocation views, whereas developers need extensive
information about views of modules and components-and-connectors.

Second, as the stakeholders read different Wiki sections and eventually leave
textual comments about the SAD contents, the platform in background collects this
feedback and passes on to a profiler. The profiler also receives information about the
structure of the SAD. Based on these inputs, the profiler applies text mining
techniques in order to identify relevant topics in the stakeholders’ comments as well
as in the documents. The idea here is to infer stakeholders’ interests and match them
with specific sections of the SAD. Those topics coming from the stakeholders will
serve to build (or update) user profiles of these stakeholders. Those topics extracted
from the SAD will serve to establish links between a given stakeholder and a number
of SAD sections, meaning that the stakeholder is potentially interested in those
sections. These links will be used as recommendations to the documenter.

Third, the documenter takes both the user1 profiles and recommendations produced
by the profiler, in order to update the current SAD version. An update consists of a
series of documentation tasks, such as: adding new contents to an existing section or
architectural view, creating an architectural view, setting the level of detail for a
section or view, among others. In this setting, we envision that the documenter keeps
a “backlog” of documentation tasks, each task consuming a certain effort. At a given
point in time, the documenter will combine several criteria to prioritize the current
documentation tasks and select a subset of tasks to perform in the next documentation
cycle. One of such criteria is determined by the analysis of the stakeholder profiles
and their links to the SAD. This criterion reflects the “stakeholder value” of the
documentation being generated. Another criterion is the total effort consumed by the
chosen tasks, which is the “cost” of the documentation update. It is up to the
documenter to strike a balance between cost and stakeholder value.

A key aspect of our approach is the semi-automated construction of stakeholders
profiles (activity 2 in Figure 1), which is actually the focus of this article. In general, a
profile can be obtained from various sources, such as: stakeholder roles in the project,
access patterns to document sections, interactions with other stakeholders, and
analysis of recurring topics in the stakeholder’s activities. Information can be
collected explicitly, through direct stakeholder intervention, or implicitly through
agents that monitor user activity [9]. Initially, we define the stakeholders’ profiles
based on predefined interests derived from typical project roles. In fact, V&B
characterizes several types of stakeholders regarding their use of architectural views.
We can think of these characterizations as static profiles. However, these profiles will
certainly change over time. For these reasons, we have designed our profiler to
augment the static profiles given by V&B with topics of interest. These interests can
be derived from the stakeholders’ comments, reflecting the particularities of each
stakeholder, so as to provide more accurate recommendations to the documenter.

4 Profiling Stakeholders via Text Mining

The Profiler component (see Figure 1) implements two processing stages, namely:
profile building, and user-section linking. The first stage executes a mining procedure

1 The terms ‘stakeholder’ and ‘user’ are used interchangeably.

 Towards Software Architecture Documents Matching Stakeholders’ Interests 181

to extract human-knowledge concepts from the users’ text (see sub-section 4.1). A
similar mining procedure is applied on the SAD contents. The outcomes of this stage
are: a set of user profiles and a document representation (of the SAD).

Each user profile has a static and a dynamic aspect. The static aspect is taken from
the stakeholders’ characteristics provided by the V&B method (as the degree of
interest of a stakeholder on a given architectural view). They also provide a list of
predefined concepts for each stakeholder type (e.g., manager, architect, tester, etc.).
The dynamic aspect of the profile contains a list of specific user’s interests. In more
detail, this list will have concepts and categories that were referenced by each user or
that were mentioned in the architecture documents. Categories represent concepts
with different levels of abstraction. We preferred the usage of concepts (instead of
terms), because concepts describe the context in which terms are used (i.e., semantic
knowledge), and are hence more informative regarding stakeholders’ interests.

For the second stage, the SAD is divided into related units of text, called document
sections. These sections are already predetermined by the SAD template structure.
Then, the Profiler computes a similarity measure between the profiles and the sections
matching those profiles (see sub-section 4.2). The output is a set of links between the
users and parts of the original document. We model each link as a weighted relation.
Relations can be grouped per user and sorted in descending order by their weights.
The resulting ranking of relevant sections per stakeholder is shown to the documenter.

4.1 The Concept-Mining Pipeline

We have designed a technique for extracting concepts from unstructured text. This
technique is mainly oriented to address the dynamic aspect of the stakeholder profile.
The inputs can be any kind of textual information generated by the target users, such
as electronic conversations, opinions on the Web, or comments on Wiki pages. The
output is a set of user profiles, each one containing a ranking of the most relevant
concepts (for that user) as well as categories for those concepts. Since this profile is
based on topics that are regularly mentioned by the user, the information can be
considered as an approximation of the user’s interests.

The technique is implemented as a semi-automated pipeline with six filters (Figure
2). In step 1, a parsing module identifies the involved users and their messages. In
step 2, noisy text is pre-processed to prepare the user messages for future analysis.
This processing involves: i) deletion of references to users by their names, ii) filtering
of stop-words, and iii) application of a Porter's based stemming algorithm.

In step 3, entities are identified from messages. An entity can be seen as a group of
semantically-related terms. To this end, we use two text mining tools provided by the
Stanford NLP Group2: a named entity recognizer and a POS (Part-Of-Speech) tagger.
The recognizer relies on a classification-based approach to detect named entities, like
persons, institutions, artifacts or any kind of proper nouns. The POS tagger
automatically assigns a grammatical label to every word in a sentence. We are
focused on nouns and their modifiers. By grouping the results of both techniques,
each user’s message is associated to a set of entities.

2 See http://nlp.stanford.edu/

182 M. Nicoletti, J.A. Diaz-Pace, and S.N. Schiaffino

Fig. 2. The concept mining pipeline

In step 4, the concept association is performed. We use a semantic dictionary
containing concepts of human knowledge based on Wikipedia. The unstructured
information from Wikipedia is indexed with Lucene3. Since the domain is limited to
Software Architecture concepts, we customized the indexes to work on Software
Engineering topics (e.g., categories like: software architecture, software quality, and
concepts such as: design pattern, performance, etc.). The entity names are matched
against the Wikipedia concepts, using the TF.IDF measure for comparison. For a
given entity, the first N concepts returned by the search are mapped to that entity.

In step 5, ambiguous concepts are handled using a disambiguation index. We use
an adapted version of Lesk's algorithm, which considers a window of N nearest
concepts to the ambiguous one (with N=2). The description of each disambiguation
concept is compared to the descriptions of the nearest concepts using the cosine
comparison function. The most related concept replaces the ambiguous one.

Finally, in step 6, a category hierarchy is built for each concept. Initially, we
associate first-level categories to concepts, and then, we establish relations with
higher level categories in order to build the hierarchical structure. Since categories
can be quite general (e.g. SOFTWARE) and it takes considerable time to compute
them, we decided to limit the hierarchy tree depth to 3 levels.

4.2 Linking Users to Document Sections

The first module of the pipeline was adapted to take a textual document as input in
order to produce a document description, which actually resembles a user profile. We
refer to such representation as a section profile. After the pipeline is executed, the
representation will contain the concepts and categories involved in each document
section. By doing so, we treat the problem of linking users to sections as the
computation of a similarity function between two profiles: a user profile and a section
profile. To compute the similarity, we apply the CF.IDF measure. Based on TF.IDF,
the CF.IDF measure uses the concept frequency and the inverse document frequency

3 See http://lucene.apache.org/

 Towards Software Architecture Documents Matching Stakeholders’ Interests 183

to determine the relevance of a concept in a collection of documents (or sections, in
this case). A variation of this measure is used for dealing with categories.

For each user profile, we compute its similarity with the section profiles. The
similarity score between the user profile and one section profile is estimated using
Equation 1: , ∑ ∑ (1)

with N: number of concepts, M: number of categories, confidf(x): CF.IDF value for
concept x, and catfidf(y): CF.IDF value for category y. Then, we sort the associated
sections (in descending order) according to the similarity scores. Using a threshold
strategy, we finally define the number of sections that are considered relevant for each
user. The best value for the threshold was determined through the evaluation
procedure (see sub-section 4.3).

4.3 Experimental Evaluation

We empirically evaluated the pipeline above with the goal of assessing how well the
user-section links were generated. To simulate architectural documents, we selected 2
articles (called dataset A and dataset B) from InfoQ.com related to software
architecture topics. The dataset A was a document that contained 18 sections and
2095 words, and 14 users participated in the discussion. Data set B contained 14
sections, 1126 words, and 17 users participating in the discussion.

Both datasets were tagged in advance. For each user, an expert annotated the
potentially relevant sections according to the user’s comments in the discussion
thread. Afterwards, we ran our pipeline on the two datasets and computed the
confusion matrixes for both cases. To assess the results, we worked with standard
measures such as: accuracy, precision, recall, and F-measure [5]. We also studied the
effects of two parameters: the relevancy threshold and the inclusion of categories for
the CF.IDF measure. If the categories are excluded from this measure, the similarity
between two profiles is computed by Equation 2 (a simplification of Equation 1). , ∑ (2)

On the other hand, we developed a term-based approach in order to have reference
results for our concept-based technique. The approach used the TF.IDF measure to
compute the similarity between user messages and section contents. We estimated the
same measures mentioned above. Table 1 shows the results for the two experiments.
The table rows are the approaches grouped by different threshold values. The table
columns are the measures per dataset. At first sight, the F-measure reached the highest
values using a threshold of 0.2-0.3 in both datasets (see Figure 3). Therefore, by
considering the first 20-30% of the linked sections as relevant, we achieved a balance
in the tradeoff between precision and recall. In all the cases, the performance of the
CF.IDF techniques was better than that of the TF.IDF one, although no major
differences were observed. The precision improvement with CF.IDF was around 4-
7%, whereas the accuracy was improved by 2-4 %. As regards the F-measure, CF.IDF
outperformed TF.IDF by 3.5-6.5%.

184 M. Nicoletti, J.A. Dia

Table 1.

The inclusion of the
computations, as evidenced
CF-IDF(-C) ones. Despite
linking process was suppos
concepts. We believe this p
with a high level of abstra
achieved reasonable results
precision of 68-80%, and a
technique in the context of

5 Conclusions and

In this article, we proposed
and agile architecture doc
personalization of architect
consuming those document

az-Pace, and S.N. Schiaffino

. Experimental results for data sets A and B

Fig. 3. F-measure comparison

CF.IDF measure for categories seemed to affect
d by the slightly lower results with CF-IDF(+C) than w
e this difference, having categories in the user-sect
sed to perform better than the standard CF.IDF measure
problem might have been caused by the use of catego
action (currently 3 levels). Overall, the proposed pipel
s. For a threshold of 0.2, the CF.IDF technique obtaine
a recall of 33%-49%. Thus, we plan to further develop
our general approach (see Figure 1).

d Future Work

a general approach for implementing a stakeholder-cen
umentation process. At the core of our approach is
tural documents based on the profiles of the stakehold
ts. These profiles are built on top of existing stakeholde

the
with
tion

e for
ries
line
ed a
this

ntric
the

ders
ers’

 Towards Software Architecture Documents Matching Stakeholders’ Interests 185

characterizations (with respect to architectural knowledge) as well as on text mining
techniques. To this end, we have presented a tool that executes a topic-based mining
process for constructing user profiles and for ranking the sections (of potential interest
to these users) of an architectural document. We argue that such a mining process has
advantages in terms of understandability and semantic information for the profiles,
when compared to traditional keyword-based mining techniques.

A preliminary tool evaluation using topics has shown promising precision and
recall, allowing us to conjecture that the stakeholders’ profiles can really assist the
documenter in his/her documentation tasks. Nonetheless, our profiling tool is at a
prototype stage, and it still needs improvements, mainly on aspects of performance
and architecture-related knowledge. We are currently testing the topic-based mining
technique with different datasets and types of stakeholders. We are also exploring
alternative strategies for handling the concepts and their categories.

As future work, we will integrate the profiling tool with the remaining components
of the approach. To feed the profiler, we will investigate techniques and technologies
for monitoring stakeholders’ activities within a network and collect more data about
them. We will also consider the application of Artificial Intelligence planning
techniques to support the documenter in selecting the right tasks for the next version
of the architecture documentation.

Acknowledgments. This work has been partially supported by ANPCyT (Argentina)
through Project PICT Bicentenario 2010 No. 2247.

References

1. Bachmann, F., Merson, P.: Experience using the web-based tool wiki for architecture
documentation. Technical Report TN-041, CMU-SEI (2005)

2. Clements, P., et al.: A practical method for documenting software architectures. In: ICSE
(2003)

3. Farenhorst, R., Izaks, R., Lago, P., Vliet, H.: A just-in-time architectural knowledge
sharing portal. In: Proc. of WICSA 2008, pp. 125–134. IEEE Press, New York (2008)

4. Garlan, D., et al.: Documenting Software Architectures: Views and Beyond. Addison-
Wesley, New York (2010)

5. Goossen, F., et al.: News personalization using the CF-IDF semantic recommender. In:
Proc. of WIMS 2011, pp. 10–12. ACM Press, New York (2011)

6. IEEE. IEEE recommended practice for architectural description of software-intensive
systems. Technical report 1471 (2000)

7. Jansen, A., Avgeriou, P., Van der Ven, J.: Enriching software architecture documentation.
Journal of Systems and Software 82(8), 1232–1248 (2009)

8. Koning, H., Vliet, H.: Real-life IT architecture design reports and their relation to IEEE
Std 1471 stakeholders and concerns. Automated Software Eng. 13, 201–223 (2006)

9. Schiaffino, S., Amandi, A.: Intelligent User Profiling. In: Artificial Intelligence, pp. 193–
216. Springer, Berlin (2009)

10. Su, M.T., Hosking, J., Grundy, J.: Capturing architecture documentation navigation trails
for content chunking and sharing. In: The 9th IEEE/IFIP (WICSA), pp. 256–259 (2011)

11. Su, M.T.: Capturing exploration to improve software architecture documentation. In:
Proceedings of ECSA 2010, pp. 17–21. ACM Press, New York (2010)

12. Tang, A., et al.: A comparative study of architecture knowledge management tools. Journal
of Systems and Software 83, 352–370 (2010)

