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Abstract. We develop a hierarchical capture–recapture model for demographically open
populations when auxiliary spatial information about location of capture is obtained. Such
spatial capture–recapture data arise from studies based on camera trapping, DNA sampling,
and other situations in which a spatial array of devices records encounters of unique
individuals. We integrate an individual-based formulation of a Jolly-Seber type model with
recently developed spatially explicit capture–recapture models to estimate density and
demographic parameters for survival and recruitment. We adopt a Bayesian framework for
inference under this model using the method of data augmentation which is implemented in
the software program WinBUGS. The model was motivated by a camera trapping study of
Pampas cats Leopardus colocolo from Argentina, which we present as an illustration of the
model in this paper. We provide estimates of density and the first quantitative assessment of
vital rates for the Pampas cat in the High Andes. The precision of these estimates is poor due
likely to the sparse data set. Unlike conventional inference methods which usually rely on
asymptotic arguments, Bayesian inferences are valid in arbitrary sample sizes, and thus the
method is ideal for the study of rare or endangered species for which small data sets are
typical.
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INTRODUCTION

Estimating demographic parameters such as abun-

dance (or density), survival, and recruitment, is a

fundamental objective of many studies of animal

populations, and such information is necessary in the

conservation and management of any species. To that

end, there are a large number of quantitative techniques

used to obtain information about demographic parame-

ters of populations. One broad class of methods, known

as capture–recapture models (Seber 1965, Williams et al.

2002), is based on encounters of individuals resulting

from repeated sampling of populations over time.

Capture–recapture models represent a flexible class of

methods that are in widespread use for many taxa. When

applied to demographically closed populations (that is,

populations not experiencing recruitment or mortality),

these models provide information about population size,

or density. A number of extensions (Cormack 1964, Jolly

1965, Seber 1965, Lebreton et al. 1992, Schwarz and

Aranson 1996) relevant to demographically open systems

allow for estimation of survival, recruitment, and other

vital parameters.

Capture–recapture methods are classically applied to

situations in which physical capture and marking of

individuals is possible (e.g., live traps for small

mammals, or mist nets for birds). However, recent

advances in technology have spawned new methods of

obtaining encounter data on wildlife populations

without having to physically capture individuals. Two

passive or noninvasive sampling methods that are

growing in popularity include DNA sampling methods

(Woods et al. 1999, Mowat and Strobeck 2000,

Boulanger and McLellan 2001, Mulders et al. 2007)

and camera trapping (Karanth 1995, Karanth and

Nichols 1998, Trolle and Kéry 2003, Jackson et al.

2006). These methods make the application of capture–

recapture models practical for many species for which

they are otherwise impractical due to the difficulty of

capturing individuals.

Spatial arrays of detection devices produce individual

encounter histories for which capture–recapture meth-

ods may be applied. However, they also yield auxiliary

spatial information in the form of a location of capture

for each encounter. Historically, this information has

either been discarded or used to compute ad hoc

adjustments to nominal trap area based on observed

movements so that an estimate of density could be

obtained. To date, recent work on formalizing the use of

spatial information to obtain density estimates has

focused on closed populations (Efford 2004, Borchers
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and Efford 2008, Royle and Young 2008, Gardner et al.

2009). There have been no formal treatments of
auxiliary spatial information in open population models.

However, Karanth et al. (2006) apply a Jolly-Seber
model, and then adjust the effective trap area based on

heuristic considerations in order to estimate density, as
is commonly done in closed population studies (Karanth
1995, Karanth and Nichols 1998, Trolle and Kéry 2003).

In this paper, we develop a formal framework for
parametric inference about density, survival, and re-

cruitment in open populations from camera traps and
related methods that produce encounter history data

and auxiliary spatial data. Our modeling framework is
based on a formulation of a Jolly-Seber type model that

is amenable to modeling individual effects, including
individual covariates. We extend this model by describ-

ing the encounter history data as a function of a latent
variable (a random effect) interpreted as an individual’s

activity (or home range) center. Inference under this
hierarchical model is formalized by Bayesian analysis

using a method known as data augmentation (Tanner
and Wong 1987, Royle et al. 2007).

While we expect the extension of spatial capture–
recapture models to open populations to have broad

applicability, we emphasize the importance of the
Bayesian framework for inference in small samples sizes.

Classical inference methods based on likelihood are
asymptotic and thus of questionable utility in many

practical situations where studies of rare or elusive
species produce very small data sets. This is common in
studies of carnivores which occur at low densities even

for common species, but especially in rare species that
are of special conservation concern and therefore the

primary focus of considerable field work that generates
spatial encounter history data. Attention to the impor-

tance of small sample inference in the capture–recapture
literature has been very limited; however, we believe that

this should be addressed explicitly in all applications of
statistical procedures to studies of rare species.

Development of this open population modeling frame-
work was motivated by a study of the Pampas cat

(Leopardus colocolo) in Argentina, which we report on in
this paper. This camera trapping study was conducted in

2006 and 2007 in the Jujuy province of Argentina. We
note that this highly elusive cat is difficult to trap, even

using camera trapping methods. This results in very small
sample sizes in any given year. Nevertheless, interest in

this species necessitates a rigorous treatment of available
data, and the use of open population models provides the
most efficient manner in which to integrate multiple years

of sparse data for the purpose of obtaining vital rate
estimates for the species.

METHODS

Spatial capture–recapture model

We suppose that sampling occurs at J camera trap
locations (traps) with coordinates fxj¼ (x1j, x2j); j¼ 1,

2, . . . . Jg. The observations from camera trapping

studies are encounter histories yijk, for individual i¼ 1,

2, . . . , n, trap j¼ 1, 2, . . . , J, and sample occasion k¼
1, 2, . . . , K. Typically k indexes daily or other discrete

intervals. Each individual can be captured in any

number of traps during a particular sampling occa-

sion, and can be captured an arbitrary number of

times when the cameras are functioning properly.

Thus, the observations yijk are encounter frequencies,

the number of times that individual i is captured in

trap j during sample k, and yijk ¼ 0 indicates that the

individual was not captured.

In the context of closed populations, the basic strategy

for modeling spatial encounter history data is to

augment the standard observation model for a closed

population with a point process model describing the

distribution of individual home range centers, territo-

ries, or ‘‘activity centers.’’ Poisson (Efford 2004,

Borchers and Efford 2008) or binomial (Royle and

Young 2008, Gardner et al. 2009) point process models

have been adopted in closed population applications.

These models assume that the N activity centers, si¼ (s1i,

s2i ); i¼ 1, 2, . . . , N, are distributed uniformly over some

region S

si ; UniformðSÞ

for each i¼ 1, 2, . . . , N, where S is the state-space of the

point process. Thus, the probability density function for

the latent variables si, which are assumed to be

independent, is constant over S. The state-space S is

chosen as an arbitrarily large region containing the

sampling devices or suitable habitat.

The key concept underlying spatial capture–recapture

models is the linkage of this notion of individual activity

center to encounter observations. For camera trap

studies in which individuals can be encountered repeat-

edly by any camera during an interval, a natural model

is to assume that encounter frequencies are Poisson

random variables where the Poisson mean is a function

of the distance between si and each trap, i.e.,

yijk ; Pois
�
k0gðsi; xjÞ

�

where yijk is the encounter frequency for individual i in

trap j during interval k and gij [ g(si, xj) is a decreasing

function of distance between individual activity center si
and trap xj. We assume that g(si, xj) ¼ exp(�d2

ij/r
2),

where dij ¼ ||si � xj|| is the Euclidean distance between

individual i’s activity center and trap j and r is a

parameter that determines the rate of decline in

detection rate at a trap as a function of distance. This

choice of g is a common detection function in distance

sampling (Buckland et al. 2001), and other applications

(Efford 2004). The expected number of captures is k0

when an individual’s activity center is located precisely

at that trap.

Note that

logðE½yijk �Þ ¼ logðk0Þ þ ð�1=r2Þd2
ij
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and thus the basic model is a Poisson regression model

with distance as a ‘‘covariate.’’ In fact, because the

individual activity centers are unknown (they are

regarded as ‘‘random effects’’), distance is a latent

variable and the resulting model is a type of generalized

linear mixed model (GLMM; Royle et al. 2009) similar

to classical individual covariate models (e.g., Royle

2009). Given this representation, r2 is the inverse of the

regression coefficient on distance-squared. It can be

related to movement rates or home range size in some

circumstances (Royle and Young 2008). Formal infer-

ence can be achieved either by classical methods based

on integrated likelihood, wherein the random effects are

removed from the likelihood by integration (Borchers

and Efford 2008) or by Bayesian analysis of the

conditional model directly (Royle and Young 2008,

Gardner et al. 2009).

Alternative observation models can be considered.

For example, it is common practice to reduce y to a

binary encounter history which can be related to the

Poisson encounter rate model by specifying Pr(y¼ 1)¼ 1

� exp[�k0g(si, xj)] (Royle et al. 2009). Also, the Poisson

model gives rise, by conditioning, to a class of

multinomial observation models, i.e., ‘‘single catch’’

trapping devices, where an individual can only visit one

trap per sample interval (Borchers and Efford 2008).

Open populations

Natural populations experience mortality and recruit-

ment over time. The standard framework for modeling

open populations is based on the Jolly-Seber model

(Jolly 1965, Seber 1965). Data arise from repeated

sampling over seasons or years ( primary sample periods)

within which one or more samples (e.g., nights) might be

taken (often referred to as secondary or sub- samples), a

sampling design referred to as the ‘‘robust design’’

(Pollock 1982). While this subsampling structure is not

necessary to estimate parameters of open population

models, this data structure is common due to the

historical treatment of data from these studies using

classical capture–recapture methods (e.g., Karanth and

Nichols 1998, Karanth et al. 2006). Moreover, it often

becomes necessary to consider explicit time-varying

covariates in models for encounter rate. As such, we

develop a general formulation of open models that

accommodates robust design data structure, keeping in

mind that the case K ¼ 1 (i.e., no formal secondary

periods) is a special case.

To extend our spatial model to open populations, we

adopt the individual-level parameterization of the Jolly-

Seber model described in Royle and Dorazio (2008) in

which a model for the observations is described

conditional on the latent state variables z(i, t), the ‘‘alive

state,’’ which describe whether individual i is alive (z(i, t)

¼ 1) or not (z(i, t) ¼ 0) during each of t ¼ 1, 2, . . . , T
primary periods.

The observation model is equivalent to that described

above for closed population models (Spatial capture–

recapture model ), but it is conditional on the state

variable z(i, t). In particular, let yijkt indicate the

observed encounter frequency for individual i in trap j,
during sample k¼ 1, 2, . . . , K of primary period t. The

Poisson observation model, specified conditional on z(i,
t), is

yijkt j zði; tÞ; Pois
�
k0gijzði; tÞ

�
:

Thus, if individual i is alive at time t (z(i, t)¼ 1), then the

observations are Poisson. Conversely, if the individual is

not alive (z(i, t)¼ 0), then the observations must be zero
with probability 1. Therefore, the model is a form of

zero-inflated Poisson regression model.

The dynamics of the open population are manifest in
a model for the latent state variables z(i, t) describing

individual mortality and recruitment events. An impor-

tant aspect of the hierarchical formulation of the model
that we adopt here is that the model for the state

variables is described conditional on the total number of

individuals ever alive during the study (a parameter we
label N ) based on T periods, as in Schwarz and Arnason

(1996). This induces a special interpretation on the

latent state variables z(i, t). In particular, ‘‘not alive’’
includes individuals that have died, or individuals that

have not yet been recruited. Using this formulation

simplifies the state model and also allows it to be
implemented directly in the WinBUGS software (Royle

and Dorazio 2008). For example, considering the case T

¼ 2 (the Pampas cat data is based on two primary
periods; see Appendix B for a description of the process

in the case of T . 2), the state model is composed of the

following two components: First the initial state is
described by

zði; 1Þ; Bernðc1Þ

where c1 is the probability that an individual is alive at

time 1 of the study. Second, a model describing the

transition of individual states from t¼ 1 to t¼ 2 is given
by

zði; 2Þ; Bern
�
/zði; 1Þ þ c2½1� zði; 1Þ�

�
:

Thus, if z(i, 1) ¼ 1, then the individual may survive

(apparent survival) with probability /; whereas, if z(i, 1)
¼ 0, then the individual may be recruited with
probability c2. While the state model is conditional on

N, we must deal with the fact that N is unknown (see

Bayesian analysis). Note that under this parameteriza-
tion of the Jolly-Seber model (Schwarz and Arnason

1996), recruitment parameters are interpreted as ‘‘con-

ditional entrance probabilities’’ and not per-capita
recruitment. Also note that, conditional on N, then c2
¼ 1 � c1 and standard applications using likelihood

methods focus on estimating N and T � 1 recruitment
parameters, while the Tth recruitment parameter is

derived as a function of the other two. In Bayesian

analysis by data augmentation (Bayesian analysis) we
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estimate directly T recruitment parameters and N is a

derived parameter, total number ever alive.

We extend the model of individual encounter histories

by specifying an additional model component that

describes the spatial distribution of individual activity

centers. A plausible null model for the distribution of

individual activity centers is to assume they are static

over time, i.e., si ; Unif(S ). One of the key demographic

parameters to be estimated is the population density

which is equivalent to the density of individual activity

centers in the region S. While this model is exceptionally

simple, we adopt it in our analysis of the Pampas cat

data due to the sparsity of the data. However, with

larger data sets having more recaptures (and hence more

information about individual location) we could allow

the activity center to change across years. One possibil-

ity is to assume that s(i, t) ; Normal[s(i, t� 1), s2I] for t
. 1 so that individual home range centers are perturbed

randomly from their previous value. Using such models

we could conceivably test hypotheses about home range

dynamics. We note the conceptual and technical

parallels of spatial capture–recapture models with

individual covariate models. See Bonner and Schwarz

(2006), King et al. (2008), and Royle and Young (2008)

for some context related to time-varying individual

covariates.

Modeling time effects either within or across primary

periods is technically straightforward, though potential

issues may arise with the estimation and identifiability of

parameters which should be examined further. To

include time effects, define k0 [ k0(k, t) and then we

can develop log-linear models for k0(k, t) as in ordinary

Poisson regression (trap-specific effects could be mod-

eled analogously). We note that formal regard of the

sampling within primary periods is not necessary unless

time-varying covariates are being modeled. Clearly if K

samples are made in a given primary period then an

individual’s encounter frequency is Poisson with mean

Kk0gij. Thus, the data can be reduced to ‘‘total’’

encounters per primary period, which does not affect

the basic model structure outlined above.

Bayesian analysis

Spatial capture–recapture models can be formulated

as generalized linear models (GLMs) with random

effects corresponding to the activity centers, s (Royle

et al. 2009). Bayesian analysis is a natural paradigm for

inference in such models because general algorithms

exist for simulating from the posterior given the model

as specified conditional on the random effects. The

fundamental challenge in carrying out inference under

this model is that the parameter N (the total number of

individuals alive during at least one time period) is not

known. To accommodate this difficulty, we use a general

method known as data augmentation (Tanner and

Wong 1987) adapted to general capture–recapture type

models by Royle et al. (2007) and applied in closed

population models by Royle and Young (2008) and

Gardner et al. (2009).

Formally, data augmentation (DA) is equivalent to

assuming a Uniform(0, M ) prior for the parameter N,

for M sufficiently large (Royle et al. 2007), which is a

natural non-informative prior for N. A convenient

formulation of this uniform prior (Royle et al. 2007) is

equivalent to ‘‘zero-inflating’’ the data set (i.e., aug-

menting the data) with a large number, say M � n, of

‘‘all zero’’ encounter histories corresponding to hypo-

thetical individuals that were not captured. The model

for the augmented data is a zero-inflated Poisson (or

binomial depending on the nature of the observations)

which can be analyzed without difficulty. See Royle and

Dorazio (2008: chapters 9 and 10) for additional

context.

As a result of the reparameterization of the model

under DA, the interpretation of the recruitment

parameters ct is affected. In particular, data augmenta-

tion creates a population of available recruits that is

depleted over time. The ct parameters are therefore the

marginal probabilities that one of these available

recruits enters the population at time t. It can be shown

(Royle and Dorazio 2008: chapter 10) that the

conditional entrance probabilities are confounded with

a zero-inflation parameter introduced by DA (i.e., the

parameter w in Royle et al. 2007). Specifically, under

DA, recruitment parameters are the product of condi-

tional entrance probabilities and w. Thus, use of DA in

the open population model merely changes the inter-

pretation of the recruitment parameters so that recruit-

ment is expressed relative to the number of ‘‘available

recruits’’ in the augmented data set of size M, and not

the population size at time t. We note that alternative

parameterizations are possible, see Royle and Dorazio

(2008: chapter 10).

While the model is not parameterized directly in terms

of annual population size, Nt, or per-capita recruitment,

Rt, these parameters can be derived as a function of the

latent state variables z(i, t). In particular, the total

number of individuals alive at time t is

Nt ¼
XM

i¼1

zði; tÞ

and the number of recruits is

Rt ¼
XM

i¼1

�
1� zði; t � 1Þ

�
zði; tÞ

which is the number of individuals not alive at time t� 1

but alive at time t. Finally, we are interested in estimates

of density, which is the number of individual activity

centers in S divided by its area:

Dt ¼ Nt=jjSjj

where ||S|| is the area of S. An advantage of our

formulation of the JS model using data augmentation is
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that it can be implemented directly in WinBUGS (Gilks

et al. 1994) (model specification is provided in Appendix

A).

Simulation study

Due to the small sample size in the study that

motivated development of the model (see next section),

we evaluated estimates obtained by this model in small-

sample situations using a Monte Carlo simulation study.

We simulated situations with average population sizes

(for all years) of 50, 100, and 200 individuals in the state-

space and varied the detection rate parameter to

produce typical data sets of 16 to 164 captured

individuals over a three-year time frame. We expect

that estimators will generally exhibit bias in realistic

(i.e., small) sample sizes and wish to evaluate the degree

of bias and relative precision of estimators. See

Appendix C for details on the simulation study design.

APPLICATION

Data collected from a camera trapping study on

Pampas cats in northern Argentina motivated the

development of this model (see Appendix A for more

details on the study area and data). This study was

conducted during T ¼ 2 periods, separated by approx-

imately six months (October–December 2006 and April–

June 2007) using an irregular array of camera traps.

Thus the model contains a single partial year survival

probability parameter and a per capita recruitment

parameter. Sampling within each time period was

subdivided into weekly intervals. We assume that the

observed individual- and camera-specific encounter

frequencies follow the Poisson encounter model. We

note that trap locations moved within and among years

(Fig. 1, see Appendix A). A total of 22 individuals were

identified by their unique coat spot patterns. The area of

a convex hull placed over the trapping array was

approximately 23 km2. In the analysis, we defined the

state-space of the point process (i.e., the region S ) to be

a rectangle of 168 km2 containing the convex hull of the

study area.

An assessment of the model fit was computed using a

Bayesian P value (Gelman et al. 1996), producing a P

value of 0.72, indicating that the model adequately

describes the data. The posterior mean of / was 0.79

and the posterior mean for the per capita recruitment

(R/N1) was 0.24 (Table 1). We note that these

parameters should be interpreted as apparent survival

and recruitment because the population is susceptible to

permanent emigration and immigration which affect

estimators of survival and recruitment, respectively. For

example, individuals that move off of the study area

permanently appear (under the model) as mortalities

and this leads to a negative bias in estimates of /.
The estimated population sizes (posterior means), i.e.,

the number of activity centers, for the area of S was

125.00 and 131.51 for 2006 and 2007, respectively (Table

1). Density (D1 and D2) is derived as the number of

Pampas cats per 1 km2, i.e., by standardizing Nt by the

area of S. The estimated density per 1 km2 was 0.74 with

a 95% posterior interval of (0.30, 1.48) in 2006 and 0.78

with a 95% posterior interval of (0.30, 1.46) for 2007

(Table 1).

The parameter k0 corresponds to the expected capture

frequency of some individual whose activity center is

located precisely at a trap location, the posterior mean

estimate was 0.02 (Table 1). Thus, the probability of

capture for such an individual is: 1 � exp(�k0) ¼ 0.02.

The estimated posterior mean for r was 1.91 (Table 1).

The model can be used to produce spatial maps of

density or individual locations. One useful summary is a

map of the posterior density of activity centers which is

E[N(b) j data], where N(b) is the number of activity

centers located in a pixel b. The posterior densities of

both captured and uncaptured individuals are shown in

Fig. 2. We note that the resulting posterior density is not

FIG. 1. The study area is shown in UTM Zone 19 South coordinates. The squares are the trap locations for 2006, and the circles
are the trap locations for 2007. Some trap locations are the same in both years. The convex hull of all the trap locations is shown by
the outline that encloses the symbols.
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uniform and indicates some areas of higher density

within the study area, as well areas of lower density.

Our simulation study results suggest that the model

provides good estimates for the survival parameters (/1

and /2), r, and k0, with little bias in the estimates across

nine different cases of N ¼ 200, 100, and 50 and k0 ¼
0.05, 0.10, and 0.20. Using the posterior mean as a point

estimator of N (or density) exhibits relatively high bias

in small sample situations due to strong skew of the

posterior distribution. However, a point estimator based

on the posterior mode shows much lower bias. For a

case producing similar sized data sets to our study

(specifically N ¼ 100, k0 ¼ 0.05), point estimators of N

exhibit fairly high levels of bias (15–25%) due to extreme

posterior skew. However, coverage of posterior intervals

was 94.33% across all three years, which is only slightly

less than the nominal 95%.

DISCUSSION

We developed a hierarchical extension of the Jolly-

Seber model for modeling spatially explicit encounter

history data. The model generalizes existing Jolly-Seber

type models by allowing for temporary emigration via

movement of individuals onto and off the trapping

array, and it generalizes existing spatial capture–

recapture models (Efford 2004, Borchers and Efford

2008, Gardner et al. 2009, Royle et al. 2009) by allowing

violation of demographic closure. Our model allows for

explicit estimation of density as well as population vital

rates (survival, recruitment) for species that are studied

by camera trapping and related methods. While our

development was motivated by the need for an inference

framework for a camera trapping study on the Pampas

cat, it is applicable to other sampling methods that

produce spatial encounter history data on geographi-

cally and demographically open populations, such as

TABLE 1. Posterior summaries of model parameters for the Pampas cat trapping data.

Parameter Mean SD 2.5% Mode 97.5%

N1 125.00 51.02 50.00 97.52 248.00
N2 131.51 49.71 55.00 97.05 246.00
D1 0.74 0.30 0.29 0.57 1.48
D2 0.78 0.30 0.32 0.56 1.46
r 1.91 0.43 1.25 1.69 2.87
k0 0.02 0.01 0.01 0.02 0.04
q 0.24 0.22 0.01 0.22 0.82
/ 0.79 0.15 0.44 0.88 0.98

Notes: The number of unique individuals observed over both years was 22. N1 and N2 are the
number of estimated activity centers in the boundary box (S ) for 2006 and 2007, respectively.
Density (D1 and D2) is calculated as the number of Pampas cats per 1 km2. The per capita
recruitment, q, is R/N1. The units of r, the shape parameter in the detectability function, are given
in kilometers. The expected number of encounters per interval for an individual with an activity
center located precisely at a given trap is k0. The apparent survival between the two sampling
seasons is /.

FIG. 2. Map of the posterior density of activity centers from both years of the study. Specifically, the map shows E[N(b) jdata],
where N(b) is the number of activity centers located in a pixel b. The convex hull around the trap array (the polygon) is shown; the
map is displayed in UTM Zone 19 South coordinates.
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data arising from DNA sampling from hair snares or

scat (Gardner et al. 2009) or mist net studies of bird

populations.

Many rare and elusive species are difficult to capture

which can lead to sparse data sets for species of

conservation concern, despite intensive efforts and

substantial funding directed at the study of such species.

As a result, there have been few attempts to estimate

densities of elusive felids, such as the Pampas cat. In our

example, only 22 individual Pampas cats were captured

during the two-year period. Similar studies report small

sample sizes as well; for example, Trolle and Kéry (2005)

reported only nine individual ocelots captured, and

Jackson et al. (2006) captured six individual snow

leopards using camera trapping. In such cases, multiple

years of data are required to get enough recapture

information for estimating population abundance or

density. In our Pampas cat study, there were 15

individuals captured in 2007, of which 13 were captured

only one time during that year. However, of those 13

individuals, five of them were also captured in 2006, thus

providing considerably more direct information about

the encounter process which can be used to better

inform the model. In order to collect enough data for

estimating density, many studies on rare species must be

conducted over large time periods or multiple years

which necessarily violate the demographic closure

assumptions of current spatial capture–recapture mod-

els. Thus, open population models that enable statistical

aggregation of data (e.g., combining data across years)

are essential for making efficient use of available data, in

addition to allowing for estimation of population vital

rates.

Gathering reliable information on evasive species is

often difficult, and yet it is invaluable because these

species are typically of the highest conservation concern

(Thompson 2004). Carnivores of the High Andes,

including the Pampas cat and the endangered Andean

cat, considered one of the rarest felids in the world, are

among the least studied (Napolitano et al. 2008). Basic

knowledge of population demography is necessary in

order to make appropriate management and conserva-

tion decisions. The methodological framework devel-

oped here is useful not only for estimating density, but

also is the first formal approach available for estimating

vital rates (survival and recruitment) for the Pampas cat.

Statistical approaches that provide rigorous inferences

for small data sets resulting from studies of rare species

can allow for a greater biological understanding and

therefore aid the conservation and management of such

species.
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APPENDIX A

Details about Pampas cats and the Pampas cat study (Ecological Archives E091-239-A1).

APPENDIX B

Survival and recruitment for T . 2 (Ecological Archives E091-239-A2).

APPENDIX C

Details of the simulation study with the Jolly-Seber extension to our spatially explicit capture–recapture model (Ecological
Archives E091-239-A3).

SUPPLEMENT

The R code with embedded WinBUGS specification to run the simulation study and a separate WinBUGS file with specification
for the spatially explicit open population model used in the Pampas cat study (Ecological Archives E091-239-S1).
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