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The well-known membrane-plate analogy that relates the natural frequencies when dealing with
polygonal homogeneous domains is herein extended to non-homogeneous systems comprised of
homogeneous subdomains. The analogy is generalized and demonstrated and it is shown that certain
restrictions among the frequency parameters of the membranes and plates arise. Several examples
of membranes and plates with interfaces separating areas with different material properties are
numerically solved with different approaches. The subdomains are separated by straight, curved,
and closed line interfaces. It is shown that the analogy is verified provided that the restrictions are
satisfied. The analogy is first demonstrated and presented as a practical methodology to find the
natural frequencies of membranes knowing the corresponding ones of the plates or vice versa.
Second, the plate and membrane vibration problems, governed by the bi-Laplacian and Laplacian
differential operators, respectively, can be solved without distinction, though under certain
conditions, i.e., solve one of them and deduce the other using the analogy. Various numerical
examples validate the analogy. © 2010 Acoustical Society of America. [DOL: 10.1121/1.3337222]

PACS number(s): 43.40.Dx [JAT]

I. INTRODUCTION

The membrane-plate analogy is known' for the problem
of natural vibrations between simply supported plane plates
and fixed membranes in homogeneous polygonal domains.
Regarding the origin of the analogy, Timoshenko and
Woinowsky-Krieger2 referenced an earlier work of Marcus.’
Also Conway and Farham® are frequently cited for his work
on the vibration problem. On the other hand, the non-
homogeneous membranes have received the attention of
researches.” However, the above-mentioned analogy may
be lost when some complexities are present, and extensions
to it have been addressed by several authors, such as com-
pression buckling, hygrothermal buckling, and vibration of
sandwich plates,8 laminated plates,9 shallow shells,10 inter-
mediate partial supports,11 or, as is the topic of this study, the
consideration of non-homogeneous domains made of homo-
geneous subdomains.'? Here, the original idea is extended to
non-homogeneous domains (distributed in homogeneous re-
gions). In particular, polygonal domains with various inter-
faces are tackled. Despite that the study deals with a theoret-
ical demonstration, it also proposes a methodology of
practical interest for non-homogeneous domains. Let us as-
sume constant thickness & (the dimension in the z direction)
and accept that T,y (force per unit of length) when used in the
Helmbholtz equation is uniform and the same for all the re-
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gions. That is, each region is made of a homogeneous mate-
rial but, in general, with the following physical characteris-
tics varying from region to region, i.e., mass density p;
=porj, Young’s modulus E;=FEye;, and Poisson’s ratio v;
=wyon;, where py, Ey, and v are arbitrary reference constants
and pj» Ej, and v; are constant within each region. A sche-
matic drawing of a rectangular domain with one interface
(two regions, T and II) is shown in Fig. 1, though obviously
the number is arbitrary. The most general analogy that will
be found in what follows includes, as a particular case, the
classical one (homogeneous materials) and will yield the re-
strictions to be satisfied in order for the new analogy to be
valid.

In short, the analogy object of the present study is within
the following definition: The aim is to find a relationship
among the mode shapes of the membrane v; and plate w,
where j denotes one of the homogeneous domains.

in such way that some condition among the non-dimensional
frequency parameters () of both systems (subscripts m and p
stand for membrane and plate, respectively)

Q,=2g(Q,,) (2)

exists. It can be shown below that one is led to additional
restrictions that will be only verified for homogeneous do-
mains. This approach is not shown herein for the sake of
brevity. Alternatively, a more general expression will be pro-
posed,
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FIG. 1. Membrane configuration for the particular case of two regions.

sz ajVZWj+ B]W], (3)

in which the constants «; and §; will be found provided that
the boundary conditions (BCs) and the continuity conditions
(CCs) are satisfied for membranes and find any ,=g(€},,).
At the end, we will find the following relationship between
membrane and plate non-dimensional frequency parameters:

Q,=KQ;, (4)

in which K is a constant value that is found with the material
properties involved in the problem.

Although not included, the analogy is also valid for the
plate buckling of plates with uniform plane load.

Il. GOVERNING EQUATIONS

The governing equation of the elastic, homogeneous,
isotropic, vibrating plate (Ge:rmain—Lagrange)2’13 with con-
stant thickness A in z direction is

VZ(VZW]) - Qiszwj = 0, (5)

where w;=w;(X,Y) is the plate mode shape for each j region
that should satisfy the BCs and the CCs at the interface. In
what follows, and without loss of generality, it will be as-
sumed that j=I,1I. The adopted plate frequency parameter is

N
QO » =\ D_() w[,az s (6)

where w, are the circular natural frequencies of the whole
plate, a is an arbitrary reference length, and the flexural ri-
gidity D, writes
Eohy
12(1 - 1)

hS)

D, (7)

and
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f= o) ®)

>
ej(l - Vo)

In turn, the differential equations governing the natural
vibration of a homogeneous membrane of constant thickness
hy under a constant force per unit of length 7,, (Helmholtz
equation'®) is

VZUJ"FQ?nrjUj:O, (9)

where v;=v;(X,Y) denotes the membrane mode shape of
each region, which should satisfy the BCs on the boundaries
and the CCs at the interface, and where the adopted mem-
brane frequency parameter is

h
Q= /20,0, (10)
T,

where w,, are the successive circular natural frequencies of
the whole membrane. It is accepted, for the sake of simplic-
ity, that both plates and membranes have the same mass dis-
tribution.

In this problem, the BCs are considered simply sup-
ported for the plate and fixed for the membrane. That is, with
j=L1II (see Fig. 1),

w;(0,y) =wia,y) =0, (11a)
Pw. Pw.

a—;‘(O,y) = a—;‘(a,y) =0, (11b)
wi(x,0) = wy(x,0) =0, (11c)
& s

ngl(x,o) - ﬁ;vzn(x,b) -0, (11d)

It is important to observe that, from BC (11), the follow-
ing consequences yield

V2w;(0,y) = V2wi(a,y) =0, (12a)

V2wi(x,0) = V2wy(x,b) = 0. (12b)

Equations (12a) and (12b) are derived from Eq. (11b). In
turn, Eq. (12b) comes from Eq. (11d). Also

v;(0,y) =v(a,y) =0, (13a)

v1(x,0) = vy(x,b) = 0. (13b)

Now, with respect to the CCs that should hold over the
interface, it is true that plates require two geometric (or es-
sential) conditions to be fulfilled. They are related with the
function w and the slope in the normal sense, dw/JN, and
two force (or natural) conditions (bending moment M, and
the shear force V), in the Nz plane). In the membrane case,
two geometric conditions are to be imposed: function and
slope in the normal direction.
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A. Continuity condition for plane plates over interface
C (Fig. 1)

The interface C limits the regions with different material
properties. Let us recall>" that a bending force My over an
interface curve writes

MN=—D|:V2W+(V—1)%:|, (14)

and the total shear force V) in the area element with normal
N, parallel to z, is

(15)

_ Ry Fw
VN__DLN(V w)+(1 _V)aNarz}’

where

L Pw Pw Pw Fw
Viw=s——S+-—F=">5+—7, (16)
ox dy~  JIN° It
in which d(-)/dN and d(-)/Jt are directional derivatives. The
bending stiffness D in Egs. (14) and (15) is, for each region
of the plate,
Eh
Dj= —Lz 2 (17)
12(1-vy)  f;

Then, the four CCs over the interface are given as follows.

* Function:
WD = W) o(=w"). (18a)
* Slope with respect to normal direction:
d 1% aw’*
()l =) i3
¢ Bending moment:
(DIV*wp) ) — (D Viwi) )
Pw*
=—[Dy(v;=1) = Dy(vy - 1)]?~ (18¢)
e Shear in plane 7z:
I(V?wy) (V2w
PN PN
© ©
==[Di(1 =) = Dy(1 VH)] : (18d)

IN 91>

The definitions using w*=w"(s) and its derivatives are
just a simplifying notation.

B. Continuity condition for membranes over C

The CCs and its consequences over the interface write
the following.

¢ Function:
(v = )- (19a)

 Slope along N:
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(5).~(5%) a

lll. STATEMENT OF AN ANALOGY

In what follows the analogy proposed in the Introduction
is stated and demonstrated. As mentioned before, the analogy
that is object of the present study is within the following
definition (that includes the well-known analogy valid for
homogeneous polygonal domains as a particular case): Find
a relationship among the membrane and plate mode shapes

v;=G(w)), (20)

in such way that some condition among the frequencies of
both systems

=g(€,,) 1)

exists. A second approach (inversely to the first one) would
perhaps be possible; that is, the proposition of a functional
relationship among frequencies and then, the derivation of
the link between the mode shapes. Here the first approach is
followed.

In order to start the search, let us rewrite Eq. (5) in the
following format (recall that each f; is constant):

VA(V2w; = Qufw) + Quf (Vw; = Qfw)) = 0. (22)

By simple observation G,(-) [from Eq. (20)] may be selected
as

This is no more that the classical relationship extended to
non-homogeneous domains. To start with a proposition simi-
lar to the classical analogy was the motivation of the present
approach. It was be shown (not included herein) that it con-
duces to additional restrictions that will only be verified for
homogeneous domains. Thus a more general expression will
have to be used,

v;= ajVZWj +Bjw, (24)
in which the constants «; and g; will be found provided that
the BCs and CCs are satisfied for membranes and find any
Q,=g(Q,,). Particularly, if a;=1 and B;=—(1,f;, we obtain
Eq. (23). Equation (23) would lead to the conclusion that it is
only verified by homogenous domain cases. The need of a
more complex relationship among the membrane and plate

mode shapes [Eq. (24)] becomes apparent (Sec. III A).

A. Generalization of the analogy

A more general G;(w;) is introduced in Eq. (24); i.e.,
vi=q; Vi, i+ B;w;. The constants a; and B; will be found sat-
isfying the BCs and CCs for membranes and with the aim of
finding any €,=¢((},,). With relationship (24) and Eq. (5),
Eq. (9) yields

(Bj+ a0 r) V2w, + (a0 f] + B0 r)w; = 0. (25)

mr J
These Helmholtz equations for each plate mode shape w; are

not—in general—satisfied. The only simultaneous conditions
to identically verify Eq. (25) are
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2
a QU+ B = (26b)
from which and for each j the following results:
Bi=- a0, (27a)
=a(Qof; - Q) = (27b)

In order for Eq. (27b) to be satisfied, it only remains that [if
@;=0 due to Eq. (27a) =B;=0= and due to Eq. (24) v,

a; # 0, (28a)

27
Q,= Q- (28b)
i
since (), {1, r;, and f; are essentially positive. As before,
we find a possible function g(-), but a first additional restric-
tion should be verified as

r]f‘H=erI:>;‘=C0nSt, (29)

in order for the frequencies to be region independent. Then,
the frequencies relationship may be written as

0,=020=021-02" (30)
f Ju f
In this case the a;’s remain free and Eq. (24) with Eq.
(27a) may be written as follows:

Let us now impose for v;=G;(w;) the BCs and the CCs for
the membrane [taking also into account the plate BCs—
recall Egs. (11a), (11b), (12a), and (12b)]. First, we will ana-
lyze the CCs. Making use of Eq. (31) we impose Egs. (19a)
and (19b), taking into account Eq. (18a) and their conse-
quences,

(VW) — (agViwi) ) = O (eqry = agrpw®,  (32a)

z?VZWI aVZWH L?W‘{<
g —\ o m(alr 1= o) o
© (C)

ON ON ON
(32b)

After comparing Eq. (32) with Egs. (18c) and (18d), the
following restrictions are mandatory. They avoid incoher-
ences and, on the other hand, lead to the simpler and most
direct conditions.

agry— agr =0, (33a)
Dy(1 = vy) = Dy(1 = vp) =0, (33¢)

where C is an arbitrary constant. These restrictions must be
added to Eq. (29). However, and due to Eq. (33b), it may be
deduced that Eq. (33a) is equivalent to Eq. (29). In effect the
use of Egs. (17) and (33b) leads us to this conclusion. On the
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other hand after taking into account Eq. (33a), Eq. (33¢) may
be written as

rH(] - Vl) = rl(l - VH) = IL = const. (34)
-V

Moreover, with this relationship and Eq. (29) and recalling
Eq. (8), the following result is found:

en(1+v) =e(1+vy). (35)
Then, if, for instance, we choose
ru=kr(=fu=kf1), (36)

k should be real and positive for real materials. Equation (34)
automatically defines the following relationship:

(1= vy) =k(1 = »y). (37)

There are infinite possibilities of choosing the »;’s (and not
necessarily between 0 and 0.5, as is required in lineal elas-
ticity). Furthermore, due to Eq. (35), a relation among the ¢;
is obtained.

2—k(1- 1)

(1+w) (38)

en=

Summing up, the present proposition (24) consisted in
linking each membrane mode shape v; as a linear combina-
tion of the plate mode shape and its Laplacian for each re-
gion. With this proposition, an analogy for non-homo-
geneous domains composed of homogeneous subdomains is
found, with restrictions [Egs. (29) and (34)]. This analogy
works in the following way: One real or fictitious system is
solved in order to find frequencies and mode shapes of other
real system.

Obviously, the above presented analogy includes the
classical one, i.e., when ri=ry, fi=fy, and y=vy (ie., q;
=1).

The analogy is valid for all orders of frequencies and for
an arbitrary number of regions. Successive relationships such
as Egs. (29) and (34) must be employed for each region
when more than two regions are present. At present, the au-
thors cannot assert the uniqueness of an analogy of this type;
i.e., no guarantee can be provided that other analogies do not
exist.

IV. EXAMPLES

In this section various numerical examples illustrate the
analogy between plates and membranes with non-homo-
geneous domains with homogeneous subdomains. The nec-
essary conditions have to be fulfilled in each case. Some
cases are two-way statements but others are only in one way;
i.e., a fictitious plate serves to find the natural frequencies of
a real membrane (see example 1c below). Figure 2 shows the
five different solved configurations: a rectangular/square
plate/membrane with two regions separated by either a
straight line parallel to one of the boundaries, an inclined
straight line, a curved line, and a closed line (i.e., a closed
region inside another one). Finally a non-rectangular domain
was studied: a triangular plate/membrane with three regions
separated by lines parallel to one side.
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FIG. 2. Numerical examples. Schemes of the non-homogeneous domains.

The first group of numerical examples deals with a
square shaped membrane/plate with two regions separated by
a straight line parallel to one side. If X and Y are the axes
located at the left inferior corner, the line is Y=0.6a, in
which 0=X=a, a=1 (side of the square). Three different
illustrations are presented in this case (examples 1a, 1b, and
Ic). In all cases, the reference properties are vy=0.3, E,, and
po, and the parameter values are depicted in Table 1. As can
be observed, conditions (29) and (34) are verified. The plate
frequencies were found with the finite element software AL-
GOR (Ref. 15) for cases la and 1b. The well-known Levy
solution® was employed to solve the vibration plate problem
for case lc and the membrane frequencies were found solv-
ing Eq. (9) with FLEXPDE.'® The frequencies of the plates and
the membranes were numerically found and compared in
Table II. The error was calculated in all the examples with
the following expression:

rﬂrzn
6%2100|:ﬁ—1:|. (39)

P

The following three examples deal with rectangular or
square shapes with other interfaces. First a rectangular
membrane/plate with two regions separated by an inclined
straight line (¥Y=0.3X+0.7) is addressed (axes X and Y are
located at the left inferior corner) (example 2). The sides of
the rectangle are a=1 (X direction) and b=1.8 (Y direction).
In this case 1y=0.5, r=1, e;=1, ni=1, =2, eg=2/3, ny

TABLE I. Example 1. Data: parameters T ejs and nj, and calculated values

of £; (j=1,2).

Parameter la 1b lc

r 1 0.6 1

r 2 1 2

ey 1 1.3 1

ey 2/3 1 0.4615
ny 5/3 1.619 03 1

ny 0 0.476 2 —1.333
N 0.907 841 0.622 52 1

fu 1.815 682 1.037 53 2
an/ﬂp=f/r 0.907 841 1.037 53 1

TABLE II. Example 1. First four natural frequencies for a square domain
with a linear interface parallel to one side. Membrane equation (9) was
solved with FLEXPDE (Ref. 16) and plate equation (5) was solved with ALGOR
(Ref. 15) for cases la and 1b. Plate of case lc was tackled with Levy
solution. The error is computed with Eq. (39).

Order of Membrane Plate Error
Example frequency Q,zn Q, €%
la 1 14.2537 15.7044 —0.024
2 33.0705 36.4348 -0.019
3 36.7375 40.4691 —0.005
4 61.1121 67.3298 —0.020
1b 1 26.4785 25.5251 —-0.017
2 63.2931 61.0124 —-0.014
3 65.5396 63.1734 —0.007
4 108.3759 104.4600 —0.004
1c 1 14.2537 14.2563 —-0.018
2 33.0705 33.0713 —0.002
3 36.7375 36.7373 0.0005
4 61.1121 61.1080 0.006

=0, fi=1, fn=2, and an/Qp=f/r=1. The membrane fre-
quencies (),, were found using a trigonometric series ap-
proach as reported in a previous paper by the authors.'” The
plate frequencies (), were found with ALGOR." Next, the
case of two regions separated by a curved interface Y
=0.8X2-0.5X+0.4 was tackled (the same data hold for the
other properties) (example 3). In the membrane case, Eq. (9)
was solved straightforwardly with FLEXPDE.'® The plate fre-
quencies were found also with FLEXPDE after rewriting Eq.
(5) into two coupled membrane equations and the appropri-
ate boundary conditions. This is necessary since this finite
element software handles up to second order differential
equations. A rectangular membrane/plate (a=1, b=1.8)
with a region limited by a closed curve (a centered circum-
ference of radius R=0.4) (example 4) was studied. Again
both membrane and plates were solved with FLEXPDE. Table
IIT contains the numerical values of the first three natural
frequencies for the three cases.

TABLE III. Examples 2—4. First three natural frequencies for the mem-
branes (example 2—see Ref. 12—and examples 2 and 3 with FLEXPDE, see
Ref. 16) and plates [example 2 with ALGOR (Ref. 15) and examples 3 and 4
with FLEXPDE]. The error was computed with Eq. (39).

Order of Membrane Plate Error
Example frequency Q,zﬂ Q, €%
2 1 7.6618 7.6662 -0.06
2 15.728 15.737 —0.06
3 23.473 23.502 -0.12
3 1 11.133 11.141 -0.072
2 27.649 27.660 —0.040
3 31.751 31.787 —0.113
4 1 7.5006 7.5037 —0.040
2 16.132 16.126 —0.037
3 25.185 25.248 —0.249
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TABLE 1V. Example 5. First five natural frequencies for a triangular
membrane/plate with three regions. The error is computed with Eq. (39).

Order of Membrane Membrane X r/f Plate Error
frequency Q2 Q2rif Q, €%
1 33.301 90 42.62123 42.62123 0
2 73.470 89 94.031 26 94.031 25 0
3 89.789 84 1149170 114916 9 0
4 117.9852 151.002 6 150.994 8 0.005
5 153.384 8 196.308 6 196.278 7 —0.015

Finally, example 5 deals with an equilateral triangular
domain with three regions, as is shown in Fig. 2. The data for
this case are py=1, Ey=1, v,=0.3, r|=1, r,=2, =3, ¢;=1,
e,=0.8, e3=0.6, n;=0.2, n,=0.1, and n3=0. Consequently
rilfi=rlf= Qp/Qi: 1.2798. The results are reported in Table
IV. Both membrane and plates were solved using FLEXPDE.'®

As can be observed, errors are negligible. They are
within the numerical inevitable errors that are involved in
both the finite element calculations, as well as the other ana-
lytical approaches. Recall that the analogy is theoretically
correct.

V. CONCLUSIONS

An analogy between membranes and simply supported
plates for non-homogeneous domains comprised of homoge-
neous subdomains has been presented. It is verified within
polygonal domains. Concretely, the analogy is derived from
Eq. (24) that relates each membrane mode shape v as a linear
combination of the plate mode shape w and its Laplacian.
With this proposition, some restrictions arise [Egs. (29) and
(34)]. Several examples illustrate its validity provided that
the required restrictions are satisfied. Through the demon-
strated analogy, the plate and membrane vibration problems
governed by the bi-Laplacian and Laplacian differential op-
erators, respectively, can be solved without distinction, under
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certain conditions, i.e., solve one of them and deduce the
other using the relationship. Obviously, the analogy includes
the classic one when the whole domain is homogeneous.
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