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Abstract

A c-edge-colored multigraph has each edge colored with one of the c available colors
and no two parallel edges have the same color. A proper hamiltonian path is a
path containing all the vertices of the multigraph such that no two adjacent edges
have the same color. In this work we establish sufficient conditions for a multigraph
to have a proper hamiltonian path, depending on several parameters such as the
number of edges, the rainbow degree, etc.
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1 Introduction

The study of problems modeled by edge-colored graphs gave place to im-
portant developments over the last years. In particular, problems arising in
molecular biology are often modeled by means of colored graphs, i.e., graphs
with colored edges and/or vertices [8]. Given such a graph, original problems
correspond to extracting subgraphs such as Hamiltonian and Eulerian paths
or cycles colored in a specied pattern [1,2,4]. The most natural pattern in such
a context is that of a proper coloring, which entails adjacent edges/vertices
having different colors. Properly colored paths and cycles have applications
in various other elds, as in VLSI for compacting a programmable logical ar-
ray [7]. Although a large body of work has already been done[2,3], in most of
that previous work the number of colors was restricted to two. For instance,
while it is well known that properly edge-colored hamiltonian cycles can be
found efficiently in 2-edge-colored complete graphs, it is a long standing ques-
tion whether there exists a polynomial algorithm for nding such hamiltonian
cycles in edge-colored complete graphs with three colors or more [4]. No-
tice that the hamiltonian path problem was solved recently in [5] in the case
of complete graphs, with an arbitrary number of colors. In this work we give
sufficient conditions involving various parameters as the number of edges, rain-
bow degree, etc, in order to guaranty the existence of properly edge-colored
hamiltonian paths in edge-colored multigraphs. Recent work on cycles and
paths involving colored degrees in edge-colored graphs are found in [1,6].

Formally, let Ic = {1, 2, · · · , c} be a set of c ≥ 2 colors. Throughout this
paper, Gc denotes a c-edge-colored connected multigraph such that, each edge
is colored with one color in Ic and no two parallel edges joining the same pair
of vertices have the same color. Let n (m) be the number of vertices (edges)
of Gc. If H is a subgraph of Gc, then N i

H(x) denotes the set of vertices of H
adjacent to x with an edge of color i. Whenever H is isomorphic to Gc, we
write N i(x) instead of N i

Gc(x). The colored i-degree of a vertex x, denoted by
di(x), is the cardinality of N i(x). The rainbow degree of a vertex x, denoted
by rd(x), is the number of different colors on the edges incident to x. An edge
with endpoints x and y is denoted by xy, and its color by c(xy). A rainbow
complete multigraph is the one having all possible colored edges between any
pair of vertices. A subgraph of Gc is said to be properly edge-colored, if any two
adjacent edges in this subgraph differ in color. A hamiltonian path (cycle) is a
path (cycle) containing all vertices of the multigraph. We will use one family
of 2-edge-colored multigraphs, denoted by Hk,k+3, without proper hamiltonian
paths defined as follows. For k ≥ 1, consider a complete red graph on k vertices
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and join it with red edges to an independent set on k + 3 vertices. Finally,
superpose a complete blue graph on 2k + 3 vertices.

2 Main results

The two lemmas below will be useful in view of Theorem 2.3. For all results,
except Theorem 2.8, Gc will denote a 2-edge-colored multigraph on colors red
and blue, denoted by r and b, respectively.

Lemma 2.1 If Gc contains a proper cycle C of length n − 2 and dbC(x) +
dbC(y) > |C|, where Gc − C = {x, y}, then Gc has a proper hamiltonian path
with ends x and y, and starting and ending with blue edges.

Lemma 2.2 If m ≥ (n − 1)(n − 2) + n, then Gc has a proper hamiltonian
cycle if n is even, and a proper cycle of length n− 1 otherwise.

Theorem 2.3 For n �= 5, 7, if m ≥ f1(n) = n2−3n+4, then Gc has a proper
hamiltonian path.

Proof. By induction on n. For small values of n, say n ≤ 9, the argument can
be completed by a tedious analysis, so we exclude the details. Suppose n ≥ 10.
By a Theorem of [1], if for every vertex dr(x) ≥ ⌈

n+1
2

⌉
and db(x) ≥ ⌈

n+1
2

⌉
, then

Gc has a proper hamiltonian path. Suppose therefore that for some vertex,
say x, and for some color, say red, dr(x) <

⌈
n+1
2

⌉
.

Claim 1: dr(x) + db(x) ≥ 3. Otherwise, if dr(x) + db(x) ≤ 2, then m ≤
n(n − 1) − 2n + 4 = f1(n), a contradiction unless all inequalities become
equalities, i.e., dr(x) + db(x) = 2. In particular, Gc − x is a rainbow complete
multigraph. If y is a neighbor of x in Gc−x, then we may easily find a proper
hamiltonian path in Gc − x starting at y with a color different from c(xy).
Then, we can join x to this path in order to find a hamiltonian one in Gc.

Claim 2: Neither dr(x) = 0 nor db(x) = 0. Assume by contradiction that
either dr(x) = 0 or db(x) = 0. In that case Gc − x has at least n2 − 3n+ 4−
(n− 1) = [(n− 1)− 1][(n− 1)− 2]+ (n− 1) edges. By Lemma 2.2, Gc−x has
a proper cycle of length n − 1 or n − 2. If Gc − x has a proper hamiltonian
cycle then in a trivial maner we join x to the cycle in order to obtain a proper
hamiltonian path. Assume therefore that n− 1 is odd and that Gc − x has a
proper cycle C of length n− 2. Let y be the vertex outside C in Gc−x. As in
Lemma 2.1 we may show that drC(x) + drC(y) ≤ |C| and dbC(x) + dbC(y) ≤ |C|,
otherwise, we can find a proper hamiltonian path between x and y. It follows
that the number of edges of Gc is at most n(n−1)−2(n−2)+2 = n2−3n+4,
again a contradiction unless all inequalities become equalities. In particular,
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there is a red and a blue edge between x and y. In that case, take the proper
path starting at, say x, containing all the vertices of C. Then join y to x using
one edge xy with the appropriate color. This proper path is hamiltonian.

Let us now complete the proof. By Claims 1 and 2 there exist two distinct
neighbors of x, say y and z, in Gc such that c(xy) = r and c(xz) = b. Replace
now the vertices x, y, z by a new vertex s and add colored edges between s and
Gc − {x, y, z} such that N b(s) = N b

Gc−{x,y,z}(y) and N r(s) = N r
Gc−{x,y,z}(z).

The resulting graph, G′ has n − 2 vertices and at least n2 − 3n + 4 − [(n −
1)+

⌈
n+1
2

⌉
+2(n− 2)] > f1(n− 2) edges. By the induction hypothesis, G′ has

a proper hamiltonian path and so does the graph Gc. �

Theorem 2.3 is the best possible for n �= 5, 7. In fact, consider a rainbow
complete 2-edge-colored multigraph on n− 2 vertices for n odd. Add two new
vertices x1 and x2. Then add the red edge x1x2 and all red edges between
{x1, x2} and the complete graph. Although the resulting graph has n2−3n+3
edges, it has no proper hamiltonian path, since at least one of the vertices
x1 or x2 cannot be attached to any such path. Indeed, for n odd, the two
extremal edges of any proper hamiltonian path must differ in colors. If n =
5, 7, Theorem 2.3 does not hold for the graphs Hk,k+3, k = 1, 2.

In the rest of the section, we will deal with c-edge-colored multigraphs with
given number of edges, such that each vertex has rainbow degree equal to c.
We will start with the case c = 2 and later we will study the case c ≥ 3. We
establish the following preliminary lemma and definition.

Lemma 2.4 Suppose that for every vertex x in Gc, rd(x) = 2 and n ≥ 14.
If m ≥ (n − 3)(n − 4) + 3n − 2, then Gc has two matchings M r and M b on
colors, say red and blue, such that |M r| = �n

2
� and |M b| ≥ �n−2

2
�.

Definition 2.5 A path P is compatible with a matchingM if its edges belong
alternatively to M and not to M .

Theorem 2.6 Under the conditions of Lemma 2.4, Gc has a proper hamilto-
nian path.

Proof (Sketch) Suppose n even (the odd case is similar). Let us suppose
that Gc has not a proper hamiltonian path. We will show that Gc has less
than (n − 3)(n − 4) + 3n − 2 edges. By Lemma 2.4, Gc has two matchings
M r, M b, such that |M r| = n

2
and |M b| ≥ n−2

2
. Take the longest proper

path P = x1y1x2y2 . . . xpyp, compatible with the matching M r. Suppose 2p <
n, otherwise, P is a proper hamiltonian path. Since |M r| = n

2
, c(x1y1) =

c(xpyp) = r. Otherwise, we can easily extend the path by adding an edge
of the matching to P . So, as P is properly colored, the edges xiyi are red

R. Águeda et al. / Electronic Notes in Discrete Mathematics 38 (2011) 5–108



(i = 1, . . . , p) and the edges yixi+1 are blue (i = 1, . . . , p−1). Let e1, e2, . . . , es
be the edges of M r in Gc − P , s = n−2p

2
. It can be shown that the worst

scenario is when there is just one edge of M r in Gc−P , so 2p = n−2. Indeed,
if there are more, then there exist more possibilites to extend P . Now, we
will count the blue edges that are missing if we cannot extend the path P to
a proper hamiltonian one.

• If we have blue edges between the endpoints of e1 and x1 or yp, we have a
hamiltonian path and we are done. So, there are 4 blue missing edges.

• If there are 3 or more blue edges between the edpoints of the edge e1 and
the endpoints of the edges yixi+1 (i = 1, . . . , p− 1), we can easily add ei to
the path P . Otherwise, there are 22p−2

2
blue missing edges.

• If the path P is also a proper cycle, it is easy to extend P using e1 since,
as rd = 2, we have two different possibilites. First, if there exists one blue
edge between e1 and P , we just take e1, then this blue edge and finally we
go through P in the appropriate direction. If that edge does not exist, then
there is a blue edge, f1, parallel to e1. Now, as the graph is connected we
have a red edge between e1 and P , so we obtain the hamiltonian path as
before but starting with f1 and then taking the red edge that goes to P .
Otherwise, if the path is not a proper cycle, we can see that there are 2p−1
blue missing edges.

By adding up all these numbers, we conclude that there are 4p + 1 = 2n− 3
blue missing edges. Now, considering the blue matching instead of the red one
and repeating the above arguments, we conclude that there are at least n− 2
red missing edges. Adding all these missing edges, we obtain that Gc has at
most n(n− 1)− (3n− 5) < (n− 3)(n− 4) + 3n− 2 edges. �

Theorem 2.6 is the best possible for n ≥ 14. Indeed, for n odd, consider a
complete blue graph, say A, on n−3 vertices. Add 3 new vertices v1, v2, v3 and
join them to a vertex v in A with blue edges. Finally, superpose the obtained
graph with a complete red graph on n vertices. Although the resulting 2-
edge-colored multigraph has (n − 3)(n − 4) + 3n − 3 edges, it has no proper
hamiltonian path since one of the vertices v1, v2, v3 cannot belong to such a
path. For n ≤ 13, the graphs Hk,k+3, k = 2, 3, 4, 5, have more than (n−3)(n−
4) + 3n− 2 edges but they have not a proper hamiltonian path.

Lemma 2.7 Let G be a connected non-colored simple graph on n vertices,
n ≥ 9. If m ≥ (n−2)(n−3)

2
+ 3, then G has a matching M of size |M | = �n

2
�.

Theorem 2.8 Let Gc be a c-edge-colored multigraph on n vertices, n ≥ 14 and
c ≥ 3. Assume that for every vertex x of Gc, rd(x) = c. If m ≥ c(n−2)(n−3)

2
+
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2c+ 1, then Gc has a proper hamiltonian path.

Proof (Sketch) It is clear that there exists a color, say red, such that the

spanning red subgraph of Gc has at least (n−2)(n−3)
2

+ 3 edges. Therefore, by
Lemma 2.7, there is a red matching of size �n

2
�. Now, remove the red edges

of Gc, color the rest of the multigraph with some new color, say black, and
remove parallel edges. If the obtained graph has a matching of size �n−2

2
�, then

the red subgraph superposed with this black subgraph form a 2-edge-colored
multigraph such that conditions of Theorem 2.6 are satisfied. So, the result
clearly holds. Otherwise, Gc has a very particular structure and we can show
how to find a proper hamiltonian path. �

Theorem 2.8 is the best possible. In fact, consider a rainbow complete
multigraph, say A, on n− 2 vertices. Add 2 new vertices v1, v2 and then join
them to a vertex v of A with all possible colors. The resulting c-edge-colored
multigraph has c(n−2)(n−3)

2
+ 2c edges and has no proper hamiltonian path.
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