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Magnetic field driven domain wall velocities in [Co/Ni] based multilayers thin films have been
measured using polar magneto-optic Kerr effect microscopy. The low field results are shown to
be consistent with the universal creep regime of domain wall motion, characterized by a stretched
exponential growth of the velocity with the inverse of the applied field. Approaching the depinning
field from below results in an unexpected excess velocity with respect to the creep law. We analyze
these results using scaling theory to show that this speeding up of domain wall motion can be
interpreted as due to the increase of the size of the deterministic relaxation close to the depinning
transition. We propose a phenomenological model which allows to accurately fit the observed excess
velocity and to obtain characteristic values for the depinning field Hd, the depinning temperature
Td, and the characteristic velocity scale v0 for each sample.

I. INTRODUCTION

Nowadays, the fundamental relevance and potential
technological impact of different magnetic textures, such
as domain walls and skyrmions, are broadly acknowl-
edged [1, 2]. For example, ongoing research covers from
skyrmions inspired applications [3–5] to domain walls re-
sponse to in-plane magnetic fields in perpendicular mag-
netic anisotropy materials [6–13]. In particular, mag-
netic domain wall motion plays a key role on understand-
ing magnetization reversal dynamics and on developing
new magnetic based memory devices. This has strongly
pushed research on domain wall dynamics during last
years [14–16]. It was soon realized that even a weak
quenched disorder can have dramatic consequences in do-
main wall dynamics [17–19]. Disorder competes with the
domain wall elasticity, leading to a variety of non-trivial
collective effects, including pinning, glassiness and dy-
namic phase transitions as a function of temperature and
driving field [17–22]. Despite this progress there are still
many aspects deserving further attention, specially re-
garding the comparison between experiments and the-
oretical predictions for the different regimes. Among
these, one of the most fundamental questions is to un-
derstand the measured mean stationary velocity of mag-
netic domain walls in response to an uniform driving field
near the so called depinning threshold. In this work we
directly address this basic issue.

Typically, an external magnetic field is used to fa-
vor one particular domain orientation and can thus be
taken as the exemplary driving force for domain wall
motion. One of the key parameters is the character-
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istic depinning field Hd separating slow from fast do-
main wall motion. Due to metastable states induced
by quenched disorder, at zero temperature velocity is
strictly zero below the depinning field Hd and it is fi-
nite above it, defining the depinning transition. At large
fields, H � Hd, velocity ultimately grows linearly with
the field in the so-called flow regime. When decreas-
ing the external field and close to the depinning field,
H & Hd, domain wall motion captures, through the
temperature and field dependence of the velocity, essen-
tial universal signatures of the depinning transition at
finite temperature [22–29]. Further reducing the exter-
nal field below the depinning field, H < Hd, domain wall
dynamics is controlled by thermal activation over effec-
tive energy barriers in the so-called creep regime [17–
20, 24, 28, 30, 31]. Within this regime, for any finite
magnetic field, velocity is controlled by Arrhenius acti-
vation growing as v = v0e

−∆E/kBT , with kBT the ther-
mal energy and a characteristic field-dependent disorder-
induced effective energy barrier ∆E = (H/Hd)

−µ − 1.
The universal creep exponent µ depends on a few phys-
ical ingredients such as the dimension of the system,
the extent of the elastic interaction (long- or short-range
character) and the type of disorder correlations (random
bond or random field, with short or long-range corre-
lated pinning forces) [17, 18, 20, 32]. For domain wall
motion in ultra-thin ferromagnetic films µ = 1/4, cor-
responding to an elastic interface with short-range elas-
ticity in a short-range correlated random-bond disorder.
The creep regime has been thoroughly studied during the
past decades and still presents several challenges [11, 33–
37]. An important unexplored issue is the physics of the
prefactor v0 in the velocity-force creep-law. Usually, it is
assumed to be constant while the forward displacement of
domain walls from single non-overlapping events are pre-
dicted to be strongly field dependent [30] and to diverge
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FIG. 1. PMOKE images for the CoNiTa sample. (a) Bubble domain after nucleation. Symbols � and ⊗ indicate the direction
of the magnetization in the two observed domains. (b) The same bubble domain after the first square field pulse of 30 Oe and
100 ms. (c) Differential image corresponding to the two consecutive images (a) and (b).

close to the depinning threshold. A theoretical descrip-
tion containing such a force dependence for the prefactor,
which is discussed in this paper, would have measurable
experimental consequences and enrich the current under-
standing of slow DW dynamics.

Pt/Co/Pt ultrathin films have been used as the
archetypal material system to study domain wall dynam-
ics [19, 24, 28, 36, 38]. These systems permitted a deeper
understanding of domain wall motion within the frame-
work of disordered elastic systems, allowing us to differ-
entiate material dependent parameters, such as the de-
pinning field Hd and the depinning temperature Td, from
universal characteristics as the critical exponents. Due to
its technological relevance materials offering other possi-
bilities has been investigated. Among others, we mention
the CoFeB family which present the lowest room temper-
ature depinning field [39] and diluted magnetic semicon-
ductors of the GaMnAs family showing low depinning
fields but with a Curie temperature around 100 K [31].
Also interesting are ferrimagnetic systems such as TbFe
and related materials presenting a compensation temper-
ature close to room temperature [31, 40–42]. Finally,
[Co/Ni] multilayers were primarily studied as a promising
system for future applications particularly due to its low
propagation field and high spin-orbit coupling effect [43–
49].

In this work we present velocity-field characteristics for
three different [Co/Ni] multilayers which show an unex-
pected deviation from the usual creep regime when ap-
proaching the depinning field Hd. We discuss in detail
the observed behavior and propose a phenomenological
model inspired by scaling theory and recent numerical
simulations. Our model permits to fit relevant material
dependent parameters corresponding to field, tempera-
ture and velocity scales.

II. DOMAIN WALL VELOCITY IN [Co/Ni]
MULTILAYERS

We present in this section velocity-field measurements
in [Co/Ni] multilayers. Three samples were investi-
gated: Pt(6)/[Co(0.2)/Ni(0.6)]3/Ta(5), Pt(6)/[Co(0.2)/
Ni(0.6)]3/Al(5), and Pt(6)/[Ni(0.6)/Co(0.2)]3/Al(5).
The numbers in parenthesis stand for thickness in nm.
For a sake of simplicity, the samples are referred to as
CoNiTa, CoNiAl, and NiCoAl, respectively in the follow-
ing. The multilayers were grown on the same oxidized
Si-SiO2 substrates by DC magnetron sputtering and
present a perpendicular magnetic anisotropy enhanced
by the three periods of Co/Ni bilayer [49].

Polar magneto-optical Kerr effect microscopy
(PMOKE) has been used to measure domain wall
velocities. The most relevant features of the used
microscope are the following: Olympus LMPLFLN
series objectives (20x and 5x), high brightness red LED
with a dominant wavelength 637nm, Glan-Thompson
polarizers, a 14 bit CCD from QImaging Corp., and a
Köhler configuration for the illumination. The external
magnetic field was applied in the direction of the easy
axis, i.e. perpendicular to the sample plane. Different
coils and current sources have been used to generate
magnetic field pulses of amplitudes up to 1 kOe and
duration spanning from 1µs to several minutes. To
measure domain wall velocities the following protocol
was used: first, sample magnetization is saturated in
a given direction perpendicular to the sample. After-
wards, with a short and strong magnetic pulse one or
more magnetic domains with magnetization pointing
in the opposite direction, are nucleated. Finally, a
series of square magnetic field pulses are applied and
PMOKE images are taken between these pulses, thus
capturing domain wall motion. Domain wall velocity
for a given magnetic field is then measured as the mean
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displacement of the domain wall, between successive
images, over the pulse width. Typical PMOKE images
of sample surface magnetization are shown in Fig. 1.
The magnetic contrast permits to directly observe in
Fig. 1(a) the domain structure just after nucleation
process. Figure 1(b) shows domain growth after a first
magnetic field square pulse of amplitude 30 Oe and
duration 100 ms is applied. From the differential image
shown in Fig. 1(c) the mean domain wall displacement
is measured and the mean velocity is obtained.
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FIG. 2. Domain wall velocity as a function of magnetic field
for [Co/Ni] multilayers: (a) Semilogarithmic scale and (b)

creep plot, ln v against H−1/4 (for simplicity, error bars were
only included in (a)). Dashed lines in (b) are fits to the creep

law ln v ∼ H−1/4, which gives a good fit at low magnetic
fields. The corrected creep law described in Sec. III (contin-
uous lines) gives a good description in an extended magnetic
field range. Vertical dotted lines indicate the obtained depin-
ning field Hd for each curve. The corrected creep law was fit
using fields H < Hd (vertical dotted lines).

Velocity-field curves at room temperature are pre-
sented in Fig. 2. A semilogarithmic scale is used in
Fig. 2(a) to show that domain wall velocity covers 10
orders of magnitude for only two orders of magnitude of
variation of the applied field. It can also be observed that

the upper velocity limit is different for each sample. This
is primarily related to the density of nucleation centers:
the higher the density, the smaller the distance between
domains and thus the maximum observable domain wall
displacement is bounded by the coalescence of domains.
It is interesting to note that on samples with Al as cap-
ping layer (CoNiAl and NiCoAl), changing the order of
the ferromagnetic bilayer changes the velocity almost 4
orders of magnitude for a given H. Changing the cap-
ping layer also influences the velocity response as can be
observed by comparing results for CoNiAl and CoNiTa.
Finally, our velocity measurements are similar to previ-
ous velocity-field results reported for Co/Ni based sam-
ples [48]. Taking the value MS = 300 emu/cm3 for the
saturation magnetization, measured for our samples, and
using α = 0.05 for the damping coefficient [39], we have
also estimated the Walker field HW = αMS/2 ≈ 100 Oe,
which is smaller than the depinning field (see below).
However, we do not reach the velocity plateau observed
at large fields in Refs. [45, 48].

In order to quantitatively study the domain wall dy-
namics on [Co/Ni] multilayers Fig. 2(b) presents a creep
plot, ln v against H−1/4. For the lower magnetic fields,
a linear behavior indicated by straight dashed lines
presents very good agreement with the creep law. In
contrast, for the higher magnetic field values, the veloc-
ity is found to be higher than expected from the creep
law.

This excess velocity is encountered in other mag-
netic systems. It has been previously observed, but
not highlighted, in a Pt/Co/Pt sample at room tem-
perature in Ref. [28], in Pt/Co/Pt magnetic wires of
width 1.5µm in Ref. [50], and also in epitaxially grown
Co/Ni layer [48]. The observed excess velocity contrasts
with the phenomenological description for the finite tem-
perature velocity-field response in disordered elastic sys-
tems [22]. In this scenario, when increasing the field, a
simple crossover is expected between the standard creep
law, where the velocity increases with the field faster than
linear (d2v/dH2 > 0), and the above threshold fast flow
regime, where the velocity reaches a linear behavior with
H (d2v/dH2 = 0). Therefore, the excess velocity cor-
responds to an increase of the velocity faster than the
stretched exponential dependence with H and then the
phenomenological model is not enough to describe veloc-
ity values beyond the creep law. To explain the excess
velocity effect we develop a model entirely based on the
predictions of the creep theory. Corrections to the stan-
dard creep law derived from recent numerical studies of
creep events [51] are essential to our model. As shown in
the following sections, with this approach we are not only
able to model quantitatively the excess velocity regime,
but to predict its dependence with material parameters
and the shape of the velocity-field characteristics, from
low fields to fields near the depinning field, using a few
fitting parameters.
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III. EXCESS VELOCITY CLOSE TO THE
DEPINNING FIELD

Inspired by previous numerical results [30, 51, 52], we
develop here a phenomenological description of the excess
velocity which is then compared to experimental results
obtained for the [Co/Ni] multilayers and published pre-
viously for ultrathin Pt/Co/Pt films [28].

A. Phenomenological arguments and scaling theory

In the phenomenological creep model, it is assumed
that the slow motion of domain walls at low fields and
temperatures proceeds by nucleating optimal irreversible
forward jumps over the effective energy barriers separat-
ing metastable states. These events, the so-called ther-
mal nuclei, are expected to be localized both in time
and space: they occur in a very short time compared
with the typical waiting time it takes to produce them
in a given metastable state, and they have an opti-
mal field-dependent size. In the first creep theories it
was also implicitly assumed that these events were inde-
pendent, and that metastable states were indistinguish-
able from equilibrium states. However, simulations of
creep motion and functional renormalization group cal-
culations show that this picture is not correct. Indeed,
metastable states are similar to equilibrium states only
locally [20, 30, 52] and activated events actually display
complex spatio-temporal patterns and a power-law dis-
tribution of sizes [51]. Interestingly, the largest events
(those that are in the cut-off of the size distribution)
which dominate the velocity of the interface with their
large waiting times, are almost independent and follow
the same scaling laws early predicted for thermal nu-
clei [17, 18]. This justifies the simple scaling approach
we will follow for estimating the creep velocity from typ-
ical independent events.

1. Creep-law

The characteristic time to escape from a metastable
configuration of the interface to another metastable state
with lower energy via nucleation of the typical forward
jump is given by the Arrhenius law

τ = τ0 e
∆E
kBT , (1)

with ∆E the typical effective energy barrier, kB the
Boltzmann constant, T the temperature, and τ0 a charac-
teristic inverse attempt frequency. Using scaling [17, 18]
and functional renormalization group [20] arguments it
was shown that for small field values (H � Hd) the typ-
ical effective barrier scales as

∆E(H → 0) = kBTd

(
H

Hd

)−µ

, (2)

with kBTd a characteristic pinning energy scale depend-
ing on sample microscopic properties. Remarkably, the
predicted creep exponent µ is universal. For domain wall
motion in ultra-thin ferromagnetic films µ = 1/4, corre-
sponding to the equilibrium universality class of a one di-
mensional interface with short-ranged elasticity coupled
to a short-range correlated random-bond disorder [53].

Although Eq. (2) gives the dominant contribution to
the effective barrier in the limit of small fields, correc-
tions are generically expected at larger H. In particular,
effective barriers should vanish when approaching the de-
pinning field. Experimentally, it was shown [28, 31] that
the simple expression

∆E = kBTd

[(
H

Hd

)−µ

− 1

]
, (3)

describes well a large family of materials, from H � Hd

to H . Hd, for a considerable range of temperatures.
It is worth noting that Eq. (3) properly extrapolates to
Eq. (2), and shows that the effective barrier vanishes lin-
early when H → Hd.

To compute the mean velocity v of domain wall, we
need to estimate the characteristic transverse displace-
ment u produced by individual creep events in addition
to the characteristic times τ which is already given by
Eqs. (1) and (3). One usually considers that an event is
triggered by the jump of a domain wall segment of length
Lopt (see Fig. 3) over an optimal energy barrier inducing
a local displacement to a new metastable configuration.
The length scale Lopt acts then as the thermal nucleus
triggering further forward deterministic motion of lon-
gitudinal length scale Lrel towards the next metastable
state, thus completing the whole creep event. The cov-
ered surface area of the complete event can be written
Seve = Leveueve, where ueve is the transverse displace-
ment and Leve ≥ Lopt the longitudinal displaced length.
To get the center of mass displacement u, we assume a
domain wall segment of length L (L > Leve) to undergo
a number of events n separated by a distance ` (L ≈ n`)
during the time scale τ . The covered surface area is thus
uL = nLeveueve which leads to:

u =
Seve
`
. (4)

When the field is very small, H � Hd, the stretched
exponential field-dependence of the time scale τ , as
shown below, dominates over less strong field-dependence
of the domain wall displacement u. Therefore, as it is
customary, a constant displacement value u = u0 can be
considered, resulting in the domain wall velocity given
by v = u0/τ and hence in the creep regime

v = v0e
−Td
T

[(
H
Hd

)−µ
−1

]
, (5)

with v0 = u0/τ0. This reduces to the well known creep-
law

v = v0e
−Td
T

(
H
Hd

)−µ

, (6)
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FIG. 3. Characteristic length scales and corresponding sizes.
Leve is the longitudinal length of an individual creep event.
Lopt corresponds to the optimal length associated to the ef-
fective energy barrier the domain wall should overcome in
order to trigger a forward movement. Sopt and Srel are the
sizes of the corresponding magnetization reversed regions. On

one hand, when H → 0 one expects that Sopt ∼ L
ζeq+1
opt ∼

H−νeq(ζeq+1), diverging at zero field. On the other hand,
Srel ∼ Lζ+1

rel ∼ (Hd −H)−ν(ζ+1) is diverging when approach-
ing the depinning field from below. The size of the full event
can thus be written as Seve = Sopt + Srel.

when H → 0.

2. Field-dependent length scales

Since the external magnetic field affects the interface
energy landscape, it is natural to consider that the trans-
verse displacement u, traveled by the interface when
changing from one metastable state to another, has a
dependence on the external magnetic field. We shall
now consider the corrections to the velocity that might
be originated on the field dependence of u. To pro-
ceed, we first notice that, according to Eq. (4), the field-
dependence of the size Seve of the magnetization reversal
event should be specified. Assuming that domain walls
can be described as self-affine objects [54], the transverse
displacement u is expected to present a power variation
with the longitudinal size L: u ∼ Lζ , with ζ the relevant
roughness exponent, and then Seve ∼ Lζ+1

eve .
In order to correct u we should first recall the expected

behavior for Seve. The relevant longitudinal length scales
and areas are depicted in diagrams of Fig. 3. Scaling ar-
guments [17, 18, 20] and numerical simulations [51] show
that at very small fields the relevant longitudinal length
scale should be the one associated to the size of the opti-
mal barrier the interface overcomes in order to produce a
forward movement. This length scale is Lopt and diverges
with vanishing field as

Lopt = Lc

(
H

Hd

)−νeq
, (7)

with Lc the Larkin length and νeq = 1/(2−ζeq) = 3/4 the
correlation length equilibrium exponent, where ζeq = 2/3
is the equilibrium roughness exponent corresponding to
the equilibrium universality class of a one-dimensional
interface in a short-range correlated potential produced
by random-bond disorder [55]; these exponents yield µ =
νeq(2ζeq − 1) = 1/4 [17, 18].

Remarkably, this power-law divergence of Lopt is
supported by experimental evidence of a dimensional
crossover of DW dynamics in nanowires [56]. The trans-
verse displacement associated with Lopt, can be written
as

uopt = rf (Lopt/Lc)
ζeq , (8)

with rf the correlation length of the pinning force acting
on the domain wall [20]. The area of this contribution is
thus given by

Sopt = uoptLopt = Lcrf (Lopt/Lc)
ζeq+1. (9)

When approaching the depinning field from below,
deterministic relaxation events, similar to depinning
avalanches, can be triggered by each thermal nucleus
giving an additional contribution Lrel. Numerical sim-
ulations show that this length diverges when approach-
ing the depinning field from below as Lrel ∼ (Hd −
H)−ν , with ν the depinning correlation length expo-
nent [30, 51, 52]. In terms of the reduced field δh ≡
1−H/Hd we can write

Lrel ≈ Lcδh−ν , (10)

for the longitudinal size of the relaxation event, with
ν = 1/(2− ζ) and ζ [57] the depinning correlation length
and depinning roughness exponents. This power law vari-
ation represents the relevant contribution close to Hd and
should be corrected when approaching the H → 0 limit.
In order to give a negligible contribution in the small
field limit, where Lopt is the dominant scale, we propose
to recast the behavior of Lrel in the form

Lrel = Lc
(
δh−ν − 1

)
, (11)

that includes the limit Lrel → 0 when H → 0. In terms
of the relaxation length, the transverse displacement and
the area of the relaxation contribution become

urel ≈ rf (Lrel/Lc)
ζ (12)

and

Srel ≈ Lcrf (Lrel/Lc)
ζ+1, (13)

respectively.

3. Corrected phenomenological model

We are now in position to estimate the velocity pref-
actor u/τ0 ∼ Seve, using that Seve = Srel + Sopt.
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The first step towards the formulation of a corrected
phenomenological velocity model is to realize that at
very small fields, H � Hd, we have Seve ≈ Sopt =

rfLc(H/Hd)
−νeq(ζeq+1), according to Eqs. (7) and (9).

However, at very small fields the stretched exponential
field dependence of the time scale dominates over this
power-law correction for the prefactor. Therefore, in
the very small field regime the size of the event can be
conveniently approximated by a constant value, Seve ≈
Sopt ≈ S0. This yields for a constant velocity prefactor
v0 = (S0/`)/τ0 and the creep-law Eq. (6) is recovered.

When increasing the field, the exponential term domi-
nates over the Sopt field dependence, which is decreasing
with increasing field, and we can then safely consider
Sopt ≈ S0 up to Hd. However, the relaxation contribu-
tion Srel increases with increasing field (see Fig. 3) and
starts competing with the stretched exponential field de-
pendence from the time scale. One should then consider
the relaxation correction to the velocity for fields larger
than a given field Hr, to be defined below. The excess
contribution to the full event as originated from the re-
laxation contribution can be considered by writing the
size of the event as

Seve = S0 + Srel = S0

(
1 +

Srel
S0

)
, (14)

with Srel → 0 when H → 0. Using Eqs. (11) and (13)
Seve can be expressed as a function of the reduced field
δh,

Seve = S0

[
1 + p

(
δh−ν − 1

)ζ+1
]
, (15)

with p = Lcrf/S0. Now, using Eq. (4) to write the trans-
verse displacement u in terms of Seve results in the ve-
locity given by

v = v0

[
1 + p

(
δh−ν − 1

)ζ+1
]
e−

Td
T [(1−δh)−µ−1], (16)

where we have written H/Hd = 1 − δh in the exponen-
tial. Equation (16) models the excess velocity observed
when approaching the depinning field. A rough estima-
tion for the field Hr can be obtained by approximating
the velocity prefactor in Eq. (16) as v0pδh

−ν(ζ+1). This
approximation for the prefactor can be recast in the δh-
dependence of the exponential as exp{−[(1 − δh)−µ −
1]/t − ν(ζ + 1) ln δh}, with t = T/Td a reduced temper-
ature. Then Hr is obtained when the two terms in the
exponential are of the same order:

−1

t

[
(1− δhr)−µ − 1

]
≈ ν(ζ + 1) ln δhr, (17)

giving an implicitly approximate expression for Hr =
Hd(1− δhr).

However, although we stated that Srel should diverge
close to Hd, this would imply a divergence of u and then
of the velocity when approaching Hd from below. This
divergence should be arrested by a proper cut-off com-
ing from experimental relevant length scales (system size,

S

S0

Seve

Sε

Hr Hε Hd H

FIG. 4. Proposed characteristic dependence of the relaxation
size Seve with magnetic field. Seve has two contributions:
Sopt and Srel (see Fig. 3). Seve goes to a constant value
S0 at low fields. This is a good approximation since at low
fields (H < Hr) the domain wall velocity is dominated by
the exponential time scale and at higher fields (H > Hr) it is
dominated by Srel. A saturation of Srel is considered in order
to arrest the divergence of the domain wall velocity near the
depinning field. For H < Hε, Srel is barely changed, but for
H > Hε a saturation to Sε is reached.

average distance between strong pinning centers, typical
distance between relaxation events, etc.). Naming Lε to
this longitudinal cut-off length, the corresponding size is

Sε = Lcrf (Lε/Lc)
ζ+1. (18)

Using Eq. (11), the value Lε is reached when the reduced
field is δhε = ε = (Lε/Lc + 1)−1/ν , corresponding to a
field value Hε = Hd(1− ε).

To model the divergence of Srel and its corresponding
cut-off we propose to replace δh−ν → (δhm + εm)−ν/m,
which amounts to use

Seve
S0

= 1 + p
[
(δhm + εm)

−ν/m − 1
]ζ+1

, (19)

instead of Eq. (15). This model represents a crossover
function where the width of the crossover is controlled
by the parameter m and is such that

Srel ∼
{

(δh−ν − 1)ζ+1 for ε� δh,
(ε−ν − 1)ζ+1 for δh� ε,

(20)

independently of m. We fixed the value m = 4 in our
model, but using larger values of m does not significantly
change the velocity behavior.

Equation (19) reflects the fact that Srel → 0 when
H → 0. When the field is increased, Srel starts diverging
while approaching Hd, but when the field is too close to
Hd (δh smaller than ε or, equivalently, H larger than
Hε) it saturates to Sε. The proposed behavior for Seve
is outlined in Fig.4.

All the information regarding the field-dependence of
relevant length scales can be put together by writing the
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velocity prefactor u/τ0 in terms of the relaxation contri-
bution and its saturation value, using (δhm + εm)−ν/m

instead of δh−ν in Eq. (16), resulting in the corrected-
creep law:

v = v0

{
1 + p

[
(δhm + εm)

−ν/m − 1
]ζ+1

}
(21)

×e−
Td
T [(1−δh)−µ−1].

Summarizing, this phenomenological corrected creep
model includes three different velocity-field characteris-
tics below the depinning field (see Fig. 5).

lnv

H
−1/4
rH

−1/4
εH

−1/4
d

H−1/4

∼v0ε−ν(ζ+1)

∼v0δh−ν(ζ+1)

∼v0

FIG. 5. Three different velocity-field characteristics identi-
fied below Hd: the classical creep regime for fields 0 < H <

Hr, where the velocity goes as v0e
−Td/T (H/Hd)

−µ
; the field-

dependent correction to the velocity prefactor coming from
the relaxation contribution gives the excess velocity for fields
Hr < H < Hε; and the saturation of the relaxation length
at Lε, for fields Hε < H < Hd, arrests the divergence of the
velocity with an ε-dependent velocity prefactor.

Increasing the field from zero, when H < Hr, the usual
creep-law of the form

v = v0e
−Td
T

[(
H
Hd

)−µ
−1

]
(22)

is recovered. Then, in the range Hr < H < Hε, the
relaxation length scales modify the velocity prefactor and
the excess velocity develops:

v = v0p

(
Hd −H
Hd

)−ν(ζ+1)

e
−Td
T

[(
H
Hd

)−µ
−1

]
. (23)

Finally, when the relaxation length reaches its saturation
value for Hε < H < Hd, a modified creep-law with an
ε-dependent prefactor is recovered,

v = v0pε
−ν(ζ+1)e

−Td
T

[(
H
Hd

)−µ
−1

]
. (24)

These three velocity-field regimes of creep motion are in-
dicated in Fig.5, together with the characteristic fields
Hr and Hε.
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FIG. 6. (a) Velocity-field characteristics in a creep plot, ln v

against H−1/4, for Pt/Co/Pt at room temperature [28]. The
usual creep law (black dashed lines) fits the low magnetic field
data. The continuous black line corresponds to a fit using the
corrected creep law, which permits to extract the parameters
shown in Table I. The corrected creep law was fit using fields
H < Hd (vertical dotted line). The thin continuous line shows
the divergence of the velocity due to the divergence of Srel,
plotted using the same parameters of Table I but with ε = 0.
Finally, the upper straight dashed line shows the effect of the
saturation which gives an extra contribution to the prefactor
v(Hd) very close to Hd, Eq. (27). (b) Same data as in (a) but
with a flattened low field creep regime (see Eq.(26)), which
emphasizes the excess velocity.

B. Fitting velocity curves

In the following we shall use the proposed model to
fit velocity-field curves for [Co/Ni] multilayers and ex-
tract relevant parameters. For the purpose of the fit, the
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modified creep-law, Eq. (21) can also be written as

ln v = ln v0 +
Td
T
− Td
T

(
H

Hd

)−µ

+ ln

1 + p

{[(
Hd −H
Hd

)m
+ εm

]−ν/m
− 1

}ζ+1
 ,

(25)

highlighting how the excess velocity correction to the
usual creep comes from the field-dependence of the last
term. Inspecting the corrected creep model Eq. (25) one
can see that the usual creep model, first line in Eq. (25),
is also recovered.

In order to reduce the number of fitting parameters we
must first fix the values of the critical exponents, by con-
sistently assuming an equilibrium and a depinning uni-
versality class. For domain wall motion in ultrathin fer-
romagnetic films it is usually found that µ = 1/4. This
value corresponds to the equilibrium universality class
of a one dimensional interface with short-ranged elas-
ticity coupled to a short-range correlated random-bond
disorder, as µ = (2ζeq − 1)/(2 − ζeq), with ζeq = 2/3.
For the depinning universality class, in agreement with
previous experimental results [28, 29, 31], we take the
quenched Edwards-Wilkinson universality class and thus
set ν = 1/(2− ζ) = 1.33 and ζ = 1.25 [57].

As a first step, we validate our model using room
temperature velocity-field data obtained for Pt/Co/Pt
in Ref. [28]. This results show the same upward devi-
ation from the full creep law when increasing the field
and approaching the depinning field from below. In
addition, in the same experiment, the depinning field
was reached, giving access to depinning parameters [Hd,
Td and v(Hd)]. Experimental results are fit using the
corrected creep law Eq. (21). In the low field regime,
H < Hr, Eq. (25) reduces to

ln v = ln v0 +
Td
T
− Td
T

(
H

Hd

)−µ

= B −AH−µ. (26)

Therefore we plot the data as a creep plot, ln v against
H−1/4, in Fig. 6 (a). As can be observed by the agree-
ment between the data and the continuous black line, the
proposed model gives a fairly good description of the phe-
nomenon. Figure 6 (b) shows the same information with
the low field creep law linearized as (ln v − B)Hµ + A
against H−µ, in order to highlight the excess velocity.
Notice that the correction to the velocity prefactor, when
the saturation of value Sε is reached, gives the velocity
exactly at the depinning field,

v(Hd) = v0

[
1 + p

(
ε−ν − 1

)ζ+1
]
, (27)

corresponding to the prefactor for the gray dashed line
in Fig. 6.

In Fig. 6, the thin continuous line shows the divergence
of the velocity due to the divergence of Srel, plotted using

Usual creep Corrected creep
Ref. [28, 58]

Hd[Oe] 910±40 1140±60
Td[K] 1900±100 1720±50
v0[m/s] 59±2 48±18
ε 0.30±0.04
p 0.04±0.02
v(Hd)[m/s] 59±2 90±35

TABLE I. Fitting parameters for Pt/Co/Pt velocity-field data
at room temperature (data from Ref. [28]). Comparison be-
tween the fitting parameters obtained using the usual creep
(values extracted from Ref. [58]) and using the corrected creep
law for H < Hd proposed in this work, Eq. (25).

the same parameters of Table I but with ε = 0. Finally,
the upper straight dashed line shows the effect of the sat-
uration which gives an extra contribution to the prefactor
v(Hd) very close to Hd, Eq. (27). In Table I, fitting pa-
rameters using the corrected creep law model for H < Hd

are compared with the values obtained using the usual
creep law for small magnetic field values in Ref. [28] (see
also Ref. [58] for a comparison with other materials).

Figure 2(b) shows experimental velocity-field curves
for all three Co/Ni samples in a creep plot and fitting
curves using both the usual creep law and the corrected
creep law, Eqs. (26) and (25), respectively. As can be
observed, the corrected creep expression, Eq. (25), gives
a very good agreement on the whole studied experimen-
tal range. The obtained results for the fitting parameters
are presented in Table II. It is worthwhile to emphasize
here that solely using the usual creep law is not enough to
obtain the three depinning parameters and information
from the depinning regime is needed [31, 58]. Remark-
ably, whenever the upward velocity deviation is present,
the proposed corrected creep model permits to extract
the full set of parameters using data well below the de-
pinning field, as can be observed for NiCoAl and CoNiAl
in Fig. 2(b).

Overall, data presented in Fig. 2 and results in Table II
show that significant differences are observed among the
studied Co/Ni samples. These differences are probably
related to the presence of different interfaces between the
capping/buffer layers and the magnetic multilayer. Fur-
thermore, one can notice in Table II that while p changes,
the value of ε does not change within error bars, suggest-
ing a complicated scenario which should be unveiled. We
expect the temperature dependence of these parameters
would reveal more details about their relationship with
materials intrinsic parameters.

IV. DISCUSSION AND CONCLUSION

We have found that the excess velocity effect can be ex-
plained using a simple phenomenological model which in-
corporates the relaxation contribution to the creep events
near the depinning field. We present here a discussion re-
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NiCoAl CoNiTa CoNiAl
Hdep[Oe] 110±35 210±30 820±200
Tdep[K] 3900±330 3100±130 2300±150
v0[m/s] 1.7±0.5 0.25±0.05 0.09±0.01
ε 0.6±0.2 0.47±0.09 0.4±0.1
p 2.8±0.8 1.5±0.5 20±7
v(Hd)[m/s] 6±1 1.4±0.5 12.8±0.7

TABLE II. Fitting parameters of the three studied [Co/Ni]
multilayers, obtained from fitting the measured velocities with
the corrected full creep law, Eq. (25). For further reference,
we also included v(Hd) from Eq. (27).

garding various specific aspects of the model.
The model predicts that the excess velocity is con-

trolled by a mix of equilibrium and depinning exponents.
In section III B we have fixed the equilibrium and de-
pinning universality class to the one of the quenched
Edwards-Wilkinson model. For depinning, this model
predicts ζ ≈ 1.25, and ν = 1/(2 − ζ) ≈ 4/3 using
the statistical-tilt symmetry of the model [20, 59]. The
roughness exponent ζ = 1.25 > 1 implies however that
the local elongation must diverge with the domain wall
segment size. Such divergence is incompatible with the
harmonic elastic approximation of the model at large
length-scales [27]. This may imply that either the inter-
face breaks, giving place to plastic flow at large length-
scales, or non-linear corrections to the elasticity con-
straining the local elongation become important. The
latter is the case studied in Ref. [60] for a non-harmonic
quartic order constraint to the local elongation. It was
shown that in this case the depinning universality class
corresponds to the quenched Kardar-Parisi-Zhang depin-
ning universality class. Interestingly, the equilibrium
universality class of this model is the same as for the
quenched Edwards-Wilkinson model with ζeq = 2/3 and
in particular µ = 1/4. Therefore one can not distinguish
between the two cases just by measuring the mean veloc-
ity at low fields. One may thus ask whether the excess ve-
locity regime may reveal the depinning universality class.
We have thus tested our model using the known quenched
Kardar-Parisi-Zhang depinning exponents, ζ ≈ 0.63 and
ν ≈ 1.75. The result shows that the model still fits sat-
isfactorily the data for the Pt/Co/Pt sample (the other
samples give similar results), and the fitting parameters
do not change appreciably. Therefore, our experiment
and velocity model are not able to resolve the depinning
universality class of the magnetic domain wall system,
at least between the quenched Edwards-Wilkinson and
quenched Kardar-Parisi-Zhang models.

When the depinning field is approached from above,
H > Hd, the depinning correlation length Lav is the
characteristic crossover length scale beyond which the ge-
ometry of the interface is well described by the fast-flow
exponent ζ = 1/2 and diverges as Lav ∼ (H − Hd)

−ν ,
when T = 0. The time scale it takes to such depinning
correlation length to develop diverges as tav ∼ Lzav, with
z the depinning dynamical exponent [57, 61]. In principle

one can analyze the depinning in analogy with standard
equilibrium critical phenomenon [62], suggesting the ex-
istence of a diverging length scale below Hd and its cor-
responding time scale. As shown in Refs. [30, 52] this
analogy breaks down and although Lrel diverges when
Hd is approached from below, Eq. (10), it is associated
with transient dynamics. Furthermore, the correspond-
ing time scale trel ∼ Lzrel should also diverge at Hd. This
time scale is, at very small fields, smaller than the time
it takes to overcome the typical energy barrier, trel < τ .
If one considers the divergence of trel, this would lead to
a depinning-like power-law behavior for the velocity but
not to a speeding up of the velocity over the usual creep
law. Therefore, when developing the corrected creep
model in Sec. III A we had assumed that for H < Hε

the time scale trel � τ , thus not giving an important
time correction. Furthermore, when Lrel saturates for
H > Hε, so does the value of trel, not affecting the ve-
locity prefactor.

From the proposed model and the arguments devel-
oped in Sec. III A, it is clear that in order to avoid the
divergence of the velocity a saturation of Lrel is neces-
sary when approaching Hd from below. The possible ori-
gin of the saturation length Lε needs further discussion,
with one interesting candidate being the depinning cor-
relation length Lav. It would be very interesting to test
experimentally and numerically the field and tempera-
ture implications of considering Lε = Lav, as it might
provide a possible link between thermal rounding, the
density of concurrent creep events, and the effective bar-
rier distribution. For instance, the characteristic length
Lav is field dependent and at T = 0 it diverges at Hd

while at any finite temperature is finite at Hd and tends
to diverge at H = 0 [20, 63]. The larger is T the smaller
is Lav(H). Associating Lav with Lε means that the sat-
uration regime would be reached at lower fields. On the
other hand, the onset of the excess velocity regime Hr is
also expected to decrease. Depending on the precise tem-
perature dependence of both, the excess velocity window
may shift, expand or shrink, and eventually disappear.
Measuring the temperature dependence of the velocity
field characteristics below Hd would allow to test this
picture experimentally.

In summary, we measured domain wall velocities
driven by magnetic fields in [Co/Ni] based multilayers
using PMOKE microscopy. In the three samples ana-
lyzed the low field creep regime is observed in agreement
with the classical creep law, ln v ∼ H−1/4. When in-
creasing the field an unexpected speeding up of the ve-
locity, an upward deviation from the creep law, is ob-
served. This upward trend is also compatible with previ-
ous measurements, for example in Refs. [28, 48]. Using a
phenomenological approach based on scaling arguments
we were able to obtain a large field correction to the
low field creep law which explains the observed behav-
ior. The correction includes the field dependence of the
transverse displacement associated to relaxation events
and a saturation cut-off very close to Hd, thus arresting
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the divergence of the velocity. The proposed model per-
mits to predict three velocity-field characteristics below
the depinning field, from H = 0 up to Hd, and to ob-
tain the relevant depinning parameters (Hd, Td, v(Hd))
by fitting the experimental data. Despite the fact that
only data for H < Hd is used in the fitting procedure,
our model gives very good agreements with previously
obtained depinning parameters. We hope to motivate
further experimental and theoretical research. In par-
ticular, a detailed experimental analysis of the field and
temperature dependence of the velocity below the depin-
ning threshold, and the theoretical study of the density of
activated events in the creep regime would be welcome.
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mak, Y. Otani, G. E. W. Bauer, J.-U. Thiele, M. Bowen,
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J. Ferré, V. Baltz, B. Rodmacq, B. Dieny, and R. L.
Stamps, Phys. Rev. Lett. 99, 217208 (2007).

[25] S. Bustingorry, A. B. Kolton, and T. Giamarchi, Euro-
phys. Lett. 81, 26005 (2008).

[26] S. Bustingorry, A. B. Kolton, and T. Giamarchi, Phys.
Rev. E 85, 021144 (2012).

[27] S. Bustingorry, A. B. Kolton, and T. Giamarchi, Phys.
Rev. B 85, 214416 (2012).

[28] J. Gorchon, S. Bustingorry, J. Ferré, V. Jeudy, A. B.
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4, 113001 (2011).

[46] T. Koyama, D. Chiba, K. Ueda, K. Kondou, H. Tani-
gawa, S. Fukami, T. Suzuki, N. Ohshima, N. Ishiwata,
Y. Nakatani, K. Kobayashi, and T. Ono, Nat. Mat. 10,
194 (2011).

[47] K.-S. Ryu, S.-H. Yang, L. Thomas, and S. S. P. Parkin,
Nat. Commun. 5, 3910 (2014).

[48] S. Le Gall, N. Vernier, F. Montaigne, M. Gottwald,
D. Lacour, M. Hehn, D. Ravelosona, S. Mangin, S. An-
drieu, and T. Hauet, App. Phys. Lett. 106, 062406
(2015).

[49] J.-C. Rojas-Sánchez, P. Laczkowski, J. Sampaio,
S. Collin, K. Bouzehouane, N. Reyren, H. Jaffrès,
A. Mougin, and J.-M. George, App. Phys. Lett. 108,
082406 (2016).

[50] F. Cayssol, D. Ravelosona, C. Chappert, J. Ferré, and
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