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In a missing-data setting, we want to estimate the mean of a scalar outcome, based on a sample in which an
explanatory variable is observed for every subject while responses are missing by happenstance for some of
them. We consider two kinds of estimates of the mean response when the explanatory variable is functional.
One is based on the average of the predicted values and the second one is a functional adaptation of the
Horvitz–Thompson estimator. We show that the infinite dimensionality of the problem does not affect the
rates of convergence by stating that the estimates are root-n consistent, under missing at random (MAR)
assumption. These asymptotic features are completed by simulated experiments illustrating the easiness
of implementation and the good behaviour on finite sample sizes of the method. This is the first paper
emphasizing that the insensitiveness of averaged estimates, well known in multivariate non-parametric
statistics, remains true for an infinite-dimensional covariable. In this sense, this work opens the way for
various other results of this kind in functional data analysis.

Keywords: averaged non-parametric estimates; missing at random; functional covariable; non-parametric
functional kernel regression; root-n consistency

1. Introduction

Consider an observational study where, for every subject in the sample, we always observed a
baseline variable X, while a scalar response Y is missing by happenstance on some individuals.
Our interest lies in estimating μ = E[Y ], the mean of the response variable. Without further
assumptions, μ is not identified from the distribution of the observed data and so, no hope for
estimating it from such a sample. In order to make the parameter identified, missing at random
(MAR) is assumed. This hypothesis establishes that the value of the response does not provide
additional information, on top of that given by the explanatory variables, to predict whether an
individual will present a missing response (see [1]). To be more precise, one introduces a binary
variable A such that A = 1 whenever a response is observed. The MAR assumption states that Y
and A are conditional-independent, given X.
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2 F. Ferraty et al.

There are different ways of estimating μ under MAR modelling. The first one is based on the
fact that one can write

E[Y |X = χ ] = r(χ) = E[Y |(A = 1, X = χ)]
and thus

μ = E[Y ] = E[r(X)]
may be expressed in terms of the distribution of the observed data. This leads to estimates of μ

based on average of predicted values, which have been widely studied in the multivariate case
(that is, when X ∈ R

p). Some authors postulate a parametric model for the regression function,
while others prefer a non-parametric setting for estimating the regression function. For instance,
Cheng [2] obtains the

√
n-asymptotic normality of such estimator using a non-parametric kernel

regression estimate of r. An alternative way is based on the so-called propensity score

π(χ) = E[A|X = χ ], (1)

since under MAR assumption one can also write the parameter μ to be estimated as

μ = E

[
AY

π(X)

]
.

In the standard multivariate problem, this representation has inspired the Horvitz–Thompson
family of estimators.At this point, there exists a vast literature on the subject postulating parametric
models for π , and also many authors have estimated the propensity score non-parametrically. For
instance, Hirano et al. [3] proved

√
n-asymptotic normality when the propensity score is estimated

by the Series Logit method.
Following the parametric approaches, it is necessary to assume in advance a working model

either for the regression function or for the propensity score in order to get a consistent procedure
for estimating μ. There is a third approach (doubly protected) that gives rise to a consistent
estimator if at least one of the considered models is well specified, without knowing in advance
which of them is correct. A recent survey and discussion on these three approaches can be found
in Kan and Schafer [4] and Robins et al. [5].

The aim of this work is to look at what happens in situations in which the explanatory variable
X takes values in some abstract space, being possibly of infinite dimension, in order to allow for
applications involving functional data. Functional data analysis (FDA) is a field of research in
statistics, which has been popularized by Ramsay and Silverman [6,7], is becoming more and more
active. The recent advances can be found in special issues of various statistical journals (see, for
instance [8–11]) or in the handbook by Ferraty and Romain [12]. The recent studies developed by
Ferraty and Vieu [13–15] have opened the path to a wide literature on non-parametric modelling
of functional statistical problems (see [16,17], for large sets of references).

This work takes part in the recent advances on non-parametric functional statistics by
considering MAR modelling in a functional variable setting. More precisely, functional adap-
tations of the standard multivariate estimates are introduced in Section 2 and

√
n-consistency

properties are stated in Section 3. Some simulations are reported in Section 4 discussing the inter-
est of the method on finite samples. Section 5 is devoted to comments. Section 5.2 discusses how
our hypotheses in the general functional framework are related with those usually assumed in
the literature for multivariate data. Section 5.3 discusses some possible extensions of our results
with special attention to asymptotic normality. It will also be discussed in Section 5.3 how our
methodology extends directly to general mean functionals with obvious applications to moments
and variance estimations.
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Statistics 3

Finally, it is worth stressing that this is the first paper showing that averaging non-parametric
estimates is unsensitive to the dimensionality of the problem, since the parametric

√
n-rate is

available even for infinite-dimensional variables. In this sense our guess is that this paper could
open the way to several other results of this form in various problems involving functional data.
The impact of this paper should therefore exceed the problem considered here (see discussion in
Section 5.4).

2. Functional MAR modelling and estimates

2.1. The model

Consider a scalar response Y ∈ R and a baseline variable X ∈ F , where F is an abstract space
dotted with a semi-metric d(·, ·) being possibly of infinite dimension. Let A be a binary variable,
indicating that Y is observed when A = 1. While the randomness of the problem involves three
variables O = (X, Y , A), one observes only

Õ =
{

X, Y , A if A = 1,

X, A if A = 0.

In the following, we denote by Oi = (Xi, Yi, Ai), a sample of n independent variables distributed
like O, but the purpose is to estimate μ = E[Y ] from the corresponding observed data {Õi; i =
1, . . . , n}. This can be done by introducing the standard MAR hypothesis:

Y is independent of A, given X. (2)

Averaging directly observed responses would provide a consistent estimator of μ if A and Y were
independent. In the present setting different approaches could be used. In Sections 2.2 and 2.3,
we construct functional versions of two kinds of estimates which are classically used under MAR
assumption with finite-dimensional covariables.

2.2. Estimates based on averaged predicted values

The main idea is the following: the MAR assumption implies that, given the explanatory variable,
the conditional distribution of the response remains the same, regardless of the fact that the
response is also observed:

Y |X ∼ Y |(X, A = 1).

Then, one has

r(χ) = E[Y |X = χ ] = E[Y |(X = χ , A = 1)], (3)

and the fact that μ = E[Y ] = E[r(X)] with a fully observed variable X suggests us to estimate μ

by averaging predicted values. Prediction will be done by considering a non-parametric estimator
of the nonlinear regression operator r, in which a standard leave-one-out technique can be used
to predict the response for the ith subject in the sample. Precisely, for each statistical unit i, a
non-parametric estimate r̂−i for the regression function based on observed data excluding the ith
observation is considered to predict the response of the ith subject. Then we estimate μ with

μ̂Reg = 1

n

n∑
i=1

r̂−i(Xi). (4)

At this stage, one could think of using any kind of non-parametric functional estimate of r. Since
the available theoretical background in this setting is mainly developed for Nadaraya–Watson
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4 F. Ferraty et al.

kernel estimates (see [12], for wide discussion), we restrict our purpose to this kind of estimate.
So, in the following, we will consider:

r̂−i(χ) =
∑

j �=i AjYjK(h−1d(χ , Xj))∑
j �=i AjK(h−1d(χ , Xj))

, (5)

where K(.) is a kernel function and h = hn is a sequence of positive real numbers which decreases
to zero as n goes to infinity. Root-n consistency of the estimate (4) is stated in Theorem 1(a).

As pointed out by some reviewer of this paper and as discussed by Cheng [2] for finite-
dimensional X, instead of replacing all responses by their predicted values, we decide to use
the observed responses and only predict the responses for those individuals whose responses are
missing. This gives rise to the following estimator:

μ̂Mix = 1

n

n∑
i=1

(AiYi + (1 − Ai)r̂−i(Xi)). (6)

Root-n consistency of the estimate (6) is also stated in Theorem 1(a).

2.3. An alternative approach based on propensity score

The Horvitz–Thompson family of estimators is inspired by the fact that, under MAR modelling,
one can rewrite the problem in the following way

E[Y ] = E

[
AY

π(X)

]
, (7)

and estimate the propensity score π using any non-parametric smoother of the new regression
problem with response A and covariable X. As mentioned in Section 2.2, we concentrate on kernel
estimates

π̂−i(χ) =
∑

j �=i AjK(h−1d(χ , Xj))∑
j �=i K(h−1d(χ , Xj))

, (8)

leading to the following functional Horvitz–Thompson estimate:

μ̂HT = 1

n

n∑
i=1

AiYi

π̂−i(Xi)
. (9)

Root-n consistency of the estimate (9) is stated in Theorem 1(b).

2.4. Assumptions and notation

Both estimates μ̂Reg and μ̂HT, defined by Equations (4) and (9), are averaged regression estimators
at random values Xi. To control this extra randomness, uniform consistency of regression estimates
will be used in this work to get the consistency and rate of convergence of the proposed estimators.
Such results have already been obtained in the literature and they will be briefly recalled in the
appendix (see Section A.2). They depend both on regularity conditions of the nonlinear functional
operators to be estimated (i.e., r and π ) and on topological considerations, related to the semi-
metric d and to the subspace SF on which X takes its values. From these considerations, conditions
H0–H6 to be specified below, arise. From now on, we consider a set SF ⊆ F such that

H0 P(X ∈ SF ) = 1.
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Statistics 5

In order to understand the assumptions to be made, we introduce some definitions. The first one
is related to the size of a set S in terms of its entropy, while the second one is the definition of
a Lipschitz function related to some subset, which will be used to quantify regularity of some
regression functions.

Definition 1 Given a set S ⊆ F and ε > 0, Nε(S) is the minimum number of open balls of radius
ε needed to cover S. The Kolmogorov’s ε-entropy of the set S is given by ψS(ε) = log(Nε(S)).

Definition 2 We say that a function m : F → R is Lipschitz of order b > 0 on a subset S if
there exists C > 0 such that for any χ1, χ2 ∈ S, we have

|m(χ1) − m(χ2)| ≤ Cdb(χ1, χ2). (10)

Remark 1 Note that any Lipschitz function on S with ψS(ε) < ∞, for some ε > 0, is bounded.

Let B(χ , h) denote the ball of center χ and radius h for the topology associated with the
semi-metric d:

B(χ , h) = {χ ′ ∈ F : d(χ , χ ′) < h}.
Let C and or C′ denote generic strictly positive real constants, which may change from line to
line. We can now state the remaining assumptions:

H1 There exists a function φ such that ∀χ ∈ SF and ∀ε > 0:

0 < Cφ(ε) ≤ P(X ∈ B(χ , ε)) ≤ C′φ(ε). (11)

H2 The non-parametric model consists in the following assumptions on the regression function
r and on the conditional moments σm(χ) = E[|Y |m|X = χ ] which are assumed to exist for
any integer m > 0:
(H2a) r is a bounded Lipschitz operator of order br on SF and E[Y 2] < ∞,
(H2b) σm are continuous and ∃C > 0, ∀χ ∈ SF , σm(χ) ≤ C(m!).
H3 The propensity score π , defined in Equation (1), satisfies
(H3a) ∃C > 0 such that C ≤ π(χ), for all χ ∈ SF ,
(H3b) π is a Lipschitz operator of order bπ on SF .
H4 The kernel function K has to be a Lipschitz function on [0, 1) which is
(H4a) non-negative, bounded and vanishing (at least) outside of [0, 1],
(H4b) and, if K(1) = 0, also satisfying for all t ∈ [0, 1), −∞ < C < K ′(t) < C′ < 0.
H5 The functions φ and ψSF are such that:
(H5a) ∃C > 0, ∃η0 > 0, ∀η < η0, φ′(η) < C,
(H5b) ∃C > 0, ∃n0, ∀n ≥ n0, (log n)2/nφ(h) < ψSF (log n/n) < C

√
nφ(h),

(H5c) if K(1) = 0, it is required that ∃C > 0, ∃η0 > 0, ∀η < η0,
∫ η

0 φ(u) du > Cηφ(η),
(H5d) limε→0 ψSF (ε) = ∞.
H6 The Kolmogorov’s ε-entropy of SF satisfies

∞∑
n=1

exp

{
(1 − β)ψFS

(
log(n)

n

)}
< ∞ for some β > 1.

Note that (H5b) implies the following facts that will be useful for us:

ψSF

(
log(n)

n

)
<

nφ(h)

log n
and

√
nφ(h) −→ ∞.

A discussion about the low restriction of this set of assumptions will be provided later along
Section 5.2.
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6 F. Ferraty et al.

3. Root-n consistency

Theorem 1 states the weak consistency of the estimates defined in Sections 2.2 and 2.3. The rate
of convergence is the usual parametric one, that is,

√
n. The main point to be stressed is the fact

that this rate does not depend on the dimensionality of the problem. While this fact has often been
observed for multivariate variables X in various problems involving averaged estimators, this is the
first time (to the best of our knowledge) that this phenomenon is observed for infinite-dimensional
variables. Section 5 will pay specific attention to this appealing feature of our result.

Theorem 1 Suppose that the functional MAR assumption (2) holds.

(a) Assume that, for some C > 0,
√

nhbr ≤ C and
√

nh2bπ ≤ C. Then, under (H0)–(H6), we get
that √

n(μ̂Reg − μ) = Op(1) (12)

and √
n(μ̂Mix − μ) = Op(1). (13)

(b) Assume that, for some C > 0,
√

nhbπ ≤ C and E[Y 2] < ∞. Then, under (H0)–(H1) and
(H3)–(H6) we get that √

n(μ̂HT − μ) = Op(1). (14)

The main steps of the proof are given below, while the technical details are presented in a number
of lemmas, whose proofs are reported in the appendix.

Proof of Theorem 1 The general lines of the proof are the same for the three assertions (12)–
(14). For these reasons, we have decomposed the proof of Theorem 1 into three parts. Firstly, we
state some general considerations. Then, we give a detailed proof of the result (12), after which a
much more sketched proof of Equation (14) is presented. To save space and because it is line by
line similar to the one of (12), the proof of (13) is not presented.

(i) Some general considerations and notations. Both non-parametric regression estimates for
r(χ) and π(χ) defined in Equations (5) and (8), respectively, can be written as a ratio

r̂−i(χ) = r̂i,2(χ)

r̂i,1(χ)
and π̂−i(χ) = r̂i,1(χ)

r̂i,3(χ)
, (15)

where

r̂i,1(χ) = 1

(n − 1)

∑
j �=i

Aj
K(h−1d(χ , Xj))

fh(χ)
, (16)

r̂i,2(χ) = 1

(n − 1)

∑
j �=i

AjYj
K(h−1d(χ , Xj))

fh(χ)
, (17)

r̂i,3(χ) = 1

(n − 1)

∑
j �=i

K(h−1d(χ , Xj))

fh(χ)
, (18)

fh(χ) = E[K(h−1d(χ , X1))]. (19)

Let us introduce the following notation:

r1(χ) = π(χ), r2(χ) = r(χ)π(χ), r3 = 1.
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Statistics 7

For any o = (χ , y, a), we will use the functions

Fh(o) = aEX1

[
1

π(X1)

K(h−1d(χ , X1))

fh(X1)
(y − r(X1))

]
and

F̃h(o) = EX1

[
r(X1)(r1(X1) − a)K(h−1d(χ , X1))

r1(X1)fh(X1)

]
.

(ii) Proof of Equation (12). Straightforward calculations involving a Taylor expansion for
F(z) = 1/z around r1, allow us to obtain the following expansion:

μ̂Reg − μ = Vn + Un + Rn + Sn, (20)

where

Vn = 1

n

n∑
i=1

{r(Xi) − μ}, Un = 1

n

n∑
i=1

r̂i,2(Xi) − r(Xi)r̂i,1(Xi)

r1(Xi)
,

Rn = 1

n

∑
i=1

r̂i,2(Xi)

r̃3
i,1(Xi)

(r̂i,1(Xi) − r1(Xi))
2,

Sn = 1

n

∑
i=1

r2(Xi) − r̂i,2(Xi)

r2
1(Xi)

(r̂i,1(Xi) − r1(Xi)),

and r̃i,1(Xi) is a middle point between r̂i,1(Xi) and r1(X1). The first term on the right-hand side of
Equation (20) clearly satisfies

√
nVn = OP(1). The second one, Un, can be dealt with by means

of asymptotic expansion for U-statistics (see Lemma 2 below). The last two terms, Rn and Sn, can
be treated using uniform consistency results of the kernel estimates (see Lemma 3).

Lemma 2 Assume that (H0), (H1), (H2a) and (H3a) hold. Additionally, assume that either
(H4) or (H5a) is satisfied. Then, we have:

(a)
√

nUn = √
n

1

n

n∑
i=1

Fh(Oi) + OP

⎛⎝√
h2br

φ(h)

⎞⎠ + OP

(
1√

nφ(h)

)
+ O(

√
nhbr )

and

(b)
√

n
1

n

n∑
i=1

Fh(Oi) = OP(1) + O(
√

nhbr ).

Lemma 3 Under (H0)–(H6), we get that

(a)
√

nRn = OP(
√

nh2bπ ) + OP

(
ψSF (log n/n)√

nφ(h)

)
, (21)

and, for b2 = min{bπ , br}, we also get

(b)
√

nSn = OP(
√

nh2br ) + OP

(
ψSF (log n/n)√

nφ(h)

)
. (22)

Finally, the proof of Equation (12) follows directly from Equation (20) together with Lemmas 2
and 3 that will be proved in the appendix.
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8 F. Ferraty et al.

(iii) Proof of Equation (14). This proof is very similar to the one above, and it will therefore be
given with less details. As we did when dealing with μ̂Reg, the representation (15) for π̂−i allows
us to obtain the following expansion:

μ̂HT − μ = Ṽn + Ũn + R̃n + S̃n, (23)

where

Ṽn = 1

n

n∑
i=1

{
AiYi

r1(Xi)
− μ

}
, Ũn = 1

n

n∑
i=1

AiYi

r2
1(Xi)

{
r1(Xi)r̂i,3(Xi) − r̂i,1(Xi)

}
,

R̃n = 1

n

∑
i=1

AiYir̂i,3(Xi)

r̃3
i,1(Xi)

(r̂i,1(Xi) − r1(Xi))
2,

S̃n = 1

n

∑
i=1

AiYi(r3 − r̂i,3(Xi))

r2
1(Xi)

(r̂i,1(Xi) − r1(Xi)),

and r̃i,1(Xi) is a middle point between r̂i,1(Xi) and r1(X1). As before in Lemma 2, one can treat
Ũn by means of asymptotic expansions for U-statistics and get

√
nŨn = √

n
1

n

n∑
i=1

F̃h(Oi) + OP

⎛⎝√
h2bπ

φ(h)

⎞⎠ + OP

(
1√

nφ(h)

)
+ O(

√
nhbπ ) (24)

and then
√

n
1

n

n∑
i=1

F̃h(Oi) = OP(1) + O(
√

nhbπ ). (25)

Similarly, as done before, along the proof of Lemma 3, one can treat the terms R̃n and S̃n using
uniform properties of kernel functional regressors and get

√
nR̃n = OP(

√
nh2bπ ) + OP

(
ψSF (log n/n)√

nφ(h)

)
, (26)

and

S̃n = OP

(√
nhbπ

√
ψSF (log n/n)

nφ(h)

)
+ OP

(
ψSF (log n/n)√

nφ(h)

)
. (27)

Finally, the order of convergence of μ̂HT, as stated in Equation (14), follows directly from
Equations (23)–(27) and from the obvious

√
n consistency of the first term Ṽn.

The proof of Theorem 1 is now complete. �

4. Some simulations

The aim of this section is to discuss the behaviour of the various mean estimates discussed before
(namely μ̂Reg, μ̂HT and μ̂Mix) on finite sample situations. We also compute what we call the naive
estimate which is the one obtained by averaging only the observed responses which are available
and forgetting the possible information contained in the covariable X, that is:

μ̂Naive =
∑n

i=1 YiAi∑n
i=1 Ai

. (28)

Of course, except in the very special case when the censoring process A and the covariate X are
independent, the estimate μ̂Naive is not consistent and it has to be seen in our study only as a
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Statistics 9

benchwark tool. Furthermore, the use of simulated processes allows us also to compute Ȳ . Of
course this has to be seen as another benchmark for our analysis and not really as a competitor
estimate since it is uncomputable with real data.

4.1. Presentation of the model

The general guidelines for building our simulated experiments were, in order to be close to what
could happen in real-life situations, a two-populations sample (see Equation (29)) and a censoring
scheme which affect more one population strongly than the other one (see Equation (30)).

4.1.1. The simulated curves

The functional variable X is chosen as a real-valued function with support [0, π ] whose
observations are generated in the following way:

Xi(t) = Zi cos(2t),

where t takes 100 equispaced values in [0, π ] and where Zi are i.i.d. random variables distributed
according to

Zi ∼ FZ = 0.3 F1 + 0.7 F2, i = 1, . . . , n, (29)

where F1 (respectively, F2) is the cumulative distribution of a random variable distributed accord-
ing to a N (10, 36) distribution (respectively, to a N (0, 36) distribution). To fix the ideas, Figure 1
presents a sample of n = 200 of such curves. Note that the choice of a high variance parameter (36
exactly) does not allow us to discover the heterogeneity in the set of curves by simple inspection.

4.1.2. The responses and the censoring process

The responses are obtained from the following regression model:

Yi = r(Xi) + εi,

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−20

−10

0

10

20

Figure 1. A sample of n = 200 simulated curves.
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10 F. Ferraty et al.

where εi ∼ N (0, 0.05) and

r(X) = 2

π

∫ π

0
X2(t) dt.

Finally, in order to simulate an MAR scheme, it remains to construct a procedure for deciding
whether the response is observed or not. This is done through the following missing mechanism:

P(A = 1|X) = expit

(
2α

π

∫ π

0
X2(t) dt

)
, (30)

where expit(u) = eu/(1 + eu), for u ∈ R. Note that such a missing scheme has the tendency to
censor more strongly the data from the first group (that is, those for which the corresponding
Zi follows a F1 distribution) than those of the other group. The parameter α controls the degree
of dependency between the functional covariable X and the censoring one A. Note finally that
α = 0 corresponds to the independence situation, while higher values of α will naturally make
decrease in the degree of censoring in the sample. To keep control on this last quantity we have
also computed

Ā = 1

n

n∑
i=1

Ai.

4.2. Choosing the parameters of the estimates

The estimates μ̂Reg and μ̂HT are based on the leave-one-out estimates

r̂−i(χ) =
∑

j �=i AjYjK(h−1d(χ , Xj))∑
j �=i AjK(h−1d(χ , Xj))

and π̂−i(χ) =
∑

j �=i AjK(h−1d(χ , Xj))∑
j �=i K(h−1d(χ , Xj))

,

which are both special cases of the functional Nadaraya–Watson regression-type estimator. Even
though the method involves the estimation of complex mathematical objects (as, for instance,
the nonlinear functional operators r and π ), the simple form of Nadaraya–Watson kernel weights
makes this implementation straightforward. Practically, one can directly use the R/S+ function
funopare.knn.gcv, presented in Ferraty and Vieu [15] and available on http://www.lsp.ups-tlse.fr/
staph/npfda, which computes the leave-one-out estimates r̂−i and π̂−i.

As usual in kernel non-parametric statistics the shape of the kernel function K is of minor
importance and we choose a quadratic kernel, given by

K(u) = 3
4 (1 − u2)I[0,1](u).

The choice of the bandwidth is more relevant. It is done (as a black box inside the function
funopare.knn.gcv) by minimizing the cross-validation criterion over a set of bandwidths con-
structed by k-nearest ideas. The k-nearest methodology has the advantages of letting the bandwidth
h being locally adapted and of making the minimization problem much more simpler. The reader
wishing to know more on that point may have a look at the recent paper by Burba et al. [18].
Similarly, one may look at Benhenni et al. [19] for more information about cross-validated band-
width choice in functional data situation. Finally, the measure of closeness between curves has
been chosen to be the usual L2-norm

d(χ1, χ2) =
√∫ π

0
(χ1(t) − χ2(t))2 dt.
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Statistics 11

Table 1. Values Mean(MSE) for the various estimates over 100 replications.

α Mean Ā μ̂Reg μ̂HT μ̂Naive μ̂Mix

0 0.51 59.87 (73.78) 84.30 (934.13) 66.38 (72.20) 62.95 (51.35)
0.1 0.83 62.73 (49.21) 66.49 (43.09) 78.51 (211.57) 66.34 (40.08)
0.2 0.88 62.69 (49.39) 66.32 (40.03) 74.96 (129.85) 66.37 (41.74)
0.4 0.91 62.66 (49.53) 66.30 (39.97) 72.36 (87.33) 66.32 (40.00)
0.8 0.94 62.64 (49.63) 66.30 (39.97) 70.57 (65.08) 66.31 (39.98)
1.2 0.95 62.64 (49.65) 66.30 (39.97) 69.73 (57.80) 66.31 (39.97)

4.3. The results

In all the following, we have chosen n = 200 and have tried different values for the key parameter
α. For each value of α we carried 100 independent replications of the experiment, and we have
computed the mean squared error (MSE) (over these 100 replications) of the various estimates.
The results are reported in Table 1. To keep in mind the effect of the censoring on our results,
Table 1 reports also for each case the mean (still over the 100 replications) of the variable Ā.
Looking at Table 1, keep in mind that the true unknown value to be estimated is μ = EY = 66.
Recall also that the case α = 0 plays a special role since it corresponds to the extreme situation
when the censoring is independent from the functional covariate.

4.4. First comments

It appears from Table 1 that, except for the special case α = 0 when the censoring is independent
from the covariate, our three estimates μ̂Reg, μ̂HT and μ̂Mix perform much better than the standard
mean μ̂Naive. The estimate based on propensity score μ̂HT performs better than the averaged
estimate μ̂Reg when α �= 0. This is not surprising since the censoring process has the tendency to
censor, in a stronger way, individuals from one group, leading to overestimation for μ̂Naive and
underestimation for μ̂Reg. In counterpart, when α = 0, the estimate μ̂HT performs very poorly.
This is also not surprising because, when there is independence between the censoring and the
covariate, the estimate is based on an empirical idea that makes no sense (see formulas (1) and
(7)). To conclude this comparative discussion between the various estimators, it is worth noting
that, at least on this simulated experiment, the best estimator seems to be the mixed estimator μ̂Mix

which works almost as well as the one based on propensity score when the censoring depends on
the covariate (cases when α �= 0) without being too much affected in situations of independence
(case when α = 0).

4.5. Complementary issues

To fulfil our purpose, we present, for an arbitrarily selected value of α (namely α = 0.2,) the
histograms obtained for the various estimates over the 100 replications (see Figure 3) and also the
corresponding box plots (see Figure 2). Plots for the whole set of values of α are not presented
because they looked similar.

The results of Table 1 are confirmed in Figure 2. One can see the poor behaviour of the naive
estimate compared with what can be obtained by any of the three other ones (recall that Ȳ is just a
benchmark tool which is unusable in practice). Also appearing is the superiority of the estimates
μ̂HT and μ̂Mix over μ̂Reg, as discussed in Section 4.4. Each μ̂HT and μ̂Mix performs as well as the
uncomputable benchmark Ȳ .
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12 F. Ferraty et al.

50

60

70

80

90

Figure 2. Box plots for μ̂Reg, μ̂HT, μ̂Mix, Ȳ and μ̂Naive: α = 0.2, μ = 66.
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Figure 3. Observed frequencies of μ̂Reg, μ̂HT and μ̂Mix: α = 0.2, μ = 66.

Moreover another interesting feature of Figures 2 and 3 is to show that one may expect some
positive response about possible asymptotic normal distribution for the estimates which is still an
open theoretical question (see discussion in Section 5.3).

5. Discussion

5.1. A few words on applications

Even if we have decided to focus on the methodological and theoretical features of the Functional
MAR model, it is worth devoting a few words on potential applications. While medicine and
economy are the areas where estimation of mean responses under an MAR assumption finds most
frequent applications, this issue may also become relevant in many other fields such as biology,
social sciences, image analysis, etc. involving applied statistical problems. In particular, when
doing causal inference, variables representing responses in hypothetical words under different
treatments assignments are considered. Estimating their mean based on observed data can be
treated as a missing data problem.

The methodological novelty in our work consists in letting the explanatory variable X to
belong to some infinite-dimensional space: this is of great interest since more complex structures

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

id
ad

 d
e 

B
ue

no
s 

A
ir

es
],

 [
M

ar
ie

la
 S

ue
d]

 a
t 0

7:
11

 3
0 

Ja
nu

ar
y 

20
12

 



Statistics 13

than those allowed by standard multivariate covariables can be used. For instance, in medical
applications, the covariable may represent some pre-treatment assignment information, our
approach allows the physician to collect information given by curves such as electrocardiogram
or other complex clinical studies taking values in an infinite-dimensional space (see [6] or [20],
for examples of curves data).

5.2. Comments on the hypothesis

It is beyond the scope of this paper to discuss in detail the various technical assumptions H1–
H6 introduced earlier to ensure the good asymptotic behaviour of our estimate. They are widely
commented in Ferraty et al. [21], through various examples of time continuous processes. We
just wish to describe here shortly how they can be seen, in some sense, as being less restrictive
than those appearing before in the usual multivariate literature. This is clear for conditions on the
censoring, since they are reduced to (H3) which appears in most of the multivariate literature (see
for instance [2]).

All other conditions are linked to the functional feature of the problem. Firstly note that, with
the exception of the last part of (H5b) and of (H5d), all other assumptions are introduced with
the sole purpose of ensuring uniform consistency of the kernel regression estimates as stated in
Ferraty [21]. Therefore, they could be replaced by any other set of conditions implying the same
uniform consistency property, without affecting the main results of our paper. To see their low
degree of restrictivity, it suffices to look at the special case when the space F is equal to R

p (that
is, the multivariate situation) and when d is the usual euclidian metric. In this case, if X has a
density which is bounded below from 0 on a compact set SF , then it is easy to see that we can
chose as functions of φ and ψSF the following ones

φ(ε) ∼ εp and ψSF ∼ −c log(ε) as ε ∼ 0,

and then all other conditions are true as long as the bandwidth satisfies the restrictions

lim
n→∞ hn = 0 and lim

n→∞
log n

nhp
n

= 0,

which are usual in multivariate non-parametric setting. Altogether, if we particularize our func-
tional results to the multivariate setting when X has a density one finds back the same conditions
as in the previous literature (see again for instance [2]), but our results work also without assuming
a density for the explanatory variable (in this case the function φ is, of course, not the same).
Moreover, even when the density exists, our methodology allows for other topology than the
euclidian one, and this may have direct application for dimensionality reduction in multivariate
regression problem. So there is real evidence of the fact that our set of conditions makes our
methodology interesting not only for functional covariables (which is, however, its main goal)
but also for multivariate covariates.

5.3. On possible extensions of our results

5.3.1. General mean functional estimation

In order to make the presentation more clear and because the main goal of this paper was to
emphasize on the infinite dimensional feature of the covariable, we have only considered earlier
the question of the estimation of the mean. However, general mean functionals could similarly be
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14 F. Ferraty et al.

estimated. Clearly, assuming MAR, one has, for any known integrable function g(Y),

E[g(Y)] = E[rg(X)] = E

[
Ag(Y)

π(X)

]
with rg(χ) = E[g(Y)|(A = 1, X = χ)]. If we were interested in estimating E[g(Y)], it would
suffice to replace Y by g(Y) into the estimates and similar asymptotic results would be obtained.
In particular, this would allow us to estimate any moment of Y , and its variance too. The reader
may have a look at the work by Cheng [2] in which this is done but with finite-dimensional
explanatory variable X.

5.3.2. About asymptotic normality

As pointed out by one reviewer of this paper, a natural question is to know what would be the
asymptotic distribution of our estimates. In other words, one would like to get functional versions
of the asymptotic normality results as stated in Cheng [2]. This has obvious appealing practical
interest (for confidence band construction or hypothesis testing for instance). However, because
of technical difficulties, which we will discuss here, this result is not presented here.

It should be noted that the asymptotic normality property in itself would not be the most
difficult step, since one could naturally think in following our proofs (see, for instance, the proof
of Lemma 2) for root-n consistency and using, as an additional probabilistic tool, a CLT theorem
for U-statistics. This asymptotic normality would be in concordance with what has been observed
in the simulated example (see Figure 3). For the asymptotic normality of the kernel regression
operator itself, the key technical difficulty would be to give precise expressions for the constants
involved in the asymptotic bias and variance of the estimates because they will depend on the
smoothness of the regression operator r which is not an easy thing to control as r is a nonlinear
functional operator. This fact has been highlighted by Masry [22], Ferraty et al. [23] and Del-
sol [24], but extension to the MAR problem and to the averaged estimates is still an open question.
At this stage, it should also be mentioned that even such asymptotic normality theorem would
not be directly of great practical interest (because of the high degree of complexity that one is
expecting for the bias and variance) and should be completed by the construction of more trustable
scheme like bootstrapping or resampling. Such ideas have been investigated recently by Ferraty
et al. [25] for estimating the regression operator itself, but their extensions to MAR modelling is
a second important open issue.

5.4. About averaging non-parametric estimates

In standard multivariate non-parametric statistics, there are many situations in which, by averaging
or integrating initial estimates having non-parametric rates of convergence, one can construct new
estimates having the parametric

√
n-rate. Examples of

√
n-consistent averaged non-parametric

estimates involve, of course, the previous multivariate approaches of MAR modelling discussed
in Section 1 (see, e.g. [2] or [3]), but also completely different fields like distribution function
estimation for which one needs to integrate some non-parametric density estimate (see, e.g. [26],
for the most recent advances) or bandwidth selection problems for which estimations of integrated
functionals are necessary (see, e.g. [27], for a general discussion). The same idea may also be used,
through some partial integration stage, to improve the rate of convergence of some multivariate
non-parametric estimates, as for instance in the marginal integration procedure developed for
additive non-parametric regression modelling (see, e.g. [28]).

While much work can be found in the literature regarding the multivariate setting, despite the
wide range of potential applications, to the best of our knowledge there are still no precedents of
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this kind of results when functional covariables are used. In this sense, we guess that our paper
could be not only of interest for functional MAR problems, but also as a starting point to many
other problems for which averaged estimates involving functional variables have to be considered.
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Appendix: Proofs of technical lemmas

Let us start by recalling a result that will be widely used in the following. This result comes from Ferraty et al. [21] and
it states that, under (H1) and (H4) or (H1) and (H5a), there exist constants 0 < C < C′ < ∞, such that

∀χ ∈ SF , Cφ(h) ≤ fh(χ) ≤ C′φ(h). (A1)

Keep in mind that all along these proofs C is a generic positive real constant, o = (χ , y, a) and Oi = (Xi, Yi, Ai).

A.1. Proof of Lemma 2

Before proving the claimed results, we need to introduce some notation. Observe that

Un = 1

n

n∑
i=1

r̂i,2(Xi) − r(Xi)r̂i,1(Xi)

r1(Xi)

= 1

n(n − 1)

n∑
i=1

∑
j �=i

Aj

π(Xi)

K(h−1d(Xi, Xj))

fh(Xi)
(Yj − r(Xi)).

To get the asymptotic expansion presented in Equation (21) the main probabilistic tool will be the using of general results
for U-statistics. So, in order to follow the traditional notation in this area, we write

Un =
(

n

2

)−1 ∑
i<j

Hh(Oi, Oj),

where

Hh(Oi, Oj) = 1

2

Aj

π(Xi)

K(h−1d(Xi, Xj))

fh(Xi)
(Yj − r(Xi)) + 1

2

Ai

π(Xj)

K(h−1d(Xi, Xj))

fh(Xj)
(Yi − r(Xj)).

Let us also use the notation

H1,h(o) = E[Hh(o, O1)].
(i) Proof of Lemma 2(a). We will show the following two intermediary results:

√
nUn = √

n
2

n

n∑
i=1

H1,h(Oi) + OP

(
1√

nφ(h)

)
+ O(

√
nhbr ) (A2)

and

√
n

2

n

n∑
i=1

H1,h(Oi) = √
n

1

n

n∑
i=1

Fh(Oi) + OP

⎛⎝√
h2br

φ(h)

⎞⎠ + O(
√

nhbr ). (A3)

Let us consider

θh = E[H1,h(O1)] = E

[
Aj

π(Xi)

K(h−1d(Xi, Xj))

fh(Xi)
(Yj − r(Xi))

]
(A4)

and

U∗
n = 2

n

n∑
i=1

(H1,h(Oi) − θh).
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Then, we can write

√
n

(
Un − 2

n

n∑
i=1

H1,h(Oi)

)
= √

n(Un − θh − U∗
n ) − √

nθh.

Expansion (A2) can be deduced from the following two facts, to be proved:

nVar(U∗
n − Un + θh) = O

(
1

nφ(h)

)
(A5)

and
√

nθh = O(
√

nhbr ). (A6)

To prove Equation (A5), write

nVar(U∗
n − (Un − θh)) = nVar(U∗

n ) − 2nCov(U∗
n , Un) + nVar(Un).

Let

σ 2
1 (h) = Var(H1,h(O1)), σ 2

2 (h) = Var(Hh(O1, O2)).

Independence between observations guarantees that

nVar(U∗
n ) = 22σ 2

1 (h).

On the other hand, the well-known formula for the variance of U-statistics (see [29, Theorem 3, Section 1.3,]) implies that

nVar(Un) = 22 (n − 2)

(n − 1)
σ 2

1 (h) + 1

(n − 1)
σ 2

2 (h).

Finally, following the computations performed in the mentioned reference and observing that Cov(H1,h(Ok), Hh(Oi, Oj)) =
Cov(Hh(Ok , On+1), Hh(Oi, Oj)), we get that

nCov(U∗
n , Un) = 22σ 2

1 (h).

Now, from the definition of Hh(O1, O2), we have that

σ 2
2 (h) ≤ E[H2

h (O1, O2)] ≤ E

[
Aj

π2(Xi)

K2(h−1d(Xi, Xj))

f 2
h (Xi)

(Yj − r(Xi))
2

]
� 1

φ(h)

and so, we conclude that Equation (A5) holds. The proof of Equation (A6) is much easier, since we get from Equation
(A4) that

θh = E

[
π(Xj)

π(Xi)

K(h−1d(Xi, Xj))

fh(Xi)
(r(Xj) − r(Xi))

]
� sup

d(χ1,χ2)≤h
|r(χ1) − r(χ2)|,

and condition H2a allows us to conclude. At this stage, Equations (A5) and (A6) are proved, and therefore (A2) is also
checked.

It remains just to prove Equation (A3). For that, note that we can write

2H1,h(oi) = Gh(oi) + Fh(oi),

where

Gh(oi) = EXj

[
π(Xj)

π(Xi)

K(h−1d(Xi, Xj))

fh(Xi)
(r(Xj) − r(Xi))

]
.

Observing that

E[Gh(Oi)] = θh

and

Var(Gh(Oi)) ≤ E

[
π2(Xj)

π2(Xi)

K2(h−1d(Xi, Xj))

f 2
h (Xi)

(r(Xj) − r(Xi))
2

]
∼ h2br

φ(h)
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we arrive directly at

√
n

1

n

n∑
i=1

Gh(Oi) = OP

⎛⎝√
h2br

φ(h)

⎞⎠ + O(
√

nhbr ),

which is enough to prove Equation (A3). At this stage, Equations (A2) and (A3) have been checked and the proof of
Lemma 2(a) is complete.

(ii) Proof of Lemma 2(b). Let us introduce the notation

M(χ , h) = E

[
1

π(X1)

K(h−1d(χ , X1))

fh(X1)

]
and

N(χ , h) = E

[
r(X1)

π(X1)

K(h−1d(χ , X1))

fh(X1)

]
.

and observe (see Remark 1) that M and N are uniformly bounded on χ ∈ SF and on h > 0. Then,

Fh(Oi) = AiYiM(Xi, h) − AiN(Xi, h),

is a bounded random variable. Finally, by observing that

E[Fh(Oi)] = θh,

one gets directly that

√
n

1

n

n∑
i=1

Fh(Oi) = √
nθh + OP(1).

This result together with Equation (A6) is enough to get the proof of Lemma 2-b.

A.2. Proof of Lemma 3

At this point, uniform rates of convergence of the pseudo (since they depend on the unknown quantity fh(χ)) estimators
r̂i,1 and r̂i,2 are used. The following results are presented in Ferraty et al. [21]. They concern the kernel estimates r̂1 and
r̂2, which are just differing from their leave-one-out versions defined in Equations (16) and (17) by the fact that they are
constructed from the whole sample. Under the assumptions of Lemma 3, these authors proved that

sup
χ∈SF

|r̂1(χ) − r1(χ)| = O(hbπ ) + O

(√
ψSF (log n/n)

nφ(h)

)
, a.s. (A7)

and

sup
χ∈SF

|r̂2(χ) − r2(χ)| = O(hb2 ) + O

(√
ψSF (log n/n)

nφ(h)

)
, a.s. (A8)

The difference between r̂i,1(χ) and r̂1(χ) is given by

r̂i,1(χ) − r̂1(χ) = r̂1(χ)

n − 1
− AiK(h−1d(χ , Xi))

fh(Xi)(n − 1)
.

So, using the notation

Dn = sup
χ∈SF

max
1≤i≤n

|r̂i,1(χ) − r1(χ)|

and

Wn = sup
χ∈SF

max
1≤i≤n

1

r̃i,1(χ)
,

we have the following results which will be useful later:

Dn = O(1/nφ(h)) + O(hbπ ) + O

(√
ψSF (log n/n)

nφ(h)

)
, a.s.
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and

lim sup
n→∞

Wn ≤ C < ∞ a.s.

We are now in position to prove both assertions in Lemma 3.
(i) Proof of Lemma 3(a). Recall that

Rn = 1

n

∑
i=1

r̂i,2(Xi)

r̃3
i,1(Xi)

(r̂i,1(Xi) − r1(Xi))
2,

and so one has directly

√
n|Rn| ≤ W3

n

√
nD2

n
1

n

n∑
i=1

|r̂i,2(Xi)|.

Since

E[|̂ri,2(Xi)|] ≤ E

[
|Y2| K(h−1d(X1, X2))

fh(X1)

]
≤ CE[|Y |],

it suffices to use the bounds obtained before for Wn and Dn to obtain Equation (21).
(ii) Proof of Lemma 3(b). Similarly, since

r̂i,2(χ) − r̂2(χ) = r̂2(χ)

n − 1
− AiYiK(h−1d(χ , Xi))

fh(Xi)(n − 1)
,

one can write

√
n|Sn| = √

n

∣∣∣∣∣ 1

n

∑
i=1

r2(Xi) − r̂i,2(Xi)

r2
1 (Xi)

(r̂i,1(Xi) − r1(Xi))

∣∣∣∣∣
≤ C

√
nDn

{
1

n

n∑
i=1

|r̂2(Xi)|
n − 1

+ 1

n

n∑
i=1

AiYiK(0)

fh(Xi)(n − 1)
+ sup

χ∈SF
|r̂2(χ) − r2(χ)|

}
,

and so Equation (22) holds by using the bound obtained before for Dn together with Equation (A8).
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