World Scientific

International Journal of Cooperative Information Systems \\p
www.worldscientific.com

Vol. 24, No. 2 (2015) 1550004 (38 pages)
© World Scientific Publishing Company
DOI: 10.1142/50218843015500045

A Stitch in Time Saves Nine: Early Improving
Code-First Web Services Discoverability

Cristian Mateos™%, Marco Crasso, Alejandro Zunino®
and José Luis Ordiales Coscia

*ISISTAN-CONICET
Universidad Nacional del Centro de la Provincia de Buenos Aires
Campus Universitario, Paraje Arroyo Seco
(B7001BBO) Tandil, Buenos Aires, Argentina
fIBM Research, Argentina

tKlarna, Sweden
Scristian.mateos @isistan.unicen. edu. ar

Accepted 14 July 2015
Published 31 July 2015

Web Services represent a number of standard technologies and methodologies that
allow developers to build applications under the Service-Oriented Computing paradigm.
Within these, the WSDL language is used for representing Web Service interfaces, while
code-first remains the de facto standard for building such interfaces. Previous studies
with contract-first Web Services have shown that avoiding a specific catalog of bad
WSDL specification practices, or anti-patterns, can reward Web Service publishers as
service understandability and discoverability are considerably improved. In this paper,
we study a number of simple and well-known code service refactorings that early reduce
anti-pattern occurrences in WSDL documents. This relationship relies upon a statistical
correlation between common OO metrics taken on a service’s code and the anti-pattern
occurrences in the generated WSDL document. We quantify the effects of the refac-
torings — which directly modify OO metric values and indirectly alter anti-pattern
occurrences — on service discovery. All in all, we show that by applying the stud-
ied refactorings, anti-patterns are reduced and Web Service discovery is significantly
improved. For the experiments, a dataset of real-world Web Services and an academic
service registry have been employed.

Keywords: Service-Oriented Computing; Web Services; code-first; Web Services Discov-
ery; object-oriented metrics; WSDL anti-Patterns.

1. Introduction

The Service-Oriented Computing (SOC)* paradigm represents a distinctive way
of architecting, designing and implementing applications. SOC has mainly evolved
from component-based software engineering by introducing a new kind of build-
ing block called service, which represents functionality that is described, discovered
and remotely consumed by using standard protocols.?® The common technolog-
ical choice for materializing this paradigm is Web Services, which are programs
with well-defined interfaces that can be published, discovered and consumed via
ubiquitous Web protocols.™* Among them, the SOAP® protocol has been to date
the standard for invoking Web Services.
1550004-1

http://dx.doi.org/10.1142/S0218843015500045

C. Mateos et al.

The canonical model that underpins Web Services encompasses three elements:
service providers, consumers and registries. A service provider, such as a business or
an organization, provides meta-data for each service, including a description of its
technical contract in Web Service Description Language (WSDL).!® With WSDL,
the functionality of a service is described as a set of abstract operations (called
port-types) with inputs and outputs. Operations are defined in the XML Schema
Definition (XSD) language. In addition, WSDL allows providers to specify bind-
ing information so that consumers can actually consume the offered operations. As
surveyed in Ref. 11, there are different approaches to describe the capabilities of
Web Services,®2334 such as WSDL-S,°° which combines WSDL with ontological
information in the Ontology Web Language (OWL), or the Web Service Modeling
Framework (WSMF).4” However, the most popular approach used in the indus-
try to describe service interfaces is using merely WSDL.10:11:37:38,44.55 Noreover,
Web Service meta-data is stored in service registries, so that consumers can inquiry
registries to find services that match their functional needs, select one, and then
invoke its operations by interpreting the corresponding WSDL description. At an
upper level of abstraction, different languages have been proposed to organize sev-
eral services forming services choreographies and /or services workflows, e.g. the Web
Service Choreography Interface (WSCI), with the goal of building more complex ser-
vices. The basic blocks needed to build services choreographies and workflows are
the static definitions of individual service interfaces, namely the port-types in their
WSDL documents.33

For the process of discovering and understanding WSDL documents to be effec-
tive, providers must pay special attention to how WSDL documents are specified.’
For the case of contract-first Web Services, in which WSDL interface specification of
services comes before service implementation, by considering a well-established cat-
alog of common WSDL bad practices — i.e. anti-patterns — the understandability,
legibility and discoverability of WSDL documents can be significantly improved.*4
These anti-patterns represent bad practices when specifying WSDL documents, and
relate to the way port-types, operations and messages are structured and specified.
The six anti-patterns considered in this paper are classified into three categories:
high-level service interface specification (Enclosed data model, Low cohesive oper-
ations in the same port-type and Redundant data models anti-patterns), comments
and identifiers (Ambiguous names anti-pattern) and service data exchange (Empty
messages and Whatever types anti-patterns).

Unfortunately, the most popular approach to build Web Services in the industry
is code-first, by which developers first implement a service and then automatically
generate the corresponding WSDL document from the implemented code. To this
end, tools such as Axis’ Java2WSDL?* are employed. In this paper, we propose an

aJava2WSDL, http: //ws.apache.org/axis/java/user-guide.html#Java2WSDLBuildingWSDLFrom
Java.

1550004-2

Early Improving Code-First Web Services Discoverability

approach for avoiding anti-patterns for the case of code-first Web Services. Due to
its high popularity, and to limit the scope of our research, we focus on Web Services
implemented in Java.

Basically, we set forth the hypothesis that it is possible to avoid WSDL anti-
patterns by taking into account Object-Oriented (OO) metrics — in particular the
well-known metric suite by Chidamber and Kemerer” and two more metrics of our
own — when implementing services. The metrics quantify conventional software
quality attributes (e.g. cohesion or coupling) in an OO application at several levels
(i.e. methods, classes and packages). The idea is employing these metrics as indi-
cators that warn the user about the potential occurrence of anti-patterns early in
the Web Service implementation phase. Specifically, through statistical analysis, we
found that OO metric values associated with a source code implementing a service
are significantly correlated to the number of anti-patterns in the WSDL document
generated from this code. Then, we experimentally analyzed the effect of applying
simple code refactorings to a data-set of public Web Service implementations, which
resulted in a significant reduction of WSDL anti-patterns.

Unlike the study presented in Ref. 44, in which developers have full control
over their WSDL documents to directly remove any anti-patterns, the approach to
anti-pattern remotion in this paper allows providers to indirectly avoid some anti-
patterns. While in previous work we have preliminary explored the effect of early
code refactorings based either on this metric suite?® and ad-hoc refactorings*® on
the number of anti-patterns in WSDL documents, in this paper we additionally
quantify the effect of applying such early code refactorings on service discovery.
We conducted further experiments based on the data-set mentioned above and
WS-QBE,'® a Web Service registry based on machine learning and text mining
techniques. Experiments showed that WSDL documents derived from code-first
Web Services are significantly more discoverable when developed by taking into
account our approach. Unlike recent related work of Ref. 29, in which an approach
to early anti-pattern remotion based on ad-hoc service code refactorings and a
custom WSDL generation tool for the Eclipse IDE was presented, in this paper we
alm at avoiding anti-patterns based on popular refactorings that can be used in
conjunction with widely-used WSDL generation tools.

The next section overviews the catalog of WSDL anti-patterns and their neg-
ative effect on service discovery. Section 3 discusses existing efforts that employ
OO metrics as early indicators of potential software quality flaws, and works that
attempt to improve the quality of WSDL Web Service interfaces. Section 4 presents
our statistical analysis, including the correlation analysis between the studied OO
metrics and anti-pattern occurrences, and the effect of some early code refactorings
on anti-patterns upon WSDL generation. Section 5 evaluates the effects of these
refactorings on Web Service discovery. Section 6 highlights opportunities for future
research. Section 7 concludes the paper.

1550004-3

C. Mateos et al.

2. Background

The service development life-cycle consists of several phases. Within these,
the service interface specification phase involves deriving and specifying WSDL
documents. Figure 1 presents the general structure of a WSDL document. For
contract-first Web Services, developers are strongly involved in WSDL specification
and generation, whereas for code-first Web Services WSDL documents are auto-
matically generated from implemented codes via programming language-dependent
tools. Regardless of the approach employed to build services, several important con-
cerns, such as granularity, cohesion, discoverability and reusability, should influence
decisions upon designing services to result in good service interfaces.?? Moreover,
many of the efficiency problems of standard-compliant approaches to service dis-
covery stem from the fact that WSDL documents are incorrectly specified.*4
Standard-compliant approaches to Web Service discovery extract keywords from
WSDL documents by using classic Information Retrieval techniques, and then
model extracted information on inverted indexes or vector spaces.!! Then, the
generated models are used for retrieving relevant service descriptions, i.e. WSDL
documents, for a given keyword-based query. Unfortunately, approaches such as
Refs. 12 and 10 are jeopardized by poorly written WSDL documents, i.e. those
that lack proper comments, contain non-representative, unrelated or redundant
keywords, and so on. Besides negatively impacting on the retrieval effectiveness of
service registries, some of these issues also hinder human discoverers’ ability to make
sense of services functionality.** In this sense, Rodriguez et al.** studied recurrent

[<types>

<xs:element name="createTask">

<xs:complexType>
<xs:sequence>
<xs:element minOccurs="0" name="args0"
nillable="true" type="ax235:TaskData"/>
</xs:sequence>
</xs:complexType>

</xs:element>
</types>
[<wsdl:message name="createTaskRequest">
<wsdl:part name="parameters" element="ns:createTask"/>

</wsdl:message>
<portType name="JTimeLogServerServicePortType">
<operation name="createTask">
<documentation>
This method creates a task
to run on the server
</documentation>

[<input message="ns:createTaskRequest">

<documentation>The codes of two countries</documentation>
</input>

Data types

Message

Comment

Port-type

Operation Input

Output——{ <output message="ns:createTaskResponse" />

Fault—: <fault name="nmtoken" message="ns:createTaskFault"/>

</operation>
</portType>

Fig. 1. Web Services Description Language: Overview and example.

1550004-4

Early Improving Code-First Web Services Discoverability

bad practices that take place in public WSDL documents, for example:

e Using meaningless/cryptic or ambiguous terms to name port-types, operations,
messages, and message parts. From a semantic perspective, a representative name
should precisely describe what its element represents, then meaningless names,
such as “in0”, “argl” or “foo”, should be avoided. Moreover, if there are two or
more elements within a WSDL document standing for the same concept, these
elements should be equally named. For instance, if an operation receives user’s
details as input and another operation produces user’s details as output, their cor-
responding message parts should have the same name. Syntactically, on the other
hand, operation names should be in the form: <verb> + <noun>, because an
operation is an action. For messages, message parts, or data-types names should
be a noun or a noun phrase, otherwise it might mean that a message conveys
control information.

e Including empty messages in WSDL documents, i.e. input/output messages that
do not contain message parts. This happens when there are operations that either
receive no input or produce no output, and associated messages are nevertheless
specified for the operations.

e Confining (or enclosing) ad-hoc data model definitions in each service descrip-
tion requiring them, and thus data-types can be used only from the operations
described in their container WSDL document, preventing the former from being
reused from other WSDL documents. Suppose two services for checking stocks
when the stock market is open and closed, respectively, with an operation to
retrieve market information. One service might define a “StockQuote” data-type
while the other service might define a “StockInfo” data-type, however they both
represent the same concept but their XSD code is not reused.

e Arranging non-cohesive operations in a single port-type, i.e. operations not
belonging to the same domain or not jointly providing a set of semantically related
functions. An example is to include operations such as “isAlive”, “getVersion”
and “ping” in a port-type, though the associated port-type has been designed
for providing operations of a particular problem domain, such as offering stock
quote information.

e Defining the same data-type more than once in a WSDL document. Suppose a
developer combines the enclosed versions of the Web Services for checking stocks
at days’ open and at days’ close into the same WSDL document. Then, two data-
types for representing the same object of the problem domain — “StockQuote”
and “StockInfo” — will coexist in the WSDL file.

e Using general purpose data-types for representing any object of a problem
domain. In general, this typically arises from the use of the XSD constructs
xsd:any and xsd:anyAttribute for representing data-types, which match with any
XML structure.

Taking into account these issues, the authors of Ref. 44 measured the impact on
service discovery systems and human developers of all the bad practices found,

1550004-5

C. Mateos et al.

Table 1.

The core sub-set of the Web Service discoverability anti-patterns.

Anti-Pattern

Occurs When

Affects Discovery, Since. ..

Ambiguous names

Empty messages

Enclosed data model

Low cohesive

operations in the
same port-type

Redundant data
models

Whatever types

Ambiguous or meaningless
names are used for denoting
the main elements of a
WSDL document.

Empty messages are used in
operations that do not
produce outputs nor receive
inputs.

The data-type definitions used
for exchanging information
are placed in WSDL
documents rather than in
separate XSD documents.

Port-types have weak semantic
cohesion.

Many data-types for
representing the same objects
of the problem domain
coexist in a WSDL
document.

A special data-type is used for
representing any object of
the problem domain.

Syntactic registries gather and
preprocess these names, and
instead build ambiguous/poor
indexes.

Syntactic registries gather and
preprocess these names, and
instead build ambiguous/poor
indexes.

Syntactic registries extract too
many terms from data-types
associated with messages.
Alternatively, data models
conceived for being reused may
positively impact the precision
of registries.

WSDL documents with
low-cohesive port-types convey
terms that are not always
representative of the domain of
their associated services.

Redundant data models may
produce the same effect as
redundant port-types. Besides,
big and puzzling WSDL
documents are exposed to
human discoverers.

Syntactic registries extract few
terms (if any) from Whatever
types associated with messages.

and proposed reproducible solutions to remedy them. The bad practices or anti-
patterns listed above, which are the most harmful anti-patterns, are summarized
in Table 1. Certainly, these anti-patterns decrease the chance of services to be
discovered and reused. Then, these solutions are based on refactoring actions for
WSDL documents: given a WSDL document having anti-patterns, the provider can
methodically modify it until all anti-patterns have been removed. However, these
solutions can be applied when following contract-first only.

However, contract-first is not popular among developers because it requires more
effort than code-first: providers must master the WSDL specification and the XSD
data-type language. Code-first simply generates WSDLs from existing service code.
For example, Java2WSDL can be used to quickly map a given Java class to a
WSDL document with operations representing all the public methods. Java2WSDL
associates an XML representation with each input/output method parameter —
primitive types or objects — in XSD. In the end, providers focus on developing
and maintaining service implementations, delegating WSDL/XSD generation to
specialized tools during service deployment.

The WSDL discoverability anti-patterns are strongly associated with API design
qualitative attributes, since anti-patterns arise when well-established API design

1550004-6

Early Improving Code-First Web Services Discoverability

golden rules are broken.? For instance, one anti-pattern is associated with tying
port-types to concrete protocols, which is similar to redefining the interface of a
component for each implementation. Another anti-pattern is to place semantically
unrelated operations in the same port-type, even though modules with high cohesion
tend to be preferable. Therefore, the main hypothesis of this paper is that it is
possible to detect WSDL anti-patterns early in the implementation phase by basing
on classical OO metrics gathered from service implementation. The goal of this work
is to detect anti-patterns before generating WSDL documents, but by basing on
service implementations (code-first method). The research hypothesis is that this
indirect approach to WSDL anti-pattern remotion has a positive effect on service
discovery.

The reader should note at this point that some of the anti-patterns addressed
by our approach relate to rules concerning how messages and message parts should
be specified and structured within a WSDL document, with the goal of improv-
ing service understandability and discoverability. The Web Service Choreography
Interface (WSCI)P is an effort focusing on providing language constructs to help
building service choreographies via message-centered behavioral aspects of indi-
vidual services such as message ordering, message sequencing, relationships among
input and/or output messages, start/end of a given sequence, partial rollback of the
execution of a given sequence, and so on. In this way, WSCI describes the dynamic
interface of a Web Service participating in a given message exchange by means of
reusing the operations defined for the static interface (i.e. port-type), while in this
paper we focus on avoiding anti-patterns — which partially involves following some
message formatting guidelines — to make a Web Service more understandable and
discoverable.

2.1. Motivating scenarios

In many situations, organizations face the need to offer new services to customers
in order to stay competitive. Furthermore, some providers, such as large financial
organizations and governments, might run legacy systems and at the same time have
the necessity of migrating them to newer platforms (i.e. based on Web Services)
so other markets and clients can be reached. These two situations represent two
common scenarios found in Web Service development in the industry.

In the former scenario, in turn, either new services have to be added to the
running system, or portions of such system not exposed as services or “servified”
yet are wrapped as Web Services. This is performed by coding the new services from
scratch or selecting the modules to servify, and using IDEs to deploy the services
in a Web/application container. In Java, for example, IDEs such as Eclipse with its
Web Tool Platforms (WTP) plug-in automatically generate most of the necessary

Phttp: //www.w3.org/ TR /wsci/.

1550004-7

C. Mateos et al.

software artifacts, including WSDL documents. As such, these IDEs are designed
to conceal WSDL generation from developers.

In the latter scenario, the legacy code (e.g. COBOL) is either completely
migrated to modern languages (e.g. Java o C#), which is known as indirect migra-
tion,2® or kept as is but wrapped with a thin software layer (the services) in modern
languages, which is referred as direct migration.2® Due to its simplicity and speed,
for migrating legacy systems to Web Services, direct migration is often followed.?”
Again, services are installed with the help of proper IDEs, which automate as much
deployment tasks as possible, including WSDL document construction.

In these scenarios, therefore, the task of generating WSDL documents is not
controlled by developers, but hidden in tools used to deploy services. These tools,
on the other hand, unidirectionally transform source code to WSDL code. There-
fore, modifying WSDL documents after services have been deployed leads to incon-
sistency issues as the source code cannot be automatically updated accordingly.
Then, when following code-first service development, the only chance to ensure
good WSDL quality is by preventing the anti-patterns, instead of correcting them
as Ref. 44 proposes.

Our research relies on the idea of software quality as the extent to which some
specific WSDL-level metrics taken on Web Service contracts present good values.
Such metrics basically count anti-pattern occurrences in a WSDL document, thus in
this context good is indirectly proportional to low count of anti-pattern occurrences.
Our main research hypothesis is that the values of such metrics can be influenced
with the values of OO metrics taken on the code implementing services prior to
WSDL generation, which we test using an empirical correlation model. Then, simple
refactorings to early alter OO metrics might alter anti-pattern count as well, as
a consequence of this correlation, thus improving WSDL understandability and
discoverability. Particularly, we focus on two OO metrics from the Chidamber and
Kemerer’s metric suite, Weighted Methods per Class (WMC) and Coupling Between
Objects (CBO), and two metrics from Mateos et al.,?® namely Abstract Type Count
(ATC) and Empty Parameters Method (EPM). WMC counts the methods of a
class. CBO of a class C' measures how many methods/instance variables defined by
other classes are accessed from C. ATC counts the number of generic/unbounded
Java data-types used as parameter of methods. Lastly, EPM counts the number of
methods not receiving parameters.

3. Related Efforts

Our approach is related to some efforts that try to predict the value of quality
metrics (e.g. number of bugs) in conventional software based on traditional OO
metrics at implementation time. These efforts are discussed in Sec. 3.1. On the other
hand, there is substantial research concerning the improvement of services with
respect to the quality of the contracts exposed to consumers, and the implication
of this in Web Service discovery. These works are discussed in Sec. 3.2. We share

1550004-8

Early Improving Code-First Web Services Discoverability

the same goal as these efforts, namely obtaining more legible, discoverable and clear
service contracts.

3.1. Object-oriented metrics as software quality predictors

Object-oriented design metrics, and specially the Chidamber and Kemerer’s suite,”
have been extensively used for preventing software defects. For example, in Elish
et al.*® the authors state hypotheses associating one or more metrics (i.e. indepen-
dent variables) with an increase in the number of defects (i.e. bugs reported by
customers and other identified during testing). Here, the dependent variables are
the number of pre-release faults and post-release faults in software packages. In this
context, and from now on, an independent variable is a variable that can be altered
and manipulated, and a dependent variable is the one that is expected to change
whenever the independent variable is modified. To test the hypotheses, the authors
gathered metrics from Eclipse, one of the largest open source systems, and com-
pared them against bug and fix logs. Besides the Chidamber and Kemerer’s suite,
the authors also used two package-level metrics, namely Robert Martin’s metrics
and MOOD.?!

The correlation between software bugs and the Chidamber and Kemerer’s suite
has been also assessed for the Mozilla project in Ref. 20. The authors refer as depen-
dent variables to 8936 different bug entries reported in the project bug tracker. The
authors gathered OO metrics from 3192 C++ classes as independent variables. For
the analysis of relationships between bugs (i.e. dependent variables) and OO met-
rics the authors performed a correlation study. As a result, the authors discuss the
importance of each employed metric from an accurate and practical perspective,
concluding that Coupling Between Objects (CBO)7 seems to be the best in pre-
dicting bugs, but Lack of Cohesion in Methods (LCOM)7 is the most practical since
LCOM performed fairly well and it can be easily calculated. All in all, the idea of
correlating OO metrics and software defects has proved to be a viable approach to
bug detection. A recent survey*? concludes that 49% of the works that study the
correlation of source code metrics and faults base on OO metrics. Within these, the
Chidamber and Kemerer’s suite is the most frequently used.

Finally, Meirelles et al.3! evaluated the relation between OO metrics and the
popularity or “attractiveness” of real open source projects. Popularity was quanti-
fied based on the number of downloads and members of each project. Furthermore,
the authors found that CBO, LCOM, LOC, and the total number of code modules
where the OO metrics (i.e. independent variables) that statistically influenced the
dependent variables, i.e. downloads and members. Experiments were carried out by
using a data-set of 6773 projects from SourceForge implemented in C. The findings
were that (a) higher CBO implies more complexity and therefore less popularity,
(b) higher LOC suggests more functionality and maturity and hence more attrac-
tiveness, and (c¢) more modules in a project seems to attract more members. This
latter fact was due to the untangled nature of the code modules of the analyzed

1550004-9

C. Mateos et al.

projects, which arguably allows members to work in parallel on a project’s modules
without requiring cooperation.

Note that Ref. 31 includes a dependent variable whose maximization is desirable
(attractiveness), whereas in the rest of the approaches mentioned at the beginning
of this subsection, the dependent variables have a negative connotation (defects,
bugs) and must be minimized. Likewise, our work also aims at minimizing the
values of metrics (i.e. WSDL anti-pattern occurrences) that measure non-desirable
aspects of certain software artifacts (i.e. WSDL documents).

3.2. Obtaining better WSDL documents

The growing acceptance of the SOC paradigm motivated research on models and
metrics for deriving a comprehensive service-oriented software design methodology
along with proper software artifacts.*! Several efforts have addressed the quality
of one of the most important software artifacts for SOC, WSDL service descrip-
tions. The work presented in Ref. 16 surveys real-world service descriptions and
diagnoses how WSDL documentation elements are actually employed. Accordingly,
the authors conclude that the documentation of 80% out of 640 analyzed services
has less than 10 words, and as far as 50% of the services have no documentation
for any of the offered operations. Blake and Nowlan® measured the impact of nam-
ing tendencies within Web Services on service discovery. The authors improved a
standard-complaint discovery system with heuristics for dealing with the identi-
fied naming tendencies. The improved discovery system achieved better retrieval
effectiveness than its original version. Reference 40 in this line discusses a common
trade-off between extensibility and understandability of data-types defined in XSD.
The author explains the impact of using xsd:any and xsd:anyAttribute, which allow
developers to leave one or more parts of an XML structure undefined, on the main-
tainability and discoverability of Web Services. The author claims that “any-*”
XSD constructors should be avoided.

The work by Rodriguez et al.** subsumes the research of the previous paragraph
by associating each identified problem with a practical solution, thus conforming
a unified catalog of WSDL discoverability anti-patterns. The authors manually
removed anti-patterns from a data-set of ca. 400 WSDL documents and compared
the retrieval effectiveness of several syntactic discovery mechanisms when using the
original WSDL documents and the improved ones, i.e. the WSDL documents that
had been refactored according to each anti-pattern solutions. The results related
to the improved data-sets surpass those achieved by using the original data-set
regardless the approaches to service discovery employed. This suggests that the
improvements are explained by the removal of discoverability anti-patterns rather
than the incidence of the underlying discovery mechanism.

Furthermore, the importance of WSDL discoverability anti-patterns has been
increasingly emphasized in Ref. 9, when the authors associate anti-patterns with
software API design principles. They state that “WSDL documents are not

1550004-10

Early Improving Code-First Web Services Discoverability

supposed to be big, puzzling, non-cohesive, undocumented, or wrongly named,
mainly because their real purpose is to be consumed by other developers. How-
ever, it seems that the creators of the analyzed WSDL documents pass over years
of consensus on what is right and wrong when codifying software APIs”. Past
research on common bad practices present in WSDL documents, and in particular
the anti-pattern catalog, motivate our work for preventing code-first services from
discoverability problems.

In Ref. 28, the authors present a correlation analysis between well-known object-
oriented metrics taken in the code implementing services and the occurrences of the
anti-patterns of Ref. 44 in their WSDLs documents, showing that some simple refac-
torings performed early when developing Web Services can reduce the number of
anti-patterns occurrences. However, as the author assert, this correlation analysis
present an internal threat to validity, since there are more factors that can influ-
ence the correlation between service implementation metrics and service interface
ones. Therefore, in Ref. 36, the authors have extended the analysis to consider the
influence of the tool used for mapping from services implementation onto WSDL
documents. In this paper, on the other hand, we improve the studies presented in
Refs. 28 and 36 by assessing the implications of refactorings in the discovery of
WSDL documents.

Lastly, in Refs. 45 and 29, a tool called AF-JAVA2WSDL to improve WSDL
quality for code-first Web Services is presented. The tool implements some ad-hoc
refactorings for early removing the anti-patterns in Ref. 44, and a custom Java-to-
WSDL mapping tool. Refactorings are driven by automatic suggestions made by
AF-JAVA2WSDL on a given service source code, which rely on algorithms based
on text mining techniques (e.g. stemming, stop-words removal) and lightweight
semantic analysis (e.g. term extraction, synonym/hypernym/hyperonym). These
facilities are shipped as a plug-in for the Eclipse IDE. Even when the approach is
close to the one presented in this paper, discoverability of the produced services
is hardly improved by only relying on the custom mapping tool.2?*5 This forces
developers to resort to using such ad-hoc refactorings, which might require coding
effort.

The works discussed in this subsection either focus on providing guidelines to
improve WSDL documents from a qualitative perspective, or measuring to what
extent a WSDL document incurs in the anti-patterns of Ref. 44, which can be
partially quantified. Alternatively, there are some incipient works aimed at provid-
ing metrics to quantify such aspects, particularly understandability. In this line,
52,53 proposes a readability metric for WSDL doc-
uments that exploits the concepts (in ontological terms) in the analyzed service
domain knowledge. Given a WSDL document, readability is defined in terms of the
use of words regarded as “difficult” and the use of words that are key concepts in
the service domain. The authors also outline refactorings to improve readability. In
addition Berén et al.,* presents WSDLUD, a metric for measuring the understand-
ing degree of WSDL descriptions. WSDLUD quantifies the understanding degree

Sripairojthikoon and Senivongse

1550004-11

C. Mateos et al.

values of relevant attributes associated to basic WSDL elements (types, messages,
port-types, binding and service) using text-mining techniques and Wordnet,3? and
then aggregates these values into a global score. For example, considered attributes
for messages are Message Documentation Quality, Message Name Quality and Part
Understanding Degree. WSDL discoverability, which is the scope of this paper, has
not been addressed by these metric-oriented approaches to WSDL improvement.

4. Correlation Model and Hypotheses

To prevent code-first Web Service descriptions from incurring in the discoverability
anti-patterns presented in Ref. 44, our research focuses on addressing these anti-
patterns at the service implementation level. We explicitly account for the role of
OO metrics and hypothesize that either coupled classes, or weighted classes, or
methods returning abstract or void types, are associated with a higher number of
anti-pattern occurrences within generated WSDL documents.

We established several hypotheses by using an exploratory approach to test the
statistical correlation among OO metrics and the anti-patterns. The hypotheses
assume that a typical code-first tool performs a mapping T, formally

T:C—W, (1)

mapping T from C = {M(Iy, Ry),...,Mn(In,Rn)} or the frontend class imple-
menting a service to W = {Oy(Iy, Ry),...,On(In,Ry)} or the WSDL document
describing the service, generates a WSDL document containing a port-type for the
service implementation class. This WSDL document has as many operations O as
public methods M are defined in class C. Moreover, each operation of W will be
associated with one input message I and another return message R, while each mes-
sage conveys an XSD type that stands for the parameters of the corresponding class
method. Code-first tools like WSDL.exe, Java2WSDL, and gSOAP®8 are based on a
mapping 7" for generating WSDL documents from C+#, Java and C++, respectively.
However, each tool implements 7" in a particular manner mostly because of the dif-
ferent characteristics of the involved programming languages. For brevity and clar-
ity, in the following subsection we discuss the initial hypotheses that proved to hold
after the statistical analysis. The commonest way of analyzing the empirical rela-
tion between independent and dependent variables is by defining and statistically
testing experimental hypotheses.!” In this sense, the statistical analysis involved
setting the six anti-patterns described up to now as the dependent variables, whose
values were produced by using a tool that measures anti-pattern occurrences.*3
On the other hand, we used OO metrics as the independent variables, which were
computed via another tool. Finally, we used the Spearman’s rank correlation coef-
ficient in order to establish the existing relations between the two kind of variables
of our model, i.e. the OO metrics (independent variables) and the anti-patterns
(dependent variables).

1550004-12

Early Improving Code-First Web Services Discoverability

4.1. Proven hypotheses
4.1.1. Hypothesis 1 (Hy)

Hypothesis statement: The higher the number of classes directly related to the class
implementing a service (CBO metric), the more frequent the Enclosed data model
anti-pattern occurrences.

Our first hypothesis associates the Coupling Between Objects (CBO) metric”
with the Enclosed data model anti-pattern.** Basically, CBO counts how many
methods or instance variables defined by other classes are accessed by a given
class. To show how this metric is computed, consider the service code shown in
Fig. 2, which corresponds to one of the services from our data-set. The methods
in JTimeLogServer have dependencies with the types UserData (line 3), TaskData
(line 4) and StatisticData (line 7). Therefore, the CBO value for the JTimeLogServer
class is 3. Code-first tools typically map methods parameters in service classes to
different XSD definitions in generated WSDL documents. We believe that increasing
the number of external objects that are accessed by service classes may increase
the number of data-type definitions within WSDL documents.

4.1.2. Hypothesis 2 (Hz)

Hypothesis statement: The higher the number of public methods belonging to the
class implementing a service (WMC metric), the more frequent the Low cohesive
operations in the same port-type anti-pattern occurrences.

The second hypothesis relates the Weighted Methods Per Class (WMC)” metric
to the Low cohesive operations in the same port-type anti-pattern.** WMC counts
the methods of a class. For example, the service interface depicted in Fig. 2 defines
six public methods (lines 2-7), thus WMC is 6 in this case. We believe that a
greater number of methods increases the probability that any pair of them are
unrelated, i.e. having weak cohesion. Since code-first tools map each method onto
an operation, a higher WMC may lead to WSDL documents having low cohesive
operations.

public interface JTimeLogServer extends java.rmi.Remote {
public void setUserld(int in0);
public UserData[] getUserList();
public TaskData createTask (TaskData in0);
public List listProject ();
public void deleteProject(Object in0);
public StatisticData computeStatistics(StatisticData in0);

0NN AW

Fig. 2. Service code example.

1550004-13

C. Mateos et al.

4.1.3. Hypothesis 3 (H3)

Hypothesis statement: The higher the number of public methods belonging to the
class implementing a service (WMC metric), the more frequent the Redundant data
models anti-pattern occurrences.

The third hypothesis states a relationship between the WMC” metric and the
Redundant data models** anti-pattern. The number of message elements defined
within a WSDL document built under code-first tools, is twice the number of oper-
ation elements. As each message may be associated with a data-type, we believe
that the likelihood of redundant data-type definitions increases with the number of
public methods, since these in turn affect the number of operation elements.

4.1.4. Hypothesis 4 (Hy)

Hypothesis statement: The higher the number of public methods belonging to the
class implementing a service (WMC metric), the more frequent the Ambiguous
names anti-pattern occurrences.

Similarly to Hs, we believe that an increment in the number of methods may lift
the number of non-representative names within a WSDL document, since for each
method a code-first tool automatically generates in principle five names (one for the
operation, two for input/output messages, and two for data-types). Thus, the fourth
hypothesis associates the WMC metric with the Ambiguous names anti-pattern.

4.1.5. Hypothesis 5 (Hs)

Hypothesis statement: The higher the number of method parameters belonging to
the class implementing a service declared as non-concrete data-types (ATC metric),
the more frequent the Whatever types anti-pattern occurrences.

Abstract Type Count (ATC) is a metric that computes the number of method
parameters that do not use concrete data-types, or use Java generics with type
variables instantiated with non-concrete data-types. In order to clarify this met-
ric, consider the service code shown in Fig. 2. The listProject method (line 5)
returns a List data-type without using generics to declare the type of objects that
the list will contain. This means that the list can hold any type of object. Simi-
larly, the deleteProject method (line 6) receives a parameter of type Object, which
means that it is impossible to know the parameter’s concrete type at compile-
time. Then, for the JTimeLogServer service, the value of the ATC metric is 2. We
have defined the ATC metric after noting that some code-first tools map abstract
data-types and badly defined generics onto xsd:any constructors, which is the root
cause of the Whatever types anti-pattern.?®44 Formally, the ATC metric for an
interface is

Op pi

Z Z isAbstract (i, j),

i=1 j=1

1550004-14

Early Improving Code-First Web Services Discoverability

where Op is the number of operations, p; is the number of input/output parameters
of the i¢th operation, and the function isAbstract(, j) returns 1 when the type of
the jth parameter of the ith operation is associated with a non-concrete class.
Otherwise, the mentioned function returns 0. Thus, the range of the function is
[0, P], where P is the total number of parameters.

4.1.6. Hypothesis 6 (Hg)

Hypothesis statement: The higher the number of public methods belonging to the
class implementing a service that do not receive input parameters (EPM metric),
the more frequent the Empty messages anti-pattern occurrences.

The Empty Parameters Methods (EPM) metric counts the number of methods
in a class that do not receive parameters. On the example depicted in Fig. 2,
this metric takes a value of 2 since the methods getUserList (line 3) and listProject
(line 5) do not receive any input parameters. We believe that increasing the number
of methods without parameters may increase the likelihood of the Empty messages
anti-pattern occurrences. This is since code-first tools map this kind of methods
onto an operation associated with one input message element not conveying XML
data. Formally, the EPM metric for an interface is defined as

Op

Z emptylnput(),

i=1
where Op is the number of operations, and the function emptylnputs(i) returns 1 if
the ith operation receives no input, and 0 otherwise. Thus, the range of the function
is [0, Op], where Op is the total number of operations.

4.2. Data-set and metrics/anti-patterns recollection

The approach for testing the hypotheses stated above consists on gathering OO
metrics from open source Web Services, and checking the values obtained against
the number of anti-patterns found in services WSDL documents. This is done by
using regression and correlation methods to validate the usefulness of these metrics
for anti-pattern prediction. To perform the analysis, we first gathered a data-set
that contained, for each service, its implementation code and dependency libraries
needed for generating WSDL documents. A detailed per-service report of the sta-
tistical correlation between OO metrics taken on the implementation code and
anti-pattern occurrences present in the WSDL documents was calculated. Both the
software and the data-set used in the experiments are available upon request.

Report calculation has been done by using software tools for obtaining metrics
and detecting anti-patterns. In the former case, we extended ckjm,?! a Java-based
tool that computes a sub-set of the Chidamber-Kemerer metrics.”

For measuring the number of anti-patterns, we employed an automatic WSDL
anti-pattern detection tool*® or Detector for short. The Detector is a software for

1550004-15

C. Mateos et al.

automatically checking whether a WSDL document has the anti-patterns of Ref. 44
or not. The Detector receives a given WSDL document as input, and uses heuris-
tics for returning a list of anti-pattern occurrences. As these heuristics are based
on the different anti-pattern definitions, there are two groups of heuristics, namely
Evident and Not immediately apparent. The Evident heuristics deal with those
anti-patterns that can be detected by analyzing only the structure of WSDL doc-
uments, like Empty Messages, Enclosed data-types, Redundant data models, and
Whatever types anti-patterns. The Not immediately apparent heuristics deal with
detecting Low cohesive operations in the same port-type and Ambiguous names
anti-patterns because they require a semantic analysis of the names and comments
present in WSDL documents. Rodriguez et al.*3> combine machine learning and
natural processing language techniques to detect the anti-patterns of the second
group. Furthermore, reported experiments show that the averaged accuracy of the
heuristics was 0.958.43

In the tests, we used a data-set of approximately 90 different real services whose
implementation was collected via two code search engines: the Merobase® compo-
nent finder and the Exemplar engine.3® Merobase allows users to harvest software
components from a large variety of sources (e.g. Apache, SourceForge and Java.net).
It has the unique feature of supporting interface-driven searches, i.e. searches based
on the abstract interface that a component should offer. On the other hand, Exem-
plar relies on a hybrid approach to keyword-based search that combines the benefits
of textual processing and the structure of source code to mine repositories and con-
sequently returns complete projects. Complementary, we collected projects from
Google Code. All in all, the generated data-set provided the means to perform a
proper evaluation in the sense that the different Web Service implementations came
from real-life developers.

Some of the retrieved projects implemented Web Services, whereas other
projects contained granular software components such as EJBs, which were “servi-
fied” to further enlarge the data-set. After collecting the components and projects,
we uniformized the associated services by explicitly providing a Java interface to
facade their implementations. Each WSDL document was obtained by feeding Axis’
Java2WSDL with the corresponding Java interface. Finally, the correlation analysis
was performed by using Apache’s Commons Math library.?¢

4.3. Empirical correlation model

Table 2 shows the correlation between the OO metrics associated with the hypothe-
ses presented and the anti-patterns. The cell values in bold are those coefficients
which are statistically significant at the 5% level. This level is a common choice
when performing statistical studies.?*

¢Merobase, http://merobase.com.

1550004-16

Early Improving Code-First Web Services Discoverability

Table 2. Most significant correlations between OO metrics and anti-patterns.
Anti-Pattern/OO Metric WMC CBO ATC EPM
Ambiguous names 0.86 (Hs) 0.42 0.25 0.33
Empty messages 0.54 0.20 0.19 0.99 (Hs)
Enclosed data model 0.41 0.98 (H;) 0.12 0.16

Low cohesive operations ~ 0.61 (H2) 0.38 0.12 0.39

in the same port-type

Redundant data models ~ 0.79 (Hz) 0.33 0.15 0.31
Whatever types 0.50 0.35 0.60 (Hs) 0.32

As shown in Table 2, there is a statistically significant relationship between
the CBO metric and the number of occurrences of the Enclosed data models anti-
pattern, with a correlation factor of 0.98 and an error level of 0. This shows an
almost perfect correlation between the metric and the anti-pattern, i.e. a correlation
of 1. Therefore, we conclude that the hypothesis H; is supported by our data, thus
accepting its validity. Figure 3 depicts the correlation among the variables using
points. Generally speaking, each point (X,Y’) represents a Web Service having a
value of X for a given OO metric (CBO in this case), and Y occurrences of a certain
anti-pattern (enclosed data model in this figure). At the same time, the curve shows
the regression between the metric and the anti-pattern. The curve fitting method
provided by the Gnuplotd library was employed to draw the curve. Furthermore,
this relationship has a linear tendency.

The relation between the metric and the anti-pattern arises since the employed
code-first tool includes in resulting WSDL documents as many XSD definitions as

60 T I
50 i Ooco’." —
8 40r - 1
1S “," []
i e
S 30t .
o o
@ Lo
@ =
S
e 20 - b
LIJ .""0
10 b = 1
gy ¢"‘.=
oL ‘ ‘ ‘ ‘ ‘ ‘
0 5 10 15 20 25 30 35 40
CBO
Fig. 3. Hi: CBO/enclosed data model correlation.

dCGnuplot, http: //www.gnuplot.info/.

1550004-17

C. Mateos et al.

user defined objects used by the service methods. Then, increasing the value of the
CBO metric leads to a higher number of occurrences of the anti-pattern.

The hypothesis Hs states that the likelihood of non-cohesive operations increases
with the number of public methods, which suggests a positive correlation between
the WMC metric and the Low cohesive operations in the same port-type anti-
pattern. As shown in Table 2, the correlation factor is the highest for this anti-
pattern (0.61) and is also significant (error = 0). This allows us to accept the
validity of the hypothesis Hs. Figure 4(a) shows the correlation between the two
variables, which tends to have an exponential nature.

To better justify this exponential tendency, let us consider the following exam-
ple. Let S; be a Web Service with three unrelated methods My, My and Ms. In
this context, WMC = 3 and Low cohesive operations in the same port-type = 3,
since we would have the pair of non-cohesive operations [M;, Ms], [M;, M3] and
[My, Ms]. If we now add a fourth method My, the new values for the two vari-
ables would be WMC = 4 and Low cohesive operations in the same port-type = 6.

o 250 S T 900
g
=
i 800 f
g
S 200 700 F
£ o
g %
o S 600 |
£ 150 | £
< £ s00 |
2 h
< S 400 |
€ 100t i
3 3 %0
o [id
2 200
g sof])
s L .]
8 P 100 3
R I
3 e o lalh &
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
WMC wMmC
(a) (b)
250
200
P
£
< 150
g
S
2
o
g
S 100 b
£
<
50 | o 1
.""
.
o k=
0 10 20 30 40 50 60 70 80 90 100
WMC

(c)

Fig. 4. Correlation between the WMC metric and the anti-patterns. (a) Ha: WMC/Low cohe-
sive operations in the same port-type, (b) Hz: WMC/Redundant data models and (c) Ha:
WMC/Ambiguous names.

1550004-18

Early Improving Code-First Web Services Discoverability

As we increase the number of methods in the Web Service, the number of occur-
rences of the anti-pattern tends to increase exponentially with respect to the WMC
metric.

The hypothesis Hs states that the probability of the Redundant data models anti-
pattern occurrences increases with the number of public methods, thus implying
a positive correlation between the WMC metric and the anti-pattern. From the
correlation analysis shown in Table 2 follows that the two variables present a positive
correlation factor of 0.79 with error = 0. Therefore, the hypothesis is supported by
our data. Figure 4(b) shows the relation between the metric and the anti-pattern.
Moreover, similarly to the relationship between the WMC metric and the Low
cohesive operations in the same port-type anti-pattern discussed in the previous
subsection, the relation between the WMC metric and the Redundant data models
anti-pattern has an exponential tendency.

This exponential tendency arises from the way the employed code-first tool
generates WSDL documents. This tool defines two message elements for each oper-
ation: one for its input parameters and one for its return type. As each message is
associated with a data-type, the likelihood of redundant data-type definitions, i.e.
the probability that any pair of methods have the same number and type of input
parameters or the same return type, increases exponentially with the number of
public methods.

The hypothesis Hy stated that the WMC metric was positively correlated with
the Ambiguous names anti-pattern. As shown in Table 2, there is a statistically
significant relation between the two variables, with a correlation factor of 0.86 and
an error of 0. This shows that the hypothesis Hy is supported by our data, thus
confirming its validity.

This result is consistent with the results expected initially. The number of occur-
rences of the anti-pattern increases when non-representative names are used, both
on operation names and argument names of services. As the value of the WMC met-
ric increases, so does the number of operations and arguments, resulting in a higher
probability that a sub-set of them use non-representative names. The correlation
between the metric and the anti-pattern is depicted in Figure 4(c).

The hypothesis Hs states that an increment in the value of the ATC metric may
increase the likelihood of the Whatever types anti-pattern occurrences. This suggests
a positive correlation between the two. As shown in Table 2, the two variables have a
correlation factor of 0.60. Moreover, this correlation is significant, with an error of 0.
This correlation factor is the highest for this anti-pattern. Therefore, we conclude
that the hypothesis is supported by our data, thus confirming its validity.

The correlation between the metric and the anti-pattern stems from the use of
generics and abstract types in the service code. This can be seen in the example
shown in Figs. 5 and 6. Figure 5 shows the Java code of a simple service (lines 6-8)
with a single operation (line 7) that receives a List and a String as input parameters
and returns a Hashmap as output parameter. The automatically generated WSDL
document using the Java2WSDL tool is shown in Fig. 6. Note that both the List

1550004-19

C. Mateos et al.
package org.any;

import java.util.List;
import java.util .HashMap;

public interface SalesManager {
public HashMap getSales(List dates, String salesMan);

}

Fig. 5. Automatic WSDL generation with “Whatever types” anti-pattern occurrences: Example
service class.

0NN N B W=

1 <?xml version="1.0" encoding="UTF-8" 7>
2 <wsdl:types>
3 <xs:schema targetNamespace="http://any.org">

4 <!— service input data—type —>

5 <xs:element name="getSales">

6 <xs:complexType>

7 <Xxs:sequence>

8 <xs:element minOccurs="0" name="args0" type="xs:anyType"/>
9 <xs:element minOccurs="0" name="argsl" type="xs:string"/>
10 <Xxs:sequence>

11 <xs:complexType>

12 <xs:element>

13 <!— service output data—type —>

14 <xs:element name="getSalesResponse">

15 <xs:complexType>

16 <xs:sequence>

17 <xs:element minOccurs="0" name="return" type="xs:anyType"/>
18 <Xs:sequence>

19 <xs:complexType>

20 <xs:element>

21 <xs:schema>

22 </wsdl:types>

23

Fig. 6. Automatic WSDL generation with “Whatever types” anti-pattern occurrences: Automat-
ically generated WSDL document.

type and the Hashmap type were mapped onto <anyType> constructors (lines 8
and 17), thus resulting in two occurrences of the Whatever types anti-pattern.

The hypothesis Hg states that a greater number of methods without input
parameters increases the probability of the Empty messages anti-pattern occur-
rences, thus suggesting a positive correlation between the EPM metric and the
anti-pattern. This is clear in Table 2, as shown by the highly statistically signifi-
cant relationship between the two variables, with a correlation factor of 0.99 and an
error of 0. Therefore, the hypothesis is supported by our data. The relation between
the metric and the anti-pattern is depicted in Fig. 7, and presents a strong linear
tendency.

The high correlation factor between the two variables is due to the way code-
first tools generate WSDL documents. For those methods that do not receive any

1550004-20

Early Improving Code-First Web Services Discoverability

12

10 I

Empty messages
(o]

-
.
e
L,

Fig. 7. Hs: EPM/Empty messages correlation.

parameters, tools still generate an operation element associated with one empty
input message element that is not intended to transport any XML data.

4.4. Early code refactorings for improving WSDL documents

The correlation among the WMC, CBO, ATC and EPM metrics and the anti-
patterns, which is statistically significant for the analyzed Web Service data-set
suggests that, in practice, an increment/decrement of the metric values taken on a
Web Service code directly affects anti-pattern occurrence in its generated WSDL.
Then, we performed some source code refactorings driven by these metrics on our
data-set so as to quantify the effect on anti-pattern occurrence. For the sake of
representativeness, we modified the services that presented all anti-patterns at the
same time, which accounted for a 30% of the entire data-set.

In a first round of refactoring, we focused on reducing WMC. This was done
by applying the refactoring associated to WMC in practice: splitting classes having
too many operations into two or more classes. In this paper, this means splitting
the services having too many operations into two or more services. Since many
depends on the context in which such refactoring is applied, we decided to split
services so that on average the metric in the refactored services represented a 70%
of the original value. This resulted in an overall WMC decrement of 79.29% in
the dataset. Table 3 shows the impact on the anti-patterns related to WMC, i.e.
Ambiguous names, Low cohesive operations in the same port-type and Redundant
data models. As depicted, on average, these two latter anti-patterns were reduced in
47.26% and 86.66%, respectively. This provides practical evidence to better support
part of the correlation analysis of the previous subsection.

1550004-21

C. Mateos et al.

Table 3. First round of refactoring: Impact on the anti-patterns
correlated to WMC.

Metric/Anti-Pattern % decrement
Ambiguous names 0.00
Low cohesive operations in the same port-type 86.66
Redundant data models 47.26

The modifications introduced a significant increase of the average number of
occurrences of the Enclosed data model anti-pattern. Specifically, the original ser-
vices had on average 6.84 occurrences, against 20.56 average occurrences in the
refactored services. This stems from a limitation regarding complex data-type reuse
of the current implementation of Java2WSDL, i.e. the tool used to generate WSDLs.
For example, a service having 10 operations whose signatures use the same class
definition C produces only one occurrence of the anti-pattern. But if the service is
refactored into five new services with two operations each, the number of occur-
rences of Enclosed data model is five since we have five services with one occurrence
each. In other words, the tool has no sense of such “data-type globality” upon
WSDL generation. Nevertheless, this does not translate into an irremediable prob-
lem since an alternative code refactoring to avoid this situation is to replace one or
more user-provided classes within a Web Service implementation with native data-
types. This practice, however, would produce a less precise and expressive class (and
potentially data) model, which attempts against the understandability and clarity
of the exposed data-types of services. To a certain extent, with this approach we
would trade-off between understandability /clarity and discoverability.

Finally, the fall in the occurrences of the Redundant data models anti-pattern
after the refactoring is also due to the lack of sense of data-type globality, but
of the Detector. This means that if two services define the same data-type, the
Detector will not count it as an anti-pattern occurrence. Instead, if a service has
two operations both using the defined data-type twice, the Detector counts two
anti-pattern occurrences. However, after refactoring, if the service is divided in two
new services with one operation having the same data-type each, the Detector does
not count the anti-pattern.

In a second refactoring round, we focused on the ATC metric, which computes
the number of parameters in a class that are declared as Object or data struc-
tures — i.e. collections — that do not use Java generics. In the latter case, these
collections cannot be automatically mapped onto concrete XSD data-types for both
the container and the contained data-type in the final WSDL. A similar problem
arises with parameters whose data-type is Object. In this sense, we modified the
services obtained in the previous step to reduce ATC. Note that since ATC and
WMC do not conflict between each other and at the same time are correlated to
different anti-patterns, results are not affected by the order in which the associated
refactorings are performed.

Basically, the needed refactorings are straightforward: replace arguments
declared as Object with a concrete data-type whenever possible. In addition,

1550004-22

Early Improving Code-First Web Services Discoverability

although replacing parameters declared as Vector, List, Hashtable, etc., with their
generic-aware counterparts, i.e. Vector<X>, List<Y>, Hashtable<K,V> and so on
would be another sound refactoring, we replaced the former with array structures
due to WSDL generation tool limitations. Overall, by applying these modifications
we decreased the number of occurrences of the “Whatever types” anti-pattern.
Note that the anti-pattern could not be removed completely as the ATC metric
only operates at the service interface level. This means that if an interface parame-
ter declared as a concrete data-type X has in turn instance variables/generics with
non-concrete data-types, the anti-pattern will still manifest.

Finally, the Empty messages anti-pattern, which is associated to the EPM met-
ric, could not be removed since the anti-pattern is caused by the way Java2WSDL
builds WSDL messages. Unlike WMC, ATC and to a lesser extent CBO, tak-
ing EPM into account has to be completely done at the WSDL generation level.
This means that the generation tool should not build an empty input message for
class methods without parameters. Table 4 shows the three anti-patterns that were
reduced after refactoring. It is worth noting that ATC was reduced by 100%, i.e.
concrete data-types were used across all refactored service operations.

All in all, for developers to exploit this discussion to reduce anti-patterns in
their own services, some general guidelines and considerations for refactoring and
mapping service source code to WSDL documents can be derived, which are sum-
marized below:

e The purpose of refactoring is to decrease the value of the discussed OO metrics,
since these are positively correlated to anti-patterns, which at the same time
should be reduced to increase WSDL quality.

e Depending on the metric being considered, reducing its value might be achieved
through different refactorings. Since our goal is to show the effect of reducing
metrics on anti-patterns, we consider 1-1 mappings between metrics and pos-
sible refactorings for a service S: for WMC, we suggest splitting methods in S
into several services; for CBO, couplings can be reduced by replacing instance
variables in domain objects of S by primitive types; for ATC, we suggest avoid-
ing the use of Object and unbounded types in data structures. Lastly, even when
refactorings for EPM exist (e.g. adding default parameters to operations) the
associated anti-pattern is introduced by WSDL generation tools.

e The refactorings for WMC, CBO and ATC in the previous point can be applied
more or less aggresively: operations in .S might be splitted into a different num-
ber of services S;; a different number of instance variables of domain objects in S

Table 4. Second round of refactoring: Affected anti-patterns.

Metric/Anti-Pattern % decrement
Low cohesive operations in the same port-type 13.33
Redundant data models 52.73
Whatever types 21.09

1550004-23

C. Mateos et al.

might be made primitive; different operation parameters of S and instance vari-
ables/data structures of domain objects in .S might be refactored so they do not
contain generic or unbounded data-types.

Since determining the extent to which these refactorings should be applied
to result WSDL documents with no anti-pattern occurrences would require a
sensitivity analysis, which is out of the scope of this paper, developers should
consider other aspects to limit how much refactoring is performed. For WMC, cre-
ating many services would lead to fine-grained services, leading to the well-known
Chatty Services problem,® which negatively affects service consumer application
performance since more services need to be called in sequence for accessing same
functionality. Moreover, reducing CBO too much could lead to an oversimplified
domain object model in the refactored code, which might violate prior design
decisions made when building the object model. For ATC, the limit is the effort
the developer wants to invest in refactoring, but unlike WMC and CBO, the
associated refactoring does not compromise other WSDL quality aspects.

e The proposed refactorings do not conflict between each other, however performing
certain refactorings before others might save effort. Particularly, refactoring for
CBO/ATC and then considering WMC is desirable, since the former is performed
for a single service, which is simpler compared to having multiple services to
modify. Moreover, reducing coupling and then removing generic/unbounded data-
types is more efficient than the opposite, since refactored data-types might be
then replaced by primitive types. Lastly, EPM depends on the WSDL generation
tool, and as such should be considered at the end. In conclusion, the suggested
refactoring order is CBO, ATC, WMC and EPM.

4.4.1. A practical example

To conclude this section we will show a practical example of how the discussed
refactoring operations can be applied on the service interface depicted in Fig. 2
and how they impact on the resulting WSDL documents. The relevant sections of
the original WSDL document generated for this service by the Java2WSDL tool are
shown in Fig. 8. There are three defined data-types, namely UserData, StatisticsData
and PhaseData (lines 46-48). Therefore, there are three occurrences of the Enclosed
data model anti-pattern. Similarly, there are two occurrences of the Whatever types
anti-pattern since the xs:anyType construct is used on the deleteProject and listPro-
jectResponse elements (lines 15 and 41). With respect to the Redundant data models
anti-pattern, there are three pairs of repeated data-types on the WSDL document:
[computeStatistics, computeStatisticsResponse], [createTask, create TaskResponse] and
[deleteProject, listProjectResponse]. Finally, while the first five operations of the ser-
vice (Fig. 2) deal with the manipulation of user data, the last method of this service

Chttp: //www.ibm.com/developerworks/webservices/library/ws-antipatterns/.

1550004-24

Early Improving Code-First Web Services Discoverability

<wsdl:types>
<xs:element name="getUserListResponse">
<xs:complexType>
<xs:element maxOccurs="unbounded" minOccurs="0" name="return" type="UserData"
<xs:complexType>
</xs:element>
<xs:element name="setUserld ">
<xs:complexType>
<xs:element minOccurs="0" name="args0" type="xs:int" />
<xs:complexType>
</xs:element>
<xs:element name="deleteProject">
<xs:complexType>
<!— An occurrence of the *Whatever_types’ anti—pattern —>
<xs:element minOccurs="0" name="args0" type="xs:anyType" />
<xs:complexType>
</xs:element>
<xs:element name="computeStatistics">
<xs:complexType>
<xs:element minOccurs="0" name="args0" type="StatisticData" />
<xs:complexType>
</xs:element>
<xs:element name="computeStatisticsResponse">
<xs:complexType>
<xs:element minOccurs="0" name="return" type="StatisticData"
<xs:complexType>
</xs:element>
<xs:element name="createTask ">
<xs:complexType>
<xs:element minOccurs="0" name="args0" type="TaskData"
<xs:complexType>
</xs:element>
<xs:element name="createTaskResponse ">
<xs:complexType>
<xs:element minOccurs="0" name="return" type="TaskData" />
<xs:complexType>
</xs:element>
<xs:element name="listProjectResponse ">
<xs:complexType>
<!— Another occurrence of the ’Whatever_types’ anti—pattern —>
<xs:element minOccurs="0" name="return" type="xs:anyType" />
<xs:complexType>
</xs:element>
<!— Three occurrences of the ’Enclosed_data_model’ anti—pattern —>
<xs:schema attributeFormDefault="qualified">
<xs:complexType name="UserData">...<xs:complexType>
<xs:complexType name="StatisticData">...<xs:complexType>
<xs:complexType name="TaskData">...<xs:complexType>
</xs:schema>
</wsdl:types>
<!— empty message —>
<wsdl:message name="listProject" />
<wsdl:message name="listProjectResponse" />...</wsdl:message>
<!— another empty message —>
<wsdl:message name="getUserList" />
<wsdl:message name="getUserListResponse" />...</wsdl:message>
<wsdl:message name="setUserld" />...</wsdl:message>
<wsdl:message name="deleteProject" />...</wsdl:message>
<wsdl:message name="createTask" />...</wsdl:message>
<wsdl:message name="createTaskResponse" />...</wsdl:message>
<!— Messages corresponding to the unconhesive operation —>
<wsdl:message name="computeStatistics" />...</wsdl:message>
<wsdl:message name="computeStatisticsResponse" />...</wsdl:message>

/>

"

/>

Fig. 8. Original WSDL document generated from Fig. 2.

1550004-25

/>

C. Mateos et al.

1 public interface JTimeLogServer_1 extends java.rmi.Remote {
2 public void setUserld (int in0);
3 public UserData[] getUserList();
4 public TaskData createTask (TaskData in0Q);
5 %
Fig. 9. Resulting service code after the refactorings: First refactored service.
1 public interface JTimeLogServer_2 extends java.rmi.Remote {
2 public String[] listProject ();
3 public void deleteProject(String in0);
4 public StatisticData computeStatistics(StatisticData in0);
5}

Fig. 10. Resulting service code after the refactorings: Second refactored service.

computes statistical information, thus introducing an occurrence of the Low cohe-
swwe operations in the same port-type anti-pattern.

After applying the proposed refactoring operations, the original service is split
into two new services. Figures 9 and 10 show the resulting service codes, while
Figs. 11 and 12 depict the refactored WSDL documents. The original service with
WMC = 6 (Fig. 2) was divided into two services with WMC = 3 each (Figs. 9

1 <wsdl:types>

2 <xs:element name="setUserld ">
3 <xs:complexType>
4 <xs:element minOccurs="0" name="args0" type="xs:int" />
5 </xs:complexType>
6 </xs:element>

7 <xs:element name="getUserListResponse">
8 <xs:complexType>

9 <xs:element maxOccurs="unbounded" minOccurs="0" name="return" type="UserData" />
10 </xs:complexType>

11 </xs:element>

12 <xs:element name="createTask ">

13 <xs:complexType>

14 <xs:element minOccurs="0" name="args0" type="TaskData" />

15 </xs:complexType>

16 </xs:element>

17 <xs:element name="createTaskResponse ">

18 <xs:complexType>

19 <xs:element minOccurs="0" name="return" type="TaskData" />

20 </xs:complexType>

21 </xs:element>

22 <xs:schema attributeFormDefault="qualified"

23 elementFormDefault="qualified" targetNamespace="http://client.jtl/xsd">
24 <xs:complexType name="UserData">...</xs:complexType>

25 <xs:complexType name="TaskData">...</xs:complexType>

26 </xs:schema>

27 </wsdl:types>

28 <wsdl:message name="getUserList" />

29 <wsdl:message name="getUserListResponse">...</wsdl:message>
30 <wsdl:message name="setUserld">...</wsdl:message>

31 <wsdl:message name="createTask">...</wsdl:message>

32 <wsdl:message name="createTaskResponse">...</wsdl:message>

Fig. 11. Resulting WSDL documents after the refactorings: First refactored WSDL document.

1550004-26

Early Improving Code-First Web Services Discoverability

1 <wsdl:types>

2 <xs:element name="computeStatistics">
3 <xs:complexType>
4 <xs:sequence minOccurs="0" name="args0" type="StatisticData" />
5 </xs:complexType>
6 </xs:element>

7 <xs:element name="computeStatisticsResponse">
8 <xs:complexType>

9 <xs:sequence minOccurs="0" name="return" type="StatisticData" />
10 </xs:complexType>

11 </xs:element>

12 <xs:element name="listProjectResponse">

13 <xs:complexType>

14 <xs:sequence maxOccurs="unbounded" minOccurs="0" name="return" type="xs:string" />
15 </xs:complexType>

16 </xs:element>

17 <xs:element name="deleteProject">

18 <xs:complexType>

19 <xs:sequence minOccurs="0" name="args0" type="xs:string" />

20 </xs:complexType>

21 </xs:element>

22 <xs:schema attributeFormDefault="qualified"

23 elementFormDefault="qualified" targetNamespace="http://client. jtl/xsd">
24 <!— The six originally defined data—types —>

25 <xs:complexType name="StatisticData">...</xs:complexType>

26 <xs:complexType name="PhaseData">...</xs:complexType>

27 <xs:complexType name="TaskData">...</xs:complexType>

28 <xs:complexType name="ProjectData">...</xs:complexType>

29 <xs:complexType name="RightData">...</xs:complexType>

30 <xs:complexType name="UserData">...</xs:complexType>

31 </xs:schema>

32 </wsdl:types>

33 <wsdl:message name="listProject" />

34 <wsdl:message name="listProjectResponse">...</wsdl:message>

35 <wsdl:message name="deleteProject">...</wsdl:message>

36 <wsdl:message name="computeStatistics">...</wsdl:message>

37 <wsdl:message name="computeStatisticsResponse">...</wsdl:message>

Fig. 12. Resulting WSDL documents after the refactorings: Second refactored WSDL document.

and 10). Additionally, the ATC metric was reduced to 0 by changing the return
type of the listProject method from List to String[] (Fig. 10, line 2) and by changing
the parameter of the deleteProject method from an abstract Object type to a con-
crete String parameter (Fig. 10, line 3). These refactorings resulted in the complete
removal of the Whatever types anti-pattern, thus the resulting WSDL documents
do not have xs:anyType constructs. Similarly, the Redundant data models and Low
cohesive operations in the same port-type anti-patterns were reduced to 2 and 0
occurrences, respectively. On the other hand, the number of occurrences of the
Enclosed data models anti-pattern was increased by 2, as the first WSDL document
defines the data-types UserData (Fig. 11, line 24) and TaskData (Fig. 11, line 25)
while the second document defines the original six data-types (Fig. 12, lines 25-30).

5. Measuring the Impact of Early Refactoring Anti-Patterns
on Discovery

We conducted an experiment to measure the implications on discovery of early
detecting anti-patterns in service implementations. This was done by performing
the discussed refactorings to remove anti-patterns from target associated WSDL

1550004-27

C. Mateos et al.

documents, and then discovering these documents. The goal of this experiment was
to determine whether placing effort on refactoring service implementations could
increase the chance of discovering a service.

Methodologically, the evaluation consisted of three steps. In a first step, code-
first WSDL documents were grouped into two groups. One group called “Refac-
tored” contained those WSDL documents generated after applying the refactorings
to a sub-set of the service implementations. Another group had the original versions
of the improved WSDL documents. We refer to this group as “Original”. Second,
we supplied a service registry with both groups of WSDL documents. Third, we
queried the employed registry using one query per available service operation in the
services of the sub-set. For each query we analyzed in which position were retrieved
either the original or the refactored WSDL documents, which is formally known
as Precision-at-n. Precision-at-n computes precision at different cut-off points. For
example, if the top five documents are all relevant to a query and the next five are
all non-relevant, we have a precision of 100% at a cut-off of five documents but a
precision of 50% at a cut-off of 10 documents. Finally, we averaged the results over
the total number of queries.

As the reader can observe, the refactored documents were basically WSDL doc-
uments whose implementations were modified to take into account not some, but all
the refactorings discussed in the previous Section. The reason behind this decision
was that, even when some anti-patterns affect service discovery more than others,
they all negatively impact on the discoverability of WSDL documents. Hence, the
best results in terms of retrieval effectiveness are obtained when removing all the
anti-patterns.** This means that all the refactorings associated to their correlated
OO metrics have to be considered. Therefore, these facts ensure the significance of
the results. On the other hand, in practice, modifying service implementations by
taking into account all the refactorings is not an expensive task since most of them
can be easily performed with the help of modern IDEs.

For the experimentation, a publicly available registry implementation of the
approach to service discovery presented in Ref. 10 was employed. The registry can be
downloaded from http://sites.google.com/site/easysoc/home/service-registry. As
explained in Ref. 10, this registry exploits relevant information contained in WSDL
documents. Then, such information is preprocessed using a combination of text min-
ing and machine learning techniques to remove redundant plus non-relevant data
and build a vectorial representation of each service, respectively. This is a classi-
cal model borrowed from the Information Retrieval area known as Vector Space
Model.*® With this model, documents are seen as collection of terms, whereas each
dimension of the space corresponds to a separate term (usually single words). In
consequence, documents having similar contents are represented as vectors located
near in the space, thus searching related documents translates into searching near-
est neighbors in the space. Discoverers can use any form of textual based queries,
ranging from single keywords to textual descriptions of their needs, to query the
registry. During the discovery process, the registry maps a query onto a vector in the

1550004-28

Early Improving Code-First Web Services Discoverability

vector space model, then it returns to the discoverer those services whose vectors
are near to the query vector.'® This registry returns an ordered list of candidate
WSDL documents, sorted according to how similar to the query are the associated
services.

For the sake of fairness we built the employed queries from the source code of
original service implementations. We assumed that if developers want to replace an
operation with a functional equivalent operation provided by an external service,
they will probably use the name of the replaceable operation as a query. This is
analogous to the Query-By-Example concept presented in Ref. 10. For example,
the query for looking for operations functionally equivalent to an operation whose
signature is: “getActiveWorkflows(userID:string)” may be “get active workflows”.
In fact, the employed registry splits combined words within queries. Following this
assumption, 463 queries were built, one per offered operation. Finally, we associated
two WSDL documents with each query, one document belonging to the Original
group, while another from the Refactored one. For the association we arbitrarily
selected the WSDL documents containing the operation needed.

The Precision-at-n results have been calculated for each query with n in [1,10].
We have chosen this window to have a good balance between the number of candi-
dates and the number of relevant candidates retrieved. Moreover, we believe that
a developer can easily examine 10 Web Service descriptions. Therefore, by setting
n = 10, we refer to the actual number of relevant services up to only 10 candi-
dates in the result list. Besides Precision-at-n, the mean average precision (MAP),
recall and discounted cumulative gain (DCG) measures have been calculated. The
MAP measure provides a measure of quality across recall levels. Formally, MAP is
defined as

Zqul precision(q)
0)

where @ is the number of queries, i.e. 463, and precision(q) is the Precision-at-1
for the query q. Then, the MAP metric for the Original data-set was 2%, whereas
the MAP metric for the Refactored data-set was 66%. This result provided a global
perspective of the performance obtained for each data-set, which allows affirming
that refactored WSDL documents surpassed the original ones. On the other hand,
Recall was calculated for the window of 10 candidates, which is normally called
Recall-at-10. Formally, Recall is defined as

MAP =

Relevant
Retrieved’

In particular, in our experiments the numerator (Relevant) of the above formula
could be 0 or 1, i.e. when the target WSDL document is included within the results,
and the denominator (Retrieved) is always 10. From our experiments, we observed
that the original WSDL documents were included in the results list for the 81% of
the queries, i.e. Recall = 0.81. At the same time, the refactored WSDL documents
achieved a Recall of 96%.

Recall =

1550004-29

C. Mateos et al.

The DCG is a measure for ranking quality and measures the usefulness or gain
of an item based on its relevance and position in the provided list. A higher DCG

value, means that a query returned a list of better ranked candidates. Formally,
DCG is defined as

rel;
DCG = rel; + Zz ot
where p is the size of the candidate list, which for these experiments is 10, and
rel; indicates if the candidate retrieved in the ith position of the list was rele-
vant. The DCG values for all queries can be averaged to obtain a measure of the
average performance of a ranking algorithm, named normalized DCG (nDCG). We
calculated the DCG for each query and then we averaged the values for the 463
queries. Accordingly, the nDCG was 59% and 90%, for the Original and Refactored
data-sets, respectively.

Figure 13 depicts the averaged precision-at-n results for the 463 queries
by smoothing these results using Bézier curves. Results show that refactored
WSDL documents were ranked before their original counterparts. Having a higher
precision-at-1 means that a relevant service was retrieved at the top of the result list.
Precision-at-1 was 66.1% and 2.6% for refactored and original groups, respectively.
In other words, the WSDL documents associated with services whose implementa-
tions had been refactored, were ranked first in the 66.1% of the cases. As shown in
Fig. 13, 93% of relevant refactored WSDL documents were retrieved at the forth
position, in the worst case, whereas a fraction of 64% of relevant Original WSDL
documents were retrieved at the same position. Accordingly, discoverers would have
to analyze up to only four candidates until finding a relevant service when employing
refactored WSDL documents in 93% of the cases.

S
<
P
Te
Lz

[0]
S a
i) %) R
Q= o" « L
gg 04 | .~ Precision-at-4 = 64% |
o E d
2= 03F .
(] 4
> 02 ¢ R
< &

0.1 | .
0 Il Il Il Il Il Il Il Il

Position in the candidate list

Refactored WSDL documents
Original WSDL documents =s=ssssss:

Fig. 13. Averaged precision-at-n results comparison. For this experiment, recall values were 81%
and 96% for Original and Refactored documents, respectively.

1550004-30

Early Improving Code-First Web Services Discoverability

Clearly, refactored WSDL documents were better ranked compared to Original
ones. As supported by different experiments, these results have a great impact
on discoverability because users tend to select higher ranked search results.! For
instance, the probability that a user accesses the first ranked result is 90%, whereas
the probability for accessing the next one is, at most, 60%."

The fact that only Original and Refactored versions of the same WSDL docu-
ments coexist in a registry, although useful for comparison purposes, is unrealistic.
We have assessed the implications of early detecting anti-patterns and applying the
proposed refactorings in a more realistic scenario, by reproducing the same exper-
iment with a data set of ca. 400 publicly available WSDL documents.?? This data
set was published in the employed registry along with the Original and Refactored
groups of WSDL documents. Therefore, methodologically, the second experiment
was equal to the former except for the second step, which has been modified to
simulate a real world scenario. We also calculated the global measures for this
experiment. Recall-at-10 values were 76% and 95% for the Original and Refactored
data-sets, respectively. The MAP measure values were 2% and 60% for the Orig-
inal and Refactored data-sets, respectively. The nDCG measure values were 51%
and 87%, for the Original and Refactored data-sets, respectively. Again, the global
metrics showed a favorable tendency to the Refactored WSDL documents.

Figure 14 shows the Precision-at-n results for the second experiment. Again, the
463 Precision-at-n results have been averaged and smoothed using Bézier curves.
The tendency of first ranking Refactored WSDL documents is maintained, though
Precision-at-n results fell by 2.85% and 7.02% for the Refactored and Original
groups, respectively. This indicates that the discoverability of Original WSDL

0.9 F
0.8
0.7
0.6

05 | .

T
o
.

04 " Precision-at-4 = 51% T
03| |
02 i
01 1

Precision-at-4 = 90%

.

Average Precision—at-X [%)]
(more is better)

Position in the candidate list

Refactored WSDL documents
Original WSDL documents =s=sssss=:

Fig. 14. Averaged precision-at-n results comparison using the data set gathered by Hef} et al.
(see Ref. 22). For this experiment, recall values were 76% and 95% for original and refactored
documents, respectively.

1550004-31

C. Mateos et al.

documents was more affected by the noise introduced in the registry than the
discoverability of the Refactored ones. For instance, Fig. 14 shows that 51% of the
Original WSDL documents were ranked at the fourth position at most, whereas
for the first experiment this value was 64%, i.e. a fall of 13%. Regarding Refac-
tored WSDL documents, the Precision-at-4 results fell from 93% to 90%, i.e. only
3%. These result may indicate that although more WSDL documents have been
published in the registry, refactored ones are still more discoverable.

Both experiments provide empirical evidence showing that employing the pro-
posed refactorings on service implementations improves the discoverability of
WSDL documents. Due to the approach to service discovery employed, precision-
at-n results can be data-set and query-set specific, and these results can not be
generalized to other experimental conditions. As the proposed refactorings rely on
re-grouping operations for improving service internal cohesion, remodeling data-
types for making them representative of domain objects, and following good nam-
ing conventions for making operations and arguments names self-descriptive, it
is reasonable to expect at least a small retrieval advantage when applying the
refactorings, versus not applying them. This is because the underpinnings of many
approaches to service discovery lie in the descriptiveness of WSDL documents. As
a result, WSDL documents with representative and semantically related keywords

may ameliorate discovery systems retrieval effectiveness.*4

6. Future Research Opportunities

The presented analysis allows bringing together many opportunities for future
research. One line relates to code-first service refactorings. First, the refactorings
studied in this paper could be automated with the help of an IDE. As a starting
point, we will use IntelliJ Idea,f a Java IDE that has many built-in refactoring
functions. Similarly, the development of IDE-based tools based on ad-hoc service
refactorings aimed at removing the root causes of discovery anti-patterns have
also proved to benefit service retrieval effectiveness. We have recently proposed
an approach following this idea,?? which also includes an ad-hoc WSDL gener-
ation tool that deals with some anti-patterns usually caused by existing WSDL
generation tools. However, refactoring effort and developer adoption are negatively
affected since in this paper we rely on known refactorings and widely-used WSDL
generation tools (i.e. Axis). Then, a study quantifying the trade-off “discovery effec-
tiveness versus refactoring effort/adoptability” of both approaches is underway.

Second, the relationships between the anti-patterns and other OO metric cata-
logs could in turn lead to investigate the effects of other kind of early refactorings
on anti-patterns and service discovery. This includes considering traditional met-
rics such as the ones proposed by Halstead, McCabe, and Henry and Kafura,” and
eventually newer ones.?

fIntellij Idea, http://www.jetbrains.com /idea.

1550004-32

Early Improving Code-First Web Services Discoverability

Third, we will incorporate into our analysis less popular WSDL generation tools
such as EasyWSDL and JBoss” wsprovide. The goal is bringing our findings to a
broader audience. Note that the tool used to generate WSDL documents from
Java has some incidence in the quality of WSDL specifications in terms of anti-
pattern occurrences. We have made some interesting progress towards assessing
this incidence in Ref. 36. It is worth noting that Ref. 36 still focuses on anti-pattern
occurrences, without paying attention to service discovery performance. This is
because tools such as EasyWSDL and WSProvide are used by a small fraction of
Web Service developers compared to Axis. Moreover, this latter dominates in open
environments where Web Service registries are needed, as opposed to intranet Web
Services, where registries are just replaced by (much smaller) service catalogs.

A fourth line of research includes the design and development of version support
techniques to allow consumers that use old WSDL documents versions to continue
using the refactored WSDL documents until they migrate to the improved versions.
In this sense, several researchers have proposed techniques to extend Web Services
standards with version support.?* Similarly, Becker et al.> addressed the problem
from the perspective of evolving service interfaces.

Fifth, comparing the discoverability effectiveness of two, or more, WSDL doc-
uments is still an open problem. Although the anti-patterns identified in Ref. 44
allow developers to compare some essential aspects of WSDL documents, it does
not enable a fair quantitative comparison in terms of retrieval effectiveness. Indeed,
toolkits for testing standard-complaint discovery algorithms have been proposed
in the past.?® These toolkits comprise a set of functions to simplify the bench-
marking process, such as generating a collection of synthetically generated WSDL
documents and queries, automatically. This allows researchers to build benchmarks
comprising a publicly available training data-set of real world Web Services, a pub-
licly available test data-set, a list of all services in the training data-set relevant
to each query of the test data-set, and a reproducible evaluation methodology. We
believe such benchmarks promote more and better research in the field, in partic-
ular to improve the discoverability of Web Services. This idea can be exploited to
effectively quantify the trade-off mentioned above.

Sixth, recent works have put the focus on exploiting the behavioral — and not
only structural or textual — properties of services interfaces.?® For example, the
sequencing of operations messages, the relationships among any incoming and/or
outgoing messages, and whether operations can be partially executed or not. We
plan to investigate whether the artifacts used for describing behavioral aspects of
services interfaces have measurable properties, and in turn whether these measur-
able properties are related to independent source code metrics and/or discovery
effectiveness. We will particularly focus on this from the perspective of service
selection,'® which is the problem of choosing a particular service for inclusion into
a client application from a relevant service list after a registry has been queried. As
a starting point, we will base our research on the observability testing metric from
component-based software development,'® which is the idea of reasoning about a

1550004-33

C. Mateos et al.

component /service operational behavior by analyzing the expected input and out-
put data, and how data is transformed. This is analogous to distinguishing the
allowed functional data mappings performed by a service and therefore its behav-
ior. We have built a prototype service selection method able to build a Test Suite
representing the analyzed behavior of a service, which can be then exercised by
client applications to further improve discovery.

Finally, there is a recent trend toward using REST services.*? Unlike WSDL
described services, which rely on SOAP and hence XML for being accessed from
client applications, REST services use a simpler and more lightweight communi-
cation stack given by HTTP plus JSON. This simplicity and lightweightness has
motivated the use of REST Web Services for providing services to mobile appli-
cations, so that energy is saved. In this context, there are languages analogous to
WSDL being developed for describing REST services, such as the Web application
description language (WADL). In fact, we have recently proposed algorithms for
discovering REST services,*6 which provides a keyword based interface to search
over an index of WADL documents preprocessed via text mining and clustering
techniques. Currently, we are evaluating this support using 1400 REST descrip-
tions extracted from the Mashape repository,® which opened up the opportunity
of studying REST-specific bad specification practices. Therefore, we are building
a catalog similar to that of WSDL anti-patterns (with six bad practices already
identified). Based on this, we will propose refactoring actions and evaluate their
impact on WADL discoverability using our registry.*6

7. Conclusion

WSDL documents play a very important role in enabling third-party consumers
to understand, discover and reuse Web Services.? It has been shown that these
requirements can be fulfilled provided some common WSDL anti-patterns are
avoided/corrected when deriving WSDL documents by applying specific refactor-
ings. However, an inherent prerequisite for applying these guidelines is that services
are built in a contract-fist manner, by which developers have more control on the
WSDL of their services. However, the industry mostly relies on code-first Web Ser-
vice development, which means that developers first build service implementations
and then generate the corresponding service contracts from the code.

We have focused on how to obtain WSDL documents that minimize anti-pattern
occurrences when using code-first. Based on the idea that some quality attributes
of a software can be predicted during development time, we worked on the hypoth-
esis that anti-pattern occurrences can be avoided by considering OO metrics values
from the code implementing services. We used well-established statistical meth-
ods to identify the set of OO metrics that best correlate and explain anti-pattern
occurrences by using a data-set of real Web Services. We also studied the effect of

ghttps: //www.mashape.com/.

1550004-34

Early Improving Code-First Web Services Discoverability

applying simple metric-driven code refactorings to the Web Services of the data-
set on the anti-patterns in the generated WSDLs. Interestingly, we found that
these code refactorings, which are very easy to apply by developers, effectively
reduce anti-patterns and thus improve service contracts. In addition, we quanti-
fied the effect of removing or mitigating anti-patterns based on the abovemen-
tioned source code refactorings on service discovery. As a result, we empirically
confirmed that removing anti-patterns or at least reducing the number of their
occurrences by following this approach allows refactored services to be better ranked
during discovery. This increases service chances of being discovered and, in turn,
consumed.

Acknowledgments

We thank the anonymous reviewers for their constructive comments to improve the
paper. We acknowledge the financial support provided by ANPCyT through grant
PICT-2012-0045.

References

1. E. Agichtein, E. Brill, S. Dumais and R. Ragno, Learning user interaction models
for predicting web search result preferences, in 29th Annual Int. ACM SIGIR Conf.
Research and Development in Information Retrieval (SIGIR ’06), Seattle, Washing-
ton, USA, pp. 3-10 (ACM Press, NY, 2006).

2. J. Al Dallal, Measuring the discriminative power of object-oriented class cohesion
metrics, IEEE Trans. Softw. Eng. 37 (2011) 788-804.

3. K. Becker, J. Pruyne, S. Singhal, A. Lopes and D. Milojicic, Automatic determination
of compatibility in evolving services, Int. J. Web Serv. Res. 8 (2011) 21-40.

4. M. Berén, H. Bernardis, E. Miranda, D. Riesco, M. J. A. Pereira and P. Henriques,
Wsdlud: A metric to measure the understanding degree of wsdl descriptions, in Symp.
Languages, Applications and Technologies (SLATe’ 2015) (Universidade Complutense
de Madrid, 2015).

5. M. B. Blake and M. F. Nowlan, Taming Web Services from the wild, IEEE Internet
Comput. 12 (2008) 62-69.

6. M. Campbell-Kelly, The rise, fall, and resurrection of software as a service, Commun.
ACM 52(5) (2009) 28-30.

7. S. Chidamber and C. Kemerer, A metrics suite for object oriented design, IEEE Trans.
Softw. Eng. 20(6) (1994) 476-493.

8. Z. Cong and A. Fernandez, Semantic web services in agreement technologies, in
Agreement Technologies, ed. S. Ossowski, Governance and Technology Series, Vol. 8
(Springer, Netherlands, 2013), pp. 137-148.

9. M. Crasso, J. M. Rodriguez, A. Zunino and M. Campo, Revising WSDL documents:
Why and how, IEEE Internet Comput. 14(5) (2010) 30-38.

10. M. Crasso, A. Zunino and M. Campo, Combining query-by-example and query expan-
sion for simplifying Web service discovery, Inf. Syst. Front. 13 (2011) 407-428.

11. M. Crasso, A. Zunino and M. Campo, A survey of approaches to Web service discovery
in service-oriented architectures, J. Database Manage. 22(1) (2011) 103-134.

12. X. Dong, A. Y. Halevy, J. Madhavan, E. Nemes and J. Zhang, Simlarity search for
Web services, in 81st International Conference on Very Large Data Bases (VLDB

1550004-35

C. Mateos et al.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

2004), eds. M. A. Nascimento, M. T. Ozsu, D. Kossmann, R. J. Miller, J. A. Blakeley
and K. B. Schiefer (Morgan Kaufmann, Toronto, Canada, 2004), pp. 372-383.

M. O. Elish, A. H. Al-Yafei and M. Al-Mulhem, Empirical comparison of three metrics
suites for fault prediction in packages of object-oriented systems: A case study of
eclipse, Adv. Eng. Softw. 42(10) (2011) 852-859.

J. Erickson and K. Siau, Web service, service-oriented computing, and service-
oriented architecture: Separating hype from reality, J. Database Manag. 19(3) (2008)
42-54.

T. Erl, SOA Principles of Service Design (Prentice Hall. 2007).

J. Fan and S. Kambhampati, A snapshot of public Web Services, SIGMOD Record
34(1) (2005) 24-32.

N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and Practical Approach,
2nd edn. (PWS Publishing Co., Boston, 1998).

A. Flores and M. Polo, Testing-based process for component substitutability, Softw.
Test. Verif. Reliab. 22(8) (2012) 529-561.

M. Garriga, A. Flores, C. Mateos, A. Zunino and A. Cechich, Service selection based
on a practical interface assessment scheme, Int. J. Web Grid Serv. 9(4) (2013) 369
393.

T. Gyimothy, R. Ferenc and I. Siket, Empirical validation of object-oriented metrics
on open source software for fault prediction, IEEE Trans. Softw. Eng. 31(10) (2005)
897-910.

R. Harrison, S. J. Counsell and R. V. Nithi, An evaluation of the mood set of object-
oriented software metrics, IEEE Trans. Softw. Eng. 24(6) (1998) 491-496.

A. Hef, E. Johnston and N. Kushmerick, ASSAM: A tool for semi-automatically
annotating semantic Web Services, in Int. Semantic Web Conf., Lecture Notes in
Computer Science, Vol. 3298, pp. 320-334.

X. Jiang and Y. Li, Web service matching based on natural semantic annotation, Inf.
Technol. J. 12 (2013) 857-861.

M. B. Juric, A. Sasa, B. Brumen and I. Rozman, WSDL and UDDI extensions for
version support in Web Services, J. Syst. Softw. 82(8) (2009) 1326-1343.

B. Laxmaiah, G. S. Reddy, L. S. Shankar, L. C. Sekhar and A. D. Kumar, Behavior
evolution of Web Services with dynamic adaptation, Int. J. Comput. Trends Technol.
4(1) (2013) 13-22.

S.-H. Li, S.-M. Huang, D. C. Yen and C.-C. Chang, Migrating legacy information
systems to web services architecture, J. Database Manag. 18(4) (2007) 1-25.

C. Mateos, M. Crasso, J. M. Rodriguez, A. Zunino and M. Campo, Measuring the
impact of the approach to migration in the quality of web service interfaces, Enterp.
Inf. Syst. 9(1) (2015) 58-85.

C. Mateos, M. Crasso, A. Zunino and J. L. Ordiales Coscia, Detecting WSDL bad
practices in code-first Web Services, Int. J. Web Grid Serv. 7 (2011) 357-387.

C. Mateos, J. M. Rodriguez and A. Zunino, A tool to improve code-first web ser-
vices discoverability through text mining techniques, Softw., Prac. Exp. 45(7) (2015)
925-948.

C. McMillan, M. Grechanik, D. Poshyvanyk, C. Fu and Q. Xie, Exemplar: A source
code search engine for finding highly relevant applications, IEEE Trans. Softw. Eng.
38(5) (2012) 1069-1087.

P. Meirelles, C. Santos, J. Miranda, F. Kon, A. Terceiro and C. Chavez, A study of the
relationships between source code metrics and attractiveness in free software projects,
in Brazilian Symp. Software Engineering (SBES ’10), pp. 11-20, Los Alamitos, CA,
USA (IEEE Computer Society, 2010).

1550004-36

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.
52.

Early Improving Code-First Web Services Discoverability

G. A. Miller, Wordnet: A lexical database for english, Commun. ACM 38(11) (1995)
39-41.

H. R. Motahari Nezhad, G. Y. Xu and B. Benatallah, Protocol-aware matching of
web service interfaces for adapter development, in 19th Int. Conf. World Wide Web
(WWW’10), pp. 731-740, New York, NY, USA (ACM, 2010).

S. Murad, Using semantic services in service-oriented information systems, IEEE
Potentials 32(1) (2013) 36—46.

S.-C. Oh and D. Lee, Wsben: A Web Services discovery and composition benchmark
toolkit, Int. J. Web Serv. Res. 6(1) (2009) 1-19.

J. L. Ordiales Coscia, C. Mateos, M. Crasso and A. Zunino, Anti-pattern free code-
first Web Services for state-of-the-art Java WSDL generation tools, Int. J. Web Grid
Serv. 9(2) (2013) 107-126.

M. Papazoglou and W.-J. Heuvel, Service oriented architectures: Approaches, tech-
nologies and research issues, VLDB J. 16(3) (2007) 389-415.

M. Papazoglou, P. Traverso, S. Dustdar and F. Leymann, Service-oriented computing;:
State of the art and research challenges, Computer 40(11) (2007) 38-45.

M. Papazoglou and W.-J. van den Heuvel, Service-oriented design and development
methodology, Int. J. Web Eng. Technol. 2(4) (2006) 412-442.

J. Pasley, Avoid XML schema wildcards for Web Service interfaces, IEFEE Internet
Comput. 10 (2006) 72-79.

M. Perepletchikov, C. Ryan, K. Frampton and H. W. Schmidt, Formalising service-
oriented design, J. Softw. 3(2) (2008) 1-14.

D. Radjenovi¢, M. Hericko, R. Torkar and A. Zivkovi¢, Software fault prediction
metrics: A systematic literature review, Inf. Softw. Technol. 55(8) (2013) 1397-
1418.

J. M. Rodriguez, M. Crasso and A. Zunino, An approach for web service discoverabil-
ity anti-pattern detection, Vol. 12 (Rinton Press, Incorporated, Paramus, NJ, 2013),
pp. 131-158.

J. M. Rodriguez, M. Crasso, A. Zunino and M. Campo, Improving Web Service
descriptions for effective service discovery, Science of Computer Programming 75(11)
(2010) 1001-1021.

J. M. Rodriguez, C. Mateos and A. Zunino, Assisting developers to build high-quality
code-first web service apis, J. Web Eng. 14(3&4) (2015) 251-285.

J. M. Rodriguez, A. Zunino, C. Mateos, F. O. Segura and E. Rodriguez, Improv-
ing REST service discovery with unsupervised learning techniques, 9th Int. Conf.
Complez, Intelligent, and Software Intensive Systems (Blumenau, Brazil, 2015).

D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg, A. Polleres, C.
Feier, C. Bussler and D. Fensel, Web Service modeling ontology, Appl. Ontol. 1(1)
(2005) 77-106.

G. Salton, A. Wong and C. S. Yang, A vector space model for automatic indexing,
Commun. ACM 18(11) (1975) 613-620.

Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne and X. Xu, Web services
composition: A decade’s overview, Inf. Sci. 280 (2014) 218-238.

K. Sivashanmugam, K. Verma, A. P. Sheth and J. A. Miller, Adding semantics to
Web Services standards, in Int. Conf. Web Services, pp. 395-401, Las Vegas, NV,
USA (CSREA Press, 2003).

D. Spinellis, Tool writing: A forgotten art? IEEE Software 22 (2005) 9-11.

P. Sripairojthikoon and T. Senivongse, Concept-based readability of web services
descriptions, in 2018 15th Int. Conf. Advanced Communication Technology (ICACT),
pp. 853-858 (IEEE, 2013).

1550004-37

C. Mateos et al.

53.

54.

55.

56.

57.
58.

59.

P. Sripairojthikoon and T. Senivongse, Concept-based readability measurement and
adjustment for web services descriptions, in 16th Int. Conf. Advanced Communication
Technology (ICACT), pp. 378-388 (IEEE, 2014).

S. Stigler, Fisher and the 5% level, Chance 21 (2008) 12-12.

E. Stroulia and Y. Wang, Structural and semantic matching for assessing Web Service
similarity, Int. J. Coop. Inf. Syst. 14(4) (2005) 407-438.

The Apache Software Foundation, Commons-math: The Apache commons mathemat-
ics library, 2010, http: //commons.apache.org/math.

F. F. Tsui and O. Karam, Essentials of Software Engineering (Prentice Hall, 2006).
R. A. Van Engelen and K. A. Gallivan, The gSOAP toolkit for Web Services and
peer-to-peer computing networks, in 2nd IEEE/ACM Int. Symp. Cluster Computing
and the Grid (CCGRID ’02), pp. 128-135, Washington, DC, USA (IEEE Computer
Society, 2002).

B. Zeigler and H. Sarjoughian, Service-based software systems, in Guide to Modeling
and Simulation of Systems of Systems, Simulation Foundations, Methods and Appli-
cations (Springer, London, 2013), pp. 205-230.

1550004-38

