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Abstract. We investigate the expressive power of memory logics. These are modal logics ex-
tended with the possibility to store (or remove) the current node of evaluation in (or from) a memory,
and to perform membership tests on the current memory. From this perspective, the hybrid logic
HL(↓), for example, can be thought of as a particular case of a memory logic where the memory is
an indexed list of elements of the domain.

This work focuses in the case where the memory is a set, and we can test whether the current node
belongs to the set or not. We prove that, in terms of expressive power, the memory logics we discuss
here lie between the basic modal logic K and HL(↓). We show that the satisfiability problem of
most of the logics we cover is undecidable. The only logic with a decidable satisfiability problem is
obtained by imposing strong constraints on which elements can be memorized.

§1. Modal logics and memory logics. Nowadays, the term modal logics loosely refers
to an extremely wide variety of languages, which are used in many different applica-
tions (see e.g., Blackburn et al., 2006). Actually, the fact that the number of members
in this family keeps constantly increasing is one of the defining characteristic of the field.
While most modal logics have certain general aspects in common (e.g., they are usually
interpreted in terms of relational structures and they are computationally well behaved),
there usually are as many modal logics satisfying any of these “characterizing properties”
as there are modal logics not honoring them. As a result, it is very hard indeed to come up
with a proper definition of what a modal logic is. Perhaps one of the few general traits of
the field is the desire to investigate languages specially tailored for specific tasks.

In this article we investigate the expressive power of a family of modal logics called
memory logics, which extend both the semantics and the syntax of the classical modal
logic. Many logical properties of memory logics have been investigated in recent arti-
cles. The original idea was introduced in Areces (2007). Areces et al. (2009a) investigate
tableau algorithms and model checking for memory logics, while Areces et al. (2009b) dis-
cuss axiomatic completeness results. In this article we extend results originally presented
in Areces et al. (2008) and provide full proofs.
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We will introduce and motivate memory logics now. We need first some basic definitions.
Let S be a first-order relational signature (i.e., a first-order signature without function and
constant symbols), and let M = 〈D, I〉 be a relational structure interpreting S (i.e., D
is a nonempty set and I is an interpretation function that assigns to all relational symbols
in S a relation of the correct arity). It is well known that the basic modal language K can
be interpreted on M (see Blackburn et al., 2001 for details). When interpreting modal
formulas on relational structures, elements in the domain are sometimes called states, and
the interpretations of relational symbols are called accessibility relations.

It is often said that modal languages provide an internal perspective of the structures
over which they are evaluated. As Blackburn et al. (2001) put it,

“a modal formula [can be seen as] a little automaton standing at some
state in a relational structure, and only permitted to explore the structure
by making journeys to neighboring states.”

It is natural to think of a modal formula as exploring the structure, but what about
changing it? Suppose we want to grant our little automaton the additional power to modify
the structure during its exploratory trips. This question is not new, and it has resulted in
different proposals of what are called dynamic logics.

Consider, for example, the task of assigning semantics to a programming language.
Clearly, the different instructions of the language change the computational state. It is then
natural to define their semantics by specifying which changes each atomic operation of the
language introduces. This idea is at the core of formalisms like Hoare–Floyd logics (Floyd,
1967; Hoare, 1969) which include, for example, special operators to indicate the state of
variables before and after a given instruction.

As a second example, consider the area of linguistics called dynamic semantics. One of its
fundamental claims is that the standard truth-conditional view of sentence meaning—which
is the result of using classical logic as representation languages—does not do sufficient
justice to the fact that uttering a sentence changes the context it was uttered in. Deriving
inspiration, in part, from work on the semantics of programming languages, dynamic
semantic theories have developed several variations on the idea that the meaning of a
sentence should be equated with the changes it makes to a context. Different dynamic logics
like those introduced by Groenendijk & Stokhof (1991a, 1991b) try to capture these ideas.

As yet a third example with an ample literature, we can mention dynamic epistemic
logics (Plaza, 1989; Gerbrandy, 1999; van Benthem, 2001, 2005; van Benthem et al.,
2006; van Ditmarsch et al., 2007). These logics model the evolution of the knowledge of
epistemic agents via updates to the model representing their epistemic state. For example,
some of these languages represent the act of an agent updating its epistemic state with the
information that ϕ is true by eliminating all alternative epistemic states where ¬ϕ holds.

Our last family of examples come from the area of temporal logics for verification.
In this area, it is many times necessary to model time-critical systems that depend on
quantitative rather than qualitative properties. Many temporal logics introduced for this
task use explicit global clocks which are accessed and controlled through logical opera-
tors. Examples of such logics are Explicit Clock Temporal Logic (XCTL) (Harel et al.,
1990), half-order logics (Alur & Henzinger, 1989; Henzinger, 1990), and timed and metric
temporal logics (Alur et al., 1993, 1996; Koymans, 1990; Ouaknine & Worrell, 2005).

By contrast, other logics which are also called dynamic are not dynamic in the sense
mentioned above, the main example being Propositional Dynamic Logic (PDL) (Harel,
1984). In PDL formulas are evaluated in a model but they cannot modify it (even though
the language does include special operators to verify that certain property holds in a given
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state and continue evaluation accordingly, which provide extended expressivity (Berman &
Paterson, 1981)).

Memory logics can be seen as an attempt to investigate some of the common character-
istics of all these logics, in the simplest possible set up. Going back to our little automaton,
suppose we extend our definition of a model to a tripleM = 〈D, I, M〉, where M is an
arbitrary subset of D. We can think of M as a memory where the automaton can store
states that are considered particularly interesting. Defining the semantics of this operator
is straightforward. Let us write 〈D, I, M〉, w |� ϕ for w ∈ D and ϕ a formula to indicate
that ϕ is true at w in the relational structure 〈D, I〉 extended with the memory M . Let us
use ©r (‘remember’) to represent the memorize operator. We can then define

〈D, I, M〉, w |� ©r ϕ iff 〈D, I, M ∪ {w}〉, w |� ϕ.

In other words, ©r is an instruction to modify the memory of the model, and ϕ is
evaluated in the modified structure. The operation ©r by itself is totally useless. If we cannot
access the information stored in M , ©r ϕ is equivalent to ϕ. Let us add then an operator ©k
(‘known’) that checks whether the current state has been previously remembered:

〈D, I, M〉, w |� ©k iff w ∈ M.

This simple language gives us already new tautologies. For example, it is easy to see
that the formula ©r©k is always true. It is also not difficult to see (using well-known results
from modal logic) that the memory logic operator gives us additional expressivity. Let
us remind the semantics of the standard (unary) modal operator diamond 〈r〉 of the basic
modal language 1. Assuming that I(r) is a binary relation, we define:

〈D, I, M〉, w |� 〈r〉ϕ iff for some w′ ∈ D s.t. (w,w′) ∈ I(r) 〈D, I, M〉, w′ |� ϕ.

That is, the formula 〈r〉ϕ is true in a state w if the formula ϕ is true in an r -successor.
Now, the memory logic formula ©r 〈r〉©k is true in a state when evaluated on a model with
an empty memory if and only if it is self reachable via the accessibility relation I(r).
That is,

〈D, I, ∅〉, w |� ©r 〈r〉©k iff (w,w) ∈ I(r).

As formulas of the basic modal language have the tree model property (i.e., a formula
is satisfiable if and only if it is satisfiable in model which is a tree, and hence it does not
contain reflexive loops (Blackburn et al., 2001)), this property cannot be expressed in the
basic modal language.

In the same spirit of the operators ©r and ©k introduced above, we can naturally define
operators that modify any element of a model (adding or deleting states or modifying the
interpretation function). In this paper we will restrict ourselves to operators that can access
and modify only the memory M (even though we will briefly discuss possible alternative
structures for M). In Section §2 we will formally introduce the syntax and semantics of
the memory logics we will investigate. In Section §3 we will define suitable notions of
model equivalence for each language, which we will use in Section §4 to investigate their
expressive power. In Section §5 we will show that most of the languages obtained, even
in this simple setup, are undecidable. We show one case where decidability is regained
by imposing a very strict ‘memorization policy’. Section §6 finishes the paper with our
conclusions and ideas for future work.

1 Of course, the operator is usually defined on models without memory. We will define it so that it
does not interact with the memory M .
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We close this section with some additional details on how memory logics were originally
conceived, and how they relate to binding and hybrid logics.

1.1. Memory logics and hybrid logics, or how memory logics were born. Memory
logics where initially defined for purely theoretical reasons (related to questions concerning
binding and decidability), but it soon became clear that they could provide an interest-
ing perspective on the question of how a formula can modify the model in which it is being
evaluated, as we discussed above.

Memory logics were originally inspired by hybrid logics containing binders likeHL(↓)
(see Areces & ten Cate, 2006). But while ↓ was introduced to investigate dynamic naming
of elements in a model, memory logics include operators to store and retrieve informa-
tion from some kind of information structure or memory. In any case, once we take the
appropriate point of viewHL(↓) can be considered the first memory logic.

Let us start by formally introducing HL(↓). Assume a signature S = 〈PROP, NOM,
REL〉, where PROP, NOM, and REL are countably infinite, pairwise disjoint sets of propo-
sitional, nominal, and relational symbols respectively. For simplicity, and as it is usually
done with modal languages, we will only introduce unary modal operators2. The syntax of
HL(↓) is defined as follows

ϕ ::= � | p | i | ¬ϕ | ϕ ∧ ϕ | 〈r〉ϕ | ↓i.ϕ,

where p ∈ PROP, i ∈ NOM, and r ∈ REL. We can see that the language of HL(↓) is the
language of the basic modal logic K (see Blackburn et al., 2001 for details) extended with
nominals and ↓i .

Semantically, HL(↓) is also very close to K. HL(↓)-formulas are interpreted on rela-
tional structures extended with an assignment function to interpret nominals. Formally, a
model for HL(↓) is a tuple 〈D, I, g〉 where g : NOM → D is an assignment function. I
assigns a subset of D to elements in PROP, and a binary relation on D to elements of REL.
Given 〈D, I, g〉, the semantic conditions forHL(↓) are defined as:

〈D, I, g〉, w |� � iff always
〈D, I, g〉, w |� p iff w ∈ I(p)
〈D, I, g〉, w |� i iff g(i) = w
〈D, I, g〉, w |� ¬ϕ iff 〈D, I, g〉, w �|� ϕ
〈D, I, g〉, w |� ϕ ∧ ψ iff 〈D, I, g〉, w |� ϕ and 〈D, I, g〉, w |� ψ
〈D, I, g〉, w |� 〈r〉ϕ iff there is w′ s.t. (w,w′) ∈ I(r) and 〈D, I, g〉, w′ |� ϕ
〈D, I, g〉, w |� ↓i.ϕ iff 〈D, I, g′〉, w |� ϕ where g′( j) = g( j) for j �= i

and g′(i) = w.

One way of looking at the semantic condition for ↓i.ϕ is that it dynamically creates a name
for the current state (by linking the nominal i to it), so that we can later refer to it during
the evaluation of ϕ. An alternative perspective is to see ↓i as an instruction to modify the
model (by storing the current point of evaluation into i), and continue the evaluation of ϕ in
the modified model. The difference between the two perspectives is subtle, but important
for this article. In the latter, we are considering the assignment g as a kind of memory in our
model, while ↓i and i are the tools we use to access the memory for reading and writing.
The question then presents itself naturally: are there other kinds of interesting memory
structures and memory operators?

2 Actually, we will restrict ourselves to unary modalities through the article.
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The assignment g is a very sophisticated memory structure: it has unbounded size, it
provides direct access to all its memory cells, and each stored element can be unequivocally
retrieved. The memory M we discussed above, together with the operators ©r and ©k ,
provides a much simpler memory structure. Intuitively, these operators cannot discern
between different states stored in M , while an assignment g keeps a complete mapping
between states and nominals. But notice that ©r is a binder, and effectively binds instances
of ©k appearing in its scope. In other words, as we can see ↓i and nominals as memory
operators which store and retrieve information from a memory structure, we could see ©r
as a binder that binds occurrences of ©k in its scope. As the memory structure used by
©r and ©k has less discerning power, we would expect that the logic containing the new
operators is less expressive thanHL(↓).

§2. Syntax and semantics for memory logics. In this section we will introduce the
syntax and semantics of the different memory logics that we will discuss in the article, and
fix some terminology.

All the languages we will introduce are obtained by extending (in some cases, also
slightly modifying) the syntax and semantics of the basic modal logic. Furthermore, with
the exception of one case in which we discuss using a stack as a memory container, all
the logics we analyze have the operators ©r and ©k . Therefore, for notational convention,
we will use ML (for memory logics) as a prefix indicating a language that uses a set
as a container, and that includes ©r and ©k . Then we will list the additional operators
included in the language. Since the usual semantics of the diamond operator is going to be
slightly modified in some cases, we will also include the diamond explicitly in this list. For
example,ML(〈r〉) is basic modal logic (i.e., with the usual diamond operator) extended
with ©r and ©k .

DEFINITION 2.1 (Syntax). Let PROP = {p1, p2, . . . } (the propositional symbols) and
REL = {r1, r2, . . . } (the relational symbols) be disjoint, countable infinite sets. The set
FORMS of formulas in the signature 〈PROP, REL〉 is defined as:

FORMS ::= � | p | ¬ϕ | ϕ1 ∧ ϕ2 | 〈r〉ϕ | 〈〈r〉〉ϕ | ©k | ©r ϕ

where p ∈ PROP, r ∈ REL, and ϕ, ϕ1, ϕ2 ∈ FORMS. The other standard operators are
introduced via definitions. In particular [r ]ϕ := ¬〈r〉¬ϕ and [[r ]]ϕ := ¬〈〈r〉〉¬ϕ.

Throughout this article we are going to use the usual notion of modal depth of a formula,
that is, the deepest nesting of modal operators. Modal formulas without modal operators
have a modal depth of zero.

DEFINITION 2.2 (Semantics). Given a signature S = 〈PROP, REL〉, a model is a tuple
M = 〈D, I, M〉 where D is a nonempty set, I is an interpretation function such that
I(p) ⊆ D for p ∈ PROP and I(r) ⊆ D × D for r ∈ REL. M ⊆ D will be called the
memory of the model. For notational convenience, let us assume fixed for the rest of the
article the modelsM = 〈D, I, M〉,M1 = 〈D1, I1, M1〉, andM2 = 〈D2, I2, M2〉.

Given a model M and a list of states [w1, . . . , wn], wi ∈ D, we define M[w1, . . . ,
wn] = 〈D, I, M ∪ {w1, . . . , wn}〉. Now, letM be a model and w ∈ D, then the semantics
for the different operators is defined as:

M, w |� � iff always

M, w |� p iff w ∈ I(p)



THE EXPRESSIVE POWER OF MEMORY LOGICS 295

M, w |� ¬ϕ iff M, w �|� ϕ

M, w |� ϕ ∧ ψ iff M, w |� ϕ andM, w |� ψ

M, w |� 〈r〉ϕ iff there is w′ such that (w,w′) ∈ I(r) andM, w′ |� ϕ

M, w |� 〈〈r〉〉ϕ iff there is w′ such that (w,w′) ∈ I(r) andM[w], w′ |� ϕ

M, w |� ©r ϕ iff M[w], w |� ϕ

M, w |� ©k iff w ∈ M.

Given a modelM and w ∈ D, the set of propositions that are true at a given state w
is defined as props(w) = {p ∈ PROP | w ∈ I(p)}. Given two modelsM1 andM2, and
states w1 ∈ D1 and w2 ∈ D2, we say that they agree when props(w1) = props(w2) and
w1 ∈ M1 iff w2 ∈ M2.

Given a modelM and w in the domain ofM, we call 〈M, w〉 a pointed model.

A particularly interesting class of models to investigate is the class C∅ = {M | M =
〈D, I, ∅〉}, that is, the class of models where the memory is empty. Since we are working
with logics that deal with the notion of state, it is natural to consider starting to evaluate
a formula in a model of C∅. It is over C∅ that the operators ©k and ©r have the most
natural interpretation, and as we will see in the next sections, the restriction to this class
has important effects on expressivity and decidability. It is worth noting that in this case
a formula is initially evaluated in a model of C∅, but during the evaluation the model can
change to one with nonempty memory. We will put an empty set as a subscript on the prefix
ML every time we work with C∅ as the class of initial models. For example ML(〈r〉)
restricted to this class of initial models isML∅(〈r〉).

We will not consider all possible combinations of operators, since it is not our intention
to be completely exhaustive. We are only going to analyze some combinations that we
consider interesting, and in each section we will indicate the fragments we will be using.
In many cases, the results shown for some fragments can be easily transferred to other
fragments, not explicitly analyzed.

§3. Model equivalence. In this section we will investigate the notion of model equiv-
alence for some of the memory logics that we introduced. Our goal is to define tools that
will help us to investigate their expressive power. In particular, we will define a notion of
model equivalence in terms of Ehrenfeucht–Fraı̈ssé games (Ebbinghaus et al., 1984) and
then introduce an alternative, but equivalent, notion in terms of bisimulations.

DEFINITION 3.1 (Ehrenfeucht–Fraı̈ssé Games). LetM1 andM2 be two models and let
w1 ∈ D1 and w2 ∈ D2.

An Ehrenfeucht–Fraı̈ssé game EF(M1,M2, w1, w2) is defined as follows. There are
two players called Spoiler and Duplicator. Duplicator immediately looses the game
EF(M1,M2, w1, w2) if w1 and w2 do not agree (i.e., either props(w1) �= props(w2)
or one of the states is in the memory and the other is not). Otherwise, the game starts,
with the players moving alternatively. Spoiler always starts a turn of the game choosing in
which model he will make a move. Let us set s = 1 and d = 2 in case he choosesM1;
otherwise, let s = 2 and d = 1.

For the logicsML(〈r〉) andML∅(〈r〉), the possible moves are as follows:

1. Memorize: Spoiler extends Ms to Ms ∪ {ws}. The next turn then starts with EF
(M1[w1],M2[w2], w1, w2) (Duplicator does nothing in this case).
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2. Chose Successor: Spoiler chooses r ∈ REL, and vs , an Is(r)-successor of ws . If ws

has no Is(r)-successors, then Duplicator wins. Duplicator has to chose vd , an Id(r)-
successor of wd , such that vs and vd agree. If there is no such successor, Spoiler wins.
Otherwise the game continues with EF(M1,M2, v1, v2).

The moves for the logics ML(〈〈r〉〉) and ML∅(〈〈r〉〉) are similar, except that during
a chose successor step Spoiler always remembers the current state, that is, the game
continues with EF(M1[w1],M2[w2], v1, v2) after Duplicator response.

In the case of an infinite game, Duplicator wins. Note that with this definition, exactly
one of Spoiler or Duplicator wins each game.

Given two pointed models 〈M1, w1〉 and 〈M2, w2〉 we write 〈M1, w1〉 ≡EF 〈M2, w2〉
when Duplicator has a winning strategy for EF(M1,M2, w1, w2) (the exact type of game
involved will usually be clear from the context, and we will write ≡EF

L when we need to
specify that the game corresponds to the language of the logic L).

Even though in the rest of the article we will use the game notion of model equivalence,
a structural notion can be given that is closer to the usual notion of bisimulation for modal
logics. Both definitions are equivalent, but depending on the context, one can be more
natural than the other (e.g., in Mera (2009) the structural notion is used to prove results
related to Craig’s interpolation).

DEFINITION 3.2 (Bisimulations). LetM1 andM2 be two models. Let ∼ be a binary
relation between ℘(D1) × D1 and ℘(D2) × D2.

ForML(〈r〉) andML∅(〈r〉) a bisimulation satisfies the following properties:

(nontriv) ∼ is not empty.
(agree) If 〈M, m〉 ∼ 〈N , n〉, then m and n agree.
(forth) If 〈M, m〉 ∼ 〈N , n〉 and (m, m′) ∈ I1(r), then there exists n′ ∈ D2 such that

(n, n′) ∈ I2(r) and 〈M, m′〉 ∼ 〈N , n′〉.
(back) If 〈M, m〉 ∼ 〈N , n〉 and (n, n′) ∈ I2(r), then there exists m ′ ∈ D1 such that

(m, m′) ∈ I1(r) and 〈M, m′〉 ∼ 〈N , n′〉.
(remember) If 〈M, m〉 ∼ 〈N , n〉, then 〈M ∪ {m}, m〉 ∼ 〈N ∪ {n}, n〉.

For the logicsML(〈〈r〉〉) andML∅(〈〈r〉〉) the (back) and (forth) conditions are replaced
by:

(mforth) If 〈M, m〉 ∼ 〈N , n〉 and (m, m′) ∈ I1(r), then there exists n′ ∈ D2 such that
(n, n′) ∈ I2(r) and 〈M ∪ {m}, m′〉 ∼ 〈N ∪ {n}, n′〉.

(mback) If 〈M, m〉 ∼ 〈N , n〉 and (n, n′) ∈ I2(r), then there exists m′ ∈ D1 such that
(m, m′) ∈ I1(r) and 〈M ∪ {m}, m′〉 ∼ 〈N ∪ {n}, n′〉.
Given two pointed models 〈M1, w1〉 and 〈M2, w2〉 we write 〈M1, w1〉 ↔ 〈M2, w2〉 if

there is a bisimulation linking 〈M1, w1〉 and 〈M2, w2〉. Again, the exact type of bisimula-
tion involved will usually be clear from the context, and we will write ↔L when we need
to specify that the bisimulation corresponds to the logic L.

As we said before, the notions of Ehrenfeucht–Fraı̈ssé games and bisimulations coin-
cide, as indicated in the following theorem.

THEOREM 3.3. Let L ∈ {ML(〈r〉),ML∅(〈r〉),ML(〈〈r〉〉),ML∅(〈〈r〉〉)}. Given two
pointed models 〈M1, w1〉 and 〈M2, w2〉 then 〈M1, w1〉 ≡E F

L 〈M2, w2〉 if and only if
〈M1, w1〉 ↔L 〈M2, w2〉.
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Proof. We will discuss the case only forML(〈r〉) as the proof is similar for languages
containing 〈〈r〉〉.

For the right to left direction, assume that 〈M1, w1〉 ↔ 〈M2, w2〉 and that ∼ is a bisim-
ulation linking 〈M1, w1〉 and 〈M2, w2〉. We will prove that there is a strategy for Duplicator
in the game E F(M1,M2, w1, w2). First note that the game E F(M1,M2, w1, w2) is
well defined, since by (agree), w1 and w2 are agreeing states. We show that there is a
strategy for Duplicator by proving that (1) for any pair of tuples 〈S, w〉 and 〈Q, v〉 such that
〈S, w〉 ∼ 〈Q, v〉, and for any move Spoiler makes in the game E F(M1[S],M2[Q], w, v),
there is always an appropriate answer for Duplicator such that the next step of the game
is E F(M1[S′],M2[Q′], w′, v ′) and 〈S′, w′〉 ∼ 〈Q′, v ′〉. Given the initial assumptions,
the fact that Duplicator has a winning strategy on the game E F(M1,M2, w1, w2) eas-
ily follows from (1). So let us suppose that 〈S, w〉 ∼ 〈Q, v〉 and consider the game
E F(M1[S],M2[Q], w, v). Without loss of generality, we assume that Spoiler chooses
M1 to make his move. There are two kinds of moves Spoiler can do:

• Spoiler make a memorize step, and the game continues with E F(M1[S ∪ {w}],
M2[Q ∪ {v}], w, v). By the (remember) condition, we know that 〈S ∪ {w}, w〉 ∼
〈Q ∪ {v}, v〉.

• Spoiler chooses an r -successor w′ of w. By the (forth) condition (we use (back) here
if Duplicator chooses M2 for his move), there is an r -successor v ′ of v such that
〈S, w′〉 ∼ 〈Q, v ′〉. Using (agree), we know that w′ and v ′ agree, so v ′ is a good
choice for Duplicator. The game continues with E F(M1[S],M2[Q], w′, v ′) and
〈S, w′〉 ∼ 〈Q, v ′〉.

For the other direction, suppose that Duplicator has a winning strategy S on the game
E F(M1,M2, w1, w2). We define ∼ in the following way: 〈S, w〉 ∼ 〈Q, v〉 if and only if
E F(M1[S],M2[Q], w, v) is a reachable state of E F(M1,M2, w1, w2) when Duplica-
tor follows strategy S. We have to prove that the relation ∼ is a bisimulation. Suppose that
〈S, w〉 ∼ 〈Q, v〉.

• The condition (agree) is easy to check.
• To see that the (forth) condition holds, suppose that (m, m′) ∈ I1(r). One possible

move for Spoiler in the game E F(M1[S],M2[Q], w, v) is to choose m′ fromM1,
and because Duplicator uses the winning strategy S, he can answer with a state
v ′ ∈ M2, a successor of v , such that w′ and v ′ agree. Therefore, the next step of
the game is E F(M1[S],M2[Q], w′, v ′), and by definition, 〈S, w′〉 ∼ 〈Q, v ′〉. The
(back) condition is equivalent.

• Finally, to verify the (remember) condition, note that in the game E F(M1[S],
M2[Q], w, v) Spoiler can choose to make a memorize step, and therefore the next
step of the game is E(M1[S ∪ {w}],M2[Q ∪ {v}], w, v). By definition, that means
that 〈S ∪ {w}, w〉 ∼ 〈Q ∪ {v}, v〉.

Therefore, ∼ is actually a bisimulation. Because the state E F(M1,M2, w1, w2) is (triv-
ially) reachable, 〈M1, w1〉 ∼ 〈M2, w2〉 as desired. �

As one could expect, both notions of model equivalence preserve the truth value of
formulas. Given two pointed models 〈M1, w1〉 and 〈M2, w2〉, we write 〈M1, w1〉 ≡L
〈M2, w2〉 if for any formula ϕ in the language of the logic L we have thatM1, w1 |� ϕ
if and only if M2, w2 |� ϕ. Proving then that 〈M1, w1〉 ≡E F

L 〈M2, w2〉 (equivalently
〈M1, w1〉 ↔L 〈M2, w2〉) implies 〈M1, w1〉 ≡L 〈M2, w2〉 only requires a simple in-
duction. Establishing that the notions ≡E F

L , ↔L, and ≡L coincide on image-finite models



298 CARLOS ARECES ET AL.

(i.e., models where each state has only a finite number of successors considering the union
of the accessibility relations) is only slightly harder.

THEOREM 3.4. Let L ∈ {ML(〈r〉),ML∅(〈r〉),ML(〈〈r〉〉),ML∅(〈〈r〉〉)}. Let 〈M1,
w1〉 and 〈M2, w2〉 be two pointed models. Then 〈M1, w1〉 ≡E F

L 〈M2, w2〉 (equivalently,
〈M1, w1〉 ↔L 〈M2, w2〉) implies 〈M1, w1〉 ≡L 〈M2, w2〉. If M1 and M2 are im-
age finite, then 〈M1, w1〉 ≡L 〈M2, w2〉 implies both 〈M1, w1〉 ≡E F

L 〈M2, w2〉 and
〈M1, w1〉 ↔L 〈M2, w2〉.

§4. Expressive power. In this section we compare the expressive power of memory
logics with respect to both modal and hybrid logics. To do this, we will have to find a
natural mapping between models of each logic. Such a mapping is easy to define in the
case of the ML∅ logics, where we only consider models with an empty memory: each
modal model 〈D, I〉 can be identified with the memory model 〈D, I, ∅〉. Similarly, for
sentences of HL(↓) (i.e., formulas where each nominal i appears in the scope of ↓i)
the memory model 〈D, I, ∅〉 can be identified with the hybrid model 〈D, I, g〉 for g an
arbitrary assignment. In other cases, the definition will involve a change in the signature.
But for the moment, assume that we consider two logics L and L′ such that both can be
evaluated over the same class of models (modulo representation issues).

DEFINITION 4.5 (L ≤ L′). We say that L′ is at least as expressive as L (notation
L ≤ L′) if there is a function Tr between formulas of L and L′ such that for every model
M and every formula ϕ of L we have that

M |�L ϕ iffM |�L′ Tr(ϕ),

(here it should be understood that the modelM is seen as a model of L on the left and as
a model of L′ on the right, and that we use in each case the appropriate semantic relation
|�L or |�L′ as required).

We say that L′ is strictly more expressive than L (notation L < L′) if L ≤ L′ but not
L′ ≤ L. And we say that L and L′ are equally expressive (notation L = L′) if L ≤ L′ and
L′ ≤ L.

To improve the presentation of this section, sometimes we are going to present the-
orems that are later subsumed by stronger results (e.g., Theorem 4.8 is subsumed by
Theorem 4.11, and later by Corollary 4.19). The reasons for doing this are in some cases
just for the sake of clarity. In others it is because we believe that the proofs of some results
are interesting by themselves.

4.1. Logics with an initially empty memory. We will compare the logicsML∅ with
the basic modal logic K and the hybrid logic HL(↓). We are going to establish that K <
ML∅(〈〈r〉〉) <ML∅(〈r〉) < HL(↓).

First we are going to show that the freedom to decide when to remember a state gives
ML∅(〈r〉) more expressive power when compared toML∅(〈〈r〉〉).

THEOREM 4.6. ML∅(〈〈r〉〉) <ML∅(〈r〉).
Proof. [ML∅(〈〈r〉〉) ≤ ML∅(〈r〉)]: It is easy to see that there is a translation Tr from

ML∅(〈〈r〉〉) to ML∅(〈r〉)-formulas which maps 〈〈r〉〉ϕ to ©r 〈r〉ϕ and verifies M |� ϕ if
and only ifM |� Tr(ϕ).
[ML∅(〈r〉) �≤ ML∅(〈〈r〉〉)]: Let M1 = 〈{w, v, x}, I1, ∅〉 and M2 = 〈{w, v, x},
I2, ∅〉 such that I1(r) = {(w, v), (v, x), (x, w)}, I2(r) = {(w, v), (v, x), (x, v)}, and
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I1(p) = I2(p) = ∅ for p ∈ PROP as shown below:

We claim 〈M1, w〉 ≡EF
ML(〈〈r〉〉) 〈M2, w〉. As every state in both models has a unique

successor, Duplicator has only one way of playing, which is actually a winning strategy.
Hence 〈M1, w〉 ≡ML(〈〈r〉〉) 〈M2, w〉. But M1, w �|� 〈r〉©r 〈r〉〈r〉©k , while M2, w |�
〈r〉©r 〈r〉〈r〉©k . �

We will now compare the expressive power of memory logics with the basic modal
logic K. It is not difficult to see intuitively that ©r and ©k do bring additional expressive
power into the language of K: with their help we can detect cycles in a given model, while
formulas of K are invariant under unraveling.

THEOREM 4.7. K <ML∅(〈〈r〉〉).
Proof. As K is a csublanguage of ML∅(〈〈r〉〉), K ≤ ML∅(〈〈r〉〉) taking Tr to be the

identity function. To see that ML∅(〈〈r〉〉) �≤ K, let M1 = 〈{w}, I1, ∅〉 with I1(r) =
{(w,w)}, M2 = 〈{u, v}, I2, ∅〉 with I2 = {(u, v), (v, u)}, and I1(p) = I2(p) = ∅ for
p ∈ props be two models as shown below:

The models areK bisimilar (Blackburn et al., 2001). However, they can be distinguished
by theML(〈〈r〉〉)-formula 〈〈r〉〉©k . �

We will now compare the expressive power of memory logics with respect to hybrid log-
ics. The most natural choice for the comparison is the hybrid logic HL(↓). We will prove
that HL(↓) is strictly more expressive thanML∅(〈r〉). Intuitively, ↓ can easily simulate
©r , but ©k does not distinguish between different memorized states (while nominals bound
by ↓ do).

THEOREM 4.8. ML∅(〈r〉) < HL(↓).

Proof. We first prove that ML∅(〈r〉) ≤ HL(↓). We define the translation Tr, taking
ML∅(〈r〉)-formulas over the signature 〈PROP, REL〉 toHL(↓)-sentences over the signature
〈PROP, REL, NOM〉. Tr is defined for any finite set N ⊆ NOM as follows:

TrN (p) = p p ∈ PROP

TrN (©k ) = ∨
i∈N i

TrN (¬ϕ) = ¬TrN (ϕ)
TrN (ϕ1 ∧ ϕ2) = TrN (ϕ1) ∧ TrN (ϕ2)

TrN (〈r〉ϕ) = 〈r〉TrN (ϕ)
TrN (©r ϕ) = ↓i.TrN∪{i}(ϕ) where i /∈ N .

Induction then shows thatM, w |� ϕ iffM, g, w |� Tr∅(ϕ), for any g.
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Now we prove thatHL(↓) is strictly more expressive thanML∅(〈r〉). Let

M1 = 〈{w0, w1, w2, . . . }, I1, ∅〉
M2 = 〈{w0, w1, w2, . . . }, I2, ∅〉
I1(r) = {(n, m) | n �= m} ∪ {(w0, w0)}
I2(r) = I1(r) ∪ {(w1, w1)}

I1(p) = I2(p) = ∅ for p ∈ PROP.

Graphically,

We prove that 〈M1, w0〉 ≡EF
ML∅(〈r〉) 〈M2, w0〉 showing a winning strategy for Duplica-

tor. Intuitively, the strategy is as follows: whenever one player is in 〈M1, w0〉 the other will
be in 〈M2, w0〉 or 〈M2, w1〉, and conversely whenever a player is in 〈M1, wn〉, n > 0,
the other will be in 〈M2, wm〉, m > 1. This is maintained until Spoiler (if ever) decides to
remember a state. Once this is done, then any move leads to a win of Duplicator. Formally,
the winning strategy will have two stages:

1. While Spoiler does not remember any reflexive state, Duplicator plays as follows:
if Spoiler chooses w0 in any model, Duplicator chooses w0 in the other; if Spoiler
chooses wn, n > 0 inM1, Duplicator plays wn+1 inM2; if Spoiler chooses wn, n >
0 inM2, Duplicator plays wn−1 inM1. Notice that with this strategy Spoiler chooses
a reflexive state if and only if Duplicator answers with a reflexive one. This is clearly
a winning strategy.

2. If ever Spoiler decides to remember a reflexive state, Duplicator starts using the
following strategy: if Spoiler selects a state wn , Duplicator answers with an agreeing
state wm of the opposite model. Notice that this is always possible since both wn and
wm see infinitely many nonremembered states and at least one remembered state.

On the other hand, let ϕ be the formula ↓i.〈r〉(i ∧ 〈r〉(¬i ∧ ↓i.〈r〉i)). It is easy to see that
M1, w0 �|� ϕ butM2, w0 |� ϕ. �

We have shown thatML∅(〈r〉) < HL(↓) but the proof seems to intrinsically use infinite
models, in contrast with the proofs for Theorem 4.6, Theorem 4.7, and Theorem 4.8 in
which finite models are used. Actually, ML∅(〈r〉) < HL(↓) even on finite models. For
this purpose we will first introduce a version of the Ehrenfeucht–Fraı̈ssé game presented
in Definition 3.1 where the number of turns is bounded.

DEFINITION 4.9. The n-moves Ehrenfeucht–Fraı̈ssé game for a given logic L, denoted
EFn
L(M1,M2, w1, w2), is the game in which Spoiler can only make n moves in the game

to beat Duplicator. If Duplicator has a strategy to remain undefeated for n moves, he wins
the game and we write 〈M1, w1〉 ≡EFn

L 〈M2, w2〉.
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We will state without a proof the following easy theorem.

THEOREM 4.10. Let L ∈ {ML(〈r〉),ML∅(〈r〉),ML(〈〈r〉〉),ML∅(〈〈r〉〉)}. For any
pair of pointed models, 〈M1, w1〉 ≡EFn

L 〈M2, w2〉 if and only if for every formula ϕ
of L with modal depth n,M1, w1 |� ϕ iffM2, w2 |� ϕ.

Now we can prove the desired result for finite models:

THEOREM 4.11. ML∅(〈r〉) < HL(↓) over the class of finite models.

Proof. We will prove that there is a property ϕ expressible in HL(↓) that cannot be
expressed in ML∅(〈r〉) over finite models. To do this, for every n we will exhibit two
finite modelsMn

1,Mn
2 such thatMn

1, w0 |� ϕ,Mn
2, w0 �|� ϕ but 〈Mn

1, w0〉 ≡EFn

ML∅(〈r〉)
〈Mn

2, w0〉. This implies that there is noML∅(〈r〉)-formula ψ capable of expressing this
property.

Let ϕ = ↓i.〈r〉(i ∧ 〈r〉(¬i ∧ ↓i.〈r〉i)) as in the proof of Theorem 4.8, and let, for n ≥ 1,
Mn

1 = 〈Dn, In
1 , ∅〉 andMn

2 = 〈Dn, In
2 , ∅〉 where

Dn = {w0, . . . , wn+1},
In

1 (r) = {(a, b) | a, b ∈ Dn, a �= b} ∪ {(w0, w0)},
In

2 (r) = In
1 (r) ∪ {(w1, w1)}, and

In
1 (p) = In

2 (p) = ∅ for p ∈ PROP

As an example,M2
1 andM2

2 would be

Clearly, for every n ≥ 1, Mn
1, w0 �|� ϕ and Mn

2, w0 |� ϕ. To prove that 〈Mn
1,

w0〉 ≡EFn

ML∅(〈r〉) 〈Mn
2, w0〉, we will describe Duplicator’s winning strategy:

1. While Spoiler does not remember any reflexive state, Duplicator plays with the
following strategy: whenever Spoiler is in wk , 2 ≤ k ≤ n + 1 in one model,
Duplicator is in an agreeing state wk′ , 2 ≤ k′ ≤ n + 1 in the other one. If one
player is in w0 inMn

1 then the other is in w0 or w1 inMn
2. Finally, if Spoiler plays

w1 in Mn
1, Duplicator plays in an agreeing wk , 2 ≤ k ≤ n + 1 in Mn

2. With this
strategy, Spoiler chooses a reflexive state if and only if Duplicator answers with a
reflexive one, and Duplicator is always able to choose an agreeing state.

2. If ever Spoiler decides to remember a reflexive state, then for every state wi chosen
by Spoiler, Duplicator will always have an agreeing state w j in the other model. This
happens because the models have n + 2 states, and therefore there is always at least
two nonremembered states. At each round the number of unremembered states can
only be decremented by one, and then up to round n both players will always see
remembered and unremembered states from wi and well as from w j .

Because Duplicator wins the game for any n, any candidate ψ ∈ML∅(〈r〉) expressing
ϕ will fail for a sufficiently large n. �
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The HL(↓)-sentence we use in the proofs of Theorem 4.8 and Theorem 4.11 has only
one nominal. Hence, we have actually proved that HL1(↓) �≤ML∅(〈r〉), where HL1(↓)
isHL(↓) restricted to only one nominal. But actually, it is also the case thatML∅(〈r〉) �≤
HL1(↓). More generally, for any fixed number k of nominals, the logics HLk(↓) and
ML∅(〈r〉) are incomparable.

THEOREM 4.12. For any fixed k, the logics HLk(↓) andML∅(〈r〉) are incomparable
in terms of expressive power.

Proof. We will show the proof for k = 1, the general case being similar. HL1(↓) �≤
ML∅(〈r〉) is a direct consequence of the proof of Theorem 4.8.

To proveML∅(〈r〉) �≤ HL1(↓), let M1 = 〈{w1, w2, w3}, I1, ∅〉 with I1(r) = {(wi ,
w j ) | 1 ≤ i, j ≤ 3} and I1(p) = ∅ for p ∈ PROP, and M2 = 〈{w1, w2}, I2, ∅〉 with
I2(r) = {(wi , w j ) | 1 ≤ i, j ≤ 2} I2(p) = ∅ for p ∈ PROP. That is,M1 is a clique of
size 3 whileM2 is a clique of size 2. It is easy to check that 〈M1, w1〉 ≡HL1(↓) 〈M2, w1〉
because they are HL1(↓)-bisimilar as defined in (Areces & ten Cate, 2006). However,
the formula ϕ = ©r 〈r〉(¬©k ∧ ©r 〈r〉¬©k ) distinguishes the models: M1, w1 |� ϕ but
M2, w1 �|� ϕ.

The proof forHLk(↓) is similar, taking cliques of the appropriate size. �

4.2. Erase and forget. As it is natural to define operators that store states in the mem-
ory, we can also introduce operators that delete states from it. In this section we will
investigate their behavior. We extend the memory logics we have been discussing with
two new operators that remove states from the memory. We define both a global operator
©e that completely wipes out the memory, and a local version ©f , which deletes the current
evaluation state.

We extend the syntax of the memory languages to include ©e and ©f :

FORMS ::= � | p | ¬ϕ | ϕ1 ∧ ϕ2 | 〈r〉ϕ | 〈〈r〉〉ϕ | ©k | ©r ϕ | ©e ϕ | ©f ϕ,

were ϕ ∈ FORMS (see Definition 2.1 for details). We also extend the semantics (Defini-
tion 2.2) with the following two conditions:

〈D, I, M〉, w |� ©e ϕ iff 〈D, I, ∅〉, w |� ϕ
〈D, I, M〉, w |� ©f ϕ iff 〈D, I, M \ {w}〉, w |� ϕ.

As we intuitively discussed above, the ©e operator replaces the current memory with the
empty set, while ©f only removes the current state.

In this section we are only going to consider ©e and ©f for classes of models where
the original memory is empty, and with the usual interpretation for the diamond operator.
Hence, following our naming convention, we will refer to these logics adding the new op-
erators to the prefixML. For example,ML∅(〈r〉, ©e , ©f ) is the memory logic augmented
with both ©e and ©f operators.

Clearly, the notions of Ehrenfeucht–Fraı̈ssé game and bisimulation need to be extended
to include these new operators, given that we want model equivalence to preserve the truth
value of formulas.

DEFINITION 4.13. The definition of Ehrenfeucht–Fraı̈ssé game for logics with ©e and
©f extends Definition 3.1 adding two new possible moves. Remember that the current move
is EF(M1,M2, w1, w2), that the turn starts by Spoiler choosing one of the two models,
and that we set s = 1 and d = 2 in case Spoiler choosesM1, and that s = 2 and d = 1
otherwise.
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1. Erase: Spoiler wipes out the memory, setting Ms = Md = ∅. The next turn starts
with EF(〈D1, I1, ∅〉, 〈D2, I2, ∅〉, w1, w2).

2. Forget: Spoiler deletes ws from Ms setting Ms = Ms \{ws}. The next turn starts with
EF(〈D1, I1, M1 \ {w1}〉, 〈D2, I2, M2 \ {w2}〉, w1, w2).

In a similar way we can extend the notion of bisimulation we introduced before.

DEFINITION 4.14. The notion of bisimulation extend the one described in Definition 3.2
with the rules:

(erase) If 〈M, m〉 ∼ 〈N , n〉, then 〈∅, m〉 ∼ 〈∅, n〉.
(forget) If 〈M, m〉 ∼ 〈N , n〉, then 〈M \ {m}, m〉 ∼ 〈N \ {n}, n〉.

Once more, the definitions are modular, each new type of move in the Ehrenfeucht–
Fraı̈ssé, and each new rule for the bisimulation definition corresponds, respectively to the
©e and ©f operators. If one of these operators is added to the language, the corresponding
rule or type of move needs to be added to the corresponding definition of bisimulation or
game in order to preserve the extended language.

Now we can establish the first result regarding these new operators: independently adding
©e and ©f does increase the expressive power.

THEOREM 4.15. ML∅(〈r〉) <ML∅(〈r〉, ©f ) andML∅(〈r〉) <ML∅(〈r〉, ©e ).

Proof. It is trivial to see that both ML∅(〈r〉) ≤ ML∅(〈r〉, ©f ) and ML∅(〈r〉) ≤
ML∅(〈r〉, ©e ) hold using the identity translation. To verify ML∅(〈r〉) �= ML∅(〈r〉, ©f )
andML∅(〈r〉) �=ML∅(〈r〉, ©e ), letM1 andM2 be the models described in the proof of
Theorem 4.8. Recall that 〈M1, 0〉 isML∅(〈r〉)-bisimilar to 〈M2, 0〉.

To see that ML∅(〈r〉) �= ML∅(〈r〉, ©f ), we show that these two pointed models are
distinguishable with aML∅(〈r〉, ©f )-formula. Let

ψ = [r ]©f (〈r〉(©k ∧ 〈r〉©k )).

Intuitively, ψ states that no matter which accessible state we choose, we can move to it,
eliminate it from the memory, and move to an already remembered state which is connected
to some (possibly different) remembered state. Now let

ϕ = ©r 〈r〉(¬©k ∧ ©rψ).

It is clear that M2, 0 |� ϕ, since one can remember the state 0, then move to state 1
(which is not remembered), and remember it leaving the model in the stateM2[0, 1] and
the evaluation state in 1. Then it is easy to see thatM2[0, 1], 1 |� ψ . However, one can
verify that M1, 0 �|� ϕ. Indeed, suppose that, after remembering the state 0, we move
to state n > 0 and we remember it. By the definition of M1, the state n will not be
reflexive. Now, M1[0, n], n �|� ψ because M1[0, n], 0 �|� ©f (〈r〉(©k ∧ 〈r〉©k )), that is,
M1[n], 0 �|� 〈r〉(©k ∧ 〈r〉©k ).

Showing thatML∅(〈r〉) �=ML∅(〈r〉, ©e ) is easier. Let ϕ = ©r 〈r〉(¬©k ∧ ©e©r 〈r〉©k ). It
is not difficult to see thatM2, 0 |� ϕ butM1, 0 �|� ϕ. �

On the other hand, we are still below the expressive power ofHL(↓):
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THEOREM 4.16. ML∅(〈r〉, ©e , ©f ) ≤ HL(↓).

Proof. In line with the proof of Theorem 4.8, we define a truth-preserving translation
from formulas ofML∅(〈r〉, ©e , ©f ) into formulas of HL(↓). To define our translation we
use a finite sequence S of nominals in NOM, where each nominal i in the sequence is
tagged with a superscript r (representing a remember) or with a superscript f (representing
a forget). We use the operation S ◦ i to denote the operation of inserting the element i at
the end of the sequence S. λ stands for the empty sequence.

TrS(p) = p p ∈ PROP

TrS(¬ϕ) = ¬TrS(ϕ)
TrS(ϕ1 ∧ ϕ2) = TrS(ϕ1) ∧ TrS(ϕ2)

TrS(〈r〉ϕ) = 〈r〉TrS(ϕ)
TrS(©r ϕ) = ↓i.TrS◦{ir }(ϕ) where i /∈ S.
TrS(©f ϕ) = ↓i.TrS◦{i f }(ϕ) where i /∈ S.
TrS(©e ϕ) = Trλ(ϕ)
TrS(©k ) = T (S),

where T is a translation from sequences of nominals toML∅(〈r〉, ©e , ©f )-formulas defined
in the following way:

T (λ) = ⊥
T (S ◦ ir ) = i ∨ T (S)

T (S ◦ i f ) = ¬i ∧ T (S).

A simple induction shows thatM, w |� ϕ iffM, g, w |� Trλ(ϕ), for any g. �

COROLLARY 4.17. ML∅(〈r〉, ©e ) ≤ HL(↓) andML∅(〈r〉, ©f ) ≤ HL(↓).

Now we show that ML∅(〈r〉, ©e ) is not more expressive than ML∅(〈r〉, ©f ) using a
game argument as we did forML∅(〈r〉).

THEOREM 4.18. ML∅(〈r〉, ©f ) �≤ML∅(〈r〉, ©e ).

Proof. LetM = 〈{s}∪ω0 ∪ω1 ∪ . . . , I, ∅〉, where each ωi is a different copy of ω, and
I(r) = {(n, m) | n ∈ ωi , m ∈ ω j , i ≤ j} ∪ {(n, s), (s, n) | for all n �= s}, and I(p) = ∅
for p ∈ PROP. Intuitively, the model is as follows

Each ωi is a total relation on the natural numbers and, in addition, all elements of wi are
related to all elements of w j if i < j .

We prove that 〈M, w0〉 ≡EF 〈M, w1〉 forML∅(〈r〉, ©e ), where w0 ∈ ω0 and w1 ∈ ω1.
Given a state w, we define the neighborhood of w as N (w) = {v | (w, v) ∈ I(r)}, and we
say that the neighborhood of a state w is remembered when N (w) ∩ M �= ∅, where M is
the current memory. The strategy we are going to define observes the following invariant:

1. Every time Spoiler has moved to a state w, then Duplicator has answered with an
agreeing state v such that N (w) was not remembered if and only if N (v) was not
remembered.
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2. Every time Spoiler has moved to a state w ∈ ωi , Duplicator has answered with a
state v ∈ ω j . And every time Spoilers has moved to s, Duplicator has moved to s.

It is clear that this invariant holds at the beginning of the game. We will prove that each
step of the strategy preserves the invariant. Remember that at any stage of the game, the
number of remembered states is always finite. Assume that Spoiler is in a state w ∈ ωs and
Duplicator in v ∈ ωd . The strategy for Duplicator is the following:

1. If Spoiler decides to remember w, then the game continues with both w and v
remembered. So both N (w) and N (v) become remembered, and the invariant is
preserved.

2. If Spoiler decides to forget all the states in the model, then both N (w) and N (v)
become not remembered, and the game continues with the invariant preserved.

3. If Spoiler moves to s in one model, Duplicator moves to s in the other model.
Since every state of every ωi is connected to s, this is always a possible move for
Duplicator. Given the invariant and the fact that s is connected with every other state
in the model, it is easy to see that N (s) is not remembered in one model iff N (s) is
not remembered in the other model.

4. If Spoiler plays in a state w′ ∈ ωs′ such that N (w′) is not remembered, then Dupli-
cator chooses ωd ′ and a state v ′ ∈ ωd ′ such that N (v ′) is not remembered. Note that
by definition of neighborhood and the fact that the accessibility relation is reflexive
on ωi , w′ and v ′ are not in the current memory M . Furthermore, this is always a
valid move for Duplicator, given that there are infinitely many ωi connected with ωd

and the fact that the number of remembered states is finite. So Duplicator can always
choose a sufficiently large d ′ and a state v ′ ∈ ωd ′ such that N (v ′) is not remembered.

5. If Spoiler plays in a state w′ ∈ ωs′ such that N (w′) is remembered, then Spoiler
moves to an agreeing state v ′ ∈ ωd ′ . Let us see that there is always such v ′ and
that the invariant is preserved. If N (w) is not remembered, given the shape of the
model, the only possibility is that w′ = s. Therefore v ′ = s, and we have already
seen that the neighborhoods match in this case. The remaining case is when N (w) is
remembered. Given the invariant, we know that N (v) is remembered, so if Spoiler
chooses w′ ∈ M , we know that there is a v ′ ∈ M that Spoiler can move to. In this
case it is trivial to see that N (v ′) is not remembered. On the other hand, if Spoiler
chooses w′ �∈ M , then a safe choice for Duplicator is a nonremembered v ′ ∈ ωd , that
is, a state in the same cluster as v . Since each ωi is infinite, there is always such a v ′,
and also this choice guarantees that N (v ′) is not remembered.

On the other hand, let ϕ = ©r 〈r〉〈r〉(¬©k ∧ 〈r〉©k ∧ ©r 〈r〉(©k ∧ ©f [r ]¬©k )) be a formula
ofML∅(〈r〉, ©f ). It is easy to see thatM, w1 |� ϕ butM, w0 �|� ϕ. �

COROLLARY 4.19. ML∅(〈r〉, ©e ) < HL(↓) andML∅(〈r〉, ©e ) <ML∅(〈r〉, ©e , ©f )

Proof. Trivial given Theorem 4.18 and 4.16. �
To end this subsection we want to observe that there are still some interesting questions

that remain open. For example, the relation betweenHL(↓) andML∅(〈r〉, ©e , ©f ):

Question 1 HL(↓) �=ML∅(〈r〉, ©e , ©f )?

We conjecture that the answer is positive, but we have not found yet a pair of models
(similarly to the proofs of Theorem 4.18 and Theorem 4.8) in which the difference can be
shown. The other natural question is the relation betweenML∅(〈r〉, ©e ) andML∅(〈r〉, ©f ):
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Question 2 ML∅(〈r〉, ©e ) �≤ML∅(〈r〉, ©f )?

Again we conjecture that the answer is positive, and the proof should follow the style of
the proof of Theorem 4.18.

4.3. Memory logics with a stack. In this subsection we want to analyze other memory
containers different than a set. A priori, any kind of data structure could be a suitable
alternative, but it should be clear that certain choices immediately gives back the full
expressive power of HL(↓). For example, suppose we use an unbounded array to store
elements of the domain, and that we combine it with suitable operators that can store and
retrieve elements to and from a given index. The results is nothing other than a different
formulation of assignments and the combination of the ↓ operator and nominals.

In what follows we will discuss a more subtle case. Suppose that we use a stack instead.
That is, our memory structure will still be unbounded, but we are only allowed to store
element at the top, and inspect and remove only the top element. We will show that, even
though the access to the memory structure is restricted, we still have the full expressive
power ofHL(↓). But let us start by formally introducing this language. Its syntax is defined
as follows:

FORMS ::= � | p | ¬ϕ | ϕ1 ∧ ϕ2 | 〈r〉ϕ | (push)ϕ | (pop)ϕ | (top)

where p ∈ PROP, r ∈ REL, and ϕ, ϕ1, ϕ2 ∈ FORMS. The semantic rules for the new
operators are as follows. Assume that S is a stack represented as a list. The symbol λ
represent the empty stack, and if S is a stack and w an element S · w represent the stack
obtained by adding w as top-most element.

〈D, I, S〉, w |� (push)ϕ iff 〈D, I, S · w〉, w |� ϕ
〈D, I, S · v〉, w |� (pop)ϕ iff 〈D, I, S〉, w |� ϕ
〈D, I, λ〉, w |� (pop)ϕ iff never
〈D, I, S · v〉, w |� (top) iff v = w
〈D, I, λ〉, w |� (top) iff never

Let us callMLst
∅ (〈r〉) the logic obtained by adding these operators to the basic modal

logic, and when we restrict ourselves to the class where stacks are initially empty. We
will show thatMLst

∅ (〈r〉) and HL(↓) are equally expressive. Because we are restricting
ourselves to the class of models where the stack is initially empty, models inMLst

∅ (〈r〉)
can be seen as models ofHL(↓) by ignoring the stack.

THEOREM 4.20. MLst
∅ (〈r〉) = HL(↓).

Proof. To prove MLst
∅ (〈r〉) ≤ HL(↓), we define a translation mapping a formula in

MLst
∅ (〈r〉) and a list of nominals N into a formula ofHL(↓).

TrN (p) = p p ∈ PROP

TrN (¬ϕ) = ¬TrN (ϕ)
TrN (〈r〉ϕ) = 〈r〉TrN (ϕ)

TrN (ϕ1 ∧ ϕ2) = TrN (ϕ1) ∧ TrN (ϕ2)
TrN ((push)ϕ) = ↓i.TrN ·i (ϕ) where i /∈ N
TrN ·i ((pop)ϕ) = TrN (ϕ)

Trλ((pop)ϕ) = ⊥
TrN ·i ((top)) = i

Trλ((top)) = ⊥
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We can show by induction in ϕ thatM, w |� ϕ iffM, g, w |� Trλ(ϕ), for any g.

To prove HL(↓) ≤ MLst
∅ (〈r〉) we define a translation mapping an HL(↓)-formula

and a list of nominals N into an MLst
∅ (〈r〉)-formula. The translation coincides with the

translation above for the propositional, negation, conjunction, and modality cases. We
translate ↓ and nominals as follows:

TrN (↓i.ϕ) = (push)TrN ·i (ϕ)

TrN (i) = (pop)|N |−n(top) i ∈ NOM, N [n] = i, ∀m > n : N [m] �= i,

where |N | represents the length of N and N [n] represents the n-th element of N . It can be
shown by induction in ϕ that if ϕ is anHL(↓)-sentence,M, g, w |� ϕ iffM, w |� Trλ(ϕ)
for any g. �

4.4. Nonempty memory classes. Comparing the expressive power between the logics
that start evaluating formulas in C∅ and the ones that use an arbitrary memory poses a
complication because, strictly speaking, each of them uses a different class of models. In
this case it is not as obvious how to define the mapping between each type of models. The
most natural option seems to involve a shift in the signature of the language, in order to
preserve the information stored in the models.

Consider, for example, an arbitrary modelM = 〈D, I, M〉 forML(〈r〉). If we want to
consider it as a model ofML∅(〈r〉) we need to ‘make room’ for the nonempty memory M
somehow. We will do that by consideringM = 〈D, I, M〉 as a model over a signature with
one additional propositional symbol which we will call known and that will be interpreted
as M .

THEOREM 4.21.

1. ML∅(〈r〉) over the signature 〈PROP ∪{known}, REL〉 is equivalent toML(〈r〉) over
the signature 〈PROP, REL〉.

2. ML∅(〈〈r〉〉) over the signature 〈PROP ∪ {known}, REL〉 is equivalent to ML(〈〈r〉〉)
over the signature 〈PROP, REL〉.

Proof. The argument for 2 is exactly the same as the one for 1. Hence, let us prove
ML∅(〈r〉) =ML(〈r〉) (over the appropriate signatures).

We start by associating every model M = 〈D, I, M〉 of ML(〈r〉) over the signature
〈PROP, REL〉 with the model M′ = 〈D, I ′, ∅〉 of ML∅(〈r〉) over the signature 〈PROP ∪
{known}, REL〉 where I ′ is identical to I over PROP and REL and I ′(known) = M .

[ML∅(〈r〉) ≤ ML(〈r〉)]: use the translation Tr that replaces occurrences of the propo-
sitional symbol known by ©k in any formula of ML∅(〈r〉). Clearly for any formula ϕ ∈
ML∅(〈r〉) we have thatM′, w |� ϕ iffM, w |� Tr(ϕ).

[ML(〈r〉) ≤ ML∅(〈r〉)]: use the translation Tr that replaces occurrences of ©k by (©k ∨
known) in any formula ofML(〈r〉). Clearly for any formula ϕ ∈ ML(〈r〉) we have that
M, w |� ϕ iffM′, w |� Tr(ϕ). �

Intuitively, the only thing we need to do is to store I(known) in the starting memory
and vice versa. In the presence of ©f and ©e the memory does not grow monotonically and
hence we cannot simulate it using known ∨ ©k .

Now, the same expressivity hierarchy we proved for logics with empty memory can
be established for logics with arbitrary memory, that is K < ML(〈〈r〉〉) < ML(〈r〉) <
HL(↓):
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THEOREM 4.22.

1. ML(〈〈r〉〉) over the signature 〈PROP, REL〉 is strictly more expressive thanK over the
signature 〈PROP ∪ {known}, REL〉.

2. ML(〈〈r〉〉) <ML(〈r〉).
3. HL(↓) over the signature 〈PROP ∪ {known}, REL, NOM〉 is strictly more expressive

thanML(〈r〉) over the signature 〈PROP, REL〉.
Proof. The proof for 1 is the same as the proof for Theorem 4.7. The proof for 2 is the

same as the proof for Theorem 4.6. To prove 3 we adapt the translation Tr defined in the
proof of Theorem 4.8 with the following clause for ©k :

TrN (©k ) = ( ∨
i∈N i

) ∨ known.

HL(↓) �≤ML(〈r〉) can then be shown using the following models. LetM1 = 〈{w}, I1,
{w}〉 with I1(r) = {(w,w)} and I1(p) = ∅ for p ∈ PROP; andM2 = 〈{u, v}, I2, {u, v}〉
with I2(r) = {(u, v), (v, u)} I2(p) = ∅ for p ∈ PROP.

Duplicator always wins on EF(M1,M2, w, u) and thusM1, w ≡EF
ML(〈r〉) M2, u. On

the other hand,M1, w |� ↓i.〈r〉i butM2, u �|� ↓i.〈r〉i . �

§5. (Un)decidability and the finite model property. In the previous section we
showed memory logics more expressive than K but less expressive than HL(↓) (the only
exception is MLst

∅ (〈r〉), which has the same expressive power than HL(↓)). Given that
K is decidable and HL(↓) undecidable (Areces & ten Cate, 2006), exploring where the
decidability line lies is an intriguing question. The main goal of this section is to investigate
this issue, together with the related question of whether the logic is sufficiently expressive
to force infinite models.

We start by investigating ML(〈〈r〉〉) and ML∅(〈〈r〉〉). We will show that even though
they are equivalent in terms of expressive power when we allow a shift in the signature,
the satisfiability problem for ML(〈〈r〉〉) is decidable (actually PSPACE-complete) while
ML∅(〈〈r〉〉) is already undecidable. As we will show in the proof of Theorem 5.25 the
trick is to use a ‘dirty’ memory. In ML∅(〈〈r〉〉), we are restricted to the class of models
where the memory is always initialized to ∅ and we can’t play this trick anymore. Actually
ML(〈〈r〉〉) is really standing on the decidability line: adding a single nominal toML(〈〈r〉〉)
pushes the satisfiability problem over to undecidability.

5.1. The decidability ofML(〈〈r〉〉). We will first prove that K andML(〈〈r〉〉) are ex-
pressively equivalent over the class of tree models. We will then prove thatML(〈〈r〉〉) has
a tree model property. With those results at hand, decidability and PSPACE-completeness
ofML(〈〈r〉〉) easily follows.

THEOREM 5.23. Restricted to the class of tree models, the logic K over the signature
〈PROP ∪ {known}, REL〉 is equivalent toML(〈〈r〉〉) over the signature 〈PROP, REL〉.

Proof. [K ≤ML(〈〈r〉〉)]: This is a direct corollary of Theorem 4.7.

[ML(〈〈r〉〉) ≤ K]: We start by noticing that in ML(〈〈r〉〉) we can eliminate ©k at modal
depth 0 from a formula like ©r ϕ.

Claim: Let ϕ� be the result of replacing all the occurrences of ©k that are in ϕ ∈ML(〈〈r〉〉)
at modal depth zero by �. ThenM, w |� ©r ϕ if and only ifM, w |� ϕ� .

Proof of Claim. We proceed by induction on ϕ. The case for ©k , the propositional symbols
and booleans are straightforward. We analyze the other cases:
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• ϕ = ©rψ .M, w |� ©r©rψ iffM, w |� ©rψ iff (by inductive hypothesis)M, w |�
ψ� iffM, w |� (ψ�)� iff (by inductive hypothesis)M, w |� ©r (ψ�) iffM, w |�
(©rψ)� .

• ϕ = 〈〈r〉〉ψ .M, w |� ©r 〈〈r〉〉ψ iff (by definition)M[w], w |� 〈〈r〉〉ψ iff (by defini-
tion of �)M[w], w |� (〈〈r〉〉ψ)� iff (by definition)M, w |� (〈〈r〉〉ψ)� . �

Define now the following translation taking ML(〈〈r〉〉)-formulas over the signature
〈PROP, REL〉 to K-formulas over the signature 〈PROP ∪ {known}, REL〉:

Tr(p) = p p ∈ PROP

Tr(©k ) = known
Tr(¬ϕ) = ¬Tr(ϕ)

Tr(ϕ1 ∧ ϕ2) = Tr(ϕ1) ∧ Tr(ϕ2)
Tr(〈〈r〉〉ϕ) = 〈r〉Tr(ϕ)

Tr(©r ϕ) = Tr(ϕ�).

Let ϕ ∈ ML(〈〈r〉〉), and let M = 〈D, I, M〉 be an arbitrary tree model. Let M′ =
〈D, I ′〉 where I ′ is identical to I except that I ′(known) = M . We can prove thatM, w |�
ϕ if and only ifM′, w |� Tr(ϕ).

We proceed by induction on ϕ. The propositional and boolean cases are trivial. The ©k
case is also easy given the definitions. Let us consider ϕ = 〈〈r〉〉ψ . BecauseM is a tree,
the remember operator has no effect beyond modal operators, so M, w |� 〈〈r〉〉ψ if and
only if there exists v such that (w, v) ∈ I(r) and M, v |� ψ . By inductive hypothesis,
M′, v |� ψ iff M′, v |� Tr(ψ), and by definition M′, w |� 〈r〉Tr(ψ). Finally, let us
see the case for remember. By the previous Claim, M, w |� ©rψ iff M, w |� ψ� . By
inductive hypothesis,M, w |� Tr(ψ�). �

We now prove thatML(〈〈r〉〉) has the tree model property (Blackburn et al., 2001), that
is, every satisfiable formula inML(〈〈r〉〉) is satisfied in a tree model.

THEOREM 5.24 (Tree model property). Let 〈M, w〉 be aML(〈〈r〉〉)-model. Then there
is a treeM′ such that 〈M, w〉 ≡EF 〈M′, w〉.

Proof. We prove the result for the unimodal case, the generalization to the multimodal
case is straightforward. Let M = 〈D, I, M〉, define M′ = 〈D′, I ′, M ′〉 as follows. Its
domain D′ consists of all finite sequences ū = (u0, . . . , un) such that u0 = w, n ≥ 0 and
(ui , ui+1) ∈ I(r) for 0 ≤ i < n. Let ū = (u0, . . . , un) and v̄ = (v0, . . . , vm), then define
I ′(r) as follows, (ū, v̄) ∈ I ′(r) if and only if m = n + 1, ui = v1 for i = 0, . . . , n and
(un, vm) ∈ I(r). I ′(p) is defined by setting (u0, . . . , un) ∈ I ′(p) iff un ∈ I(p). Finally,
(u0, . . . , un−1, un) ∈ M ′ iff un ∈ {u0, . . . , un−1} or un ∈ M .

Let si be the sequence (v0, . . . , vi ). We show that Duplicator has a winning strategy
in the game EF(M,M′, w,w). It is sufficient to see that in the game EF(M[v0, . . . , vn],
M′[s0, . . . , sn], vn+1, sn+1), Duplicator can always answer successfully to Spoiler’s moves.

• If Spoiler chooses M[v0, . . . , vn] and some vn+1, a successor of vn , Duplicator
chooses the sequence sn+1 = snvn+1.

• If Spoiler choosesM′[s0, . . . , sn] and sn+1 = snvn+1 (for some vn+1), a successor
of sn , Duplicator chooses the state vn+1.

By definition sn+1 and vn+1 agree. Observe that the memory ofM[v0, . . . , vn] is M ∪
{v0, . . . , vn} and the memory ofM′[s0, . . . , sn] is M ′ ∪ {s0, . . . , sn}. It is also clear that
vn+1 ∈ M if and only if sn+1 ∈ M ′. Formally, vn+1 ∈ M ∪{v0, . . . , vn} implies sn+1 ∈ M ′
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by definition. And sn+1 ∈ S′ ∪ {s0, . . . , sn}, then sn+1 ∈ S′ (since there are no cycles in
M′) and by definition vn+1 ∈ M ∪ {v0, . . . , vn}. �

THEOREM 5.25. The satisfiability problem ofML(〈〈r〉〉) is PSPACE-complete.

Proof. We first show decidability of the satisfiability problem ofML(〈〈r〉〉) proving that
any satisfiable formula ofML(〈〈r〉〉) is satisfiable in a recursively bounded model. Let ϕ be
aML(〈〈r〉〉)-formula of modal depth k, and supposeM1, w |� ϕ. By Theorem 5.24, there
is a treeM2 such thatM2, w |� ϕ. Using Theorem 5.23, we know thatM2, w |� Tr(ϕ)
(here, M2 is taken as a K model over the appropriate signature). Now we can use the
bounded tree model property for basic modal logic (Blackburn et al., 2001), so there must
be a recursively bounded tree M3 = 〈D3, I3〉 and v ∈ D3 such that M3, v |� Tr(ϕ).
Finally, we can use Theorem 5.23 again, and conclude 〈D3, I ′

3, I3(known)〉, v |� ϕ, where
I ′

3 is the restriction of I3 to the signature that does not contain known.
The PSPACE-completeness follows from the fact that the translation Tr is linear, and that

the satisfiability problem for the basic modal logic is PSPACE (Blackburn et al., 2001). �
Now we show that adding©f toML(〈〈r〉〉)keeps the logic decidable. In fact,ML(〈〈r〉〉, ©f )

can be encoded intoML(〈〈r〉〉) using a linear translation. In other words,ML(〈〈r〉〉, ©f ) ≤
ML(〈〈r〉〉) and hence ©f does not add expressivity when added toML(〈〈r〉〉). At the end of
this section we are going to see that this is not the case for ©e .

THEOREM 5.26. The satisfiability problem forML(〈〈r〉〉, ©f ) is PSPACE-complete.

Proof. We show that there is a linear translation from ML(〈〈r〉〉, ©f ) to ML(〈〈r〉〉).
Let Tra be the following translation fromML(〈〈r〉〉, ©f ) formulas toML(〈〈r〉〉) formulas,
where a ranges over {r, f }:

Tra(p) = p p ∈ PROP

Trr (©k ) = ©k
Tr f (©k ) = ¬�
Tra(¬ϕ) = ¬Tra(ϕ)

Tra(ϕ1 ∧ ϕ2) = Tra(ϕ1) ∧ Tra(ϕ2)
Tra(〈〈r〉〉ϕ) = 〈〈r〉〉Trr (ϕ)

Tra(©r ϕ) = ©rTrr (ϕ)
Tra(©f ϕ) = Tr f (ϕ).

Given a modelM = 〈D, I, M〉 and a state w ∈ D, we defineM[-w] = 〈D, I, M \
{w}〉. We prove by mutual induction on ϕ these two properties:

(1) M, w |� ϕ iffM, w |� Trr (ϕ).
(2) M[-w], w |� ϕ iffM, w |� Tr f (ϕ).

Notice that (1) in fact shows thatML(〈〈r〉〉, ©f ) ≤ML(〈〈r〉〉). The only interesting cases
for both properties are 〈〈r〉〉, ©r , and ©f . For the property (1), let ϕ = 〈〈r〉〉ψ .M, w |� 〈〈r〉〉ψ
iff (by definition) there is a w′ ∈ D, such that (w,w′) ∈ I(r) andM[w], w′ |� ψ iff (by
inductive hypothesis on (i))M[w], w′ |� Trr (ψ) iff (by definition)M, w |� 〈〈r〉〉Trr (ψ)
iff (by definition) M, w |� Trr (〈〈r〉〉ψ). The next case is ϕ = ©rψ . M, w |� ©rψ iff
(by definition) M[w], w |� ψ iff (by inductive hypothesis on (1)) M[w], w |� Trr (ψ)
iff (by definition) M, w |� ©rTrr (ψ) iff (by definition) M, w |� Trr (©rψ). Finally, let
ϕ = ©fψ .M, w |� ©fψ iff (by definition)M[-w], w |� ψ iff (by inductive hypothesis on
(2))M, w |� Tr f (ψ) iff (by definition)M, w |� Trr (©fψ).
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For the property (2), let ϕ = 〈〈r〉〉ψ . M[-w], w |� 〈〈r〉〉ψ iff (by definition) there is
a w′ ∈ D, such that (w,w′) ∈ I(r) and M[w], w′ |� ψ iff (by inductive hypoth-
esis on (1)) M[w], w′ |� Trr (ψ) iff (by definition) M, w |� 〈〈r〉〉Trr (ψ) iff (by def-
inition) M, w |� Tr f (〈〈r〉〉ψ). The next case is ϕ = ©rψ . M[-w], w |� ©rψ iff (by
definition) M[w], w |� ψ (by inductive hypothesis on (1)) M[w], w |� Trr (ψ) iff (by
definition) M, w |� ©rTrr (ψ) iff (by definition) M, w |� Tr f (©rψ). The last case is
ϕ = ©fψ .M[-w], w |� ©fψ iff (by definition)M[-w], w |� ψ (by inductive hypothesis
on (2))M, w |� Tr f (ψ) iff (by definition)M, w |� Tr f (©fψ).

Property (1) shows that we have defined a satisfiability preserving translation. Observe
that the linearity of the translation is trivial, and given Theorem 5.25 we conclude the
desired result. �

5.2. Undecidable memory logics. WhileML(〈〈r〉〉) is decidable, it seems to be stand-
ing at the border of undecidability. The logic ML∅(〈〈r〉〉), obtained from ML(〈〈r〉〉) by
restricting the class of models to those where S = ∅ is undecidable. Actually, the logic
ML(〈〈r〉〉) + i , obtained by adding a single nominal toML(〈〈r〉〉), is already undecidable.
We first prove failure of the finite model property forML(〈〈r〉〉) + i .

THEOREM 5.27. ML(〈〈r〉〉) + i lacks the finite model property.

Proof. Consider the following formulas:

(Back) i ∧ [[r ]]¬i ∧ 〈〈r〉〉� ∧ [[r ]]〈〈r〉〉i
(Empty) [[r ]]¬©k ∧ [[r ]][[r ]](¬i → ¬©k )

(Spy) [[r ]][[r ]](¬i → 〈〈r〉〉(i ∧ 〈〈r〉〉(©k ∧ ¬〈〈r〉〉(©k ∧ ¬i))))
(Succ) [[r ]]〈〈r〉〉¬i

(No-3cyc) ¬〈〈r〉〉〈〈r〉〉(¬©k ∧ 〈〈r〉〉(¬©k ∧ 〈〈r〉〉(©k ∧ ¬i)))
(Tran) [[r ]]〈〈r〉〉(i ∧ [[r ]](¬©k → 〈〈r〉〉(i ∧ 〈〈r〉〉(©k ∧ 〈〈r〉〉(©k ∧ ¬i))))).

Let Inf be Back∧Empty∧Spy∧Succ∧No-3cyc∧Tran. LetM = 〈D, I, M〉. We claim
that ifM, w |� Inf, then D is infinite.

Suppose M, w |� Inf. Let B = {b ∈ D | (w, b) ∈ I(r)}. Because Back is satisfied,
w �∈ B, B �= ∅ and for all b ∈ B, (b, w) ∈ I(r). Note that Empty says that the one-
and two-step neighbors of w are not in M , and this also implies that every state in B is
irreflexive. Because Spy is satisfied, if a �= w and a is a successor of an element of B then
a is also an element of B. As Succ is satisfied at w, every point in B has a successor distinct
from w. No-3cyc disallows cycles of size 2 or 3 in B; and together with Tran they force
I(r) to transitively order B.

It follows that B is an unbounded strict partial order as showed in the picture below,
hence infinite, and so is D.

�
We now show thatML(〈〈r〉〉) + i is undecidable by encoding the ω × ω tiling problem

(see Börger et al., 1997). Following ideas in (Blackburn & Seligman, 1995), we will use
three modalities 〈s〉, 〈u〉, and 〈r〉. We construct a spy point over the relation I(s) (i.e., the
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point of evaluation will have access in one I(s)-step to any reachable state in the model).
The relations I(u) and I(r) represent moving up and to the right, respectively, from one
tile to the other. We code each type of tile with a fixed propositional symbol ti . With this
encoding we define for each tiling problem T , a formula ϕT such that the set of tiles types
T tiles ω × ω iff ϕT has a model.

THEOREM 5.28. The satisfiability problem forML(〈〈r〉〉) + i is undecidable.

Proof. Let T = {T1, . . . , Tn} be a set of tile types. Given a tile type Ti , u(Ti ), r(Ti ),
d(Ti ), l(Ti ) will represent the colors of the up, right, down, and left edges of Ti respectively.
Define:

(Back) i ∧ [[s]]¬i ∧ 〈〈s〉〉� ∧ [[s]]〈〈s〉〉i ∧ [[s]][[s]]i
(Empty) [[s]]¬©k ∧ [[s]][[†]]¬©k † ∈ {r, u}

(Spy) [[s]][[†]]〈〈s〉〉(i ∧ 〈〈s〉〉(©k ∧ ¬〈〈†〉〉©k )) † ∈ {r, u}
(Grid) [[s]]〈〈†〉〉� † ∈ {r, u}
(Func) [[s]][[†]]〈〈s〉〉〈〈s〉〉(©k ∧ 〈〈†〉〉©k ∧ [[†]]©k ) † ∈ {r, u}
(Conf) [[s]]〈〈u〉〉〈〈r〉〉〈〈s〉〉〈〈s〉〉(©k ∧ ¬〈〈r〉〉©k ∧ 〈〈u〉〉©k∧

〈〈r〉〉(¬©k ∧ (〈〈u〉〉(©k ∧ ¬〈〈r〉〉©k )))

(UR-no-Cycle) [[s]][[u]][[r ]]¬©k ∧ [[s]][[r ]][[u]]¬©k
(URU-no-Cycle) [[s]][[u]][[r ]][[u]]¬©k

(Unique) [[s]]
(∨

1≤i≤n ti ∧ ∧
1≤i< j≤n(ti → ¬t j )

)

(Vert) [[s]]
∧

1≤i≤n

(
ti → 〈〈u〉〉 ∨

1≤ j≤n,u(Ti )=d(Tj )
t j

)

(Horiz) [[s]]
∧

1≤i≤n

(
ti → 〈〈r〉〉 ∨

1≤ j≤n,r(Ti )=l(Tj )
t j

)
.

Let the formula ϕT be the conjunction of all the above formulas. We show that T tiles
ω × ω if and only if ϕT is satisfiable.

SupposeM, w |� ϕT . Observe that Back and Spy, together with Empty make w a spy
via I(s) (and also force I(u) and I(r) to be irreflexive and asymmetric). These I(s)-
accessible states will represent the tiles. We will have that [[s]]ψ holds at w iff ψ is true
at every tile, and 〈〈s〉〉〈〈s〉〉ψ holds at tile v iff ψ is true at some (perhaps the same) tile.
Now, Grid states that from every tile there is another tile moving up (i.e., following the
I(u)-relation). The same holds for the right direction (following the I(r)-relation). Func
(together with Back and Spy) forces I(u) and I(r) to be functional. Conf ensures that the
tiles are arranged as a grid, once we force I(u)◦I(r), the composition of I(u) and I(r),
to be irreflexive (UR-no-Cycle), and we forbid the existence of cycles following successive
steps in the I(u), I(r) and I(u) relations, in that order (URU-no-Cycle).

That completes the description of the grid. The last three formulas ensure that every tile
has a unique type ti , and that the colors of the tiles match properly. From this, it easily
follows thatM is a tiling of ω × ω.

For the converse, suppose f : ω × ω → T is a tiling of ω × ω. We define the model
M = 〈ω × ω ∪ {w}, I, ∅〉 where I is

I(s) = {(w, v), (v,w) | v ∈ ω × ω} (hence w will act as the spy point)
I(u) = {((x, y), (x, y + 1)) | x, y ∈ ω}
I(r) = {((x, y), (x + 1, y)) | x, y ∈ ω}
I(p) = {w}
I(ti ) = {x | x ∈ ω × ω, f (x) = Ti }.

The reader may verify that, by construction,M, w |� ϕT . �
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We now turn toML∅(〈〈r〉〉). The ideas are similar to the case ofML(〈〈r〉〉) + i but this
time we cannot use the nominal i to make the spy point. On the other hand, we know that
the memory is empty when we start evaluating a formula.

THEOREM 5.29. ML∅(〈〈r〉〉) lacks the finite model property.

Proof. Consider the following formulas:

(Back) p ∧ [[r ]]¬p ∧ 〈〈r〉〉� ∧ [[r ]]〈〈r〉〉(©k ∧ p)
(Spy) [[r ]][[r ]](¬p → 〈〈r〉〉(©k ∧ p ∧ 〈〈r〉〉(©k ∧ ¬〈〈r〉〉(©k ∧ ¬p))))
(Irr) ¬〈〈r〉〉(¬p ∧ 〈〈r〉〉(¬p ∧ ©k )))

(Succ) [[r ]]〈〈r〉〉¬p
(No-3cyc) ¬〈〈r〉〉〈〈r〉〉(¬©k ∧ 〈〈r〉〉(¬©k ∧ 〈〈r〉〉(©k ∧ ¬p)))

(Tran) [[r ]](¬p → 〈〈r〉〉(©k ∧ p ∧ [[r ]](¬p ∧ ¬©k → 〈〈r〉〉(©k ∧ p∧
〈〈r〉〉(©k ∧ ¬p ∧ 〈〈r〉〉(©k ∧ ¬p)))))).

Let Inf be Back ∧ Spy ∧ Irr ∧ Succ ∧ No-3cyc ∧ Tran, and letM = 〈D, I, ∅〉. The proof
thatM is infinite ifM, w |� Inf is similar to the proof of Theorem 5.27. Instead of using
i to identify the spy point we now use p and ©k . ©k is needed to distinguish the spy point
from other points where p might hold.

Notice that Back, Spy, Succ, and No-3cyc are very similar to the ones in the proof of
Theorem 5.27, Irr forces I(r) to be irreflexive and Tran says that every pair of successors
u and v are related (either (u, v) ∈ I(r) or (v, u) ∈ I(r)), and this together with the other
formulas, implies that I(r) is transitive. �

In a similar way, we can encode the ω × ω tiling problem to show that satisfiability in
ML∅(〈〈r〉〉) is undecidable.

THEOREM 5.30. The satisfiability problem forML∅(〈〈r〉〉) is undecidable.

Proof. The formula ϕT needed for the encoding of a tiling problem T in this case is the
conjunction of the following:

(Back) p ∧ [[s]]¬p ∧ 〈〈s〉〉� ∧ [[s]]〈〈s〉〉(©k ∧ p) ∧ [[s]][[s]](©k ∧ p)
(Spy) [[s]][[†]](¬p ∧ 〈〈s〉〉(©k ∧ p ∧ 〈〈s〉〉(©k ∧ ¬〈〈†〉〉©k ))) † ∈ {r, u}

(Grid) [[s]]〈〈†〉〉� † ∈ {r, u}
(Func) [[s]][[†]]〈〈s〉〉〈〈s〉〉(©k ∧ 〈〈†〉〉©k ∧ [[†]]©k ) † ∈ {r, u}
(Conf) [[s]]〈〈u〉〉〈〈r〉〉〈〈s〉〉〈〈s〉〉(©k ∧ ¬〈〈r〉〉©k ∧ 〈〈u〉〉©k∧

〈〈r〉〉〈〈u〉〉(©k ∧ ¬〈〈r〉〉©k ))
(UR-no-Cycle) [[s]][[u]][[r ]]¬©k ∧ [[s]][[r ]][[u]]¬©k

(URU-no-Cycle) [[s]][[u]][[r ]][[u]]¬©k
(Unique) [[s]]

(∨
1≤i≤n ti ∧ ∧

1≤i< j≤n(ti → ¬t j )
)

(Vert) [[s]]
∧

1≤i≤n

(
ti → 〈〈u〉〉 ∨

1≤ j≤n,u(Ti )=d(Tj )
t j

)

(Horiz) [[s]]
∧

1≤i≤n

(
ti → 〈〈r〉〉 ∨

1≤ j≤n,r(Ti )=l(Tj )
t j

)
.

�
From the undecidability of ML∅(〈〈r〉〉), we can easily conclude the undecidability of
ML(〈r〉) andML∅(〈r〉).

THEOREM 5.31. ML∅(〈r〉) lacks the finite model property and it is undecidable.

Proof. Straightforward from Theorem 4.6, Theorem 5.29, and Theorem 5.30. �



314 CARLOS ARECES ET AL.

To prove failure of the finite model property for the caseML(〈r〉) we first notice that
the following lemma is easy to establish (we only state it for the monomodal case; a similar
result is true in the multimodal case). Failure of the finite model property is then a direct
consequence.

LEMMA 5.32. Let d be the modal depth of ϕ. If 〈D, I, M〉, w |�
(∧d

i=0[r ]i¬©k
)

∧ ϕ

then 〈D, I, ∅〉, w |� ϕ.

COROLLARY 5.33. ML(〈r〉) lacks the finite model property.

Proof. Using Lemma 5.32 we can prove that the formula
(∧4

i=0[r ]i¬©k
)

∧ Inf , where

Inf is the formula in the proof of Theorem 5.29, forces an infinite model. �

COROLLARY 5.34. The satisfiability problem forML(〈r〉) is undecidable.

Proof. Using the idea of Lemma 5.32 and the formula ϕT in the proof of Theorem 5.30,
we can obtain a formula ψ such that ifM, w |� ψ thenM is a tiling of ω × ω. For the
converse, we can build exactly the same model as in the proof of Theorem 5.30 and check
that it satisfies ψ . �

Now we want to briefly mention the case of erase with respect to decidability. Given
that ©e can be seen as an operator that internalizes the notion of starting the evaluation of a
formula with an empty memory, it is quite easy to establish the following result:

THEOREM 5.35. The satisfiability problem forML(〈〈r〉〉, ©e ) is undecidable. Further-
more, the logic lacks the finite model property.

Proof. Theorem 5.29 and Theorem 5.30 show that the logicML∅(〈〈r〉〉) lacks the finite
model property and that its satisfiability problem is undecidable. It is straightforward to
see that just adding ©e in front of each encoding is enough to achieve the same results for
ML(〈〈r〉〉, ©e ). �

§6. Conclusions and further work. In this article we investigated several memory
logics. These logics were inspired by the hybrid logic HL(↓) considering the ↓ operator
as a storage command and the assignment function as a storage structure. The aim of this
article was to explore this idea, investigating different ways in which information can be
stored and retrieved, and the logics that result.

There are different dimensions in which the idea can be carried further, which we inspect
in this article. We can, for example, vary the type of storage structure. An assignment
function is a very sophisticated memory structure: it has unbounded size, it provides direct
access to all its memory cells, and each stored element can be unequivocally retrieved.
We discussed in detail the result of using a set (instead of a function) as the information
container, and show that this change results in logics with strictly lower expressive power.
We also show that if we replace the set with a richer structure that allows the unique
identification of the elements stored (like is the case in a stack) we regain the full expressive
power ofHL(↓).

The second dimension we analyzed was the collection of memory operators included in
the language. We show that operators to add, test membership, and delete elements from
the memory can be naturally defined, and we mapped out the expressive power of the
resulting logics.
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Fig. 1. Different expressive power of memory logics

Finally, the third dimension we investigated was the effect of imposing conditions on
the state of the initial memory of the model in which we evaluate a formula. Requiring the
initial memory to be empty (a natural requirement when working with models with state)
boost the expressive power of the logic.

In terms of expressive power, the memory logics we presented lie between the basic
modal logic K and the hybrid logicHL(↓). Figure 1 summarizes the results established in
this article. The solid unlabeled arrows represent the < relationship, that is, L→ L′ means
that the logic L is strictly less expressive than the logic L′. In some cases we specifically
indicate other relations (like ≤ or �≤), and the dashed arrows show the suspected answers
to the open question 1 and question 2 we formulated.

We also discussed in detail complexity results. In most cases the satisfiability problem
of the languages we introduced is undecidable. We were able to pin down only two log-
ics,ML(〈〈r〉〉) andML(〈〈r〉〉, ©f ), which still have the bounded tree model property, and
established that their satisfiability problem is PSPACE-complete. In other words, to regain
decidability we had to allow models with a potentially nonempty memory and imposed
(through the operator 〈〈r〉〉) a very restricted policy to memorize states. To obtain these
results we defined in Section §5 different equivalence preserving translations which can be
used to transfer known results, for example, fromHL(↓) toML(〈r〉) andML∅(〈r〉). For
instance, both logics are compact and their formulas are preserved by generated submodels
(see Areces et al., 2001).

The study we carried out in this paper draws a more detailed picture of the properties
of of memory logics. We have investigated these logics in a number of recent papers
(Areces, 2007; Areces et al., 2009a, 2009b; Mera, 2009) in which we present complete
axiomatizations, tableaux calculi, complexity analysis for model checking, and preliminary
results on the Beth and the interpolation properties for different fragments of this family.
But there is still work to be done.

Even though we obtained logics less expressive than HL(↓), most of the logics we
analyzed are undecidable. One of the motivations behind memory logics was to find de-
cidable but yet useful logics to model scenarios with state. With this goal in mind several
directions for future research suggest themselves. One possibility is to study memory logics
as temporal logics, restricting the class of models to linear or tree structures which has
shown to reduce complexity for hybrid logics (see Areces et al., 2000). The complexity of
hybrid logics over restricted frame classes was investigated in detail by Schneider (2007),
and a similar approach can be pursued for memory logics. In a related line, the freeze
operator of Henzinger (1990) (a binding operator weaker than ↓ that bind values associated
to the states instead of the states themselves) can also be further weakened using the
ideas presented in this article. Finally decidable memory logics could also be obtained
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by following the approach of Meier et al. (2009) which instead of restricting the class of
frames, imposed restrictions on the Boolean operators allowed in the language.

§7. Acknowledgements. Santiago Figueira is partially supported by CONICET (grant
PIP 370).
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