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We introduce new first-order languages for the elementary n-dimensional geometry and elementary
n-dimensional affine geometry (n ≥ 2), based on extending FO(β,≡) and FO(β), respectively, with new
function symbols. Here, β stands for the betweenness relation and ≡ for the congruence relation. We show that
the associated theories admit effective quantifier elimination.

c© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

1.1 Origins of the problem

For any fixed natural number n, the elementary n-dimensional Euclidean geometry, En , is a theory dealing with
the elementary properties of the n-dimensional Euclidean space. In this context, elementary means the portion of
geometry that can be developed within first-order logic without the help of set-theoretic notions. Tarski’s axiom
system for this theory, already presented by him in his course given at the Warsaw University in 1926–27 and
finally published in [16] and [22], is based on two primitive notions: betweenness and equidistance. The theory En

is complete but not categorical: its models are, up to isomorphisms, the n-dimensional Cartesian spaces over some
real closed fields [22]. The first axiom system based on these primitive notions was proposed by Veblen [24].

The elementary theory of n-dimensional affine geometry, An , is a complete theory as well. Its only primitive
notion is the betweenness relation1. The interested reader can consult [23] and [1, Chapter 7] for more references
and historical remarks on the development of these theories.

For every fixed natural number n, we introduce two new first-order theories, E ′
n and A′

n . These new theories
are extensions by definitions of En and An , respectively, and admit effective quantifier elimination.

There are classical examples of this technique, based on extending the signature of a theory with finitely many
new symbols—expressing properties already definable by quantified formulas in the original language—to obtain
a new theory that admits quantifier elimination and has the same expressive power as the original language. For
instance, by adding the binary relation symbol “<” to the signature 〈+,×, 0, 1〉, Tarski [21] obtained a theory,
R, for real closed fields that admits quantifier elimination . Another classic example is that of the congruence
relations in Presburger arithmetic (cf. [5]).

∗ Corresponding author: e-mail: rgrimson@dm.uba.ar
1 In her monograph [19], Szmielew showed that this last primitive notion can be replaced by parallelity, leading to a more abstract

development of affine geometry, including representation theorems for subsystems of the axiom system of affine geometry.
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2 R. Grimson, B. Kuijpers, and W. Othman: Quantifier elimination

Like in Szczebra and Tarski [18], the detailed discussion will be restricted to the case n = 2, i.e., to the
geometry of the plane. We denote by E and A the theories E2 and A2 , respectively. In Section 7.3, we indicate
how our results can be extended to higher dimensions.

Languages that admit the elimination of quantifiers for elementary algebra and fragments of geometry have
been the subjects of several investigations, but as far as we know, no language for elementary geometry which
allows quantifier elimination has been proposed. In a way, this omission is surprising, because quantifier elimina-
tion is a natural requirement of expressibility for a language.

Quantifier elimination methods have been mainly used to obtain decision procedures. Recently, within the
theory of constraint databases [9], quantifier-elimination techniques have also been used to evaluate queries. In
particular, within the context of spatial databases, the languages FO(β,≡) and FO(β) have been proposed [6] as
query languages for geometric databases. The results we present here lead to a query evaluation procedure for
these query languages.

We remark that, sharing some primitive notions, the languages that we obtain are related to the languages
used in constructive geometry [11–13]. One difference is the absence of constant symbols in our language. In the
presence of constant symbols, formulas can define relations that are not invariant under similarity transformations
of the plane. Our languages preserve this basic characteristic of Euclidean geometry.

1.2 Outline and Summary

The paper is organized as follows. In Section 2, we introduce the concepts of affine-invariant and similarity-
invariant relation. We also introduce the theories of real closed fields, R, elementary affine geometry, A, and
elementary Euclidean geometry, E , with their associated languages FO(+,×, <, 0, 1), FO(β) and FO(β,≡),
respectively. Being all three complete theories, we fix a standard model for each and use the fact that a formula
holds in this model if and only if it is true in the corresponding theory.

We stress the difference between geometric variables and algebraic variables, and introduce the concept of
translation. In particular, we recall the existence of a translation from FO(β,≡) (and hence, also from FO(β)) to
FO(+,×, <, 0, 1). This translation is based on the fact that the Euclidean plane can be embedded in the Cartesian
plane by taking coordinates in a fixed coordinate system.

We recall that the theory of real closed fields, R, admits quantifier elimination, and we denote by ER a
quantifier-elimination function for this theory. We prove that no finite predicative extension of FO(β) or
FO(β,≡) admits quantifier elimination.

In Section 3, we define the basic segment-arithmetic functions, ⊕ and ⊗, the affine projection function, π,
and for the two basic metric functions, π⊥ and κ (corresponding to the orthogonal projection and the seg-
ment construction function), and expand the signatures of FO(β) and FO(β,≡) adding new function symbols
for some of these basic functions, and the 0-ary relation symbol �. The interpretation of the new symbols in
the resulting languages, FO(β,�,⊕,⊗, π) and FO(β,≡,�,⊕,⊗, π⊥, κ), are given by FO(β)-formulas and
FO(β,≡)-formulas respectively. In this way, the resulting theories, A′ and E ′ are extensions by definitions of
A and E respectively. This ensures that the new languages have the same expressive power as the original ones
and also the existence of translations B from FO(β,�,⊕,⊗, π) to FO(β) and M from FO(β,≡,�,⊕,⊗, π⊥, κ)
to FO(β,≡).

In Section 4, we define a translation S : FO(+,×, <, 0, 1)QF ,AI → FO(β,�,⊕,⊗, π)QF , translating any
formula in the affine-invariant quantifier-free fragment of FO(+,×, <, 0, 1) into the quantifier-free fragment of
FO(β,�,⊕,⊗, π) in such a way that, for any affine-invariant quantifier-free FO(+,×, <, 0, 1)-formula ϕ, S(ϕ)
and ϕ define the same relation. The technical difficulty in the construction of this translation is due to the absence
of constant symbols in FO(β,�,⊕,⊗, π) to use as coordinate system and the subsequent need to use some of the
variables already involved in the formula as a reference system.

Analogously, in Section 5, we define a translation T : FO(+,×, <, 0, 1)QF ,SI → FO(β,≡,�,⊕,⊗, π⊥,
κ)QF , translating any formula in the similarity-invariant quantifier-free fragment of FO(+,×, <, 0, 1) into the
quantifier-free fragment of FO(β,≡,�,⊕,⊗, π⊥, κ).

In Section 6, we define EA′ := S◦ER◦C◦B : FO(β,�,⊕,⊗, π) → FO(β,�,⊕,⊗, π)QF as the composition
of the translations C, B and S with the quantifier-elimination function ER. The map EA′ results to be a quantifier-
elimination function for the theory A′. In this sense, we prove that A′ is a conservative extension of A that admits
quantifier elimination. Analogously, we prove that the map EE′ := T ◦ ER ◦ C ◦ M : FO(β,�,⊕,⊗, π) →
FO(β,�,⊕,⊗, π)QF is a quantifier-elimination function for the theory E ′.

c© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mlq-journal.org



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

Math. Log. Quart. (2012) / www.mlq-journal.org 3

In the last section we discuss the problem of finding minimal languages for elementary geometry and elemen-
tary affine geometry that admit the elimination of quantifier; this problem is interesting from a metamathematical
viewpoint. Finally, we briefly indicate how, performing only minor changes in the argumentation, analogous
constructions could be carried on for higher-dimensional theories.

For the fluidity of the exposition, we do not prove every geometrical statement in our argumentation. The
missing arguments may be filled in using basic tools from analytic geometry.

2 Preliminaries and definitions

In Tarski’s formalization of elementary geometry [22], points are treated as individuals and represented by first-
order variables. Its only primitive notions, in terms of which all geometrical notions turn to be definable, are the
betweenness and the equidistance relations.

We recall that, being a first-order theory, this formalization does not provide variables to denote geometrical
figures (point sets) nor classes of geometrical figures. However, it is possible to express in the resulting formalism
all the results that form the subject matter of geometry courses as taught in secondary schools and which are for-
mulated in terms of some special classes of geometrical figures such as straight lines, circles, segments, triangles
and, in general, polygons with any fixed number of vertices, as well as certain relations between geometrical
figures in these classes such as congruence and similarity. This possibility is mainly a consequence of the fact
that, in each of these classes, every geometrical figure is determined by a fixed finite number of points.

The representation theorem for elementary geometry [22] states that a necessary and sufficient condition for a
structure to be a model of this theory is that it is isomorphic with the Cartesian space over some real closed field.
In addition, this theory is shown to be complete and decidable.

2.1 Semi-algebraic and geometric relations

Let R be the set of real numbers and let E the universe of a model of Tarski’s elementary plane geometry iso-
morphic to R

2 . We call E the Euclidean plane and we refer to R
2 as the Cartesian plane. We fix an Euclidean

coordinate system in E, that is, we fix an origin O and two points E1 and E2 such that the segments OE1 and OE2
are orthogonal and congruent. We observe that, not being collinear, the points O,E1 , E2 define, in particular, an
affine coordinate system. We define CO,E1 ,E2 as the function from E to R

2 that maps points to their coordinates
with respect to the coordinate system O,E1 , E2 .

We shall deal with the following two different kinds of relations.

Definition 2.1 A k-ary semi-algebraic relation (k ≥ 1) is a subset of R
k that can be described as a boolean

combination of sets of the form

{(x1 , . . . , xk ) ∈ R
k | p(x1 , . . . , xk ) > 0},

where p ∈ Z[X1 , . . . , Xk ] is a polynomial with integer coefficients in the variables X1 , . . . , Xk .
A k-ary geometric relation (k ≥ 1) is a subset of E

k such that its image under Ck
O,E1 ,E2

is a semi-algebraic
relation of R

2k .

We have allowed only integer coefficients in the definition of semi-algebraic relation for simplicity: as we shall
see, in this way semi-algebraic relations correspond exactly to the relations definable in the language FO(+,×,
<, 0, 1).

We shall refer to variables ranging over E as geometric variables, whereas variables ranging over R will
be called algebraic variables. Also, for ease of reading, we shall consistently use the letters o, p, q, r, s, u,
v, e1 , e2 , p1 , p2 , . . . , to represent geometric variables, and a, b, x, y, t, x1 , y1 , x2 , y2 , . . . , for algebraic variables.
Variables ranging over the natural numbers N will be denoted by i, j, k, l,m n. Finally, we differentiate geometric
variables from points in E writing pi and pi respectively. In this way, pi is a geometric variable while pi represents
some fixed point in E. Analogously, we write xi for algebraic variables and xi for fixed elements of R.

2.2 Affine and similarity transformations of the plane

Definition 2.2 An affine transformation of R
2 is a bijective function f : R

2 → R
2 , for which there exist

a11 , a12 , a21 , a22 , b1 , b2 ∈ R, with

www.mlq-journal.org c© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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4 R. Grimson, B. Kuijpers, and W. Othman: Quantifier elimination

f(x, y)T =
(

a11 a12
a21 a22

)(
x
y

)
+

(
b1
b2

)
.

An affine transformation of E is a bijective function f : E → E, such that C−1
O,E1 ,E2

◦ f ◦ CO,E1 ,E2 is an affine
transformation of R

2 .

Since any two affine coordinate systems are equal up to an affine transformation of the plane, the notion of
affine transformation of E is independent of the chosen affine coordinate system O, E1 , E2 .

In particular, translation, rotation, scaling, and reflection over an axis are affine transformations. We remark
that our definition of affine transformation coincides with what are sometimes called non-degenerate affine trans-
formations.

We denote by ‖ · ‖ : R
2 → R the norm of points in the Cartesian plane, ‖(x, y)‖ =

√
x2 + y2 .

Definition 2.3 A similarity transformation of R
2 is a bijective function f : R

2 → R
2 , for which there exist

r ∈ R, r > 0 such that for all pairs, (x1 , y1) and (x2 , y2), of points in R
2 , the following holds:

‖f(x1 , y1) − f(x2 , y2)‖ = r · ‖(x1 , y1) − (x2 , y2)‖.

A similarity transformation of E is a bijective function f : E → E, such that C−1
O,E1 ,E2

◦ f ◦ CO,E1 ,E2 is a
similarity transformation of R

2 .

Since any two Euclidean coordinate systems are equal up to a similarity transformation of the plane, the notion
of similarity transformation of E is independent of the chosen Euclidean coordinate system O, E1 , E2 .

In particular, translation, rotation, dilatations, and reflection over an axis are similarity transformations. Clearly,
any similarity transformation is an affine transformation but the converse does not hold.

2.3 Affine-invariant and similarity-invariant relations

Now, we define the concept of an affine-invariant relation.

Definition 2.4 A k-ary geometric relation P is called affine invariant if for any tuple (p1 , . . . , pk ) in E
k and

any affine transformation f of E, we have that (p1 , . . . , pk ) ∈ P implies (f(p1), . . . , f(pk )) ∈ P .
A 2k-ary semi-algebraic relation Q is called affine invariant if for any tuple (x1 , y1 , . . . , xk , yk ) in R

2k and
any affine transformation f of R

2 , we have that (x1 , y1 , . . . , xk , yk ) implies (f(x1 , y1), . . . , f(xk , yk )) ∈ Q.

We remark that affine-invariant semi-algebraic relations range over pairs of real numbers while affine-invariant
geometric relations range over points in the plane E. As an example for previous definition, we consider the
geometric relation L ⊂ E

3 consisting of triples (p, q, r) ∈ E
3 that are collinear. Since any affine transformation

preserves collinearity, this relation is affine invariant. A finer relation that will play an important role is β, which
consists of all triples (p, q, r) ∈ E

3 for which q belongs to the closed line segment between p and r. Clearly, β is
also affine invariant. Their semi-algebraic counterparts are subsets of R

6 and can be defined algebraically, as will
be shown later.

Certainly, not all geometric relations are affine invariant. For instance, the unary relation {O}, containing the
origin of the coordinate system O,E1 , E2 , is not affine invariant.

Definition 2.5 A k-ary geometric relation P is called similarity invariant if for any tuple (p1 , . . . , pk ) in E
k

and any similarity transformation f of E, we have that (p1 , . . . , pk ) ∈ P implies (f(p1), . . . , f(pk )) ∈ P .
A 2k-ary semi-algebraic relation Q is called similarity invariant if for any tuple (x1 , y1 ..., xk , yk ) in R

2k and
any similarity transformation f of R

2 , we have that (x1 , y1 ..., xk , yk ) implies (f(x1 , y1), . . . , f(xk , yk )) ∈ Q.

Since similarity transformations are affine transformations, affine-invariant relations are similarity invariant.
In Euclidean geometry there is no notion of unit length. Hence, no intrinsic metric can be defined in the

Euclidean plane. Although, the relation ≡, consisting of all quadruples (p, r, q, s) ∈ E
4 such that the segments

pr and qs are congruent (i.e., for which the distance between p and r is equal to the distance between q and s), is
a similarity-invariant relation. It gives an example of a similarity-invariant relations that is not affine invariant.

Further examples of affine-invariant (and thus, similarity-invariant) geometric relations concern parallelism
and equal ratio. Indeed, if four points define two parallel lines, then the results of any affine transformation
applied to them, also define two parallel lines. Also, the ratio of a triple (p, q, r) of collinear points, defined

c© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mlq-journal.org
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(when p �= r) as
‖CO , E 1 , E 2 (q)−CO , E 1 , E 2 (p)‖
‖CO , E 1 , E 2 (r)−CO , E 1 , E 2 (p)‖ and denoted (p : q : r), is independent of the affine coordinate

system O,E1 , E2 of E. Therefore, the 6-ary geometric relation equal ratio (p : q : r) = (p′ : q′ : r′) is affine
invariant.

2.4 The theories R, E , A and their expressive power

We work in first-order logic with equality and suppose that first-order formulas are built using the connectives ¬
and ∧ and the existential quantifier ∃. The symbols ∨, →, ∀ and �= stand for their usual abbreviations.

We introduce now the first-order languages FO(+,×, <, 0, 1), FO(β,≡) and FO(β) together with their stan-
dard interpretations and characterize their expressive power.

Definition 2.6 Suppose that σ is a first-order signature, S is a σ-structure, and ψ a FO(σ)-formula with m
free variables. The relation defined by ψ in S is the set of m-tuples in |S|m that satisfy ψ.

If k < m and (s1 , . . . , sk ) is a k-tuple of elements in |S|k , we define the relation defined by ψ[s1 , . . . , sk ] in
S as the set of (m − k)-tuples (sk+1 , . . . , sm ) of elements in |S|m−k such that (s1 , . . . , sm ) satisfy ψ.

Since we consider only one interpretation of each language, we shall use the same symbol for relation/
functional symbols and their interpretations, not to overload the notation. We also refer to the relation defined
by a formula without reference to the structure considered. As we shall see, the theories R, E and A define
precisely the semi-algebraic, similarity-invariant and affine-invariant geometric relations, respectively.

The language FO(β) is the first-order language with a signature consisting only of the ternary relation symbol
β. As the standard interpretation for this language, we consider the structure 〈E, β〉, where variables are assumed
to range over the Euclidean plane E and where (p, q, r) ∈ β if and only if p, q and r are collinear points and
q belongs to the closed line segment between p and r. In particular, (p, p, q) ∈ β for any p, q ∈ E. We denote
by A the first-order theory resulting from this standard interpretation. The next proposition follows immediately
from [6, Proposition 5.4].

Proposition 2.7 The relations definable in A, correspond exactly to the affine-invariant geometric relations.

The language FO(β,≡) is the first-order language with a signature consisting only of the ternary relation
symbol β and the quaternary relation symbol ≡. As the standard interpretation for this language, we consider
the structure 〈E, β,≡〉, where variables are assumed to range over the Euclidean plane E, β is defined as before
and (p, r, q, s) ∈ ≡ if and only if the segments pr and qs are congruent. We denote by E the first-order theory
resulting from this standard interpretation. For the sake of readability and following the tradition, we denote
≡ (pi, pj , pk , pl) by pipj ≡ pkpl . The next proposition follows immediately from [6, Proposition 5.5].

Proposition 2.8 The relations definable in E , correspond exactly to the similarity-invariant geometric
relations.

Finally, FO(+,×, <, 0, 1) is a first-order language with a signature consisting of the binary function symbols
+ and ×; the binary relation symbol <; and the constant symbols 0 and 1. We call this language the language of
real closed fields. As its standard interpretation, we consider the structure 〈R,+,×, <, 0, 1〉, that is, the reals with
the well-known functions, relation and constants. We denote by R the theory resulting from this interpretation,
usually called the theory of the real closed fields. The following proposition is an immediate consequence of [3,
Theorem 2.74].

Proposition 2.9 The relations definable in R, correspond exactly to the semi-algebraic relations.

Clearly, not any FO(+,×, <, 0, 1)-formula defines a similarity-invariant relation. The formula x1 = 0∧y1 = 0
exemplifies this. We shall denote by FO(+,×, <, 0, 1)SI the similarity-invariant fragment of FO(+,×, <, 0, 1),
i.e., the set of FO(+,×, <, 0, 1)-formulas defining similarity-invariant semi-algebraic relations. Analogously, we
denote by FO(+,×, <, 0, 1)AI the affine-invariant fragment of FO(+,×, <, 0, 1).

2.5 Translations

In order to compare relations defined on the Euclidean plane with relations defined on the Cartesian plane, we
introduce the following definitions.

www.mlq-journal.org c© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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6 R. Grimson, B. Kuijpers, and W. Othman: Quantifier elimination

Let us call the languages with geometric variables (whose standard interpretation is given over E) geomet-
ric languages; FO(β) and FO(β,≡), as well as the new languages we are going to introduce, are examples of
geometric languages.

Definition 2.10 Let ϕ be a formula in a geometric language defining the m-ary geometric relation Gϕ (m ≥ 0)
and let ψ be a FO(+,×, <, 0, 1)-formula defining the 2m-ary semi-algebraic relation Aψ . If, for any points
p1 , . . . , pm in E, with coordinates (x1 , y1), . . . , (xm , ym ) with respect to the coordinate system O,E1 , E2 ,

Gϕ (p1 , . . . , pm ) holds if and only if Aψ (x1 , y1 , . . . , xm , ym ) holds,

then ϕ and ψ are said to define the same relation.

We remark that, since FO(β,≡)-formulas define similarity-invariant relations, in the case ϕ ∈ FO(β,≡), the
previous definition is independent of the Euclidean coordinate system O,E1 , E2 . Analogously, for ϕ ∈ FO(β)
the definition remains invariant if we change O,E1 , E2 to any other affine coordinate system.

The following two fundamental examples are basic results in analytic geometry.

Example 2.11 The FO(+,×, <, 0, 1)-formula

equidistancecoord(x1 , y1 , x2 , y2 , x3 , y3 , x4 , y4) := (x1 − x2)2 + (y1 − y2)2 = (x3 − x4)2 + (y3 − y4)2

and the FO(β,≡)-formula p1p2 ≡ p3p4 define the same relation.

Example 2.12 Another important example is given by the FO(+,×, <, 0, 1)-formula

βcoord(xi, yi , xj , yj , xk , yk ) := [(xi − xj )(yk − yj ) = (xk − xj )(yi − yj )]∧
[((xk − xj )(xj − xi) > 0) ∨ ((xk − xj )(xj − xi) = 0)]∧
[((yk − yj )(yj − yi) > 0) ∨ ((yk − yj )(yj − yi) = 0)]

and the FO(β)-formula β(pi, pj , pk ). They both define the same relation.

Definition 2.13 Given two syntactic fragments L1 and L2 , of two first-order languages with a fixed interpre-
tation, a recursive function M that maps any L1-formula, ϕ, to a L2-formula, M(ϕ), defining the same relation
as ϕ will be called a translation between these fragments.

Based on the Examples 2.11 and 2.12, we define a translation C from FO(β,≡) to FO(+,×, <, 0, 1)SI . For
any i ∈ N and any point pi in E, we denote by xi and yi the first and the second coordinates of pi with respect
to our fixed coordinate system O,E1 , E2 . Since for all p1 , p2 , p3 , p4 ∈ E, E |= β[p1 , p2 , p3 ] if and only if
R |= βcoord[x1 , y1 , x2 , y2 , x3 , y3 ] and E |= [p1 , p2 ] ≡ [p3 , p4 ] if and only if R |= equidistancecoord[x1 , y1 , x2 ,
y2 , x3 , y3 , x4 , y4 ], we immediately obtain a translation, C, defined on the quantifier-free fragment of FO(β,≡).

Indeed, C is obtained by translating pi = pj by xi = xj ∧ yi = yj and by defining C(β(pi, pj , pk )) as
βcoord(xi, yi , xj , yj , xk , yk ), C(pipj ≡ pkpl) as equidistancecoord(xi, yi , xj , yj , xk , yk , xl , yl), and further C(ϕ ∧
ψ) as C(ϕ)∧C(ψ) and C(¬ϕ) as ¬C(ϕ). We extend C, by recursion on the quantifier-depth, to the whole language
FO(β,≡) defining C(∃piϕ) as ∃xi∃yiC(ϕ).

A direct induction on the structure of the formulas shows that for any FO(β,≡)-formula ϕ with m free vari-
ables and for any points p1 , . . . , pm in E, with coordinates (x1 , y1), . . . , (xm , ym ) the following holds:

E |= ϕ[p1 , . . . , pm ] if and only if R |= C(ϕ)[x1 , y1 , . . . , xm , ym ].

We summarize these result in the following proposition.

Proposition 2.14 The function C is a translation from FO(β,≡) to FO(+,×, <, 0, 1)SI .

In particular, we obtain the following corollary.

Corollary 2.15 The function C|FO(β ) is a translation from FO(β) to FO(+,×, <, 0, 1)AI .

2.6 Quantifier elimination for R, E and A
Definition 2.16 Let S be a first-order theory over a signature σ. We say that a theory S has quantifier elimi-

nation if for every formula ϕ ∈ FO(σ) there is a quantifier-free formula with the same free-variables ψ ∈ FO(σ)
such that S |= ϕ ↔ ψ.
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We remark that if the signature σ does not have constant symbols then it has no quantifier-free sentences. Some
authors admit (cf. [10]) that the formula ψ in the Definition 2.16 may have more free variables than the original
formula ϕ as long as these two formulas are equivalent; in this way, the quantifier-free formula equivalent to a
true sentence may be p = p. Others (cf. [14]) say that a theory S has quantifier elimination if every formula with
at least one free variable is equivalent to a quantifier-free formula with the same free variables. We prefer to use
the notion given by Definition 2.16 and to solve this inconvenience adding to σ a new constant predicate symbol
� that holds in the structure S and furnishes a quantifier-free true sentence.

For any first-order signature σ, we denote by FO(σ)QF the quantifier-free fragment of FO(σ).
A recursive function ES : FO(σ) → FO(σ)QF is called a quantifier-elimination function if for any FO(σ)-

formula ϕ, ES(ϕ) is a quantifier-free FO(σ)-formula, equivalent to and with the same free-variables as ϕ. If such
a function exists, the theory is said to admit effective quantifier elimination.

In the 1930s, Tarski showed that the theory of real closed fields, R, admits effective quantifier elimination
(cf. [21], or [2] for a modern account). In the same article, Tarski used this result and an interpretation of the
Euclidean plane in the Cartesian plane, to give a decision procedure for elementary geometry (cf. [15]). We
denote by ER a quantifier-elimination function for the theory of real closed fields.

Since the theories E and A do not have constant symbols, they do not admit quantifier elimination. We prove
the following stronger result: it is not possible to obtain a theory that admits quantifier elimination by extending
FO(β) (nor FO(β,≡)) with finitely many relation symbols.

For every k ∈ N, consider the semi-algebraic affine-invariant relation Pk consisting of the triplets of aligned
points (o, p, s) such that the segment os is equal to k times the segment op. Clearly, if k �= j then the relations
Pk and Pj are different. This implies that there are countably infinite different ternary affine-invariant relations.
By Proposition 2.7, all these ternary relations are definable in FO(β). We denote by ψk a FO(β)-formula defining
the relation Pk .

Proposition 2.17 Any extension of FO(β) with a finite number of new relation symbols does not admit quan-
tifier elimination.

P r o o f. We suppose than an extension of FO(β) with a finite number of new relation symbols is given. If this
extension admitted quantifier elimination, all the different ternary relations P i(o, p, q), i ∈ N, would be definable
in this language by quantifier-free formulas. Since there are no constant nor function symbols in the new language,
the only terms that can be built in the extended language using the variables o, p and q are the atomic terms o, p
and q themselves. Thus, the number of different atomic formulas that can be built using only the given variables
is finite. Hence, the number of non-equivalent quantifier-free formulas in this language is finite. Therefore, the
extended language cannot define, without quantifiers, all the infinite different relations defined by the quantified
FO(β)-formulas ψk , k ∈ N. This concludes the proof.

The previous proof yields immediately the following corollary.

Corollary 2.18 Any extension of FO(β,≡) with a finite number of new relation symbols does not admit quan-
tifier elimination.

3 The new languages

In this section, we extend by definitions the languages of elementary geometry and elementary affine geome-
try obtaining the new languages FO(β,≡,�,⊕,⊗, π⊥, κ) and FO(β,�,⊕,⊗, π), respectively. Their associated
theories E ′ and A′ will be shown to admit quantifier elimination in the following section.

The new symbols introduced are the two basic segment arithmetic functions, ⊕ and ⊗, the affine projection
function π, and the two basic metric functions, π⊥ and κ.

First, we show how to define some affine-invariant relations in the language FO(β), that we need later on to
define these functions.

Collinear: The formula:

L(p, q, r) := β(p, q, r) ∨ β(p, r, q) ∨ β(q, p, r)

expresses that the points p, q and r are collinear. We remark that this is a quantifier-free expression.
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8 R. Grimson, B. Kuijpers, and W. Othman: Quantifier elimination

Parallel: The formula:

P(p, q, r, s) := (L(p, q, r) ∧ L(p, q, s)) ∨ r = s ∨ ∀u(¬L(p, q, u) ∨ ¬L(r, s, u))

expresses that the segments pq and rs are parallel. We remark that the first line expresses that the four
points are aligned or that a segment is just a point, in both cases pq and rs are considered parallel. The
second line expresses that no point is collinear with p and q and with r and s, at the same time.

We shall also need the following similarity-invariant relation.

Right angle: The FO(β,≡)-formula:

R(p, q, r) := ¬L(p, q, r) ∧ ∃o(β(o, p, q) ∧ or ≡ rq ∧ op ≡ pq)

expresses that the points p, q and r form a non-degenerate triangle with a straight angle at p.

Finally, the following formula is used to define the new symbol �.

(1) ∀p(p = p)

3.1 The two basic segment-arithmetic functions

Now, we present the formulas that implicitly define the basic segment-arithmetic functions.

Sum: The relation “the vector −→os is the result of the vector sum of −→op and −→oq” is, certainly, an affine-
invariant geometric relation. Thus, by Proposition 2.7, there exists a FO(β)-formula Sum(o, p, q, s)
defining it.
Let x1 , x2 , x3 be three real numbers. Using the coordinates in the fixed coordinate system O,E1 , E2
to define points in E, we consider o = (0, 0), p1 = (x1 , 0), p2 = (x2 , 0) and p3 = (x3 , 0). Then, the
relation Sum(o, p1 , p2 , p3) holds if and only if x1 +x2 = x3 as real numbers. This allows us to translate
the semi-algebraic addition into the geometric context.

Equal Ratio: We consider the 5-ary relation: “o, p and q are collinear, o �= p, o �= r and s is the unique
point, collinear with o and r, that satisfies (o : p : q) = (o : r : s)”. This is an affine-invariant geometric
relation and since FO(β) is a complete language for these relations, there exists an FO(β)-formula
EqualRatio(o, p, q, r, s) defining it.
Let x1 , x2 , x3 be three real numbers. Using the coordinates in the fixed coordinate system O,E1 , E2 to
define points in E, we consider o = (0, 0), e1 = (1, 0), p1 = (x1 , 0), p2 = (x2 , 0) and p3 = (x3 , 0). We
have that, for x2 �= 0, EqualRatio(o, e1 , p1 , p2 , p3) holds if and only if x1 · x2 = x3 as real numbers.
This allow us to translate the semi-algebraic product into the geometric context.

Constructions, similar to Sum and EqualRatio, to deal with segment arithmetic can be found already in
Descartes [4], in Hilbert’s book [8] and also in [16] (cf. also [7] for a contemporary account).

We remark that for every o, p, q ∈ E there exists a unique s satisfying Sum(o, p, q, s). On the other hand, for
every o, p, q, r there exists at most one s satisfying EqualRatio(o, p, q, r, s).

We conclude that the following two FO(β)-formulas define functional relations with respect to their last
variable:

Sum(o, p, q, s);(2)

EqualRatio(o, p, q, r, s) ∨ [(¬L(o, p, q) ∨ ¬L(o, r, s) ∨ o = p ∨ o = r) ∧ s = o].(3)

3.2 The affine projection function

We present the formula that defines the affine projection function.

Affine Projection: We want to define the following relation: “the points o, p and q form an affine coor-
dinate system and s is the projection, parallel to oq, of r on the line op, or o, p and q are aligned and
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s = o”. Being an affine-invariant geometric relation, we know that the relation is definable in FO(β).
Explicitly, we can define it as:

(4) ¬L(o, p, q) ∧ [(L(r, o, p) ∧ s = r) ∨ (¬L(r, o, p) ∧ L(s, o, p) ∧ P(r, s, o, q))] ∨ (L(o, p, q) ∧ s = o).

We remark that the formula defines a functional relation in s. We call this function the affine projection function
and denote it by π : E

4 → E.

3.3 The two basic metric functions

Now, we present the two formulas that implicitly define the basic metric functions.

Orthogonal Projection: We consider the 4-ary relation defined by

(5) (L(o, p, q) ∧ s = q) ∨ (¬L(o, p, q) ∧ L(o, p, s) ∧ (R(s, q, o) ∨ R(s, q, p))).

When o �= p, the last formula defines that s is the orthogonal projection of q over the line passing
through o and p. We remark that this formula defines also a functional relation in s.

Segment Construction: The axiom of segment construction states that ∃s(β(p, o, s) ∧ os ≡ qr). This
axiom appears in Tarski’s axiomatization of elementary geometry [22] (cf. the first congruence axiom
in Hilbert’s text [8]). We introduce the following FO(β,≡)-formula closely related to it:

(6) (o = p ∧ s = o) ∨ (o �= p ∧ β(p, o, s) ∧ os ≡ qr).

We remark that this relation defined by this formula is functional in s. If o �= p, the unique s satisfying
it is the point in the ray opposite to −→op such that the segments qr and os are congruent.

The functions implicitly defined by these FO(β,≡)-formulas with respect to their last variable are called the
basic metric functions and are denoted by κ and π⊥, respectively.

3.4 The language FO(β, �, ⊕, ⊗, π) and the theory A′

We extend the theory A by definitions (cf., e.g., [17, Section 4.6]) using the formula (1) to define the 0-ary relation
symbol �, the formula (2) to define the function symbol ⊕, the formula (3) to define the function symbol ⊗ and
the formula (4) to define the function symbol π. In this way, we obtain the theory A′ in the extended language
FO(β,�,⊕,⊗, π).

Being an extension by definitions, the expressive power of the expanded language is the same as that of
the original one and there exists (cf. [17]) a translation B : FO(β,�,⊕,⊗, π) → FO(β) in the sense of
Definition 2.13. If ϕ ∈ FO(β,�,⊕,⊗, π) happens to be a FO(β)-formula, then B(ϕ) is just ϕ. Essentially,
via this map, a formula in FO(β,�,⊕,⊗, π) is translated to an FO(β)-formula replacing each occurrence of a
new symbol, by its defining formula in FO(β). This is summarized in the following proposition.

Proposition 3.1 The map

B : FO(β,�,⊕,⊗, π) → FO(β)

is a translation.

For the sake of legibility, we shall use the following suggestive notation for terms in the language FO(β,�,
⊕,⊗, π). We write p ⊕o q for ⊕(o, p, q); q ⊗o,p r for ⊗(o, p, q, r); and πopq (r) for π(o, p, q, r).

The next lemma follows directly from the definitions.

Lemma 3.2 We consider x1 , x2 ∈ R and three affine-independent points o, e1 , e2 ∈ E. We further denote
p1 = (x1 , 0) and p2 = (x2 , 0), where the coordinates are taken with respect to the affine coordinate system
o, e1 , e2 . Then, the standard interpretation of the term p1 ⊕o p2 is the point with coordinates (x1 + x2 , 0), and
the standard interpretation of p1 ⊗o,e1 p2 has coordinates (x1 · x2 , 0).
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10 R. Grimson, B. Kuijpers, and W. Othman: Quantifier elimination

We further define the following abbreviations:

AffCoord1
o,e1 ,e2

(p) := πo,e1 ,e2 (p); and

AffCoord2
o,e1 ,e2

(p) := πo,e2 ,e1 (p) ⊗o,e2 e1 .

When the points o, e1 , e2 form an affine coordinate system, it follows immediately that the term
AffCoord1

o,e1 ,e2
(p) can be interpreted geometrically as the projection, in the direction of oe2 , of the point p

over the line oe1 . Under the same hypothesis and denoting by p′ the projection parallel to oe1 of the point
p over the line oe2 , the term AffCoord2

o,e1 ,e2
(p) represents the unique point q on the line oe1 that satisfies

(o : e1 : q) = (o : e2 : p′).
We state this result for further reference.

Lemma 3.3 We suppose that the points o, e1 , e2 form an affine coordinate system and that the point p has

coordinates (x, y) in this coordinate system. Then, the term AffCoord1
o,e1 ,e2

(p) is naturally interpreted as the

point with coordinates (x, 0) and the term AffCoord2
o,e1 ,e2

(p) as the point with coordinates (y, 0), always with
respect to the same coordinate system.

3.5 The language FO(β, ≡, �, ⊕, ⊗, π⊥, κ) and the theory E ′

As we did with the theory A, we extend the theory E by definitions using the formula (1) to define the 0-ary
relation symbol �, the formula (2) to define the function symbol ⊕, the formula (3) to define the function symbol
⊗, the formula (5) to define the function symbol π⊥ and the formula (6) to define the function symbol κ. In this
way, we obtain the theory E ′ in the extended language FO(�,⊕,⊗, π⊥, κ).

Being an extension by definitions, the expressive power of the expanded language is the same as that of the
original one and there exists a translation M : FO(β,≡,�,⊕,⊗, π⊥, κ) → FO(β,≡). Essentially, via this map, a
formula in FO(�,⊕,⊗, π⊥, κ) is translated to an FO(β,≡)-formula replacing each occurrence of a new symbol,
by its defining formula in FO(β,≡).

Proposition 3.4 The map

M : FO(β,�,⊕,⊗, π) → FO(β)

is a translation.

We shall use the notation previously introduce for the symbols ⊕ and ⊗ and we denote by π⊥
op(q) the FO(β,

≡,�,⊕,⊗, π⊥, κ)-term π⊥(o, p, q).
We further define the following abbreviations:

EuCoord1
o,e1 ,e2

(p) := π⊥
o,e1

(p);

EuCoord2
o,e1 ,e2

(p) := π⊥
o,e2

(p) ⊗o,e2 e1 ; and

ε(o, p, q) := κ(o, o ⊕−π⊥
o p (q) q, o, p).

The following result follows immediately from the definitions.

Lemma 3.5 We suppose that the points o, e1 , e2 form an Euclidean coordinate system and that the point p

has coordinates (x, y) in this coordinate system. Then, the term EuCoord1
o,e1 ,e2

(p) is naturally interpreted as the

point with coordinates (x, 0) and the term EuCoord2
o,e1 ,e2

(p) as the point with coordinates (y, 0), always with
respect to the same coordinate system.

Lemma 3.6 If the points o, e1 , e2 form an affine coordinate system, then the points o, e1 , ε(o, e1 , e2) form an
Euclidean coordinate system.

P r o o f. Let us suppose that the three points are affine independent. The segments oe1 and oε(o, e1 , e2) and

congruent by construction (cf. the definition of κ). Since the point ε(o, e1 , e2) belongs to the line o(q − π⊥
op(q))

that is perpendicular to the line op, the three points form an Euclidean coordinate system.
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4 The translation S of FO(+, ×, <, 0, 1)QF,AI-formulas to
FO(β, �, ⊕, ⊗, π)QF-formulas

In the present section, we define a translation from the quantifier-free affine-invariant fragment of FO(+,×, <,
0, 1) into the quantifier-free fragment of FO(β,�,⊕,⊗, π).

The main result of the present section is the following theorem.

Theorem 4.1 There exists a translation

S : FO(+,×, <, 0, 1)QF ,AI → FO(β,�,⊕,⊗, π)QF .

4.1 A translation given an affine coordinate system for E

We assume that the variables used in FO(+,×, <, 0, 1)-formulas are x1 , y1 , x2 , y2 , . . . and we define a map (not
a translation)

So,e1 ,e2 : FO(+,×, <, 0, 1)QF ,AI → FO(β,�,⊕,⊗, π)QF .

The image, So,e1 ,e2 (ϕ), of an FO(+,×, <, 0, 1)-formula ϕ in the variables x1 , y1 , . . . , xm , ym , involves the vari-
ables o, e1 , e2 , p1 , p2 , . . . , pm .

First, we define it for FO(+,×, <, 0, 1)-terms, by induction on structure of the term, as follows:

So,e1 ,e2 (0) := o,

So,e1 ,e2 (1) := e1 ,

So,e1 ,e2 (xi) := AffCoord1
o,e1 ,e2

(pi),

So,e1 ,e2 (yi) := AffCoord2
o,e1 ,e2

(pi),

So,e1 ,e2 (t1 + t2) := So,e1 ,e2 (t1) ⊕o So,e1 ,e2 (t2) and

So,e1 ,e2 (t1 × t2) := So,e1 ,e2 (t1) ⊗o,e1 So,e1 ,e2 (t2) where t1 and t2 are FO(+,×, <, 0, 1)-terms.

We remark that the image of an FO(+,×, <, 0, 1)-term involving the variables x1 , y1 , . . . , xm , ym , through
the map So,e1 ,e2 , is an FO(β,�,⊕,⊗, π)-term in the variables o, e1 , e2 and p1 , . . . , pm . The map So,e1 ,e2 allows
us to translate the two basic semi-algebraic operations (+ and ×) to the geometric setting, as is proved in the next
proposition.

Proposition 4.2 Let us assume that o, e1 , e2 are three affine-independent points. Let t be a FO(+,×, <, 0,
1)-term in the variables x1 , y1 , . . . , xm , ym and consider points p1 , . . . , pm in E, with coordinates (x1 , y1), . . . ,
(xm , ym ) with respect to the coordinate system o, e1 , e2 .

Then, So,e1 ,e2 (t)[o, e1 , e2 , p1 , . . . , pm ] has coordinates (t[x1 , y1 , . . . , xm , ym ], 0) in the affine coordinate sys-
tem o, e1 , e2 .

P r o o f. We prove the proposition by induction in length of the term t. If it is an atomic term, the conclusion
follows directly from Lemma 3.3. It remains to prove the cases t = r + s and t = r× s, where r and s are shorter
FO(+,×, <, 0, 1)-terms. But these cases are direct consequence of Lemma 3.2.

Now, we define the translation of atomic formulas. The case of the relation symbol “<” is based in a case
analysis. We define So,e1 ,e2 (t1 = t2) as So,e1 ,e2 (t1) = So,e1 ,e2 (t2); and So,e1 ,e2 (t1 < t2) as (So,e1 ,e2 (t1) �=
So,e1 ,e2 (t2)) ∧ (ϕ1 ∨ ϕ2 ∨ ϕ3), where

ϕ1 := β(So,e1 ,e2 (t2), o, e1) ∧ β(So,e1 ,e2 (t1),So,e1 ,e2 (t2), e1);

ϕ2 := β(o, e1 ,So,e1 ,e2 (t2)) ∧ (β(So,e1 ,e2 (t1), o, e1) ∨ β(o,So,e1 ,e2 (t1),So,e1 ,e2 (t2))); and

ϕ3 := β(o,So,e1 ,e2 (t2), e1) ∧ (β(So,e1 ,e2 (t1), o, e1) ∨ β(o,So,e1 ,e2 (t1),So,e1 ,e2 (t2))).

Finally, we extend the map So,e1 ,e2 to the whole quantifier-free fragment of FO(+,×, <, 0, 1) in the natural
way, simply translating the conjunctions as conjunctions and negations as negations. The resulting formula always
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has o, e1 , e2 as extra free variables and one geometric variable for each couple of coordinate-variables in the
original formula.

To lighten the notation, we write So,e1 ,e2 (ϕ) for So,e1 ,e2 (ϕ)[o, e1 , e2 ].
Proposition 4.3 Let us assume that o, e1 , e2 ∈ E form an affine coordinate system, and that ϕ is a quantifier-

free FO(+,×, <, 0, 1)-formula in the variables x1 , y1 , . . . , xm , ym . Consider points p1 , . . . , pm in E, with coordi-
nates (x1 , y1), . . . , (xm , ym ) with respect to the coordinate system o, e1 , e2 . Then, A′ |= So,e1 ,e2 (ϕ)[p1 , . . . , pm ]
if and only if R |= ϕ[x1 , y1 , . . . , xm , ym ].

P r o o f. It is sufficient to prove the proposition for atomic formulas. The case of a formula of the form t1 = t2
is a consequence of Proposition 4.2. Let us assume that ϕ is of the form t1 < t2 .

Let us denote by t1 the real number t1 [x1 , y1 , . . . , xm , ym ], and by t2 the real number t2 [x1 , y1 , . . . , xm , ym ].
Then, the points So,e1 ,e2 (t1)[p1 , . . . , pm ] and So,e1 ,e2 (t2)[p1 , . . . , pm ] have, respectively, by Proposition 4.2,

coordinates (t1 , 0) and (t2 , 0) in the coordinate system o, e1 , e2 .
We can assume, with out loss of generality, that t1 �= t2 . Now, we claim that t1 < t2 holds if and only if

(ϕ1 ∨ ϕ2 ∨ ϕ3)[p1 , . . . , pm ] holds. Let us assume that 0 < t2 < 1, the remaining cases (t2 = 0, t2 = 1, t2 < 0
and t2 > 1) can be handled analogously.

Clearly, since 0 < t2 < 1, (ϕ1 ∨ ϕ2)[p1 , . . . , pm ] is false. Since, under the above hypothesis, t1 is less than
t2 if and only if “0 is between t1 and 1, or t1 is between 0 and t2”, ϕ3 [p1 , . . . , pm ] holds if and only if t1 < t2
holds. Hence, we have proved the claim and completed the proof of the proposition.

4.2 Finding a basis

The map So,e1 ,e2 is not a translation because it adds the three new free variables o, e1 and e2 . We show how to
use the variables p1 , . . . , pm already involved in the formula, considering three different situations:

(1) when all the variables represent the same point;

(2) when all the variables represent points that are aligned and two are different; and

(3) when there are three variables representing affine-independent points.

To distinguish these cases, we define the three FO(β,�,⊕,⊗, π)-formulas AffBasis, Alignedm and Equalm ,
and their FO(+,×, <, 0, 1)-counterparts. First, we define

AffBasis(p1 , p2 , p3) := ¬L(p1 , p2 , p3) and

AffBasiscoord(x1 , y1 , x2 , y2 , x3 , y3) := (x2 − x1) × (y3 − y1) − (y2 − y1) × (x3 − x1) �= 0.

We remark that these are quantifier-free formulas. Both formulas define the same affine-invariant relation: that
the three points form an affine coordinate system. That the second formula defines this relation is a consequence
of the fact that the oriented area of the parallelogram with vertices at (0, 0), (a, b), (a + c, b + d), and (c, d), is

given by the determinant of the matrix
( a b

c d
)
.

Further on, we consider, for m ∈ N, m ≥ 3, the formulas

Alignedm
coord(x1 , y1 , . . . , xm , ym ) :=

∧
1≤i<j<k≤m

¬AffBasiscoord(xi, yi , xj , yj , xk , yk );

Alignedm (p1 , . . . , pm ) :=
∧

1≤i<j<k≤m

¬AffBasis(pi, pj , pk );

Equalmcoord(x1 , y1 , . . . , xm , ym ) :=
∧

2≤i≤m

(x1 = xi) ∧ (y1 = yi), and

Equalm (p1 , . . . , pm ) :=
∧

2≤i≤m

(p1 = pi).

We remark that these four formulas define affine-invariant relations. The first two define the same relation,
namely, that the points are aligned. The last two also define the same relation, namely, that all the points are the
same.

c© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mlq-journal.org



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

Math. Log. Quart. (2012) / www.mlq-journal.org 13

For the remainder of this section, let us assume that ϕ(x1 , y1 , . . . , xm , ym ) is a quantifier-free FO(+,×, <, 0,
1)-formula defining an affine-invariant relation. For i, j, k ∈ N such that 1 ≤ i < j < k ≤ m, let us denote by
ϕ〈i,j,k〉 the formula

AffBasiscoord(xi, yi , xj , yj , xk , yk ) ∧ ϕ(x1 , y1 , . . . , xm , ym ).

We remark that ϕ〈i,j,k〉 defines an affine-invariant relation.

Lemma 4.4 The formula ϕ〈i,j,k〉 and AffBasis(pi, pj , pk ) ∧ Spi ,pj ,pk
(ϕ) define the same relation.

P r o o f. For any p1 , . . . , pm ∈ E we consider (x1 , y1), . . . , (xm , ym ) to be their coordinates in some fixed
affine coordinate system. We prove that

R |= AffBasiscoord[xi, yi , xj , yj , xk , yk ] ∧ ϕ[x1 , y1 , . . . , xm , ym ].

if and only if

A′ |= AffBasis[pi, pj , pk ] ∧ Spi ,pj ,pk
(ϕ)[p1 , . . . , pm ].

On the one hand, if pi, pj , pk are affine dependent, then both formulas are clearly false. On the other hand, if
pi, pj , pk are affine independent, since ϕ is affine invariant, Proposition 4.3 implies that ϕ[x1 , y1 , . . . , xm , ym ]
holds if and only if Spi ,pj ,pk

(ϕ)[p1 , . . . , pm ] holds.

Hence, ϕ〈i,j,k〉 and AffBasis(pi, pj , pk ) ∧ Spi ,pj ,pk
(ϕ) define the same relation.

Let us denote by ϕ〈∗〉 the FO(+,×, <, 0, 1)-formula

Equalmcoord(x1 , y1 , . . . , xm , ym ) ∧ ϕ(x1 , y1 , . . . , xm , ym ).

Lemma 4.5 The formula ϕ〈∗〉 defines the same relation as Equalm (p1 , . . . , pm ) or as ¬�, and which of the
two is the case is decidable.

P r o o f. Since the theory of real closed fields is recursively decidable (cf., e.g., [3]), it is, in particular, effec-
tively decidable whether ϕ〈∗〉 is satisfiable or not. If it is unsatisfiable, it defines the same relation as ¬�.

Suppose, on the other hand, that it its satisfiable. We prove that, under this assumption, ϕ〈∗〉 defines the same
relation as Equalm . Clearly, if a tuple of pairs of coordinates satisfies ϕ〈∗〉, then all the pairs are equal. But since
ϕ〈∗〉 defines an affine-invariant relation, its truth value is invariant under translations. Hence, it is satisfied by
all m-tuples of equal pairs of coordinates. Whence, ϕ〈∗〉 defines the same relation as Equalm , and the proof is
complete.

To take care of those cases where all the points are aligned and two are different, we define a new map So,e1 ,
differing from So,e1 ,e2 only in the third and fourth rules in the definition of the term-translation. We remark that
the these rules are the only ones where the map So,e1 ,e2 involves e2 . So, we have

So,e1 (0) := o;

So,e1 (1) := e1 ;

So,e1 (xi) := pi ;

So,e1 (yi) := o;

So,e1 (t1 + t2) := So,e1 (t1) ⊕o So,e1 (t2); and

So,e1 (t1 × t2) := So,e1 (t1) ⊗o,e1 So,e1 (t2).

For i ≤ m, let us denote by ϕ〈i〉 the formula

Alignedm
coord(x1 , y1 , . . . , xm , ym ) ∧ ((x1 �= xi) ∨ (y1 �= yi)) ∧ ϕ(x1 , y1 , . . . , xm , ym ).

Arguing as in the proofs of Proposition 4.2 and Lemma 4.4, we obtain the following result.

Lemma 4.6 The formulas, ϕ〈i〉 and

Alignedm (p1 , . . . , pm ) ∧ (p1 �= pi) ∧ Sp1 ,pi
(ϕ)(p1 , . . . , pm )

define the same relation.
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The three previous lemmas motivate the following definitions. Consider the formulas

αm :=
∧

2≤i≤m

((x1 = xi) ∧ (y1 = yi)) ∨ ¬((x1 = xi) ∧ (y1 = yi));

βm :=
∧

1≤i<j<k≤m

(AffBasiscoord(xi, yi , xj , yj , xk , yk ) ∨ ¬AffBasiscoord(xi, yi , xj , yj , xk , yk )).

Clearly, αm and βm are logically valid.

P r o o f. (Proof of Theorem 4.1.) Given ϕ(x1 , y1 , . . . , xm , ym ), a quantifier-free FO(+,×, <, 0, 1)-formula
defining an affine-invariant relation, we define ϕ̃ as the result of a first distribution of the conjunctions over the
disjunctions in ϕ∧αm ∧βm . We remark that, since αm and βm are logically valid, ϕ̃ is equivalent to ϕ. It is also
quantifier-free and affine invariant. To clarify the meaning of previous distribution, we remark that any disjunct
in ϕ̃ contains, for any 1 ≤ i < j < k ≤ m, AffBasiscoord(xi, yi , xj , yj , xk , yk ) or ¬AffBasiscoord(xi, yi , xj ,
yj , xk , yk ) as a conjunct and for any 1 < i ≤ m, it also contains ((x1 = xi) ∧ (y1 = yi)) or ((x1 �= xi) ∨ (y1 �=
yi)) as a conjunct.

We define the translation S(ϕ) as the disjunction of the translation of each disjunct γ in ϕ̃. Each disjunct is
translated using the Lemmas 4.4, 4.5 and 4.6.

First, we consider the case where, for some i, j, k ∈ N, γ contains the formula AffBasiscoord(xi, yi , xj , yj , xk ,
yk ) as a conjunct. Let us assume that γ is of the form AffBasiscoord(xi, yi , xj , yj , xk , yk ) ∧ δ, where (i, j, k) is
the first triple, in the lexicographical order, such that AffBasiscoord(xi, yi , xj , yj , xk , yk ) is a conjunct of γ. Then,
we define

S(γ) := AffBasis(pi, pj , pk ) ∧ Spi ,pj ,pk
(δ)(p1 , . . . , pm ).

By Lemma 4.4, S(γ) defines the same relation as γ.
Now, we assume now that γ contains no conjunct of the form AffBasiscoord (xi, yi , xj , yj , xk , yk ). Hence, γ

contains Alignedm
coord(x1 , y1 , . . . , xm , ym ) as a conjunct. If it contains, for some 1 < i ≤ m, ¬((x1 = xi)∧(y1 =

yi)) as a conjunct, let us write γ = Alignedm
coord(x1 , y1 , . . . , xm , ym ) ∧ ¬((x1 = xi) ∧ (y1 = yi) ∧ δ for the first

i with this property, and define

S(γ) := Aligned(p1 , . . . , pm ) ∧ (p1 �= pi) ∧ Sp1 ,pi
(δ)(p1 , . . . , pm ).

By Lemma 4.6, S(γ) defines the same relation as γ.
Finally, we assume that γ contains no conjunct of the form ¬((x1 = xi) ∧ (y1 = yi)). Then, it contains

Equalmcoord(x1 , y1 , . . . , xm , ym ) as a conjunct. We define S(γ) := ¬� or S(γ) := Equalm (p1 , . . . , pm ), in order
to obtain a FO(β,�,⊕,⊗, π)-formula defining the same relation, what is possible by Lemma 4.5.

We finally define

S(ϕ) =
∨

γ disjunct in ϕ̃

S(γ)

Clearly, S(ϕ) is quantifier free and defines the same relation as ϕ. Whence, S : FO(+,×, <, 0, 1)QF ,AI →
FO(β,�,⊕,⊗, π)QF is a translation, and the proof is completed.

5 The translation T of FO(+, ×, <, 0, 1)QF,SI-formulas to
FO(β, ≡, �, ⊕, ⊗, π⊥, κ)QF-formulas

We define a translation from the quantifier-free similarity-invariant fragment of FO(+,×, <, 0, 1) into the
quantifier-free fragment of FO(β,≡,�,⊕,⊗, π⊥, κ).

The main result of the present section is the following theorem.

Theorem 5.1 There exists a translation

T : FO(+,×, <, 0, 1)QF ,SI → FO(β,≡,�,⊕,⊗, π⊥, κ)QF .
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As in the last section, we assume that the variables used in FO(+,×, <, 0, 1)-formulas are x1 , y1 , x2 , y2 , . . .
and we define a map (not a translation)

To,e1 ,e2 : FO(+,×, <, 0, 1)QF ,AI → FO(β,�,⊕,⊗, π)QF .

The image, To,e1 ,e2 (ϕ), of an FO(+,×, <, 0, 1)-formula ϕ in the variables x1 , y1 , . . . , xm , ym , involves the vari-
ables o, e1 , e2 , p1 , p2 , . . . , pm .

First, we define it for FO(+,×, <, 0, 1)-terms, by induction in structure of the term, as follows:

To,e1 ,e2 (0) := o,

To,e1 ,e2 (1) :=e1 ,

To,e1 ,e2 (xi) := EuCoord1
o,e1 ,e2

(pi),

To,e1 ,e2 (yi) := EuCoord2
o,e1 ,e2

(pi),

To,e1 ,e2 (t1 + t2) := To,e1 ,e2 (t1) ⊕o To,e1 ,e2 (t2), and

To,e1 ,e2 (t1 × t2) := To,e1 ,e2 (t1) ⊗o,e1 To,e1 ,e2 (t2), where t1 and t2 are FO(+,×, <, 0, 1)-terms.

The next proposition is the Euclidean analogous to Proposition 4.2. Its proof is completely analogous to that
of Proposition 4.2, using Lemma 3.5 instead of Lemma 3.3.

Proposition 5.2 Let us assume that o, e1 , e2 form an Euclidean coordinate system. Let t be a FO(+,×, <, 0,
1)-term in the variables x1 , y1 , . . . , xm , ym and consider points p1 , . . . , pm in E, with coordinates (x1 , y1), . . . ,
(xm , ym ) with respect to the coordinate system o, e1 , e2 .

Then, To,e1 ,e2 (t)[o, e1 , e2 , p1 , . . . , pm ] has coordinates (t[x1 , y1 , . . . , xm , ym ], 0) in the Euclidean coordinate
system o, e1 , e2 .

The map To,e1 ,e2 is defined on atomic formulas and extended to the whole quantifier-free fragment of FO(+,
×, <, 0, 1) in an analogous way as So,e1 ,e2 was defined. Also, we write To,e1 ,e2 (ϕ) for To,e1 ,e2 (ϕ)[o, e1 , e2 ].

The next proposition and its proof are the Euclidean analogous to Proposition 4.3.

Proposition 5.3 Let us assume that o, e1 , e2 ∈ E form an Euclidean coordinate system, and that ϕ is a
quantifier-free FO(+,×, <, 0, 1)-formula in the variables x1 , y1 , . . . , xm , ym . Consider points p1 , . . . , pm in E,
with coordinates (x1 , y1), . . . , (xm , ym ) with respect to the coordinate system o, e1 , e2 . Then, E ′ |= To,e1 ,e2 (ϕ)
[p1 , . . . , pm ] if and only if R |= ϕ[x1 , y1 , . . . , xm , ym ].

The map To,e1 ,e2 is not a translation because it adds the three new free variables o, e1 and e2 . We use the same
strategy as in the case of So,e1 ,e2 to use the variables p1 , . . . , pm already involved in the formula. That is, we
considering the three different situations:

(1) when all the variables represent the same point;

(2) when all the variables represent points that are aligned and two are different; and

(3) when there are three variables representing affine-independent points.

Since the Euclidean relations among aligned points coincide with the affine relation among these points, Cases
(1) and (2) are translated exactly as in the affine case. The next lemma show how to manage the third case.

Let us assume that ϕ(x1 , y1 , . . . , xm , ym ) is a quantifier-free FO(+,×, <, 0, 1)-formula defining a similarity-
invariant relation. We recall that for i, j, k ∈ N such that 1 ≤ i < j < k ≤ m, we denote by ϕ〈i,j,k〉 the
formula

AffBasiscoord(xi, yi , xj , yj , xk , yk ) ∧ ϕ(x1 , y1 , . . . , xm , ym ).

We remark that ϕ〈i,j,k〉 defines a similarity-invariant relation.

Lemma 5.4 The formulas ϕ〈i,j,k〉 and AffBasis(pi, pj , pk ) ∧ Tpi ,pj ,ε(pi ,pj ,pk )(ϕ) define the same relation.

P r o o f. For any p1 , . . . , pm ∈ E we consider (x1 , y1), . . . , (xm , ym ) to be their coordinates in some fixed
Euclidean coordinate system. We prove that

R |= AffBasiscoord[xi, yi , xj , yj , xk , yk ] ∧ ϕ[x1 , y1 , . . . , xm , ym ].
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if and only if

E ′ |= AffBasis[pi, pj , pk ] ∧ Tpi ,pj ,ε(pi ,pj ,pk )(ϕ)[p1 , . . . , pm ]

On the one hand, if pi, pj , pk are affine dependent, then both formulas are clearly false. On the other hand,
if pi, pj , pk are affine independent, Lemma 3.6 implies that pi, pj , ε(pi, pj , pk ) form an Euclidean coordinate
system.

Thus, since ϕ is similarity invariant, Proposition 5.3 implies that the sentence ϕ[x1 , y1 , . . . , xm , ym ] holds if
and only if Tpi ,pj ,ε(pi ,pj ,pk )(ϕ)[p1 , . . . , pm ] holds.

Hence, ϕ〈i,j,k〉 and AffBasis(pi, pj , pk )∧Tpi ,pj ,pk
(ϕ) define the same relation, what completes the proof.

P r o o f. (Proof of Theorem 5.1.) Given ϕ(x1 , y1 , . . . , xm , ym ), a quantifier-free FO(+,×, <, 0, 1)-formula
defining a similarity-invariant relation, we define ϕ̃ as in the proof of Theorem 4.1. We define the transla-
tion T (ϕ) as the disjunction of the translation of each disjunct γ in ϕ̃. Each disjunct is translated using the
Lemmas 5.4, 4.5 and 4.6.

Let γ be a disjunct in the disjunction ϕ̃ of the form AffBasiscoord(xi, yi , xj , yj , xk , yk ) ∧ δ, where (i, j, k) is
the first triple, in the lexicographical order, such that AffBasiscoord(xi, yi , xj , yj , xk , yk ) is a conjunct of γ. Then,
we define

T (γ) := AffBasis(pi, pj , pk ) ∧ Tpi ,pj ,ε(pi ,pj ,pk )(δ)(p1 , . . . , pm ).

By Lemma 5.4, T (γ) defines the same relation as γ.
The other two cases (γ contains Alignedm

coord∧(p1 �= pi) for some i ∈ N or γ contains Equalmcoord as conjuncts)
are treated in a way completely analogous to the affine case. Since affine and Euclidean relation among aligned
points coincide, the map

T (ϕ) =
∨

γ disjunct in ϕ̃

T (γ)

obtained in this way T : FO(+,×, <, 0, 1)QF ,SI → FO(β,≡,�,⊕,⊗, π⊥, κ)QF is a translation, and the proof is
completed.

6 Quantifier elimination for the theories A′ and E ′

Theorem 6.1 The theory A′ defines exactly the affine-invariant geometric relations and admits effective quan-
tifier elimination.

P r o o f. We prove that

S ◦ ER ◦ C ◦ B : FO(β,�,⊕,⊗, π) → FO(β,�,⊕,⊗, π)QF

is an effective quantifier-elimination function.
Since S,ER, C and B are recursive functions, their composition is recursive.
Let ϕ be a FO(β,�,⊕,⊗, π)-formula. By Corollary 2.15 and Proposition 3.1, the FO(+,×, <, 0, 1)-formula

ψ := C(B(ϕ)) defines the same relation as ϕ. In particular, it defines an affine-invariant relation. We recall from
Section 2.6, that ER(ψ) is a quantifier-free FO(+,×, <, 0, 1)-formula, equivalent to ψ. In particular, it defines
the same relation as ϕ. Thus, by Theorem 4.1, S(ER(ψ)) is a quantifier-free FO(β,�,⊕,⊗, π)-formula defining
the same relation as ϕ.

Being an extension by definitions of a complete theory, A′ is complete. Thus, two FO(β,�,⊕,⊗, π)-formulas
define the same relation (under the standard interpretation) if and only if they are equivalent in A′.

Hence, for any FO(β,�,⊕,⊗, π)-formula ϕ, S(ER(C(B(ϕ)))) ∈ FO(β,�,⊕,⊗, π) is quantifier free and
equivalent to ϕ.

Whence, A′ admits effective quantifier elimination.

In an analogous way, we obtain the following result.
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Theorem 6.2 The theory E ′ defines exactly the similarity-invariant geometric relations and admits effective
quantifier elimination.

P r o o f. Arguing as in the previous proof, using Theorem 5.1 instead of Theorem 4.1, and Theorem 3.4 instead
of 3.1 we conclude that

T ◦ ER ◦ C ◦M : FO
(
β,≡,�,⊕,⊗, π⊥, κ

)
→ FO

(
β,≡,�,⊕,⊗, π⊥, κ

)
QF

is an effective quantifier-elimination function for E ′.

7 Final remarks

7.1 Discussion on the primitive notions

Elementary Euclidean and affine geometry do not admit quantifier elimination in their respective original lan-
guages. We have added new symbols to the underlying signature to allow quantifier-elimination. We now discuss
the minimality of the resulting signatures.

Fixed a language L and an interpretation, we shall say that a symbol in the underlying signature is dispensable
if any property definable in L can be also defined by a quantifier-free formula not involving that symbol. We
remark that, since we require the formula to be quantifier-free, this notion is more subtle than what is usually
understood by independence of the primitive notions.

We briefly argue that � and ⊗ are indispensable in both extended signatures.
The case of � is immediate. Since FO(β,�,⊕,⊗, π) and FO

(
β,≡,�,⊕,⊗, π⊥, κ

)
have no constant symbols,

no quantifier free sentence can be constructed with out it. Hence, it is indispensable.
To prove that ⊗ is indispensable in FO(β,�,⊕,⊗, π), consider the formula z �= o∧o⊕z o = r⊗z ,o r, defining

that the three points are collinear and that the ratio (z : o : r) is equal to ±
√

2. [20, Theorem 2] implies that this
cannot be defined only with β and ⊕; since the function π does not add expressive power on collinear points, we
conclude that ⊗ is indispensable in FO(β,�,⊕,⊗, π). The proof that ⊗ is indispensable in FO(β,≡,�,⊕,⊗,
π⊥, κ) is completely analogous. The dispensability of the symbols β, π and ⊕ in FO(β,�,⊕,⊗, π) remains an
open problem.

Consider the two FO
(
β,≡,�,⊕,⊗, π⊥, κ

)
-formulas

≡ (o, p, q, r) ↔ o ⊕p o = κ(o, p, q, r) and β(p, q, r) ↔ (p = κ(q, r, q, p) ∨ q = r).

The truth of both formulas in E ′ is easy to verify. Hence, the symbols β and ≡ can be replaced in any FO(β,≡,�,
⊕,⊗, π⊥, κ)-formula by the right side of these formulas2. Thus, β and ≡ are dispensable in the language FO(β,
≡,�,⊕,⊗, π⊥, κ). We conclude that the language FO(�,⊕,⊗, π⊥, κ) defines exactly the similarity-invariant
properties of the Euclidean plane and admits the elimination of quantifiers. The dispensability of the symbols
⊕, π⊥ and κ in FO(�,⊕,⊗, π⊥, κ) remains an open problem.

7.2 Axiom systems for the new languages FO(β, �, ⊕, ⊗, π) and FO
(
�, ⊕, ⊗, π⊥, κ

)
Tarski’s complete axiom system for elementary Euclidean geometry can be transformed to a complete axiom
system for the theory E ′ in the language FO

(
β,≡,�,⊕,⊗, π⊥, κ

)
adjoining the axiom � and the implicit defi-

nitions of the new function symbols (replacing in formulas given in Section 3 the variable s by the corresponding
instantiated function symbol). Finally, replacing in the resulting axiom system, each occurrence of β and ≡ by
the equivalent FO

(
�,⊕,⊗, π⊥, κ

)
-formulas recently introduced, we obtain an axiom system in the language

FO
(
�,⊕,⊗, π⊥, κ

)
for the corresponding theory. We remark that an analogous procedure can be followed to

axiomatize the affine case. The resulting axioms are all universal (also called, quantifier-free) with the exception
of the lower-dimensional axiom and the continuity axiom-schema. A natural question remains open: Is it possible
to extend our signature with finitely many new functions to obtains a purely universal axiomatization in the line
of constructive analysis?

2 The second formula is analogous to the abbreviation (3) in [12].

www.mlq-journal.org c© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

18 R. Grimson, B. Kuijpers, and W. Othman: Quantifier elimination

7.3 Extension to higher dimensions

Our results can easily be extended to n-dimensional spaces for n > 2. We briefly indicate how.
In the affine case, we replace the projection function symbol π by πn whose interpretation is defined as follows.

πn (p, o, e1 , e2 , . . . , en )

is the projection, parallel to the affine hull of o, e2 , . . . en , of p over oe1 , if p belongs to the affine hull of
o, e1 , e2 , . . . en and o otherwise. A direct generalization of our proofs (using πn to coordinate the space) shows
that the language FO(β,�,⊕,⊗, πn ), interpreted over the n-dimensional Euclidean space, defines exactly the
affine-invariant relations on the n-dimensional Euclidean space and admits quantifier elimination.

On the other hand, a straightforward generalization to dimension n of our proofs shows that the language
FO

(
�,⊕,⊗, π⊥, κ

)
, interpreted over the n-dimensional Euclidean space

(
where π⊥ is, as before, interpreted as

the orthogonal projection over a line
)
, defines exactly the similarity-invariant relations and admits the elimination

of quantifiers.
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