
This article was downloaded by: [Cristian Mateos]
On: 05 September 2012, At: 13:39
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Enterprise Information Systems
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/teis20

Measuring the impact of the approach
to migration in the quality of web
service interfaces
Cristian Mateos a b , Marco Crasso a b , Juan M. Rodriguez a b ,
Alejandro Zunino a b & Marcelo Campo a b
a ISISTAN Research Institute – UNICEN, Campus Universitario,
Tandil (B7001BBO), Buenos Aires, Argentina
b CONICET (Consejo Nacional de Investigaciones Científicas y
Técnicas), Av, Rivadavia 1917, C1033AAJ, Buenos Aires, República
Argentina

Version of record first published: 05 Sep 2012

To cite this article: Cristian Mateos, Marco Crasso, Juan M. Rodriguez, Alejandro Zunino & Marcelo
Campo (2012): Measuring the impact of the approach to migration in the quality of web service
interfaces, Enterprise Information Systems, DOI:10.1080/17517575.2012.717234

To link to this article: http://dx.doi.org/10.1080/17517575.2012.717234

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-
conditions

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation
that the contents will be complete or accurate or up to date. The accuracy of any
instructions, formulae, and drug doses should be independently verified with primary
sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand, or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/teis20
http://dx.doi.org/10.1080/17517575.2012.717234
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

Measuring the impact of the approach to migration in the quality of web

service interfaces

Cristian Mateosa,b*, Marco Crassoa,b, Juan M. Rodrigueza,b, Alejandro Zuninoa,b

and Marcelo Campoa,b

aISISTAN Research Institute – UNICEN, Campus Universitario, Tandil (B7001BBO), Buenos
Aires, Argentina; bCONICET (Consejo Nacional de Investigaciones Cientı́ficas y Técnicas), Av.

Rivadavia 1917, C1033AAJ, Buenos Aires, República Argentina

(Received 15 February 2011; final version received 28 July 2012)

There is a good consensus on the strategic value of service-oriented architecture
(SOA) as a way of structuring systems, and a common trend is to migrate legacy
applications that use outdated technologies and architectures to SOA. We study
the effects in the resulting Web Service interfaces of applying two traditional
migration approaches combined with common ways of building services, namely,
direct migration with code-first and indirect migration with contract-first. The
migrated system was a 35-year-old COBOL system of a government agency that
serves several millions of users. In addition, we provide a deep explanation of the
trade-offs involved in following either combinations. Results confirm that the ‘fast
and cheap’ approach to move into SOA, which is commonplace in the industry,
may deliver poor service interfaces, and interface quality is also subject to the
tools supporting the migration process.

Keywords: services-oriented architectures; web services; legacy system migration;
direct migration; indirect migration; service modelling; service interface design;
code-first; contract-first

1. Introduction

Undoubtedly, migrating legacy systems to service-oriented architecture (SOA) is an
important problem of interest to the IT community. In the following subsections, we
explore the complexities inherent to this problem by discussing why legacy migration is
necessary, what approaches to modernise legacy systems when targeting SOA have been
proposed in the literature so far and what are the implications on the quality of service
interfaces. Lastly, we describe the contributions of this paper regarding this problem.

1.1. The necessity of legacy systems migration

Legacy systems are most of the time an undesired yet unavoidable reality for many
enterprises. By definition, a legacy system is functioning software still actively being
used, but implemented with outdated design criteria and technologies. The most
representative example of legacy systems are COBOL programs, which run in

*Corresponding author. Email: cmateos@conicet.gov.ar

Enterprise Information Systems

2012, 1–28, iFirst article

ISSN 1751-7575 print/ISSN 1751-7583 online

� 2012 Taylor & Francis

http://dx.doi.org/10.1080/17517575.2012.717234

http://www.tandfonline.com

D
ow

nl
oa

de
d

by
 [

C
ri

st
ia

n
M

at
eo

s]
 a

t 1
3:

39
 0

5
Se

pt
em

be
r

20
12

mainframes and commonly implement business logic belonging to financial domains,
such as bank or insurance. According to Gartner consulting,1 over 200 billion lines
of operative COBOL code are still running worldwide. Unfortunately, COBOL
systems usually force organisations to incur high costs including payments for
processing power, difficulty of hiring not-so-expensive programmers that master the
involved technologies and lack of productive development tools. In this sense,
modernisation or migration of such systems becomes a necessity. However, this has
also inherent costs since, apart from the required budget, several teams with different
technological skills must interact and collaborate to achieve the shared goal. This is
not an easy task because technology places a language – and sometimes conceptual –
barrier between the members of these teams. Thus, the decision of migrating a legacy
system depends on whether the modernisation cost justifies the revenue expected
from the new system.

1.2. Targeting SOA and web services for migrating legacy systems

Another important decision concerning legacy system modernisation is the choice
of the target programming paradigm, and hence the technologies to be used for
designing and implementing the new system. Nowadays, for achieving this, SOA has
been adopted in many cases (Bichler and Lin 2006, Erickson and Siau 2008,
Mietzner et al. 2011). Service-oriented architecture (SOA) has mainly evolved from
component-based software engineering by introducing a new kind of building block
called service, which represents a capability offered by an organisation to one or
more service consumers. In SOA, services can belong to two complementary classes:
business services and software services (Kohlborn et al. 2009). A business service is a
set of actions characterising an organisation (core business) that are exposed via
well-defined operations. A software service is the specific part of an application or
system that actually allows other applications to invoke a business service. Service-
oriented architecture (SOA) is in general the right target for migration when loose
coupling among applications and software services, and agility to respond to changes
in requirements are needed.

The commonest technological choice for materialising SOA designs is Web
Services. The term Web Services refers to a technology stack for enabling
programmes with well-defined interfaces to be described and consumed by means
of ubiquitous protocols (Erickson and Siau 2008, D’Mello and Ananthanarayana
2010, Gong et al. 2010, Wang et al. 2010), usually Web Service Description
Language (WSDL) plus XML Schema Definition (XSD) and Simple Object Access
Protocol (SOAP) (Gudgin et al. 2007), respectively. A service provider, such as a
business or a governmental organisation, provides meta-data for a service, including
a specification of its functionality in WSDL (Erl 2007). Web Service Description
Language (WSDL) allows providers to specify a service interface as a set of abstract
operations with inputs and outputs, and to specify the associated binding
information so that consumers can invoke the offered operations. Inputs and
outputs have associated data types specified in XSD (Gao et al. 2009). Then, service
consumers (e.g. third-party applications) can invoke Web Service operations by
interpreting the contents of the WSDL document associated to the corresponding
service, and exchanging structured information through SOAP.

Basically, a legacy system can be migrated to exploit the SOA paradigm using two
approaches (Li et al. 2007), namely, wrapping the legacy system or reimplementing it.

2 C. Mateos et al.

D
ow

nl
oa

de
d

by
 [

C
ri

st
ia

n
M

at
eo

s]
 a

t 1
3:

39
 0

5
Se

pt
em

be
r

20
12

The first method, called direct migration, consists in writing a new software
component that exposes selected existing software components as services. In
contrast, the other method, known as indirect migration, requires re-implementing
all the functionality that will be exposed as individual services within the new SOA
platform. Clearly, these migration approaches are radically different. In fact, other
alternative combinations are possible, such as reengineering a portion of the legacy
system, while keeping other portions untouched. An example of this could be re-
implementing only the COBOL code, but keeping the ‘old’ database as is.

1.3. Implications of approaches to legacy systems migration on WSDL
interface design

Having well-designed and descriptive WSDL documents is a mandatory require-
ment to successful SOA. But unless appropriately specified by its provider, a
WSDL document can be counterproductive and obscure the purpose of a service.
This makes the service difficult to be understood from a functional perspective,
which in turn raises consumer application development costs. Although the
literature (Crasso et al. 2010) has already acknowledged this problem, most
organisations still follow the direct migration approach alongside a somewhat fast
WSDL document generation method known as code-first (Mateos et al. 2010).
Basically, this means that WSDL documents are not directly created by developers
but are instead automatically derived from the source code implementing the
corresponding software services. The drawback of this approach is that resulting
WSDL documents are hard to deal with as they are negatively influenced by bad
implementation practices in the code, and the inefficacy of WSDL generation tools.
With respect to the latter, some of these tools replace argument names with non-
explanatory names like ‘arg0’, ‘arg1’ during the generation process, or just do not
include descriptive comments present at either methods or classes headers into the
WSDL documents, or generate redundant XSD code for defining shared data
types.

On the other hand, by basing on the fact that developers of client applications
tend to prerer properly designed WSDL documents over those having the problems
mentioned in the previous paragraph (Rodriguez et al. 2010c), it is reasonable to
expect that when service developers have full control over their WSDL documents,
they build WSDL interfaces better designed than those automatically generated.
Although the SOA community has the reasonable suspicion that indirect migration
results are better in terms of WSDL documents quality (Papazoglou and van den
Heuvel 2006), until now, an open research question is how much better the WSDL
documents resulting from indirect migration are. The lack of evidence about the
implications of the approach to migration on WSDL interfaces design forces
software engineers to choose between one migration approach or another by basing
on other classical criteria, while disregarding the one that directly impacts on the
final SOA system frontier. In this context, a SOA frontier is the set of WSDL
documents that describe a service-oriented system. Figure 1 depicts how a SOA
frontier allows the interaction between not only service providers and service
consumers, but also service providers and service registries. The most important
reason for the lack of objective information about the impact of both direct and
indirect migration on WSDL and hence SOA frontier quality is that it is extremely
rare to find a system on which both approaches have been applied.

Enterprise Information Systems 3

D
ow

nl
oa

de
d

by
 [

C
ri

st
ia

n
M

at
eo

s]
 a

t 1
3:

39
 0

5
Se

pt
em

be
r

20
12

1.4. Contributions of this paper

This paper analyses the outcomes of migrating a 35-year-old legacy COBOL system
using direct migration and indirect migration approaches, with two different WSDL
construction methods. The system is owned by an Argentinean government agency.
The goal of the migration process was to allow agency website developers to
integrate some of the core functionality with the agency Web portal for improving
the e-government model and, in turn, to expand the accessibility to other
governmental agencies.

Due to some budget constraints at the time the project started and the urgency of
improving its Web portal, the agency opted for a direct migration targeting .NET as
the service platform. Although the Web Services could be used to improve the portal,
the complex interfaces resulting from the migration approach rendered the
consumption of these services outside of the agency rather hard. Once the most
urgent necessity was fulfilled, the agency needed to make their system more reusable.
Therefore, the agency started a project with our University to migrate the system in a
more friendly way for third-parties developers, i.e. exposing better designed service
interfaces. As a result of this project, a second attempt to migrate the system was
performed. This attempt consisted in using indirect migration for re-implementing in
.NET part of the same system.

As a consequence of having both migration methods using the same technology,
it was possible to compare them with respect to the trade-off between resulting SOA
frontier quality and migration costs. We measured the impact of both approaches in
the obtained service interfaces by basing on extensive research on WSDL design best
practices (Crasso et al. 2010, Rodriguez et al. 2010a, 2010c). Besides showing that
there is an unquestionable trade-off between the effort one puts on (and the cost of)
migration and the design quality of resulting SOA frontiers, our results provide
objective means to quantitatively analyse service interfaces in terms of under-
standability, discoverability and clarity.

The rest of the article is structured as follows. Section 2 presents related efforts.
Section 3 describes the aforementioned project and its two migration attempts.

Figure 1. SOA frontier and SOA roles.

4 C. Mateos et al.

D
ow

nl
oa

de
d

by
 [

C
ri

st
ia

n
M

at
eo

s]
 a

t 1
3:

39
 0

5
Se

pt
em

be
r

20
12

Section 4 reports a comparison of the SOA frontiers obtained by either attempts.
Finally, Section 5 presents the conclusions and future research.

2. Related work

Legacy system migration has been always recognised as a tempting but challenging
endeavour. In the past few years, migration from mainframe systems to service-
oriented ones has attracted the attention of both the industry and the academia.
Governments increasing tendency to adhere to open-source platforms has also
encouraged migration. Below, we summarise the most relevant studies about
defining migration approaches, reporting migration experiences and comparing
migration results.

Migrating a software system refers to the process of moving the system to a
different target environment, while preserving the original system functionality and
data. Specifically, there are two main approaches to migrating legacy systems to
SOA, namely, direct migration and indirect migration (Li et al. 2007). The former can
be seen as a bottom-up approach because it encourages engineers to servify, i.e. to
expose as services, the original components of the legacy system. Accordingly, final
services potentially inherit the interfaces, and so the offered functionality, from the
older components. Instead, indirect migration requires to abstractly define target
service interfaces based on a high-level view of the functionality of the legacy
components, and then inspecting/re-writing its source code, or parts of it, for
implementing the defined service interfaces. Alternatively, when the definition of
service interfaces is the result of comparing desired high-level views of the
functionality and the functionality that is actually offered by the legacy system,
one arrives at the settlement of meet-in-the-middle service interfaces (Ricca and
Marchetto 2009). In this sense, meet-in-the-middle refers to an approach to define the
SOA frontier of a migrated system, which is commonly used within indirect
migration attempts.

There are different strategies for implementing each approach. The most frequent
strategies are wrapping and re-engineering. The wrapping strategy is based on
providing an SOA-enabled interface to existing components in order to expose them
as services to other software components. This strategy is commonly used when re-
writing legacy source code is too expensive, and instead a fast, cost-effective solution
is needed (Almonaies et al. 2010). On the other hand, re-engineering involves re-
thinking, restructuring, redesigning and re-implementing the legacy system to
transform it into a well-shaped, service-oriented system (Almonaies et al. 2010).

Different researches have reported migration experiences, for example Li et al.
(2007), De Lucia et al. (2008) and Colosimo et al. (2009). The work shown in Li et al.
(2007) not only reports an experience, but also proposes a systematic meet-in-the-
middle approach to migration. This approach consists of five steps. First, high-level
diagrams – data flow diagrams (DFD), entity relationship diagrams (ERD), etc. – of
the original system are utilised to re-engineer its business objects. Second, system
business processes are analysed from these diagrams. The resulting business objects
and processes are integrated into business services at the third step of the proposed
approach. Then, software services are defined to realise the business services using
SOA. Finally, the fifth step is for implementing the target SOA using Web Services
standards. This approach is a meet-in-the-middle one, since at the third step business
objects (re-engineered at step 1) meet needed business services (derived at step 2).

Enterprise Information Systems 5

D
ow

nl
oa

de
d

by
 [

C
ri

st
ia

n
M

at
eo

s]
 a

t 1
3:

39
 0

5
Se

pt
em

be
r

20
12

In De Lucia et al. (2008), the authors analyse the results of performing a direct
migration, through wrapping, of a legacy system back-end, and an indirect
migration, via re-engineering, of its front-end. A tool to support the migration
process is presented by the authors as well. Likewise, Colosimo et al. (2009) propose
an integrated development environment (IDE) for the easy migration of legacy
COBOL programs to Web systems. The authors compared the results obtained when
employing their IDE vs. not using it by migrating a case study. The reported
comparison is in terms of developer’s productivity.

One major difference between the works mentioned in the previous two
paragraphs and ours is that this paper reports two migration experiences to SOA
of the same legacy system by comparing migration results in terms of service
interfaces quality. Broadly, as far as we know, there is not even a consensus about
how to quantitatively compare two migrated versions of a legacy system. In this
paper, we focus on comparing the service interfaces of each evaluated version by
means of WSDL-level metrics. This is because service interfaces play the most
important role in enabling third-party developers to understand, discover and reuse
services (Crasso et al. 2010).

When using Web Services to materialise service-oriented systems, designing
service interfaces requires employing WSDL. Several important concerns, such as
granularity, cohesion, discoverability and reusability, should influence design
decisions to result in clear WSDL document designs (Papazoglou and van den
Heuvel 2006). Therefore, two WSDL documents can be compared based on the
aforementioned concerns. In Rodriguez et al. (2010c), the authors identified and
built a catalogue of frequent practices that attempt against these concerns in publicly
available WSDL documents. This catalogue presents the bad practices as anti-
patterns each comprising a name, a symptom description and a sound solution.
Moreover, the article offers empirical evidence of the advantages of avoiding the
identified anti-patterns for improving the chance of services to be understood and
reused. Then, the catalogue of anti-patterns can be used to compare two WSDL-
based service interfaces. Specifically, one could account anti-pattern occurrences
within a set of given service interfaces because the fewer the occurrences are, the
better the resulting WSDL documents are. In this sense, as a collection of WSDL-
described services is the outcome of the aforementioned approaches for moving from
mainframe environments into service-oriented ones, the catalogue of WSDL anti-
patterns was used in this paper to assess the quality of the resulting service interfaces
in our reported experience. Moreover, this approach might allow software
practitioners to compare among different migration alternatives in similar scenarios.

3. The project

This section describes a project comprising two migration attempts: one for
migrating an entire legacy system to SOA using a direct migration approach by
wrapping it, and another for migrating the most accessed parts of such system using
an indirect migration by re-engineering it. The section is organised as follows.
Section 3.1 presents an overview of architectural and technological aspects of the
project. Section 3.2 describes the characteristics of the direct migration attempt,
including employed method, tools and technologies. The indirect migration attempt
is described in Section 3.3. Finally, Section 3.4 summarises the obtained results from
both attempts.

6 C. Mateos et al.

D
ow

nl
oa

de
d

by
 [

C
ri

st
ia

n
M

at
eo

s]
 a

t 1
3:

39
 0

5
Se

pt
em

be
r

20
12

3.1. Architectural and technological description of the legacy system under study

The project under study involved an initiative to modernise the information
system of an Argentinean government agency. Roughly, the system is data centric
and is composed of several subsystems that maintain data records related to
individuals including complete personal information, relationships, work back-
ground, received benefits and so forth. The system is written in COBOL, runs on
an IBM AS/400 mainframe and accesses a DB2 database with around 0.8
PetaBytes. On the other hand, there are some COBOL programs accessing historic
data through Virtual Storage Access Method (VSAM), a storage and data access
method featured by a number of IBM mainframe operating systems. Virtual
Storage Access Method (VSAM) relies on a record-oriented data allocation
scheme at the file-system level. Moreover, some of the COBOL programs are only
accessed through an intra-net via 3 270 terminal applications, while other
programs are grouped in Customer Information Control System (CICS)
transactions and consumed by Web applications. Customer Information Control
System (CICS) is a transaction manager designed for rapid, high-volume
processing, which allows organising a set of programs as an atomic task. In this
case, these programs consist of business logic and database accesses, mostly input
validations and queries, respectively.

For the sake of illustration, a brief overview of only six transactions is shown
in Table 1, which indicates the number of non-commented source code lines,2 the
number of SQL queries performed, and the number of lines and files associated
with a transaction. When a program P1 calls a program P2, or imports a
Communication Area (COMMAREA) definition C, or includes a SQL definition
S, it is said that P1 is associated with P2, or C, or S, respectively. On average, each
program had 18 files, comprised 1803 lines of code and performed six SQL
SELECT statements.

Note that all the CICS/COBOL transactions basically receive an input, perform
some queries to the database, apply some analysis to these query results and return
the requested information. This means that all the interactions between the system
and client applications are initiated by the latter. As a result, to expose these
transactions as Web Services, it is only necessary to use request–response WSDL
operations. This is important because the Web Service Interoperability (WS-I)
standards3 only allows two types of operations being one of these the request–
response operations.

Table 1. Characteristics of most important project transactions according to the mainframe
load in terms of executed transactions during January 2010.

Program SQL
COMMAREA(s) Include(s)

Number
of lines

Number
of queries

Number
of lines

Number
of files

Number
of lines

Number
of files

265 2 518 7 683 6
416 2 1114 6 141 5
537 3 10 2 800 29
1088 10 820 4 580 16
543 10 820 4 411 10
705 10 956 6 411 10

Enterprise Information Systems 7

D
ow

nl
oa

de
d

by
 [

C
ri

st
ia

n
M

at
eo

s]
 a

t 1
3:

39
 0

5
Se

pt
em

be
r

20
12

3.2. First attempt: direct migration (wrapping)

The first migration attempt took place during 2009 and involved the exposure of
most of the CICS transactions through Web Services. The reason behind this
initiative was basically the inception of a program by the Argentinean government
designed to improve the IT landscape of the government organisations as well as
supplying citizens better access to information and technology. Another goal was to
replace other access methods to the backend functionality (e.g. 3270 terminal
application) with Web Services because giving a single technological entry point was
expected to facilitate system administration as well as client application building.
Due to budget constraints and some strict deadlines partially imposed by this
program, a direct migration to .NET Web Services was carried out. To some extent,
this allowed the IT department of the agency to gain understanding of the
capabilities of some portions of the system that had been developed many years ago
by external software professionals.

3.2.1. Methods and tools employed

Methodologically, the IT department members followed for each migrated
transaction a wrapping strategy (Almonaies et al. 2010) that comprised four steps:

(1) Automatically creating a COMþ object including a method with the inputs/
outputs defined in the associated COMMAREA, which forwards invocations
to the transaction. This was done by using a tool called COMTI Builder
(Leinecker 2000).

(2) Automatically wrapping the COMþ object with a C# class having only one
method that invokes this object by using Visual Studio.

(3) Manually including specific annotations in the C# code to deploy it and use
the framework-level services of the .NET platform for generating the WSDL
document and handling SOAP requests.

(4) Testing the communication between the final Web Service and its associated
transaction. This was performed by means of a free tool called soapUI
(http://www.soapui.org).

To clarify these four steps, a word about the employed technologies and tools is
needed. A COMMAREA is a fixed region in the RAM of the mainframe that is used
to pass data from an application to a transaction. Conceptually, a COMMAREA is
a Cþþ struct with (nested) fields specified by using native COBOL data types.
Component Object Model Transaction Integrator (COMTI) is a technology that
allows a transaction to be wrapped with a Component Object Model Plus (COMþ)
object. The tool named COMTI Builder receives a COMMAREA as input to
automatically derive a type library (TLB), which is accessible from any component
of the .NET framework as a COMþ object afterwards. Component Object Model
Plus (COMþ) is an extension to COM that adds a new set of functions to introspect
components at run-time. Finally, the soapUI testing tool receives one or more
WSDL documents and automatically generates a client for the associated service(s),
which allows the generation of test suites.

Basically, each step, but step 4, adds an onion layer to the original transactions.
In this context, the Wrapper Design Pattern is central to the employed steps, since
wrapping consists in implementing a software component interface by reusing

8 C. Mateos et al.

D
ow

nl
oa

de
d

by
 [

C
ri

st
ia

n
M

at
eo

s]
 a

t 1
3:

39
 0

5
Se

pt
em

be
r

20
12

http://www.soapui.org

existing components, which can be any of a batch program, an on-line transaction, a
program, a module, or even just a simple block of code. Wrappers not only
implement the interface that newly developed objects use to access the wrapped
systems, but also are responsible for passing input/output parameters to the
encapsulated components. Then, from the inner to the outer part of a final service,
by following the described steps the associated transaction was first wrapped with a
COMTI object, which in turn was wrapped by a COMþ object, which finally was
wrapped by a C# class that in the end was offered as a Web Service. To do this,
implementation classes were deployed as .NET ASP 2.0 Web Service Applications,
which used the framework-level services provided by the .NET platform for
generating the corresponding WSDL document and handling SOAP requests. As the
reader can see, the SOA frontier was automatically derived from the C# code, which
means that WSDL documents were not made by human developers but they were
automatically generated by the .NET platform. In other words, the employed WSDL
document construction method was code-first.

3.2.2. Overview of costs and results

As a result of this migration attempt, the IT department obtained an individual Web
Service for each migrated transaction. The WSDL documents of these services
presented some threats to reusability. Almost all of the services comprised a lot of
business logic and ca. 100 output parameters; there were coarse-grained services in
the sense they offered a large view of the back-end data; there were services offering
almost exactly the same functionality; their associated descriptions had no
documentation at all.

Figure 2 summarises the anatomy of the resulting Web Services. Each Web
Service consisted of two main parts: (1) a thin C# tier running on the .NET platform
and (2) the original CICS/COBOL transactions and programs running on the IBM
mainframe.

As reported by the organisation’s IT department, it took one day to train a
developer on these four steps and the three tools employed, namely, COMTI
Builder, Visual Studio and soapUI.4 Then, trained developers migrated one
transaction per hour, mostly because all the steps but one (step 3) were tool-
supported and automatic. Since the agency had the respective software licenses for
COMTI Builder and Visual Studio tools beforehand, choosing them was a harmless
decision from an economical viewpoint. Appendix 1 presents an example useful for
highlighting the fact that the combination of the direct migration approach and the
wrapping strategy along with the tool-set and method (i.e. code-first) employed for
implementing them, allowed the IT department members to migrate the target
transactions with few resources. Indeed, the reader should recall that this migration
attempt was characterised by tight budget constraints and strict deadlines.

3.3. Second attempt: indirect migration (re-engineering)

On February, 2010, the IT department outsourced the migration of 32 top priority
transactions ranked by usage history using an indirect migration approach, which
involved re-thinking, re-designing and re-implementing the transactions to transform
them into a well-shaped, service-oriented system. In other words, this means that the
attempt consisted in migrating the system using a conventional indirect migration

Enterprise Information Systems 9

D
ow

nl
oa

de
d

by
 [

C
ri

st
ia

n
M

at
eo

s]
 a

t 1
3:

39
 0

5
Se

pt
em

be
r

20
12

approach, which is methodologically described in Li et al. (2007). In part, the goal
was to remove these prioritised transactions from the mainframe so as to alleviate
CPU load. The starting point of this attempt was the business code of the prioritised
transactions, i.e. the starting point was the same for both migration attempts.

3.3.1. Methods and tools employed

Methodologically, this attempt was performed following the indirect migration
approach (Li et al. 2007). This approach basically implied following five steps:

(1) Manually defining potential WSDL documents based on the knowledge, the
agency had on the interface and functionality of the original transactions.
For each service operation, a brief explanation using WSDL documentation
elements was included.

(2) Exhaustively revising the legacy source code.
(3) Manually refining the WSDL documents defined during (1) by basing on

opportunities to abstract and reuse parameter data type definitions, group
functionally related transactions into one cohesive service, improve textual
comments and remove duplicated transactions, which were detected at step 2.
For data type definitions, we followed best practices for naming type
elements and constraining their ranges.

(4) Supplying the WSDL documents defined at (3) with implementations using
.NET.

(5) Testing the migrated services with the help of the agency IT department.

Figure 2. Anatomy of the Web Services that resulted from the first migration attempt.

10 C. Mateos et al.

D
ow

nl
oa

de
d

by
 [

C
ri

st
ia

n
M

at
eo

s]
 a

t 1
3:

39
 0

5
Se

pt
em

be
r

20
12

During the first step, three specialists on Web Services technologies designed
preliminary WSDL documents, based on the knowledge the agency had on the
functionality of the transactions, to sketch the desired system’s frontier together.
This step comprised daily meetings not only between the specialists and the project
managers in charge of the original COBOL programs, but also between the
specialists and the project managers responsible for developing client applications
that would consume the migrated Web Services. Unlike the code-first approach, in
which service interfaces are derived from their implementations, the three specialists
used contract-first, which encourages designers to first derive the technical contract
of a service using WSDL, and then supply an implementation for it. Usually, this
approach leads to WSDL documents that better reflect the business services of an
organisation, but it is not commonly used in the industry since it requires WSDL
specialists. This step might be carried out by defining service interfaces in C# and
then using code-first for generating WSDL documents, specially when analysts with
little WSDL skills are available.

The second step involved revising the transactions code with the help of
documents specifying functionality and diagrams illustrating the dependencies
between the various transactions to obtain a bigger picture. This was done to output
a high-level analysis of the involved business logic, since the existing COBOL to
some extent conditioned the functionality that could be offered by the resulting
services. The selected transactions comprised 261,688 lines of CICS/COBOL code
(600 files). Six software analysts exhaustively revised each transaction and its
associated files under the supervision of the specialists during three months. Once the
complete big picture of the transactions was obtained, it was used for refining the
previously obtained WSDL documents.

The third step consisted in refining the WSDL documents obtained in the first
step by basing on the output of the second step. Broadly, we abstracted and reused
parameter data type definitions, grouped functionally related transactions into one
cohesive service, improved textual comments and names and removed duplicated
transactions. For data type definitions, we followed best practices for naming data
type elements and constraining their ranges. From this thorough analysis, we derived
potential interfaces for the target services and a preliminary XSD schema document
subsuming the entities implicitly conveyed in the original COMMAREA definitions.
In this sense, we iteratively built the final service interfaces based on the desired
business services, which impact on the implementation of services, as well as the
interfaces derived from the existing CICS/COBOL code, which to some extent
condition the functionality that can be exposed by the resulting software services.
Note that to some extent, this migration attempt might be seen as an application of
the meet-in-the-middle approach (Ricca and Marchetto 2009). However, since both
migration attempts are analysed from the CICS/COBOL point of view only, this
particular attempt used indirect migration because all the code was replaced by new
C# code (Li et al. 2007).

The fourth step regarded re-implementing the services and began once the WSDL
documents were defined. Two more people were incorporated in the project for
implementing the services using the .NET ASP 2.0 Web Service Application template
as required by the agency. Hence, the three specialists trained eight software
developers in Visual Studio 2008, C# and a data mapper, called MyBatis.5 This
library frees developers from coding typical conversions between database-specific
data types and programming language-specific ones. MyBatis connects to DB2

Enterprise Information Systems 11

D
ow

nl
oa

de
d

by
 [

C
ri

st
ia

n
M

at
eo

s]
 a

t 1
3:

39
 0

5
Se

pt
em

be
r

20
12

mainframe databases using IBM’s DB2Connect,6 an infrastructure for connecting
Web, Windows, UNIX, Linux and mobile applications to z/OS and AS/400 back-
end data. It is worth noting that to bind the defined WSDL documents with their
.NET implementations, we had to extend the ASP 2.0 ‘httpModules’ support.
Concretely, the three specialists developed a custom module that returns a manually
specified WSDL document to applications, instead of generating it from source code,
which is the default behaviour of .NET.

The fifth step was to test the resulting services with the help of the agency IT
department. Basically, each new Web Service was compared to its CICS/COBOL
counterpart(s) to verify that with the same input the same output was obtained. If
some inconsistency between the new services and the old CICS/COBOL system was
detected, the services were revised and re-tested. This step was repeated until the
agency IT department had the confidence that the new SOA-based system was as
good as the old system from a functional point of view.

3.3.2. Overview of costs and results

In the end, the indirect migration attempt ended up with seven Web Services having
45 operations in total. The WSDL documents of these services were designed by
taking into consideration service interface design best practices. For instance,
services had comments for describing offered operations, but not business object
definitions, which were placed in a separate XSD file so they can be reused from
different service descriptions.

Figure 3 depicts an overview of the anatomy of a migrated service. Each service
implementation consisted of a WSDL document and a handful of C# classes. A
service main class validates inputs and calls data mapper classes to gather the
information requested by client applications.

Regarding the costs of this migration attempt, monetarily, it cost the agency
312,000 US dollars. Table 2 details the human resources involved in the second
attempt of the project. All in all, it took one year plus one month for six software
analysts, two more developers incorporated at step 4 and three specialists to migrate
32 priority transactions. It is worth noting that no commercial tools were needed,
apart from the IDE for which the agency already had licenses. Indeed, the cost of
indirectly migrating the entire legacy system is much higher than the cost of applying
a direct migration.

3.4. Summary

The entire project involved an initiative to SOA-enable a real software system
comprising a set of data centric CICS/COBOL transactions and programs that
run on a mainframe. The project comprised two attempts. In the first attempt,
the IT department members of the agency employed a direct migration by
wrapping that ended with all the original transactions being called from Web
Services, whose WSDL documents were constructed using the code-first method.
The next year, the second migration attempt of the project started. In this
attempt, we were hired to migrate a subset of the transactions comprising 261,688
lines of source code by following the indirect migration with a re-engineering
strategy, plus the contract-first methodology to build the WSDL documents of
the resulting services.

12 C. Mateos et al.

D
ow

nl
oa

de
d

by
 [

C
ri

st
ia

n
M

at
eo

s]
 a

t 1
3:

39
 0

5
Se

pt
em

be
r

20
12

There were remarkable differences between the results of both migration attempts
when we talk about costs and the level of mainframe independence achieved. For
example, taking into account that it took one day to train a developer and in turn it
took one hour/developer on average to migrate a transaction with the first attempt
methodology and tools, one developer then migrates the 32 prioritised transactions
in five standard eight-hour working days, instead of the 13 months the second
migration attempt required. However, these months were not in vain but

Table 2. Required manpower over months.

Step People Role Time (in months)

1 3 WSDL specialists 1
2 6 Software analysts 3
3 3 WSDL specialists 1
4 8 Software developers 6
5 8 Software developers 2

Figure 3. Anatomy of the Web Services that resulted from the second migration attempt.

Enterprise Information Systems 13

D
ow

nl
oa

de
d

by
 [

C
ri

st
ia

n
M

at
eo

s]
 a

t 1
3:

39
 0

5
Se

pt
em

be
r

20
12

interestingly represented a big step toward unloading the mainframe and therefore
becoming less dependent from it, and providing a single technological entry point to
the system functionality.

Despite the fact that first attempt Web Services were hard to use and this
motivated the second attempt, the benefits of this latter with respect to SOA system
frontier quality may be not intuitive. Therefore, we analysed the Web Service
interfaces that resulted from both migration attempts. A detailed comparison of the
obtained results is presented in the next section.

4. Comparison of the resulting WSDL contracts

We set forth the hypothesis that when migrating a legacy system to SOA, most of
service interfaces design issues may arise as a consequence of two crucial decisions,
the first one regarding the methodological approach to and strategy of migration,
and an operational one, i.e. concerning the WSDL document generation method and
tool-set employed.

To evaluate the impact of the approach to system migration (i.e. direct or
indirect) in conjunction with the WSDL construction methodology (i.e. code-first or
contract-first) on the quality of Web Service interfaces, we analysed the WSDL
documents that resulted from both migration attempts. To do this, we used not only
classical metrics, such as total lines of code and number of resulting files, but also a
well-established set of metrics for WSDL-based interfaces. These metrics are based
on a synthesised catalogue of common WSDL bad practices – i.e. anti-patterns –
that jeopardise WSDL understandability and legibility concerns (Rodriguez et al.
2010c). In this sense, we focused on anti-pattern occurrences within each collection
because the fewer the occurrences are, the better the collection is. In addition, we
analysed business object definitions reuse. It is worth noting that other non-
functional requirements, such as performance, reliability or scalability, have been
intentionally left out of this paper since we were interested in WSDL quality after
migration. For confidentiality reasons, we will use general examples instead of
showing real WSDL documents, though the measured results were obtained from
the deployed services.

To perform the comparisons, we used as input three different data-sets of WSDL
documents:

. Direct migration: The WSDL documents that resulted from the first attempt of
the project. As such, the associated services were obtained by using direct
migration and implementing wrappers to the transactions, and by using the
default tool-set provided by Visual Studio 2008 that supports code-first
generation of service interfaces from C# code.

. Indirect migration: The WSDL documents obtained via the indirect migration
approach followed during the second attempt of the project, i.e. indirect
migration and at the same time the contract-first WSDL generation method.

. Code-first indirect migration (or meet-in-the-middle as explained in 2): This
data-set was generated from the indirect migration code, but disregarding the
manually generated (i.e. contract-first) WSDL documents. In other words,
these WSDL documents were generated from the re-engineered code, but by
following the code-first method instead of relying on the manually created
(contract-first) WSDLs. As a result, we had a similar service interface

14 C. Mateos et al.

D
ow

nl
oa

de
d

by
 [

C
ri

st
ia

n
M

at
eo

s]
 a

t 1
3:

39
 0

5
Se

pt
em

be
r

20
12

compared to the interfaces of the services from the previous data-set, but
with some potential noise introduced by the WSDL document generation
tool. Therefore, we can assess the impact or effect of the employed code-
first tool in the WSDL document quality. This impact is also present in
the direct migration because the WSDL document was also generated
automatically.

The missing combination (i.e. Contract-First Direct Migration) given by writing
the WSDL documents and then adapting them to the transactions using .NET
adapter code has not been considered because it would had produced very similar
WSDL documents to that of the Indirect Migration data-set. In this sense, as
mentioned earlier in this section, the focus of this comparison is put on WSDL
document quality, whereas implementation-related metrics are not reported here.
The only difference between the combination not taken into consideration and the
method behind the Indirect Migration data-set is that the implementation of services
is different. This means that instead of connecting .NET code to the back-end
database by re-implementing the existing logic, .NET would be connected to the
original transactions via regular C# adapters. On the other hand, this method fails at
removing legacy code, which means that if there is another migration attempt, there
would be two legacy and non-refactored system implementations to be considered,
i.e. one mostly written in CICS/COBOL and another one partially written in .NET.
Therefore, we present the results of comparing the three data-sets of WSDL
documents listed above.

4.1. Classical metrics analysis

The first evident difference in the results is the number of WSDL documents
generated by the different methods. The number of WSDL documents in each data-
set is 32 (Direct Migration), 7 – plus 1 separated XSD file – (Indirect Migration) and 7
(Code-First Indirect Migration). Despite exposing the same functionality as Web
Services, the Direct Migration data-set had more than four times WSDL documents
than the Indirect Migration data-set in its two variants. This stems from the fact that
the WSDL documents of the Direct Migration data-set were blindly generated for
each transaction, whereas transactions were deliberately grouped by their semantic
‘similarity’ in the same Web Service for the WSDL documents of the two Indirect
Migration data-sets. This sort of functionality aggregation, which is a well-known
design principle (Yourdon and Constantine 1979), is highly desirable since it allows
Web Service consumers to look for semantically-related operations within a reduced
set of WSDL documents.

Another difference is the number of lines of WSDL and XSD code per document,
which on average is 222, 512 and 1099, respectively. Figure 4 shows a detailed view
of the resulting code lines per service interface description. Indeed, it has been shown
that developers, when faced with two or more WSDL documents that are similar
from a functional perspective, they tend to choose the most concisely described
(Crasso et al. 2010). A corollary of this is that users will prioritise smaller WSDL
documents over larger ones. As shown in Figure 4, the Direct Migration data-set
contained smaller WSDL documents but at the cost of scattering the system
functionality across several Web Services. Thus, finding a needed operation
potentially requires to inspect more WSDL documents. On the other hand, both

Enterprise Information Systems 15

D
ow

nl
oa

de
d

by
 [

C
ri

st
ia

n
M

at
eo

s]
 a

t 1
3:

39
 0

5
Se

pt
em

be
r

20
12

Indirect Migration and Code-First Indirect Migration data-sets include less and but
larger WSDLs, therefore arguably offering a better alternative to the contract length/
functionality scattering trade-off. However, the Indirect Migration data-set has the
same number of WSDL documents (plus one artefact including the refactored XSD
definitions), while requiring around 46% less code lines.

Another important difference is the amount of documentation present in
resulting WSDL documents. The total number of documentation lines is 0, 242 and
90 for the WSDL documents belonging to Direct Migration, Indirect Migration and
Code-First Indirect Migration data-sets, respectively. This is all the documentation
for the 32 migrated transactions, which means that there are, on average, 0, 7.5 and
2.8 documentation lines per migrated transaction.

4.2. Anti-patterns occurrences analysis

As suggested earlier, anti-patterns can be used as objective quality metrics for WSDL
documents. Eight anti-patterns have been identified in Rodriguez et al. (2010a), six
of which are simultaneously present in at least one WSDL document of the three
data-sets under study. The anti-patterns that have been found are:

. Inappropriate or lacking comments (Fan and Kambhampati 2005): Some
operations within a WSDL have no comments or the comments do not
effectively describe their associated elements (messages, operations).

. Ambiguous names (Blake and Nowlan 2008): Some WSDL operation or
message names do not accurately represent their intended semantics.

Figure 4. WSDL and XSD code lines of the different service contracts.

16 C. Mateos et al.

D
ow

nl
oa

de
d

by
 [

C
ri

st
ia

n
M

at
eo

s]
 a

t 1
3:

39
 0

5
Se

pt
em

be
r

20
12

. Redundant port-types: A port-type is repeated within the WSDL document,
usually in the form of one port-type instance per binding type (e.g. HTTP,
HTTPS or SOAP).

. Enclosed data model: The data model in XSD describing input and output
data types is defined within the WSDL document instead of being defined in a
separate file, which makes data type reuse across several Web Services very
difficult or impossible. The exception to this rule occurs when it is known
before-hand that data types are not going to be reused. In this case, including
data type definitions within WSDL documents allows constructing self-
contained contracts, so it is said that the contract does not suffer from the anti-
pattern.

. Redundant data models: A data type is defined more than once in the same
WSDL document.

. Undercover fault information within standard messages (Beaton et al. 2008):
Error information is returned using output messages rather than native SOAP
Fault messages.

Table 3 summarises the results of the anti-patterns analysis. The rows represent
under which circumstances the WSDL documents are affected by a particular anti-
pattern. When an anti-pattern affects a portion of the WSDL documents in a data-
set, we have analysed which is the difference between these WSDL documents and
the rest of the WSDL documents in the same data-set. Since there are anti-patterns
whose detection is inherently more subjective (e.g. Inappropriate or lacking comments
and Ambiguous names) (Rodriguez et al. 2010b), we performed a peer-review
methodology after finishing their individual measurements to prevent biases.

Achieved results show that the WSDL documents of the Direct Migration data-
set are affected by more anti-patterns than the ones belonging to the Indirect
Migration data-sets. The first two rows describe anti-patterns that impact on services
discoverability and reusability (Crasso et al. 2010), and relate to documentation and
naming issues. It is reasonable to expect these anti-patterns to affect the WSDL
documents of the Direct Migration data-set, since all information included in them is
derived from CICS/COBOL code, which does not offer a standard way to indicate

Table 3. Anti-patterns in the three WSDL data-sets.

Anti-pattern/
data-set

Direct
migration

Indirect
migration

Code-first
indirect migration

Inappropriate or lacking
comments

Always Never Never

Ambiguous names Always Never Never
Redundant port-types When supporting

several protocols
Never Never

Enclosed data model Always Never Always
Undercover fault

information within
standard messages

Always Never Never, but present other
issues

Redundant data models When two operations
use the same data
type

Never When two operations
use the same data type

Enterprise Information Systems 17

D
ow

nl
oa

de
d

by
 [

C
ri

st
ia

n
M

at
eo

s]
 a

t 1
3:

39
 0

5
Se

pt
em

be
r

20
12

from which portions and scope of a COBOL code existing comments can be
extracted and reused. At the same time, because names in CICS/COBOL have
associated length restrictions (e.g. up to four characters in some CICS and/or
COBOL flavours), names in the resulting WSDL documents are too short and
difficult to be read.

The third row describes an anti-pattern that ties abstract service interfaces to
concrete implementations, hindering black-box reuse (Crasso et al. 2010). We have
checked that this anti-pattern was caused by the tools employed for generating
WSDL documents during the first migration attempt. By default, the employed tool
produces the anti-pattern. To avoid the anti-pattern, developers should provide not
so well-known annotations within the C# source code implementing the service.
Likewise, the fourth row describes an anti-pattern that is generated by many code-
first tools, which force data models to be included within the generated WSDLs, and
cannot be avoided within the WSDLs of neither the Direct Migration nor the Code-
First Indirect Migration data-set.

The anti-pattern described in the fifth row of the table deals with errors being
transferred as part of output messages, which for the Direct Migration data-set
resulted from the original transactions that used the same COMMAREA for
returning both output and error information. This means that when transactions are
exposed as Web Services, the output message of these services convey both output
and error information. In contrast, the WSDL documents of the Indirect Migration
data-set had a proper designed error handling mechanism based on standard SOAP
Fault messages. Finally, Code-First Indirect Migration WSDL documents had no
error handling because the tool employed for generating them does not support
Fault messages generation. As a result, the output messages in the generated WSDL
documents do not convey error information. In other words, although the .NET
platform allows firing this special kind of SOAP messages at the service code level,
associated Fault messages are not present in generated WSDL documents. This is a
problem because a service consumer might not be expecting this kind of error
notifications at runtime because they were not present in the corresponding WSDL
document when the service was first discovered.

The last anti-pattern relates to bad data model designs. Redundant data models
usually arise from limitations or bad use of the tools employed to generate WSDL
documents. Basically, tools based on code-first WSDL construction commonly force
data models to be included within the generated WSDL document, which explains
why the enclosed data model anti-pattern is present in both Direct Migration and
Code-First Indirect Migration data-sets. Although some XSD definitions are in the
WSDL documents resulting from Indirect Migration, the anti-pattern is not
considered as present because the data types that are shared by the services are
imported from a separate file. As discussed in Rodriguez et al. (2010c), this situation
does not introduce problems and actually helps in making WSDL documents self-
contained, which is desirable.

4.3. Data model analysis

Correct management of data models is crucial in data centric software systems such
as the one under study. As a consequence, we have performed a deeper analysis on
this aspect. Table 4 shows metrics that give a rough idea of data type definition, reuse
and composition in the three data-sets. The first clear difference is the number of

18 C. Mateos et al.

D
ow

nl
oa

de
d

by
 [

C
ri

st
ia

n
M

at
eo

s]
 a

t 1
3:

39
 0

5
Se

pt
em

be
r

20
12

defined data types. The Direct Migration data-set contained 182 different data types
and 73% of them are defined only once. Since the associated WSDL documents do
not share data type definitions, many of the types are duplicated across different
WSDL documents. In contrast, 235 unique data types were defined for the WSDL
documents of the Indirect Migration data-set. Among this set, 104 data types
represent business objects, including 39 defined as simple types (mostly enumera-
tions) and 65 defined as complex types, whereas 131 are special XSD constructs
needed for making the WSDL documents compliant with the document/wrapped
standard structure and hence achieving better interoperability levels with existing
service invocation frameworks. This is because, according to the WSDL 1.0
specification, a message part can include either a type or an element attribute to
point to its data type. However, according to the WS-I, a message part must only be
an element. Therefore, an element was defined for each data type exchanged by input
and output messages. For example, the Cuil data type, which represents a business
object that is analogous to the Social Security Number in the United States or the
National Insurance Number in the United Kingdom, was defined in the shared XSD
schema as follows:

5xsd:complexType name¼‘‘Cuil’’4
5xsd:sequence4

5!– Preffix –4
5xsd:element name¼‘‘prefijo’’ type¼‘‘tns:CuilPrefijo’’/4
5!– Identity document –4
5xsd:element ref¼‘‘tns:Documento’’/4
5!– Control (validation) digit –4
5xsd:element name¼‘‘digitoControl’’ type¼‘‘tns:CuilDigito’’/4

5/xsd:sequence4
5/xsd:complexType4

but also wrapped by an element in the WSDL documents using it as follows:

5xsd:element name¼‘‘cuil’’ type¼‘‘ns:Cuil’’/4

On the contrary, the services from Direct Migration define all data types
exchanged by their operations as element nodes. Although this practice makes the
WSDL documents compliant to the aforementioned existing interoperability
standards, it hinders data type definitions reuse, which in turn unnecessarily causes
bigger service descriptions that are difficult to be understood. Instead, Indirect
Migration promotes data type definition reuse. This can be observed in Figure 5,
which illustrates the relationships between the Indirect Migration Web Services and
the 104 data types designed for representing business objects (transitive data type
reuse is not illustrated for readability reasons). The diagram was constructed by

Table 4. Data type definition: detailed view.

Data model characteristics/data-set
Direct

migration
Indirect
migration

Code-first
indirect migration

Defined data types 182 235 485
Average definitions per data type 1.83 1.0 3.16
Data types defined only once 133.0 (73%) 235.0 (100%) 126.0 (25%)

Enterprise Information Systems 19

D
ow

nl
oa

de
d

by
 [

C
ri

st
ia

n
M

at
eo

s]
 a

t 1
3:

39
 0

5
Se

pt
em

be
r

20
12

using the Guess graph visualisation tool (Adar 2006). A grey link between a service
(squares) and an entity or data type (circles) means that the WSDL associated with
the former includes just one explicit reference to the latter. Similarly, a black link
means that the service interface references two or more entity occurrences. Note that
XSD entities with high fan-in are those abstractions that best represent the core
business of the organisation. Precisely, one example is the Cuil entity.

Finally, with Code-First Indirect Migration, 485 definitions have been obtained
and only 25% of these definitions are unique. This low level of data type reuse is due
to the inherent problems of automatic WSDL generation. Although the implemen-
tation of the Web Services share the various data type definitions, when a WSDL
document is generated, the tool cannot determine whether the data type definitions
are already included in the XSD of another service. Due to this lack of global
knowledge, the tool always map all data types defined by a service, even if this means
deriving data type definitions that have been already built.

To sum up, the analysed data-sets of WSDL documents contained 182, 104 and
485 different definitions of business object data types, respectively. The fact that the

Figure 5. XSD data type reuse from the refactored Web Services.

20 C. Mateos et al.

D
ow

nl
oa

de
d

by
 [

C
ri

st
ia

n
M

at
eo

s]
 a

t 1
3:

39
 0

5
Se

pt
em

be
r

20
12

WSDL documents of the Indirect Migration data-set have fewer data type definitions
for representing business objects (104) than the others (i.e. 182 for the Direct
Migration documents and 485 for the Code-First Indirect Migration WSDLs),
indicates a better level of data model reuse and a proper utilisation of the XSD
complex and element constructors to be WS-I complaint. At the same time, the lack
of global knowledge of WSDL generation tools caused that business object
definitions belonging to the Code-First Indirect Migration data-set quadrupled the
definitions within the Indirect Migration data-set. This generates bigger WSDL
documents, which severely impacts on service discoverability because human
discoverers usually prefer smaller WSDL documents over larger ones (Rodriguez
et al. 2010c).

4.4. Anti-patterns relationships with employed methods and tools

The experiments reported in Section 4.2 show that in the direct migration attempt
the WSDL anti-patterns described in the first column of Table 5 were caused by the
employed methods or tools of the second column. For instance, the code-first tool
employed for generating the ASP Web Service interfaces causes the Redundant
Porty-types and Enclosed Data Model anti-patterns. After investigating the tool, we
found that to override its default behaviour it is necessary to extend platform-level
services to include a custom C# to WSDL converter, which might not be feasible for
many migration processes.

At the same time, the occurrences of the Inappropriate or lacking comments anti-
pattern within the Direct Migration data-set were not caused by the code-first tool.
Instead, they were caused because developers did not employ this tool properly. To
include documentation comments in target WSDL documents using .NET ASP
framework services, and thus avoiding the mentioned anti-pattern, developers
should add the [Description¼‘comments’] tag in the source code of the main service
implementation class during the third step of the migration method of Section 3.2.

We have also found that many of the occurrences of the Ambiguous Name anti-
pattern in the WSDL documents of the direct migration attempt could have been
avoided if the IT department would had manually improved parameter names of
generated COMþ objects or C# wrappers during steps 1 and 2, respectively. Clearly,
this represents a trade-off between automatism or migration speed and name quality.

Table 5. Relationships between anti-patterns and methods/tools of the first migration
attempt.

Anti-patterns
Method/tool-

set Alternative

Inappropriate or
lacking
comments

Step 3 Add the [Description ¼ ‘comments’] tag in the
source code of the main service implementation
class during this step

Ambiguous names Steps 1 and 2 Improve parameter names of generated
COM þ objects or C# wrappers during these
two steps

Redundant port-
types; enclosed
data model

ASP WSDL
generator

Extend platform-level services to include a custom
WSDL generator

Enterprise Information Systems 21

D
ow

nl
oa

de
d

by
 [

C
ri

st
ia

n
M

at
eo

s]
 a

t 1
3:

39
 0

5
Se

pt
em

be
r

20
12

5. Conclusions and future work

Moving from mainframe systems to service-oriented environments is not only a
complex task, but also a sensitive one because such systems usually form the
backbone of large financial organisations and governments. There are many
bibliographical references that support the argument that the direct migration
approach, materialised through wrapping techniques, enables the effective moder-
nisation of legacy systems to SOA. Bringing the migration of a large system into
fruition with the indirect migration approach, on the other hand, it is widely
recognised as being harder compared to the direct migration approach.

The pros and cons of either migration approaches is something very well known,
discussed and undoubted in the software industry. Many case studies reporting
either direct or indirect migration experiences exist in the literature. However, as far
as we know there is not a study comparing the outcomes of employing both
approaches on the same real world large enterprise system, mainly because managing
two migration attempts is too costly for any enterprise. Instead, in this paper, we
describe a large real COBOL system that has been migrated to Web Services by using
both approaches. This paper analysed the outcome of applying both approaches for
migrating and building services from a real system.

Table 6 presents an illustrative comparison of the resources needed by each
migration attempt. The first migration attempt succeeded in delivering Web Services
within a short period of time and without expending lots of resources, by employing
a direct migration approach with wrapping. As shown in the second column of the
table, with the associated methods and tool-set, it only took five days and one
developer to migrate 32 CICS/COBOL transactions. It is worth noting that the first
attempt was costless since no software licenses had to be bought, and no developers
had to be hired, i.e. regular members of the IT department performed the first
migration attempt. However, this could be not the case for many enterprises and
therefore there may be costs associated to buying the necessary tool-set and hiring
external manpower when performing a direct migration with wrapping. In contrast,
an indirect migration attempt with re-engineering was much more expensive and
required more time to be completed. In particular, eight developers, three Web
Services specialists, 13 months and 320,000 US dollars for re-engineering the same 32
transactions were required. For this attempt, external specialists and developers were
hired, whose salaries have been included in this cost.

Although there were differences in the resources demanded by each attempt, it is
important to note that the second attempt provided better services (in terms of
interface clarity) and removed the CICS/COBOL software from the system. Table 7
summarises these findings. This latter means that the system business logic is now

Table 6. Costs comparison of the 32 prioritised transactions migration.

Resources First attempt: direct migration Second attempt: indirect migration

Developers 1 8
Specialists 0 3
Time Five days 13 months
Money US$ 0a US$ 320,000

Note: aThe agency owns required software licenses and one of its regular employees performed the
migration attempt.

22 C. Mateos et al.

D
ow

nl
oa

de
d

by
 [

C
ri

st
ia

n
M

at
eo

s]
 a

t 1
3:

39
 0

5
Se

pt
em

be
r

20
12

T
a
b
le

7
.

Q
u
a
li
ta
ti
v
e
co
m
p
a
ri
so
n
o
f
th
e
a
ch
ie
v
ed

S
O
A

sy
st
em

s.

M
ig
ra
ti
o
n

a
p
p
ro
a
ch

S
y
st
em

im
p
le
m
en
ta
ti
o
n

W
S
D
L

in
te
rf
a
ce

d
es
ig
n

T
a
rg
et

p
la
tf
o
rm

M
a
in
ta
in
a
b
il
it
y

M
a
in
fr
a
m
e

in
d
ep
en
d
en
ce

D
is
co
v
er
a
b
il
it
y

R
eu
sa
b
il
it
y

U
n
d
er
st
a
n
d
a
b
il
it
y

D
ir
ec
t

C
O
B
O
L
þ

.N
E
T

H
a
rd
er

N
o

P
o
o
r

P
o
o
r

R
eg
u
la
r

In
d
ir
ec
t

.N
E
T

E
a
si
er

Y
es

V
er
y
g
o
o
d

V
er
y
g
o
o
d

V
er
y
g
o
o
d

Enterprise Information Systems 23

D
ow

nl
oa

de
d

by
 [

C
ri

st
ia

n
M

at
eo

s]
 a

t 1
3:

39
 0

5
Se

pt
em

be
r

20
12

written in a more modern platform, using a modern programming paradigm as well,
and for which it is easier and cheaper to acquire productive development tools or
hire developers. Furthermore, the mainframe may be made cease operation.
Moreover, though the second attempt was more expensive, it may be indirectly
helping to reduce other costs, namely, payments for processing power and expensive
salaries to hire savvy programmers that master the old technologies. Indeed, by
removing the prioritised transactions’ load from the mainframe (only six of them
represented the 56% of total mainframe load) the agency saves the money invested in
the second migration, because the IT department estimated that due to the
mainframe growing workload the agency would had to rent more processing power
by the end of the same semester at a cost of 2 millions US dollars a year.

At the same time, achieved results show that the Web Services obtained with the
indirect migration present better quality attributes in respect to two perspectives,
namely, interface understandability and reusability. In this sense, interfaces are more
concise, have more representative names for their port-types, operations and
messages, have proper comments and allow for better levels of granularity and
functional cohesion. The definitions of business objects present improvements as
well, since fewer objects are defined while there are no repeated definitions. With
regard to the catalogue of WSDL discoverability anti-patterns of Rodriguez et al.
(2010c), the service interfaces generated by following the indirect migration and
contract-first combination do not present such undesirable anti-patterns. All in all,
better WSDL interfaces positively impacts on the development of client applications,
by reducing client applications developers’ effort needed to discover and understand
available services (Rodriguez et al. 2010c).

Due to the positive results achieved in the second attempt of the project, a
continuation of this attempt is under negotiation. Specifically, the remaining services
that were also migrated during the first attempt of the project will possibly be
migrated following the indirect migration approach and contract-first techniques to
build Web Services, which in turn will be benefited by service-level agreements (SLA)
that define the behaviour and quality of services non-functional properties (Unger
et al. 2009). This will provide us with more input data in the form of larger WSDL
and XSD data-sets so as to provide more empirical evidence and thus further
support our claims. On the other hand, another line of future research includes the
development of software tools for automatically identifying and applying refactoring
opportunities in legacy systems. In this sense, we are working on heuristics for
detecting data model design problems in directly migrated CICS/COBOL transac-
tions and programs, and grouping different transactions based on their functional
cohesion degrees. For assessing functional cohesion, we are defining an heuristic that
bases on an existing algorithm to detect services having low cohesive operations
(Rodriguez et al. 2010b). To validate the effectiveness of our approach, we will
compare the output of the resulting tools with the manual results obtained via the
indirect migration results reported in this paper. We could eventually also employ
the output of the third phase of the project.

Notes

1. http://www.gartner.com
2. SLOC metric for COBOL source code was calculated using the SLOC Count utility

available at http://www.dwheeler.com/sloccount, which does not count commented lines.
3. Basic Profile Version 1.1: http://www.ws-i.org/Profiles/BasicProfile-1.1.html

24 C. Mateos et al.

D
ow

nl
oa

de
d

by
 [

C
ri

st
ia

n
M

at
eo

s]
 a

t 1
3:

39
 0

5
Se

pt
em

be
r

20
12

http://www.gartner.com
http://www.dwheeler.com/sloccount, which does not count commented lines.
http://www.ws-i.org/Profiles/BasicProfile-1.1.html

4. Professional and paid versions of the two first tools were used, whereas a standard and
free version of soap UI was employed.

5. MyBatis, http://www.mybatis.org/dotnet.html
6. IBM’s DB2Connect, http://www-01.ibm.com/software/data/db2/db2connect/

References

Adar, E., 2006. GUESS: A language and interface for graph exploration. In: Conference on
human factors in computing systems, 22–27 April, Montreal, Quebec, Canada. New York:
ACM Press, 791–800.

Almonaies, A., Cordy, J., and Dean, T., 2010. Legacy system evolution towards service-
oriented architecture. In: International workshop on SOA Migration and Evolution
(SOME), 15 March, Madrid, Spain OFFIS e. V. Escherweg 2 26121, Oldenburg,
Germany, 53–62.

Beaton, J., et al., 2008. Usability challenges for enterprise service-oriented architecture APIs.
In: IEEE symposium on Visual Languages and Human-Centric Computing (VL/HCC), 15–
19 September, Herrsching am Ammersee, Germany. Los Alamitos, CA: IEEE Computer
Society, 193–196.

Bichler, M. and Lin, K.J., 2006. Service-oriented computing. Computer, 39 (3), 99–101.
Blake, M.B. and Nowlan, M.F., 2008. Taming Web Services from the wild. Internet

Computing, 12 (5), 62–69.
Colosimo, M., et al., 2009. Evaluating legacy system migration technologies through empirical

studies. Information and Software Technology, 51 (2), 433–447.
Crasso, M., et al., 2010. Revising WSDL documents: why and how. Internet Computing, 14

(5), 30–38.
De Lucia, A., et al., 2008. Developing legacy system migration methods and tools for

technology transfer. Software Practice Experience, 38 (13), 1333–1364.
D’Mello, D.A. and Ananthanarayana, V.S., 2010. Dynamic selection mechanism for quality

of service aware Web Services. Enterprise Information Systems, 4, 23–60.
Erickson, J. and Siau, K., 2008. Web service, service-oriented computing, and service-

oriented architecture: separating hype from reality. Journal of Database Management, 19
(3), 42–54.

Erl, T., 2007. SOA principles of service design. Upper Saddle River, New Jersey, USA:
Prentice-Hall.

Fan, J. and Kambhampati, S., 2005. A snapshot of public web services. SIGMOD Record, 34
(1), 24–32.

Gao, S.S., et al., 2009. Technical report, W3C Consortium. Available from: http://
www.w3.org/TR/xmlschema11-1 [Accessed 7 August 2012].

Gong, Z., Muyeba, M., and Guo, J., 2010. Business information query expansion through
semantic network. Enterprise Information Systems, 4, 1–22.

Gudgin, M., et al., 2007. Technical report, W3C Consortium. Available from: http://
www.w3.org/TR/soap12-part1 [Accessed 7 August 2012].

Kohlborn, T., et al., 2009. Identification and analysis of business and software services – a
consolidated approach. IEEE Transactions on Services Computing, 2 (1), 50–64.

Leinecker, R.C., 2000. ComþUnleashed. Indianapolis, Indiana, USA: Sams.
Li, S.H., et al., 2007. Migrating legacy information systems to web services architecture.

Journal of Database Management, 18 (4), 1–25.
Mateos, C., et al., 2010. Separation of concerns in service-oriented applications based on

pervasive design patterns. In: Web Technology Track (WT) – 25th ACM symposium
on applied computing (SAC ’10), 22–26 March, Sierre, Switzerland. New York: ACM
Press, 2509–2513.

Mietzner, R., Leymann, F., and Unger, T., 2011. Horizontal and vertical combination of
multi-tenancy patterns in service-oriented applications. Enterprise Information Systems, 5,
59–77.

Papazoglou, M. and van den Heuvel, W.J., 2006. Service-oriented design and
development methodology. International Journal of Web Engineering and Technology, 2
(4), 412–442.

Enterprise Information Systems 25

D
ow

nl
oa

de
d

by
 [

C
ri

st
ia

n
M

at
eo

s]
 a

t 1
3:

39
 0

5
Se

pt
em

be
r

20
12

http://www.mybatis.org/dotnet.html
http://www-01.ibm.com/software/data/db2/db2connect/
http://www.w3.org/TR/xmlschema11-1
http://www.w3.org/TR/xmlschema11-1
http://www.w3.org/TR/soap12-part1
http://www.w3.org/TR/soap12-part1

Ricca, F. and Marchetto, A., 2009. A ‘‘quick and dirty’’ meet-in-the-middle approach for
migrating to SOA. In: Proceedings of the joint international and annual ERCIM workshops
on principles of software evolution (IWPSE) and software evolution (Evol) workshops
(IWPSE-Evol ’09), 24–28 August, Amsterdam, The Netherlands. New York, NY, USA:
ACM, 73–78.

Rodriguez, J.M., et al., 2010a. The EasySOC project: a rich catalog of best practices for
developing web service applications. In: Jornadas Chilenas de Computación (JCC) –
INFONOR 2010, Antofagasta, Chile SCC (Sociedad Chilena de la Ciencia de la
Computación), 33–42.

Rodriguez, J.M., et al., 2010b. Automatically detecting opportunities for web service
descriptions improvement. In: 10th IFIP WG 6.11 conference on e-Business, e-Services, and
e-Society (I3E 2010), Ciudad Autónoma de Buenos Aires, 3–5 November, Argentina, Vol.
431. Boston: Springer, 139–150.

Rodriguez, J.M., et al., 2010c. Improving web service descriptions for effective service
discovery. Science of Computer Programming, 75 (11), 1001–1021.

Unger, T., Mietzner, R., and Leymann, F., 2009. Customer-defined service level agreements
for composite applications. Enterprise Information Systems, 3 (3), 369–391.

Wang, K., et al., 2010. A service-based framework for pharmacogenomics data integration.
Enterprise Information Systems, 4, 225–245.

Yourdon, E. and Constantine, L.L., 1979. Structured design: fundamentals of a discipline of
computer program and systems design. Upper Saddle River, NJ, USA: Prentice-Hall.

Appendix 1. Transaction migration example

The next code shows a simple COBOL transaction, which exemplifies the different artefacts
that were performed and generated, respectively, when migrating an individual transaction
with the strategy and technologies described in Section 3.2. The example transaction just
displays a prompt to the user, blocks until data is manually entered and then displays the
entered message. For simplicity, the transaction does not contain extra programs and the
COMMAREA has been defined in an in-line way (lines 5–8).

000001 ID DIVISION.
000002 PROGRAM-ID SAMPLE.
000003 DATA DIVISION.
000004 WORKING STORAGE SECTION.
000005 01 OUT-MSG.
000006 02 FILLER PIC X(20) VALUE ‘‘YOU HAVE ENTERED: ’’.
000007 02 MSG PIC X(20).
000008 01 INP-MSG PIC X(20) VALUE ‘‘ENTER A MESSAGE: ’’.
000009 PROCEDURE DIVISION.
000010 DISPLAY.
000011 EXEC CICS SEND FROM(INP-MSG) ERASE END-EXEC.
000012 EXEC CICS RECEIVE INTO(MSG) END-EXEC.
000013 EXEC CICS SEND FROM(OUT-MSG) ERASE END-EXEC.
000014 EXEC CICS RETURN END-EXEC.

Here, INP-MSG and OUT-MSG specify the data type structure and length of the
COMMAREA, but at the same time define the ‘interface’ of the transaction to the outer
world. Then, a terminal application executing this transaction may obtain a screen output
such as:

ENTER A MESSAGE:
HELLO, WORLD!
YOU HAVE ENTERED: HELLO, WORLD!

At this point, the example consists of an entire COBOL program containing a
COMMAREA that structurally defines the program interface. The COMTI Component
Builder tool receives a COMMAREA as input to automatically derive a type library (TLB).

26 C. Mateos et al.

D
ow

nl
oa

de
d

by
 [

C
ri

st
ia

n
M

at
eo

s]
 a

t 1
3:

39
 0

5
Se

pt
em

be
r

20
12

The TLB is accessible from any component of the .NET framework as a COMþ object
afterwards. The developer is asked to name the new type and its operations.

VisualStudio 2008 provides built-support for instantiating COMþ objects and calling their
operations. This support automatically builds a local C# object that wraps a (possibly remote)
COMþ object. Finally, specific source code annotations were included in the header of each C#
class and its operations to enable the automatic generation of WSDL documents at the .NET
framework level. This is because the .NET framework requires developers to explicitly indicate
what to expose as the service interface and which methods to include as service operations within it.

Then, the new type is packaged in a DLL library and a TLB is generated as follows:

* METHOD NAME.HELLO_WORLD
* TRANSACTION PROGRAM NAME.SAMPLE

01 HELLO_WORLD-INPUT-AREA.

05 INP-MSG PIC X(20). INPUT
01 HELLO_WORLD-OUTPUT-AREA.

03 FILLER
04 PIC X(20). OUTPUT

03 MSG PIC X(20). OUTPUT
* BYTES THIS HOST PROGRAM SENDS.40
* BYTES THIS HOST PROGRAM RECEIVES. . .20

To call the generated type from a C# class, the former should be wrapped as a COMþ object.
Once a COMþ object has been created, VisualStudio 2008 allows for calling the COMþ object
through the C# class named C_SAMPLE. Finally, to expose C_SAMPLE as a Web Service,
another class (in this case, ExampleWebService) must be created, which is annotated with specific
meta-data that instructs the .NET framework about how to map the methods of the class to Web
Service operations. Below, the complete source code of such a class is shown.

[WebService]
public class ExampleWebService {

[WebMethod]
public string Hello_Word(string inp-msg) {

C_SAMPLE comPlusObject¼null;
comPlusObject¼Server.CreateObject(‘‘SAMPLE’’);
string r¼null;
r¼comPlusObject.HELLO_WORLD(inp-msg).MSG;
return ‘‘YOU HAVE ENTERED: ’’ þ r;

}
}

As the reader can see, before calling the COMþ object (line 8), an instance of it is created
(line 6). Moreover, lines 1 and 3 show the annotations required by the .NET framework for
automatically generating the WSDL document:

5wsdl:definitions4
5wsdl:types4
5s:schema elementFormDefault¼‘‘qualified’’4
5s:element name¼‘‘HelloWorld’’4
5s:complexType4

5s:sequence4
5s:element minOccurs¼‘‘0’’ maxOccurs¼‘‘1’’
name¼‘‘inp_msg’’ type¼‘‘s:string’’/4

5/s:sequence4
5/s:complexType4

5/s:element4

Enterprise Information Systems 27

D
ow

nl
oa

de
d

by
 [

C
ri

st
ia

n
M

at
eo

s]
 a

t 1
3:

39
 0

5
Se

pt
em

be
r

20
12

5s:element name¼‘‘HelloWorldResponse’’4
5s:complexType4
5s:sequence4
5s:element minOccurs¼‘‘0’’ maxOccurs¼‘‘1’’

name¼‘‘HelloWorldResult’’ type¼‘‘s:string’’ /4
5/s:sequence4

5/s:complexType4
5/s:element4

5/s:schema4
5/wsdl:types4
5wsdl:message name¼‘‘HelloWorldSoapIn’’4

5wsdl:part name¼‘‘parameters’’ element¼‘‘tns:HelloWorld’’ /4
5/wsdl:message4
5wsdl:message name¼‘‘HelloWorldSoapOut’’4

5wsdl:part name¼‘‘parameters’’ element¼‘‘tns:HelloWorldResponse’’ /4
5/wsdl:message4
5wsdl:portType name¼‘‘ExampleWebServiceSoap’’4

5wsdl:operation name¼‘‘HelloWorld’’4
5wsdl:input message¼‘‘tns:HelloWorldSoapIn’’ /4
5wsdl:output message¼‘‘tns:HelloWorldSoapOut’’ /4

5/wsdl:operation4
5/wsdl:portType4

5/wsdl:definitions4

28 C. Mateos et al.

D
ow

nl
oa

de
d

by
 [

C
ri

st
ia

n
M

at
eo

s]
 a

t 1
3:

39
 0

5
Se

pt
em

be
r

20
12

