
Article

Journal of Information Science

2015, Vol. 41(5) 686–704

� The Author(s) 2015

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/0165551515588669

jis.sagepub.com

An architecture and platform for
developing distributed recommendation
algorithms on large-scale social
networks

Alejandro Corbellini
ISISTAN Research Institute, UNICEN University, Argentina

Cristian Mateos
ISISTAN Research Institute, UNICEN University, Argentina

Daniela Godoy
ISISTAN Research Institute, UNICEN University, Argentina

Alejandro Zunino
ISISTAN Research Institute, UNICEN University, Argentina

Silvia Schiaffino
ISISTAN Research Institute, UNICEN University, Argentina

Abstract
The creation of new and better recommendation algorithms for social networks is currently receiving much attention owing to the
increasing need for new tools to assist users. The volume of available social data as well as experimental datasets force recommenda-
tion algorithms to scale to many computers. Given that social networks can be modelled as graphs, a distributed graph-oriented sup-
port able to exploit computer clusters arises as a necessity. In this work, we propose an architecture, called Lightweight-Massive
Graph Processing Architecture, which simplifies the design of graph-based recommendation algorithms on clusters of computers, and
a Java implementation for this architecture composed of two parts: Graphly, an API offering operations to access graphs; and jLiME, a
framework that supports the distribution of algorithm code and graph data. The motivation behind the creation of this architecture is
to allow users to define recommendation algorithms through the API and then customize their execution using job distribution strate-
gies, without modifying the original algorithm. Thus, algorithms can be programmed and evaluated without the burden of thinking
about distribution and parallel concerns, while still supporting environment-level tuning of the distributed execution. To validate the
proposal, the current implementation of the architecture was tested using a followee recommendation algorithm for Twitter as case
study. These experiments illustrate the graph API, quantitatively evaluate different job distribution strategies w.r.t. recommendation
time and resource usage, and demonstrate the importance of providing non-invasive tuning for recommendation algorithms.

Keywords
Graph databases; graph-processing frameworks; large-scale processing; recommendation algorithms; social networks; work scheduling

Corresponding author:

Alejandro Corbellini, ISISTAN Research Institute, UNICEN University, Argentina B7001BBO, Argentina.

Email: alejandro.corbellini@isistan.unicen.edu.ar

 by guest on September 22, 2015jis.sagepub.comDownloaded from

http://jis.sagepub.com/

1. Introduction

In recent years, there has been considerable interest in the design and development of recommendation algorithms to

assist users to cope with the exponential growth of online social networks. Most experimental recommendation algo-

rithms, particularly those developed in academia, are implemented as single-machine, single-threaded applications [1–

5]. Even the well-known Twitter’s Who to Follow algorithm is implemented in a single machine to reduce architectural

complexity [6]. These implementations face scalability issues when the size of the underlying social graph increases, as

usually happens in today’s social networks, populated with millions of users. Likewise, in situations where computing

resources are scarce, generating recommendations becomes challenging. An alternative is to migrate the recommenda-

tion algorithm and/or the underlying graph database to a distributed and parallel platform that supports the execution of

the algorithm on a cluster of computers (a networked array of computers). In this context, the natural choice to handle

social data is graph databases and frameworks for processing graph-based algorithms.

Distributed graph storage and processing systems have attracted much interest from companies and academic institu-

tions that handle large amounts of interconnected data such as social or geo-spatial data. For example, Facebook’s social

network has 801 million daily active users that upload more than 500 TB to Facebook’s data stores, which are analysed

in real time to harvest usage statistics. As of 2013, Twitter’s 100 million users daily generated 500 million tweets per

day, which are processed to show trending topics and produce targeted advertising. Moreover, the amount of data stored

and queried by this kind of application makes traditional databases and even common NoSQL solutions unfeasible to

cope with the needed performance levels. Even acquiring statistically significant samples from real-world graphs, like

those formed by Twitter and Facebook social networks, has proven to be challenging [7]. In the literature, the Big Data

[8] term was coined to refer to large-scale data management, including its analysis and the corresponding support

platforms.

In response to this challenge, some developments in the form of graph-specific databases or frameworks for process-

ing graph algorithms have arisen. From a system design point of view, graph databases operate at the data storage level.

One example is graph NoSQL databases [9], which are optimized for storing large-scale graphs. Complementary, graph-

processing frameworks provide programming facilities for developing graph-based algorithms. Some examples of these

frameworks include Pregel [10], HipG [11], Piccolo [12] and GraphLab [13]. Surprisingly, many of these frameworks

[11, 13] do not even cleanly support permanent graph data distributed storage, which prevents them from efficiently sup-

porting the evolving nature of graph data in real-world social applications. One extreme case is HipG, which requires

population of the main memory of the computing cluster with the graph data from a single computational node prior to

processing. Another shortcoming lies in the definition of tuning code in order to adjust the algorithm execution to the

underlying hardware and storage characteristics, which is common on small setups of heterogeneous hardware. Most fra-

meworks (Pregel, HipG, Piccolo) do not address this problem as they focus on algorithmic modelling rather than code

distribution. To solve this problem, the developer might decide to drop the graph framework solution and use a pure dis-

tributed processing framework, for example, MapReduce [14], BSP (Bulk Synchronous Parallel) [15] or ForkJoin [16] –

manually handling the mapping of jobs to computing nodes according to a fixed criteria. However, this approach entan-

gles algorithm code with distributed execution concerns, which is known to cause code maintainability issues [17].

Therefore, in our view, there is a need for a new support that takes advantage of distributed data stores and provides

abstractions to (optionally) allow users to exploit low-level tuning execution mechanisms, while additionally offering a

simple graph-traversal API tailored to recommendation algorithms. In this work, we present an architecture for distribu-

ted graph-processing systems as well as its corresponding implementation, to aid the development of tunable recommen-

dation algorithms. The architecture, called Lightweight-Massive Graph Processing Architecture (LMGPA), divides the

responsibilities of a distributed graph-processing system into a number of interchangeable modules. Our implementation,

based on LMGPA, comprises two software modules: Graphly and jLiME. The former provides a Graph API and imple-

ments a persistent support for stored graphs. The latter is responsible for distributing and processing jobs, plus providing

middleware-level services such as node discovery and failure tolerance. Moreover, jLiME supports high-level job execu-

tion models (e.g. ForkJoin, BSP and MapReduce) that the upper layers (e.g. Graphly) can use to distribute jobs.

On one hand, when creating a recommendation algorithm, the graph API that hides all of the mechanisms involved in

querying the graph is vital for achieving code portability and modifiability. On the other hand, in some scenarios the

developer must customize the inner mechanisms of code distribution depending on the algorithm being developed. For

example, the developer might want to distribute jobs depending on the data layout (i.e. the way data is divided and repli-

cated through the cluster) or the computational nodes capabilities. In most graph-distributed processing frameworks, this

involves adjusting the original algorithm or the data layout to the new requirements, which requires some effort or might

be impractical. In response, we propose non-invasive job mapping strategies to customize the way job processing is

Corbellini et al. 687

Journal of Information Science, 41(5) 2015, pp. 686–704 � The Author(s), DOI: 10.1177/0165551515588669

 by guest on September 22, 2015jis.sagepub.comDownloaded from

http://jis.sagepub.com/

distributed but without modifying the developer’s original algorithm. In essence, these strategies provide a bridge

between the algorithms expressed using the Graphly API and the underlying computing cluster and data layout.

This paper is organized as follows. Section 2 summarizes relevant related work on graph databases and graph-

processing frameworks. Section 3 describes the architecture behind Graphly and jLiME. Section 4 provides a description

of the underlying distributed processing support. Section 5 introduces Graphly and its API, and provides usage exam-

ples. Section 6 describes the case study used to show the importance of customizing job distribution and the experiments

of the different strategies used. This case study involves expressing an existing recommendation algorithm [18, 19] using

Graphly and executing it with real Twitter data. Finally, Section 7 draws some conclusions and list future work.

2. Related work

The architecture proposed stems from two existing types of systems: graph-processing frameworks and graph databases.

Several frameworks that support graph-processing algorithms in clusters of computers can be found in the literature.

Many of those efforts are based on the well-known Bulk Synchronous Parallel (BSP) model by Valiant [15], which

divides the execution of an algorithm in multiple supersteps synchronized by logical barriers in which message passing

takes place. As an example, Pregel [10] is one of the most popular BSP-based computational models for graph process-

ing. It introduces an in-memory, vertex-centric approach for modelling graph algorithms. Moreover, there are several

open-source, publicly available implementations based on Pregel, such as Giraph,1 jPregel,2 GoldenOrb3 and Phoebus.4

Trinity [20] is another graph-processing framework, created by Microsoft providing vertex-centric computation using

BSP, and also graph querying capabilities and message passing between computing nodes. HipG [11] uses the notion of

synchronizers to model algorithms and nodes to perform vertex-centric computations. Each synchronizer might asyn-

chronously call many nodes and then use a barrier to wait for node execution finalization. Synchronizers might spawn

multiple child synchronizers, effectively building a hierarchy of parallel synchronizers.

GraphX [21] is a BSP-based framework that covers the whole graph-processing pipeline, that is, data acquisition,

graph partitioning and subsequent processing. It also provides a table view of graphs that allows the user to perform filter,

map and join operations. Piccolo [12] uses a distributed key-value store to keep the data (e.g. user profiles) associated

with each vertex. The map is partitioned and processed in parallel by a kernel function that generates mutations to the

map. After each iteration the mutations are applied to the distributed map through the use of synchronous barriers, simi-

larly to BSP. Moreover, Distributed GraphLab [13] is based upon an asynchronous vertex-centric computation model,

where the data and graph modifications are scheduled using a distributed locking mechanism. Thus, GraphLab avoids the

penalty imposed by synchronization barriers from the BSP model.

Graph-processing frameworks usually load data from a persistent store and then construct a distributed in-memory

representation of the graph. In many clusters, RAM memory is scarce and imposes a hard limit on the size of the graph

to be processed. Additionally, many graph algorithms [6, 19, 22–24] require in-memory auxiliary data structures to han-

dle intermediate results, which further limits the amount of memory that can be assigned to graph data. Driven by this

situation, we created a graph database that supports graph traversal operations and provides a model for designing dis-

tributed graph algorithms over its data. Graph data is kept in a persistent graph database and algorithm execution can be

non-invasively adjusted according to different criteria, such as main memory usage, CPU speed, CPU usage, secondary

disk usage and vertex storage location, among others.

In the literature regarding distributed graph databases, there are at least two types of stores: RDF (Resource

Description Framework) stores and Property Graphs. RDF stores originated with the Semantic Web [25–28] and most of

them have been developed for years. The RDF specification provides the < Subject, Predicate, Object> representation

of relationships in a graph of entities. The Subject is the origin vertex, the Predicate is the edge label, and the Object is

the target vertex. Usually, a Context is added to express where a triple comes from. In the context of graphs, the Context

is the graph where a triple belongs to. The Subject, Predicate, Object, Context (SPOC) representation is usually called a

Quad. RDF stores usually persist the SPOC tuples into a key-value store, and create several indexes to support different

types of query access. For example, YARS2 is a distributed RDF store that creates a SPOC index, and four additional

indexes to support alternative access patterns. Bigdata [27] is based on concepts introduced by YARS2 [29], but adds an

inference engine and an implementation of the Gather–Apply–Scatter graph-processing model. Virtuoso [26] is another

example of a mature database that supports the RDF format and provides an inference mechanism over its tuples.

Property graphs are a type of graph store where edges and vertices are modelled with an arbitrary number of proper-

ties, usually, in a key-value format. A common technique to store a property graph is to separate the different elements

of a graph: vertex adjacency lists (vertices or edges), vertex data, edge input vertices, edge output vertices and edge data.

Implementations of this type of databases are fairly new and are mostly related to the NoSQL movement. As an example,

the Titan [30] graph database lets the user select the actual database storage support from a number of lower-level data

Corbellini et al. 688

Journal of Information Science, 41(5) 2015, pp. 686–704 � The Author(s), DOI: 10.1177/0165551515588669

 by guest on September 22, 2015jis.sagepub.comDownloaded from

http://jis.sagepub.com/

stores, including HBase [31], Cassandra [32], BerkeleyDB [33] and Hazelcast [34]. Similarly to many new databases,

Titan implements the Blueprints [35] interface, which connects it to a number of already implemented tools for graph

querying and processing. Other databases provide a graph interface over a Document-oriented store (i.e. a key-value

store where values have a known but flexible format, such as XML or JSON), which is the case for OrientDB [36] and

ArangoDB [37]. As a final example, FlockDB [38] is an adjacency graph store that, as its name indicates, only stores the

structure of the graph. It was developed at Twitter to store the followee/follower relationships of its users. All in all, our

structural graph database is based on a simple distributed key-value store, where each key represents a vertex ID, and

each value contains the associated vertex data. The vertex ID is used to distribute the values across the computing nodes

in a cluster. Then, a Graph API is built over the key-value store to provide graph operations, for example, obtaining the

outcoming and incoming edges of a node.

In this work, we propose an architecture for graph storage and processing that, among other features, provides an API

to implement traversal algorithms, that is, algorithms that walk through the graph and might aggregate results, generat-

ing sums or counts of elements. Unlike the APIs proposed by other frameworks and databases, we focus on the problem

of customizing the distribution of the graph algorithm on heterogeneous clusters. This involves providing access to com-

puting nodes and cluster information such as memory usage, CPU usage and job queues size, and access to information

about the storage support such as data location (e.g. in which node an adjacency list resides) and cached data location.

Thus, using this information, we provide predefined job mapping strategies to increase algorithm performance.

Moreover, an extension mechanism is provided for further customization through ad-hoc strategies.

Indeed, job scheduling or job mapping is a well-studied problem in distributed computing [39]. On heterogeneous

clusters, that is, clusters of computers with different capabilities (main memory, CPU speed, number of CPU cores, stor-

age capacity), the allocation of jobs to computing nodes allows distributed and parallel applications to maximize a given

performance criterion [40]. In our case, when the recommendation algorithm queries a set of vertices, a user-defined

mapping strategy groups those vertices into tasks and maps each task to a set of computing nodes. As an example, a

locality-aware mapping strategy might group vertices by their location in the storage support.

The proposed architecture is intended to ease the development of recommendation algorithms over social networks,

particularly those requiring complex navigation patterns of the social graph. This category includes link prediction prob-

lems, which compute which links are more likely to appear in the future on the graph [41]. Depending on the type of

graph, such prediction might include friends, followees, products, co-workers, researchers and Web pages. There are

several algorithms that use the structural information of the graph to make a prediction. Typically, these algorithms com-

pute the similarity between nodes based on their neighbourhoods or ensembles of paths using local or global indices

[42–44]. More advanced algorithms involve complex graph traversal operations. For example, PageRank [23] is a well-

known algorithm that ranks Web pages on the entire Web hypergraph using the ‘random surfer’ notion, that is, a Web

user that clicks randomly on HTML links of arbitrary Web pages. Hence, PageRank ranks Web pages by the probability

that a user will be at a given Web page at any time. Personalized PageRank is a variation of the original algorithm that

computes rankings based on a user’s preferences. Similarly, HITS [22] assigns an ‘authority’ value and a ‘hub’ value to

each vertex of the graph using the number of outgoing edges and the number of incoming edges, respectively. HITS was

originally used to rank Web pages resulting from a Web search, but later adapted to perform recommendations. SALSA

[24] is an algorithm that uses the ‘hub’ and ‘authority’ notion of HITS, and the ‘random surfer’ model from PageRank.

Both SALSA and HITS receive an initial group of results from a topic search to build a ranking. More recently, the

Who to Follow [6] user recommendation algorithm developed by Twitter uses Personalized PageRank to build the initial

group of results, and then uses that group as an input to a SALSA-based recommendation algorithm. Other examples of

followee and social recommendation algorithms in the same line are described in the literature [45–51]. This type of

algorithm relies on an efficient exploration of the underlying graph for generating recommendations and, consequently,

solutions optimized for this domain become critical.

3. Lightweight massive graph processing architecture

In this section we describe LMGPA, a reference architecture for developing systems supporting efficient graph-traversal

algorithms over large-scale graphs. Examples of such systems include not only social recommendation systems (recom-

mendations on large social networks), but also geolocation-based systems (supporting transportation systems on large cit-

ies), bioinformatics systems (processing of large DNA sequence graphs) and security audit systems (discovering attack

patterns on networking logs), among others. Moreover, the proposed architecture focuses on systems that require an easy

deployment and fast user adoption.

Corbellini et al. 689

Journal of Information Science, 41(5) 2015, pp. 686–704 � The Author(s), DOI: 10.1177/0165551515588669

 by guest on September 22, 2015jis.sagepub.comDownloaded from

http://jis.sagepub.com/

LMGPA, depicted in Figure 1, follows the Layers pattern [52] in which each layer exposes a set of operations through

an API and relies on the API of the lower layer to implement those operations. User applications communicate with the

Graph Abstraction layer, the topmost layer of the architecture.

The Graph Abstraction layer defines the API to be used by the applications. This layer might be used through a

declarative Graph Query Language (GQL) or a set of functions implemented in a given imperative language. Examples

of GQL are Gremlin [53], Graph QL [54], and SPARQL [55]. On the other hand, as an example of standard graph APIs

for imperative languages, the Blueprints [35] specification for Java provides a set of conventions to access a graph, simi-

larly to a JDBC (Java Database Connectivity) for graphs. Additionally, this layer can implement a set of basic graph

algorithms like breadth-first search, depth-first search, Floyd’s algorithm and Dijkstra’s algorithm. Moreover, this layer

can implement primitives that underlie many recommendation algorithms such as random walks and circle of trust [6].

The second layer is the Graph Storage layer, which provides temporal or persistent storage support for the Graph API.

It may be implemented using a purely graph-oriented storage like Neo4J [56] or it can provide a way to store the graph

structure in a less direct way like a relational database or a key-value store. If preferred, the distributed support for this

layer may be implemented using the Distributed Execution layer explained below.

The third layer corresponds to the Distributed Execution layer. This layer hides concerns related to distributed pro-

gramming and provides an API to help the Graph layer and the Storage layer to distribute data and code across a cluster

of computational nodes. The Distributed Execution layer provides an API to remotely execute any code using the Job

abstraction. A Job is an object that can be serialized (represented as a plain stream of bytes) and executed remotely on

other node. To support this abstraction, the Distributed Execution layer must implement Job managing capabilities which

include, for example, job synchronization, data sharing, failure clean-up and asynchronous/synchronous responses.

Additionally, it can provide simple execution model implementations like fork-join or more advanced models like

MapReduce or BSP.

The fourth layer corresponds to the Distributed Cluster Abstraction layer, which provides a view of the underlying

networked LMGPA processes as a set of Peers that belong to the same cluster. To this end, this layer implements a clus-

ter membership management protocol and a communication mechanism for Peers using RPC (Remote Procedure Call)

which, in turn, involves handling data marshalling and unmarshalling. To implement such support, there are many exist-

ing mature RPC frameworks that can be employed, such as Protocol Buffers [57], Apache Thrift [58], RMI [59] and

RabbitMQ [60].

Finally, the lowest layer is network communication, which implements networking functionality for sending data and

code to remote processes. It must provide packet sending through TCP, UDP and UDP Multicast as well as data stream-

ing. Among other things, this layer must support interface disconnections and network address changes, manage TCP

Figure 1. LMGPA layered view.

Corbellini et al. 690

Journal of Information Science, 41(5) 2015, pp. 686–704 � The Author(s), DOI: 10.1177/0165551515588669

 by guest on September 22, 2015jis.sagepub.comDownloaded from

http://jis.sagepub.com/

connections and identify nodes by ID rather than using a hardware address. Streaming capabilities are crucial for appli-

cations where the information being transmitted cannot be handled as a whole in physical memory but, instead, can be

processed by chunks in an ‘on demand’ fashion. The network communication layer may be already implemented in the

RPC framework used.

4. jLiME: a lightweight distributed execution framework for Java

The LMGPA architecture provides the basis for our own support for graph-based processing applications. This support

is implemented via two main modules as shown in Figure 2: the Graphly module and the jLiME module. Graphly imple-

ments the Graph Abstraction layer and the storage support for representing graphs. jLiME implements the Distributed

Execution layer, the Distributed Cluster Abstraction layer and the Network Communication layer. In this section we will

introduce jLiME from a bottom-up perspective.

4.1 jLiME network stack

The bottom part of the framework is the jLiME Network Stack, a reusable and flexible network communication frame-

work, based upon the JGroups library [61]. JGroups lets the developer build a stack of modules that process incoming

and outcoming network packets (e.g. modules that detect failures, acknowledge received messages, send and receive

packets using UDP or TCP). The JLiME Network Stack not only allows the creation of stacks of packet processing mod-

ules, but also allows streaming data between Java processes. In this context, packets are arrays of bytes that are sent over

the network as a whole. Streams, however, do not have a fixed size, allowing a sender to send arbitrary amounts of bytes

and the receiver to consume the bytes as they arrive. In Appendix A this layer is further discussed.

4.2. jLiME RPC

jLiME provides a Remote Procedure Call module to easily perform remote calls to objects, greatly simplifying the design

of distributed programs. First, it introduces the concept of Peer. A Peer is a jLiME process that was detected using any

discovery method provided by the network layer. Then, Peers are grouped in a cluster object that allows the developer to

select them and keep track of their state.

An RPCDispatcher object allows a method on a given Peer and a given registered object to be called. jLiME also

allows the creation, for a given object interface, of a set of helper classes to call methods from that interface as if they

were local invocations. One of the helper classes is a factory class for creating a proxy object for a given Peer and a

given RPCDispatcher. The usual workflow for using jLiME RPC is shown in Figure 3.

Our Distributed Execution module (Section 4.3) is based on the RPC module. In this case, the RPC module simplifies

sending and receiving Job objects to be executed. The Distributed Execution module registers a JobExecutor object on

its RPCDispatcher, and then calls the ‘execute’ method on remote JobExecutors using a proxy object, previously gener-

ated using the RPC module. Thus, the JobExecutor code contains a minimum amount of code related to remote execu-

tion because remote method invocations look like local invocations.

Figure 2. jLiME: a materialization of LMGPA.

Corbellini et al. 691

Journal of Information Science, 41(5) 2015, pp. 686–704 � The Author(s), DOI: 10.1177/0165551515588669

 by guest on September 22, 2015jis.sagepub.comDownloaded from

http://jis.sagepub.com/

4.3. jLiME Distributed Execution

The jLiME Distributed Execution module implements the interfaces shown in Figure 4, needed to create a remote job

execution environment. The first abstraction introduced by this module is the Job class, which allows a developer to exe-

cute arbitrary code on a remote machine. In order for jLiME to run a given Job on a Peer, the developer must obtain a

JobPeer object, which encapsulates a Peer instance, and call the execute Job method. A JobCluster object encapsulates a

Cluster object and provides access to JobPeer objects. Besides keeping track of JobPeers, the JobCluster divides Peers

into job executors, that allow the execution of Job objects, and job clients, that submit Jobs to job executors.

5. Graphly: a simple Java API for graph structure traversal

The graph support developed in this work provides a simple interface to traverse the structure of a graph. A graph traver-

sal is an operation that follows the links of a graph, gathering information about links or vertices. We support this opera-

tion by relying on two modules: jLiME and the Graphly Store. jLiME helps to distribute any calculation needed by the

Graphly API. The latter provides a distributed persistent store for the graph structure. In the following sections we will

give an insight into the implementation of the Graphly Store and the Graphly API.

5.1. Graphly Store

Graphly’s Store persists the graph data on a cluster of computing nodes. The implementation proposed in this work uses

a distributed key-value store to save the adjacency lists of the graph, that is, every vertex is represented by an ID, which

is used as a key, and has an associated value comprising a list of incoming or outcoming vertex IDs. Then, a modulo-

based hash function to the vertex ID is used to distribute the adjacency lists among computing nodes. Each computing

node is responsible for storing a group of adjacency lists on its local database. In our implementation we used LevelDB

Figure 4. jLiME design: main abstractions.

Figure 3. jLiME RPC workflow.

Corbellini et al. 692

Journal of Information Science, 41(5) 2015, pp. 686–704 � The Author(s), DOI: 10.1177/0165551515588669

 by guest on September 22, 2015jis.sagepub.comDownloaded from

http://jis.sagepub.com/

[62] as the local database implementation. We chose LevelDB because it is a key-value store, which matches our repre-

sentation of the data, and provides very fast random and sequential access.

5.2. Graphly Traverse API

Graphly provides a querying API for accessing the structure of a graph and exploring it [63]. The class diagram representing

the different graph queries is shown in Figure 5. The GraphQuery class provides a common interface for all graph queries.

The most important type of query in our design is the ListQuery, which represents a query that gives as a result a list

of vertices (e.g. integer IDs). As a consequence, the most trivial query is the VertexQuery class, which already contains a

list of vertices and, when executed, only returns the contained list. This class is used to create more powerful queries and

maintain homogeneity with the rest of the GraphQuery hierarchy. The UnionQuery and IntersectQuery classes perform a

union or an intersection of executing two ListQuery queries. Finally, the EdgeQuery obtains the list of vertices that has

incoming or outcoming edges to the currently contained ListQuery from the Graphly Store. As can be seen in the figure,

the ListQuery abstract class provides methods to create several types of queries from a given ListQuery object, allowing

the user to chain different types of ListQuery.

Other types of queries perform different operations on ListQueries. The SizeQuery obtains the size of a result from a

ListQuery, instead of transmitting the list of elements to the client. The CountQuery counts the number of appearances

of a given vertex in a set of results. The TopQuery obtains the top N elements from the result of a CountQuery. The

ForEachQuery provides an extension point for a user to create custom queries to be executed on the result of a

ListQuery. Similarly, the MapQuery provides a ForkJoin-like mechanism to distribute a given query along the cluster,

thus balancing the processing load of the query.

A developer may define different graph traversals algorithms using the interfaces described above. As an example,

the Common Neighbours metric [41] was implemented using Graphly’s API. Common Neighbours is one of the sim-

plest metrics to measure the similarity of two vertices on a graph and it is a common strategy for link prediction in rec-

ommendation systems. For two vertices x and y, let �(x) denote the set of neighbours of x, their common neighbourhood

is defined as j�(x) ∩ �(y)j. Graphly’s version of Common Neighbours is:

int common_neighbours = graph.vertex(x).neighbours().

intersect(graph.vertex(y).neighbours()).size();

The graph variable is an instance of Graphly. Using the getVertex method, the user obtains a VertexQuery instance

for the vertex x. The neighbours method creates an EdgeQuery that obtains the vertices having incoming or outcoming

edges to x from the Graphly Store. Finally, the result is intersected with the neighbours of vertex y, and its size is

returned.

Figure 5. GraphQuery hierarchy.

Corbellini et al. 693

Journal of Information Science, 41(5) 2015, pp. 686–704 � The Author(s), DOI: 10.1177/0165551515588669

 by guest on September 22, 2015jis.sagepub.comDownloaded from

http://jis.sagepub.com/

5.3. Graphly job mapping strategies

Before each traversal step, it is possible to decide where to perform the merge of subresults of such traversal. This deci-

sion depends on the user and the nature of the algorithm being developed. As an example, if the cluster consists of an het-

erogeneous group of computing nodes (i.e. different types of CPU, amount of RAM memory, disk storage capacity, etc.),

the user may decide to distribute the merging of subresults according to each node’s capabilities to achieve lower recom-

mendation times or reducing resource usage (e.g. reducing network usage may be useful in Cloud Computing environ-

ments where inter-node communication is charged). Moreover, a CPU-bound algorithm may need to distribute tasks

according to CPU capabilities, whereas a memory-intensive algorithm may distribute tasks depending on the amount of

RAM memory on each node.

In any case, the algorithm original code remains unchanged. Thus, the strategies effectively work as a transparent

connection between the graph algorithm and the underlying platform and storage support. A Mapping Strategy API is

provided so that the user defines his/her own strategies. Nevertheless, we provide a set of predefined strategies to be

used out-of-the-box. In our experiments we used four of these strategies to show how the selection of a strategy affects

an algorithm’s performance and cluster resources usage. Because the algorithm is a memory- and database-intensive

algorithm with low CPU usage we selected two memory-based strategies, a location-based strategy and, as baseline for

our experiments, a round-robin strategy. If the algorithm selected had an intensive use of CPU, for example, a content-

based algorithm, a strategy that considers CPU characteristics such as number of cores and frequency, current and/or his-

torical CPU usage, current and/or historical CPU load average, would have been more suitable. The strategies used in

this work are listed below:

• Available Memory – this strategy uses jLiME’s monitoring statistics to obtain the memory currently available on

each node and then divides the given list of vertices accordingly. Clearly, this strategy is dynamic, that is, it

adapts to the current status of the cluster.

• Total Memory – similarly to the Available Memory strategy, to divide the list, the Total Memory strategy uses

the maximum amount of memory that a Peer can use. It is a fixed strategy that assigns more requests to nodes

that have more memory available.

• Location Aware – this strategy takes advantage of the locality of the vertices. It divides the input into different

lists of vertices grouped by their storage location. Such location is obtained applying a hashing function to each

key. For example, let node N1 be responsible for vertices a1, a3, a5 and node N2 for vertices a2,a4. If we use a

Location Aware strategy to map vertices a1, a2, a5, it will divide the original list into: a1,a5→N1 and

a2→N2.

• Round Robin – this strategy simply divides the given list of vertices by the amount of nodes and assigns a sublist

to each node. This equal division of requests among nodes makes this strategy the fairest strategy in terms of

computing load. However, it does not consider either the locality of the data or the nodes characteristics such as

available memory, CPU or physical network speed. This is a job mapping strategy commonly used in distributed

computing as baseline for experiments.

As mentioned before, other strategies can be defined by the user. To support this feature, Graphly provides a Mapper inter-

face that users can extend to define their own mapping strategies. The sole function of this interface is mapping an array of

vertex IDs to the available cluster nodes. Additionally, a JobContext object is provided to access the cluster information and

obtain shared objects from the platform. The RoundRobin Mapper implementation is shown in Figure 6 as an example.

Regarding the strategies that perform a division based on node information, the user may use the CriteriaMapper

object. A CriteriaMapper divides the list of vertex IDs proportionally to a provided (quantitative) node metric such as

available RAM memory, CPU speed, current amount of jobs being executed, among other metrics. For example, the

Available Memory strategy uses a CriteriaMapper instantiated with a metric named ‘memory.available’. Thus, using this

strategy, the nodes that report larger amounts for the ‘memory.available’ metric will receive more vertex IDs than the

other nodes. In our tests, we created our custom strategies using Spring Configuration.5 The Available Memory mapping

strategy configuration is shown in Figure 7.

6. Case study

In order to validate the proposed architecture, we implemented a recommendation algorithm and performed experiments

with different job distribution strategies in the current materialization of LMGPA. The algorithm used in this paper for

illustrating the importance of mapping strategies is a followee recommender algorithm for Twitter users [18]. To simplify

Corbellini et al. 694

Journal of Information Science, 41(5) 2015, pp. 686–704 � The Author(s), DOI: 10.1177/0165551515588669

 by guest on September 22, 2015jis.sagepub.comDownloaded from

http://jis.sagepub.com/

the experimentation and analysis of strategy impact, we focus our experiments on a recommendation algorithm that only

uses the topological information of the graph. However, the platform allows adding content to both vertices and edges,

for example, ‘tweet lists’ and ‘type of relationship’, respectively. Naturally, algorithms that process content have memory

and CPU requirements that are much higher than topological algorithms.

Section 6.1 presents the algorithm definition and its adaptation to the Graphly API. Section 6.2 describes the experi-

mental settings, including the dataset used, the hardware features of the computer cluster and the initial configuration. In

turn, Section 6.3 shows how the choice of a mapping strategy affects the algorithm execution times and cluster resource

usage.

6.1. Followee recommendation algorithm

In the context of the Twitter social network, a user has a group of followees (outgoing edges) and followers (incoming

edges). The algorithm used as case study, proposed in Armentano et al. [18], can be divided in two stages. It first explores

the followee/follower network near the target user (i.e. the user receiving the suggestions) to select a set of potential users

to recommend. Then, the candidates are filtered and ranked according to different criteria [56], such as the number of

common friends with the target user or the matching of their content-based profiles. In this work we focus on supporting

the first stage of the algorithm on a large graph, setting aside the quality of the actual recommendation.

The exploration of the followee/follower network in this algorithm is based on the characterization of Twitter users

made in several studies [64, 65] and the fact that online social networks had become real-time information sources and

news spreading mediums besides fostering the formation of social ties [66]. From an information-centric point of view,

users are mainly divided into two categories: information sources and information seekers. Users behaving as information

sources tend to collect a large number of followers as they post useful information or news, whereas information seekers

follow several users to get information but rarely post a tweet themselves.

The rationale behind the graph traversal stage of this algorithm relies on the categorization of users as information

seekers or information sources. Thus, it is assumed that the target user is an information seeker that has already

Figure 6. Round Robin Mapping Strategy implementation.

Figure 7. Available Memory configuration using Spring Configuration.

Corbellini et al. 695

Journal of Information Science, 41(5) 2015, pp. 686–704 � The Author(s), DOI: 10.1177/0165551515588669

 by guest on September 22, 2015jis.sagepub.comDownloaded from

http://jis.sagepub.com/

identified some interesting Twitter users acting as information sources (i.e. his/her followees). Other people who also

follow these people (i.e. followers of the user followees) are likely to share some interests with the target user and might

have discovered other relevant information sources on the same topics (i.e. their followees). This last group is then com-

posed of potential candidates for suggesting to the user as future followees.

More formally, the search of candidate users is performed according to the following steps:

Step 1. Starting with the target user uT (an information seeker), obtain the list of users he/she follows into a list

S = fs1, s2, . . . , sng. Members of S are likely to be information sources.

Step 2. For each element in S, obtain its followers. Let us call the union of all these lists L, that is,

L= ∪ 8s∈ followees(uT)followers(s): Members of L are likely to be information seekers.

Step 3. For each element in L obtain its followees. Let us call the union of all these lists T , that is,

T = ∪ 8l ∈Lfollowees(l). Members of T are likely to be information sources.

Step 4. Exclude from T those users who the user being recommended is already following. Let us call the resulting

list of candidates R.

Using the Graphly API, this algorithm can be expressed as depicted in Figure 8. The adapted version of the algorithm

broadly contains the following steps:

(1) Get the followees (outgoing) of the target user.

(2) Get the followers (incoming) of the followees and remove the original followees from the list.

(3) Count the followees (countOutgoing) of the followers and remove the original followees from the map.

(4) Obtain the top n elements with most appearances (n = 10 in this example).

The followees object appears twice in the query because the original followees must not be part of the recommenda-

tion as they are already being followed by the user.

6.2. Experimental setting

Experiments were carried out using a Twitter dataset6 as of July 2009 consisting of approximately 1400 million relation-

ships between more than 41 million users [66]. This is an extensively studied dataset [18, 67–71] containing topological

Figure 8. The studied recommendation algorithm expressed using the Graphly API.

Corbellini et al. 696

Journal of Information Science, 41(5) 2015, pp. 686–704 � The Author(s), DOI: 10.1177/0165551515588669

 by guest on September 22, 2015jis.sagepub.comDownloaded from

http://jis.sagepub.com/

information about the social network, that is, it has binary relationships between user IDs, but it does not include tweets.

This is not a limitation since the test algorithm builds recommendations based on user relationships only, searching for

candidate followees in the Twitter graph. In addition, the dataset provides a good benchmark for topology-based link-pre-

diction algorithms since it is a complete, real-word graph, not a subsample or artificially generated one. Thus, it is possi-

ble to tune the platform and observe its behaviour with real-world processing requirements.

For testing the algorithm, we selected two test groups of users out of the complete dataset with the goal of illustrating

the performance of the different strategies for varying algorithm needs. For selecting a representative test user list, we

first filtered the users using the information source ratio [19], denoting to what extent a user can be considered as an

information source. This ratio is defined as follows:

IS(u)= followers uð Þ
followers(u)+ followees(u)

ð1Þ

We set this ratio to be ≤ 0.5, which means that the number of followees had to be equal to or larger than the number

of followers. This restriction arises as a natural way of selecting which users would have any interest in receiving recom-

mendations, since the algorithm under study is designed for recommending followees to information consumers more

than to information producers.

The first test group, called the ‘IS’ group, comprises the top 100 users with the smallest IS values. From the algorithm

point of view, these users are the most interesting information consumers to recommend other users to follow. To obtain

the second test group, called the ‘Followees’ group, we ordered the filtered users by number of followees and kept the

top 100. These users represent the most influential users of the test set and were used to stress the computational nodes

employed assuming that they will produce long lists of followers and followees.

Regarding the cluster characteristics, we used a heterogeneous cluster of eight nodes divided into two sets, each hav-

ing identical hardware characteristics. Table 1 summarizes the most relevant characteristics of each set of nodes.

6.3. Results

The experiments were carried out as follows. For each user in the testing set, we ran the algorithm five times for each

one of the strategies presented in Section 5.3. In every execution, we measured the total recommendation time, the bytes

sent over the network and the maximum memory consumed (the biggest memory spike). Using this information we

obtained the average number of bytes sent over the network, the average maximum memory consumption and the aver-

age recommendation time. It is worth noting that the number of times we ran the algorithms yielded as a result very low

statistical deviations, and thus these averages are statistically significant. The distribution of average values for a given

group of users and a given strategy is summarized in Figure 9.

As it was expected, users in the ‘IS’ group demand, on average, less time to process as well as less resources. Instead,

the ‘Followees’ group was intentionally selected to stress the cluster. Users in this group need more resources to be pro-

cessed and, consequently, their processing takes longer than users in the ‘IS’ group.

Regarding the performance of the mapping strategies for both groups of users, the Round Robin strategy provided the

worst recommendation times as well as higher network and memory usage. This can be explained by the fair but random

division of tasks processing.

The memory-based strategies provided similar performance in network and memory consumption and recommenda-

tion time. These strategies performed better than the Location Aware strategy and the Round Robin strategy. This might

be explained by the memory-intensive nature of the algorithm used as case study: on each step, the algorithm generates

exponentially larger subresults that are merged and allocated as input for the next step. Thus, an allocation of tasks

according to memory capabilities of the nodes provides better performance by using less virtual memory from the

Table 1. Cluster hardware characteristics.

First set (five nodes) Second set (three nodes)

CPU AMD Phenom II X6 1055T 2.8 GHz AMD FX 6100 3.3 GHz
Number of cores 6 6
RAM 8 GB 16 GB
Physical network 1 Gbit Ethernet 1 Gbit Ethernet
Hard disk 500 GB – 7200 rpm 500 GB – 7200 rpm

Corbellini et al. 697

Journal of Information Science, 41(5) 2015, pp. 686–704 � The Author(s), DOI: 10.1177/0165551515588669

 by guest on September 22, 2015jis.sagepub.comDownloaded from

http://jis.sagepub.com/

Operating System (also letting the OS to use more memory for disk cache) and, in the case of our implementation lan-

guage, producing less garbage collection from the Java Virtual Machine.

Finally, the Location Aware strategy provided intermediate performance in terms of recommendation time. However,

memory consumption was considerably lower than other strategies and, as expected, the network consumption was mini-

mal. In scenarios where memory is scarce or network speed is an impediment, the Location Aware strategy may be a

better fit than other strategies. Moreover, in some scenarios using Cloud processing platforms (e.g. Amazon AWS or

Google Compute Engine), using less network bandwidth may have economic benefits.

To further compare strategies, a typical execution trace for the implemented recommendation algorithm is shown in

Figure 10. In this case, the Location Aware strategy presents a memory usage pattern that is almost linear, whereas the

other strategies show an exponential pattern on early steps of the recommendation algorithm. This is due to the nature of

the algorithm, which generates an exponential amount of remote requests on each traversal step. As expected, the net-

work usage is similar for non-locality strategies. Moreover, for those strategies, the growth in network usage matches a

growth in memory usage.

Figure 9. Average results for each testing group of users.

Corbellini et al. 698

Journal of Information Science, 41(5) 2015, pp. 686–704 � The Author(s), DOI: 10.1177/0165551515588669

 by guest on September 22, 2015jis.sagepub.comDownloaded from

http://jis.sagepub.com/

Although the platform allows developers of recommendation algorithms to decide the strategy according to the algo-

rithm requirements, based on the previous results it is possible to draw some conclusions to guide this selection process.

Table 2 provides assistance in the decision of which strategy shall be used depending on the environment characteristics,

graph topology and algorithm characteristics. As environment characteristics we considered two scenarios: a Limited

Memory scenario and a Slow/Costly Network scenario. The former corresponds to environments where the nodes have

relatively low RAM memory, which is the case of, for instance, commodity clusters, or environments including

embedded devices like cell phones or tablets [72] (a.k.a. mobile grids). The latter scenario considers slow computer net-

works, where transference between nodes incurs a big performance penalty or cases where network transfers are

charged, as in, for example, paid Cloud Computing environments. Under graph topology we only consider graphs that

are highly interconnected (e.g. natural graphs) and graphs that have a low amount of edges w.r.t. their vertices. Finally,

in algorithm characteristics we identify two scenarios: implementing a memory-intensive recommendation algorithm or

a CPU-intensive algorithm.

The scenarios depicted are far from exhaustive, mainly because we only focused on those scenarios that are related to

the case study analysed. Then, even when the criteria used to fill in part of the table is somewhat subjective, our main

Figure 10. Cluster network and memory usage for an example user.

Corbellini et al. 699

Journal of Information Science, 41(5) 2015, pp. 686–704 � The Author(s), DOI: 10.1177/0165551515588669

 by guest on September 22, 2015jis.sagepub.comDownloaded from

http://jis.sagepub.com/

goal is to guide potential jLiME users into quickly obtaining an initial, working configuration for efficiently running their

recommendation algorithms. Possible values for strategy performance in a given scenario range from very poor to very

good. A very poor value does not necessarily mean that the current strategy is unusable for that scenario, but it might not

perform as well as other strategies. Additionally, these values depend on the scenario being evaluated, for example, if we

consider the Limited Memory scenario, a very poor value means that the strategy introduces high memory consumption,

while a very good value means that the strategy favours low memory consumption.

The selection of a strategy for a given environment, graph and algorithm combination is straightforward. For example,

in a Slow Network scenario the best choice is the Location Aware strategy. On the other hand, in a Limited Memory sce-

nario, a low-connected graph and a CPU-intensive algorithm, the best choice might be a simple Round Robin strategy.

Nevertheless, because the scenarios are not mutually exclusive, conflicts between requirements may arise, resulting in a

trade-off situation.

7. Conclusions

In this paper, we presented a novel architecture and a corresponding implementation for designing distributed recom-

mending algorithms. The algorithms are expressed in terms of graph traverse operations defined by the API of our graph

support, Graphly. The underlying framework, jLiME, deals with networking concerns like remote code execution. The

core motivation of this work is the creation of a customizable and transparent mechanism to distribute the processing of

prototype recommending algorithms. This mechanism, called mapping strategies, works as a bridge between Graphly

API and jLiME, by exposing information about the computational capabilities of every node, including the graph data

distribution.

This work shows the importance of such mechanism by comparing several strategies and their impact in recommen-

dation time and resource usage, especially on heterogeneous clusters. As a case study, we used an existing structural rec-

ommendation algorithm for Twitter and real Twitter data, and made recommendations to two different groups of 100

users to show the differences in recommendation times and resource usage. For this type of recommending algorithm,

the memory-based strategies showed a very good recommendation time, followed by a strategy that uses data locality.

This can, however, vary from algorithm to algorithm, and thus the architecture stressed the need for a flexible tuning

support so that users can use or even define the strategies that best suit their algorithms.

As future work, we will examine the impact of mapping strategies in algorithms implemented using a different pro-

cessing model, like Pregel. Some iterative graph algorithms, such as PageRank, can be better expressed in a vertex-

centric processing model rather than a Divide-and-Conquer model like MapReduce or ForkJoin, that is, the ones that

jLiME is currently based upon. Selecting a better model for a particular algorithm also results in performance benefits

by reducing code and algorithmic overhead imposed by a less-fitted model. In the future, Table 2 (Section 6.3) might

include more dimensions, such as the one representing the execution scheme (e.g. Pregel or Fork Join) that best suits

algorithms w.r.t. how they traverse or process graphs. Under certain circumstances, a scheme would not suffice without

a proper job mapping strategy. However, more experiments need to be conducted in the future to build such enhanced

decision tables.

Furthermore, we will explore new mapping strategies and job-stealing strategies to rebalance processing if nodes are

overloaded. While mapping strategies decide how task distribution is performed, job-stealing strategies perform a run-

time adjustment on that distribution by stealing tasks that have not completed on busy nodes and allocating them on idle

nodes. In other words, the current mapping strategies follow a push-based approach to distributing jobs to machines,

whereas job stealing follows a pull-based approach. Indeed, these approaches have been studied in the context of other

types of resource-demanding applications [73] and thus we believe they are worth exploring.

Another extension of this work includes the definition of reusable, higher-level graph primitive operations especially

suited to recommending algorithms beyond simple graph primitives, like obtaining common neighbours, PageRank cal-

culation or obtaining the ‘circle of trust’ – as described by the Who to Follow algorithm [6] – of a given vertex. The intro-

duction of these new primitives might also require defining higher-level mapping strategies. A strategy that divides tasks

according to the amount of neighbours of a given vertex might provide better load balancing when the primitive (or the

user’s algorithm) is based on processing vertices neighbourhoods.

The inclusion of algorithms that use graph content besides topology will foster the creation of new strategies that take

into account text mining requirements. For efficiency reasons, in many cases recommendation algorithms provide a pre-

liminary ranking of users based on topological information, which is given as input to a content-based recommendation

algorithm to build a final ranking. This approach offers a better balance of execution time–recommendation effective-

ness, but still many job-mapping strategies could be explored at both ends to further speed up recommendations.

Additionally, in terms of Graphly, these algorithms may become primitives that can be reused by other algorithms.

Corbellini et al. 700

Journal of Information Science, 41(5) 2015, pp. 686–704 � The Author(s), DOI: 10.1177/0165551515588669

 by guest on September 22, 2015jis.sagepub.comDownloaded from

http://jis.sagepub.com/

Funding

This work has been partially funded by ANPCyT, through project PICT-2011-0366, and CONICET, under grant PIP no. 114-200901-

00381.

Notes

1. Giraph Web Page, http://giraph.apache.org/

2. jPregel Web Page, http://kowshik.github.com/JPregel/

3. GoldenOrb Web Page, https://github.com/jzachr/goldenorb

4. Phoebus Web Page, https://github.com/xslogic/phoebus

5. Spring Framework Web Page, http://spring.io/

6. http://an.kaist.ac.kr/traces/WWW2010.html

References

[1] Durand G, Belacel N and LaPlante F. Graph theory based model for learning path recommendation. Information Sciences 2013;

251: 10–21.

[2] Rausch K, Ntoutsi E, Stefanidis K and Kriegel H-P. Exploring subspace clustering for recommendations. In: Proceedings of the

26th international conference on scientific and statistical database management (SSDBM ‘14), 2014, pp. 42:1–42:4.

[3] Wang X, Ma J and Xu M. Group recommendation for Flickr images by 4-order tensor decomposition. Journal of

Computational Information Systems 2014; 10(3):1315–1322.

[4] Guo X and Lu J. Intelligent e-government services with personalized recommendation techniques. International Journal of

Intelligent Systems 2007; 22(5): 401–417.

[5] Jing Y, Zhang X, Wu L, Wang J, Feng Z and Wang D. Recommendation on Flickr by combining community user ratings and

item importance. In: Proceedings of the IEEE international conference on multimedia and expo (ICME 2014), 2014, pp. 1–6.

[6] Gupta P, Goel A, Lin J, Sharma A, Wang D and Zadeh R. WTF: The who to follow service at Twitter. In: Proceedings of the

22th International World Wide Web Conference, 2013, pp. 505–514.

[7] Lu J and Wang H. Variance reduction in large graph sampling. Information Processing & Management 2014; 50(3): 476–491.

[8] Zikopoulos P and Eaton C. Understanding big data: Analytics for enterprise class Hadoop and streaming data. New York:

McGraw-Hill Osborne Media, 2011.

[9] Sakr S, Liu A, Batista DM and Alomari M. A survey of large scale data management approaches in cloud environments. IEEE

Communications Surveys Tutorials 13(3): 311–336, 2011.

[10] Malewicz G, Austern MH, Bik AJC, Dehnert JC, Horn I, Leiser N and Czajkowski G. Pregel: A system for large-scale graph

processing. In: Proceedings of the 2010 international conference on management of data (SIGMOD ‘10), 2010, pp. 135–146.

[11] Krepska E, Kielmann T, Fokkink W and Bal H. HipG: Parallel processing of large-scale graphs. ACM SIGOPS Operating

Systems Review 2011; 45(2): 3–1.

[12] Power R and Li J. Piccolo: Building fast, distributed programs with partitioned tables. In: Proceedings of the 9th USENIX con-

ference on operating systems design and implementation (OSDI’10), 2010, Vol. 10, pp. 1–14.

[13] Low Y, Bickson D, Gonzalez J, Guestrin C, Kyrola A and Hellerstein JM. Distributed GraphLab: A framework for machine

learning and data mining in the cloud. Proceedings of the VLDB Endowment 2012; 5(8): 716–727.

[14] Dean J and Ghemawat S. MapReduce: Simplified data processing on large clusters. Communications of the ACM 2008; 51(1):

107–113.

[15] Valiant LG. A bridging model for parallel computation. Communications of the ACM 1990; 33(8): 103–111.

[16] Mateos C, Zunino A and Hirsch M. EasyFJP: Providing hybrid parallelism as a concern for divide and conquer Java applica-

tions. Computer Science and Information Systems 2013; 10(3): 1129–1163.

Table 2. Strategy suitability according to the environment, the graph and the algorithm characteristics.

Strategies Environment characteristics Graph topology Algorithm characteristics

Limited
memory

Slow/
costly network

Natural
graphs

Low-connected
graphs

Memory-
intensive

CPU-
intensive

Available Memory Poor Very poor Good Good Very good Good
Total Memory Poor Very poor Good Good Very good Good
Location Aware Very good Very good Good Good Good Good
Round Robin Very poor Very poor Poor Good Poor Very good

Corbellini et al. 701

Journal of Information Science, 41(5) 2015, pp. 686–704 � The Author(s), DOI: 10.1177/0165551515588669

 by guest on September 22, 2015jis.sagepub.comDownloaded from

http://jis.sagepub.com/

[17] Mateos C, Zunino A and Campo M. JGRIM: An approach for easy gridification of applications. Future Generation Computer

Systems 2008; 24(2): 99–118.

[18] Armentano M, Godoy D and Amandi A. Topology-based recommendation of users in micro-blogging communities. Journal of

Computer Science and Technology (Special Issue on Data Mining on Social Networks and Social Web) 2012; 27(3): 624–634.

[19] Armentano M, Godoy D and Amandi A. Towards a followee recommender system for information seeking users in Twitter. In:

Proceedings of the international workshop on semantic adaptive social web (SASWeb’11), 2011.

[20] Shao B, Wang H and Li Y. The Trinity Graph Engine, Microsoft Research, December, 2012, pp. 12–14, http://research.micro-

soft.com/pubs/161291/trinity.pdf.

[21] Xin RS, Gonzalez JE, Franklin MJ and Stoica I. GraphX: A resilient distributed graph system on Spark. In: Proceedings of the

1st international workshop on graph data management experiences and systems (GRADES ‘13), 2013, pp. 2:1–2:6.

[22] Kleinberg JM. Authoritative sources in a hyperlinked environment. Journal of the ACM 1999; 46(5): 604–632.

[23] Page L, Brin S, Motwani R and Winograd T. The PageRank citation ranking: Bringing order to the Web, Technical Report,

Stanford InfoLab, 1999.

[24] Lempel R and Moran S. SALSA: The stochastic approach for link-structure analysis. ACM Transactions on Information

Systems 2001; 19(2): 131–160.

[25] Morales-del-Castillo JM, Peis E, Ruiz AA and Herrera-Viedma E. Recommending biomedical resources: A fuzzy linguistic

approach based on Semantic Web. International Journal of Intelligent Systems 2010; 25(12): 1143–1157.

[26] Erling O and Mikhailov I. Virtuoso: RDF support in a native RDBMS. In: Semantic web information management, Berlin:

Springer, 2010, pp. 501–519.

[27] SYSTAP LLC. BigData, 2013, http://www.blazegraph.com/bigdata (accessed 14 April 2014).

[28] Berners-Lee T, Hendler J and Lassila O. The Semantic Web. Scientific American 2001; 284(5): 28–37.

[29] Harth A, Umbrich J, Hogan A and Decker S. YARS2: A federated repository for querying graph structured data from the Web.

In: The Semantic Web. Lectures Notes in Computer Science, Vol. 4825. Berlin: Springer, 2007, pp. 211–224.

[30] Think Aurelius. Titan. 2014, http://thinkaurelius.github.io/titan/ (accessed 14 April 2014).

[31] The Apache Foundation. HBASE, 2014, http://hbase.apache.org/ (accessed 20 August 2014).

[32] The Apache Foundation. Cassandra, 2014, http://cassandra.apache.org/ (accessed 20 August 2014).

[33] Oracle. Oracle BerkeleyDB, 2014, http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/

index.html (accessed 20 August 2014).

[34] Hazelcast Inc. Hazelcast, 2014, http://hazelcast.com/ (accessed 20 August 2014).

[35] Tinkerpop. Blueprints, 2014, http://blueprints.tinkerpop.com/ (accessed 19 August 2014).

[36] Orient Technologies. Orient DB, 2014, http://orientdb.com/orientdb/ (accessed 20 August 2014).

[37] Arango DB. Arango DB, 2014, https://www.arangodb.com/ (accessed 20 August 2014).

[38] Twitter Inc. FlockDB, 2013, https://github.com/twitter/flockdb (accessed 5 August 2013).

[39] Topcuoglu H, Hariri S and Wu M. Performance-effective and low-complexity task scheduling for heterogeneous computing.

IEEE Transactions on Parallel and Distributed Systems 2002; 13(3): 260–274.

[40] Kim J-K, Sameer Shivle, Siegel HJ, Maciejewski AA, Braun TD, Schneider M, Tideman S, Chitta R, Dilmaghani RB, Joshi R,

Kaul A, Sharma A, Sripada S, Vangari P and Yellampalli SS. Dynamic mapping in a heterogeneous environment with tasks

having priorities and multiple deadlines. In: Proceedings of the international parallel and distributed processing symposium

(IPDPS’03), 2003.

[41] Lu L and Zhou T. Link prediction in complex networks: A survey. Physica A: Statistical Mechanics and its Applications 2011;

390(6): 1150–1170.

[42] Li L, Qian L, Cheng J, Ma M and Chen X. Accurate similarity index based on the contributions of paths and end nodes for link

prediction. Journal of Information Science 2015; 41(2): 167–177.

[43] Li L, Ma M, Lei P, Leng M and Chen X. S2R&R2S: A framework for ranking vertex and computing vertex-pair similarity

simultaneously. Journal of Information Science 2014; 40(6): 723–735.

[44] Lü L, Jin C-H and Zhou T. Similarity index based on local paths for link prediction of complex networks. Physics Review E

2009; 80: 046122.

[45] Schall D. Who to follow recommendation in large-scale online development communities. Information and Software

Technology 2013; 56(12): 1543–1555.

[46] Wu H, Sorathia V and Prasanna VK. Predict whom one will follow: Followee recommendation in microblogs. In: Proceedings

of the 2012 international conference on social informatics (SocialInformatics), 2012, pp. 260–264.

[47] Zhang J, Wang Y and Vassileva J. SocConnect: A personalized social network aggregator and recommender. Information

Processing & Management 2013; 49(3): 721–737.

[48] Hannon J, McCarthy K and Smyth B. Finding useful users on twitter: Twittomender the followee recommender. In: Advances

in information retrieval. Lectures Notes in Computer Science, Vol. 6611. Berlin: Springer, 2011, pp. 784–787.

[49] Ying JJ-C, Lu EH-C and Tseng VS. Followee recommendation in asymmetrical location-based social networks. In:

Proceedings of the 2012 ACM conference on ubiquitous computing (UbiComp ‘12), 2012, pp. 988–995.

[50] Chen T, Tang L, Liu Q, Yang D, Xie S, Cao X, Wu C, Yao E, Liu Z, Jiang Z, Chen C, Kong W and Yu Y. Combining factoriza-

tion model and additive forest for collaborative followee recommendation. In: KDD Cup Workshop, 2012.

Corbellini et al. 702

Journal of Information Science, 41(5) 2015, pp. 686–704 � The Author(s), DOI: 10.1177/0165551515588669

 by guest on September 22, 2015jis.sagepub.comDownloaded from

http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://jis.sagepub.com/

[51] Li Y-M, Liao T-F and Lai C-Y. A social recommender mechanism for improving knowledge sharing in online forums. Large-

Scale and Distributed Systems for Information Retrieval. Information Processing & Management 2012; 48(5): 978–994.

[52] Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M, Sommerlad P and Stal M. Pattern-oriented software architecture:

A system of patterns. Chichester: John Wiley and Sons, 1996.

[53] Tinkerpop. Gremlim, 2014 URL: http://gremlin.tinkerpop.com/ (accessed 19 August 2014).

[54] He H and Singh AK. Query language and access methods for graph databases. In: Managing and mining graph data, Vol. 40.

Berlin: Springer, 2010.

[55] Prud’Hommeaux E and Seaborne A. SPARQL query language for RDF, W3C recommendation, January 2008, Vol. 15.

[56] Neo Technology Inc. Neo4J, 2013 (accessed 5 August 2013).

[57] Varda K. Protocol buffers: Google’s data interchange format, 2008, http://google-opensource.blogspot.com/2008/07/protocol-

huffers-googles-data.html (accessed 19 August 2014).

[58] The Apache Foundation. Apache Thrift, 2014, https://thrift.apache.org/ (accessed 19 August 2014).

[59] Downing TB. Java RMI: Remote method invocation. Chichester: John Wiley and Sons, 1998.

[60] Videla A and Williams JJW. RabbitMQ in action: distributed messaging for everyone. Manning, 2012.

[61] Ban B et al. JGroups, a toolkit for reliable multicast communication, 2002, http://www.jgroups.org

[62] Google. LevelDB, 2014, https://github.com/google/leveldb (accessed 12 September 2014).

[63] Corbellini A, Godoy D, Mateos C, Zunino A and Schiaffino S. A programming interface and platform support for developing

recommendation algorithms on large-scale social networks. In: Collaboration and technology. Lectures Notes in Computer

Science, Vol. 8658. Berlin: Springer, 2014, pp. 67–74.

[64] Java A, Song X, Finin T and Tseng B. Why we Twitter: Understanding microblogging usage and communities. In: Proceedings

of the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network analysis (WebKDD/SNA-KDD ‘07),

2007, pp. 56–65.

[65] Krishnamurthy B, Gill P and Arlitt M. A few chirps about Twitter. In: Proceedings of the 1st workshop on online social net-

works (WOSP’08), 2008, pp. 19–24.

[66] Kwak H, Lee C, Park H and Moon S. What is Twitter, a social network or a news media?. In: Proceedings of the 19th interna-

tional conference on World Wide Web (WWW’10), 2010, pp. 591–600.

[67] Ediger D, Jiang K, Riedy J, Bader DA, Corley C, Farber R and Reynolds WN. Massive social network analysis: Mining Twitter

for social good. In: Proceedings of the 39th IEEE international conference on parallel processing (ICPP), 2010, pp. 583–593.

[68] Lim KH and Datta A. Finding Twitter communities with common interests using following links of celebrities. In: Proceedings

of the 3rd international workshop on modelling social media, MSM ‘12. New York: ACM, 2012, pp. 25–32, http://doi.acm.org/

10.1145/2310057.2310064

[69] Hu X, Tang L, Tang J and Liu H. Exploiting social relations for sentiment analysis in microblogging. In: Proceedings of the

sixth ACM international conference on Web search and data mining, WSDM ‘13. New York: ACM, 2013, pp. 537–546, http://

doi.acm.org/10.1145/2433396.2433465

[70] Brown PE and Feng J. Measuring user influence on twitter using modified k-shell decomposition. In: Proceedings of the fifth

international AAAI conference on weblogs and social media, 2011.

[71] Yu SJ. The dynamic competitive recommendation algorithm in social network services. Information Sciences 2012; 187: 1–14,

http://www.sciencedirect.com/science/article/pii/S0020025511005718

[72] Rodriguez JM, Mateos C and Zunino A. Energy-efficient job stealing for CPU-intensive processing in mobile devices.

Computing 2014; 96(2): 1–31.

[73] Van Nieuwpoort RV, Wrzesińska G, Jacobs CJH and Bal HE. Satin: A high-level and efficient grid programming model. ACM

Transactions on Programming Languages and Systems 2010; 32(3): 9:1–9:39.

Appendix A: JLiME Network Layer

Two default stack implementations, depicted in Figure A1, are provided by jLiME: an UDP-based stack and a TCP-based

stack. Each stack might be used in different scenarios. TCP is a stream-oriented protocol, used when a reliable channel

must be established between two networked processes.

On the other hand, UDP is packet or ‘datagram’-oriented and does not provide any guarantee that after sending an array

of bytes it will arrive at the destination. UDP has the advantage of consuming much less network resources than TCP as

no connection needs to be established or maintained between nodes. In jLiME, however, we built a series of MPs to over-

come UDP unreliability. First, to adjust to the UDP maximum datagram limit, we created a MessageFragmenter that

divides the original packet into smaller pieces and assembles them on the receiving side. Second, an Acknowledge pro-

cessor confirms received messages, and throttles sending if a given amount of confirmations are missing. This helps to

maintain a steady stream of UDP packets by not overloading the receiver. Third, a Packet Bundler merges small mes-

sages in a bigger message or ‘bundle’ to reduce datagram overhead. Naturally, TCP already implements these techniques,

but unlike the UDP stack, they are not optional.

Corbellini et al. 703

Journal of Information Science, 41(5) 2015, pp. 686–704 � The Author(s), DOI: 10.1177/0165551515588669

 by guest on September 22, 2015jis.sagepub.comDownloaded from

http://doi.acm.org/10.1145/2310057.2310064
http://doi.acm.org/10.1145/2310057.2310064
http://jis.sagepub.com/

Additionally, for both types of stack a custom discovery protocol was designed and implemented in two forms: Multicast

Discovery and Ping Discovery. The Multicast variation sends UDP multicast messages to a given multicast address and

expects responses from nodes. The Ping-based discovery simply sends UDP messages to a range of addresses and waits

for responses. Similarly, a Ping-based protocol was created to track the status (alive or defunct) of nodes in the cluster.

Lastly, streaming capabilities might be added to the jLiME stack by implementing the Streamer interface. The TCP-

based implementation of this interface is straightforward as it is a stream-oriented protocol. The UDP Message Processor

provides streaming capabilities by reassembling packets in the order they were sent.

Figure 11. UDP and TCP stacks in jLiME.

Corbellini et al. 704

Journal of Information Science, 41(5) 2015, pp. 686–704 � The Author(s), DOI: 10.1177/0165551515588669

 by guest on September 22, 2015jis.sagepub.comDownloaded from

http://jis.sagepub.com/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-Italic
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeCorpID-Acrobat
 /AdobeCorpID-Adobe
 /AdobeCorpID-Bullet
 /AdobeCorpID-MinionBd
 /AdobeCorpID-MinionBdIt
 /AdobeCorpID-MinionRg
 /AdobeCorpID-MinionRgIt
 /AdobeCorpID-MinionSb
 /AdobeCorpID-MinionSbIt
 /AdobeCorpID-MyriadBd
 /AdobeCorpID-MyriadBdIt
 /AdobeCorpID-MyriadBdScn
 /AdobeCorpID-MyriadBdScnIt
 /AdobeCorpID-MyriadBl
 /AdobeCorpID-MyriadBlIt
 /AdobeCorpID-MyriadLt
 /AdobeCorpID-MyriadLtIt
 /AdobeCorpID-MyriadPkg
 /AdobeCorpID-MyriadRg
 /AdobeCorpID-MyriadRgIt
 /AdobeCorpID-MyriadRgScn
 /AdobeCorpID-MyriadRgScnIt
 /AdobeCorpID-MyriadSb
 /AdobeCorpID-MyriadSbIt
 /AdobeCorpID-MyriadSbScn
 /AdobeCorpID-MyriadSbScnIt
 /AdobeCorpID-PScript
 /AGaramond-BoldScaps
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-RomanScaps
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGar-Special
 /AkzidenzGroteskBE-Bold
 /AkzidenzGroteskBE-BoldEx
 /AkzidenzGroteskBE-BoldExIt
 /AkzidenzGroteskBE-BoldIt
 /AkzidenzGroteskBE-Ex
 /AkzidenzGroteskBE-It
 /AkzidenzGroteskBE-Light
 /AkzidenzGroteskBE-LightEx
 /AkzidenzGroteskBE-LightOsF
 /AkzidenzGroteskBE-Md
 /AkzidenzGroteskBE-MdEx
 /AkzidenzGroteskBE-MdIt
 /AkzidenzGroteskBE-Regular
 /AkzidenzGroteskBE-Super
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Aldine401BT-BoldA
 /Aldine401BT-BoldItalicA
 /Aldine401BT-ItalicA
 /Aldine401BT-RomanA
 /Aldine401BTSPL-RomanA
 /Aldine721BT-Bold
 /Aldine721BT-BoldItalic
 /Aldine721BT-Italic
 /Aldine721BT-Light
 /Aldine721BT-LightItalic
 /Aldine721BT-Roman
 /Aldus-Italic
 /Aldus-ItalicOsF
 /Aldus-Roman
 /Aldus-RomanSC
 /AlternateGothicNo2BT-Regular
 /AmazoneBT-Regular
 /AmericanTypewriter-Bold
 /AmericanTypewriter-BoldA
 /AmericanTypewriter-BoldCond
 /AmericanTypewriter-BoldCondA
 /AmericanTypewriter-Cond
 /AmericanTypewriter-CondA
 /AmericanTypewriter-Light
 /AmericanTypewriter-LightA
 /AmericanTypewriter-LightCond
 /AmericanTypewriter-LightCondA
 /AmericanTypewriter-Medium
 /AmericanTypewriter-MediumA
 /Anna
 /AntiqueOlive-Bold
 /AntiqueOlive-Compact
 /AntiqueOlive-Italic
 /AntiqueOlive-Roman
 /Arcadia
 /Arcadia-A
 /Arkona-Medium
 /Arkona-Regular
 /ArrusBT-Black
 /ArrusBT-BlackItalic
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AssemblyLightSSK
 /AuroraBT-BoldCondensed
 /AuroraBT-RomanCondensed
 /AuroraOpti-Condensed
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /Avenir-Black
 /Avenir-BlackOblique
 /Avenir-Book
 /Avenir-BookOblique
 /Avenir-Heavy
 /Avenir-HeavyOblique
 /Avenir-Light
 /Avenir-LightOblique
 /Avenir-Medium
 /Avenir-MediumOblique
 /Avenir-Oblique
 /Avenir-Roman
 /BaileySansITC-Bold
 /BaileySansITC-BoldItalic
 /BaileySansITC-Book
 /BaileySansITC-BookItalic
 /BakerSignetBT-Roman
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /BaskervilleBook-Italic
 /BaskervilleBook-MedItalic
 /BaskervilleBook-Medium
 /BaskervilleBook-Regular
 /BaskervilleBT-Bold
 /BaskervilleBT-BoldItalic
 /BaskervilleBT-Italic
 /BaskervilleBT-Roman
 /BaskervilleMT
 /BaskervilleMT-Bold
 /BaskervilleMT-BoldItalic
 /BaskervilleMT-Italic
 /BaskervilleMT-SemiBold
 /BaskervilleMT-SemiBoldItalic
 /BaskervilleNo2BT-Bold
 /BaskervilleNo2BT-BoldItalic
 /BaskervilleNo2BT-Italic
 /BaskervilleNo2BT-Roman
 /Baskerville-Normal-Italic
 /BauerBodoni-Black
 /BauerBodoni-BlackCond
 /BauerBodoni-BlackItalic
 /BauerBodoni-Bold
 /BauerBodoni-BoldCond
 /BauerBodoni-BoldItalic
 /BauerBodoni-BoldItalicOsF
 /BauerBodoni-BoldOsF
 /BauerBodoni-Italic
 /BauerBodoni-ItalicOsF
 /BauerBodoni-Roman
 /BauerBodoni-RomanSC
 /Bauhaus-Bold
 /Bauhaus-Demi
 /Bauhaus-Heavy
 /BauhausITCbyBT-Bold
 /BauhausITCbyBT-Heavy
 /BauhausITCbyBT-Light
 /BauhausITCbyBT-Medium
 /Bauhaus-Light
 /Bauhaus-Medium
 /BellCentennial-Address
 /BellGothic-Black
 /BellGothic-Bold
 /Bell-GothicBoldItalicBT
 /BellGothicBT-Bold
 /BellGothicBT-Roman
 /BellGothic-Light
 /Bembo
 /Bembo-Bold
 /Bembo-BoldExpert
 /Bembo-BoldItalic
 /Bembo-BoldItalicExpert
 /Bembo-Expert
 /Bembo-ExtraBoldItalic
 /Bembo-Italic
 /Bembo-ItalicExpert
 /Bembo-Semibold
 /Bembo-SemiboldItalic
 /Benguiat-Bold
 /Benguiat-BoldItalic
 /Benguiat-Book
 /Benguiat-BookItalic
 /BenguiatGothicITCbyBT-Bold
 /BenguiatGothicITCbyBT-BoldItal
 /BenguiatGothicITCbyBT-Book
 /BenguiatGothicITCbyBT-BookItal
 /BenguiatITCbyBT-Bold
 /BenguiatITCbyBT-BoldItalic
 /BenguiatITCbyBT-Book
 /BenguiatITCbyBT-BookItalic
 /Benguiat-Medium
 /Benguiat-MediumItalic
 /Berkeley-Black
 /Berkeley-BlackItalic
 /Berkeley-Bold
 /Berkeley-BoldItalic
 /Berkeley-Book
 /Berkeley-BookItalic
 /Berkeley-Italic
 /Berkeley-Medium
 /Berling-Bold
 /Berling-BoldItalic
 /Berling-Italic
 /Berling-Roman
 /BernhardBoldCondensedBT-Regular
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BernhardTangoBT-Regular
 /BlockBE-Condensed
 /BlockBE-ExtraCn
 /BlockBE-ExtraCnIt
 /BlockBE-Heavy
 /BlockBE-Italic
 /BlockBE-Regular
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BremenBT-Black
 /BremenBT-Bold
 /BroadwayBT-Regular
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Caliban
 /CarminaBT-Bold
 /CarminaBT-BoldItalic
 /CarminaBT-Light
 /CarminaBT-LightItalic
 /CarminaBT-Medium
 /CarminaBT-MediumItalic
 /Carta
 /Caslon224ITCbyBT-Bold
 /Caslon224ITCbyBT-BoldItalic
 /Caslon224ITCbyBT-Book
 /Caslon224ITCbyBT-BookItalic
 /Caslon540BT-Italic
 /Caslon540BT-Roman
 /CaslonBT-Bold
 /CaslonBT-BoldItalic
 /CaslonOpenFace
 /CaslonTwoTwentyFour-Black
 /CaslonTwoTwentyFour-BlackIt
 /CaslonTwoTwentyFour-Bold
 /CaslonTwoTwentyFour-BoldIt
 /CaslonTwoTwentyFour-Book
 /CaslonTwoTwentyFour-BookIt
 /CaslonTwoTwentyFour-Medium
 /CaslonTwoTwentyFour-MediumIt
 /CastleT-Bold
 /CastleT-Book
 /Caxton-Bold
 /Caxton-BoldItalic
 /Caxton-Book
 /Caxton-BookItalic
 /CaxtonBT-Bold
 /CaxtonBT-BoldItalic
 /CaxtonBT-Book
 /CaxtonBT-BookItalic
 /Caxton-Light
 /Caxton-LightItalic
 /CelestiaAntiqua-Ornaments
 /Centennial-BlackItalicOsF
 /Centennial-BlackOsF
 /Centennial-BoldItalicOsF
 /Centennial-BoldOsF
 /Centennial-ItalicOsF
 /Centennial-LightItalicOsF
 /Centennial-LightSC
 /Centennial-RomanSC
 /Century-Bold
 /Century-BoldItalic
 /Century-Book
 /Century-BookItalic
 /CenturyExpandedBT-Bold
 /CenturyExpandedBT-BoldItalic
 /CenturyExpandedBT-Italic
 /CenturyExpandedBT-Roman
 /Century-HandtooledBold
 /Century-HandtooledBoldItalic
 /Century-Light
 /Century-LightItalic
 /CenturyOldStyle-Bold
 /CenturyOldStyle-Italic
 /CenturyOldStyle-Regular
 /CenturySchoolbookBT-Bold
 /CenturySchoolbookBT-BoldCond
 /CenturySchoolbookBT-BoldItalic
 /CenturySchoolbookBT-Italic
 /CenturySchoolbookBT-Roman
 /Century-Ultra
 /Century-UltraItalic
 /CharterBT-Black
 /CharterBT-BlackItalic
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamBT-Bold
 /CheltenhamBT-BoldCondItalic
 /CheltenhamBT-BoldExtraCondensed
 /CheltenhamBT-BoldHeadline
 /CheltenhamBT-BoldItalic
 /CheltenhamBT-BoldItalicHeadline
 /CheltenhamBT-Italic
 /CheltenhamBT-Roman
 /Cheltenham-HandtooledBdIt
 /Cheltenham-HandtooledBold
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Christiana-Bold
 /Christiana-BoldItalic
 /Christiana-Italic
 /Christiana-Medium
 /Christiana-MediumItalic
 /Christiana-Regular
 /Christiana-RegularExpert
 /Christiana-RegularSC
 /Clarendon
 /Clarendon-Bold
 /Clarendon-Light
 /ClassicalGaramondBT-Bold
 /ClassicalGaramondBT-BoldItalic
 /ClassicalGaramondBT-Italic
 /ClassicalGaramondBT-Roman
 /CMR10
 /CMR8
 /CMSY10
 /CMSY8
 /CMTI10
 /CommonBullets
 /ConduitITC-Bold
 /ConduitITC-BoldItalic
 /ConduitITC-Light
 /ConduitITC-LightItalic
 /ConduitITC-Medium
 /ConduitITC-MediumItalic
 /CooperBlack
 /CooperBlack-Italic
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Light
 /CooperBT-LightItalic
 /CopperplateGothicBT-Bold
 /CopperplateGothicBT-BoldCond
 /CopperplateGothicBT-Heavy
 /CopperplateGothicBT-Roman
 /CopperplateGothicBT-RomanCond
 /Copperplate-ThirtyThreeBC
 /Copperplate-ThirtyTwoBC
 /Coronet-Regular
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Critter
 /CS-Special-font
 /DellaRobbiaBT-Bold
 /DellaRobbiaBT-Roman
 /Della-RobbiaItalicBT
 /Della-RobbiaSCaps
 /Del-NormalSmallCaps
 /Delphin-IA
 /Delphin-IIA
 /Delta-Bold
 /Delta-BoldItalic
 /Delta-Book
 /Delta-BookItalic
 /Delta-Light
 /Delta-LightItalic
 /Delta-Medium
 /Delta-MediumItalic
 /Delta-Outline
 /DextorD
 /DextorOutD
 /DidotLH-OrnamentsOne
 /DidotLH-OrnamentsTwo
 /DINEngschrift
 /DINEngschrift-Alternate
 /DINMittelschrift
 /DINMittelschrift-Alternate
 /DINNeuzeitGrotesk-BoldCond
 /DINNeuzeitGrotesk-Light
 /Dom-CasItalic
 /DomCasual
 /DomCasual-Bold
 /Dom-CasualBT
 /Ehrhard-Italic
 /Ehrhard-Regular
 /EhrhardSemi-Italic
 /EhrhardtMT
 /EhrhardtMT-Italic
 /EhrhardtMT-SemiBold
 /EhrhardtMT-SemiBoldItalic
 /EhrharSemi
 /ELANGO-IB-A03
 /ELANGO-IB-A75
 /ELANGO-IB-A99
 /ElectraLH-Bold
 /ElectraLH-BoldCursive
 /ElectraLH-Cursive
 /ElectraLH-Regular
 /ElGreco
 /EnglischeSchT-Bold
 /EnglischeSchT-Regu
 /ErasContour
 /ErasITCbyBT-Bold
 /ErasITCbyBT-Book
 /ErasITCbyBT-Demi
 /ErasITCbyBT-Light
 /ErasITCbyBT-Medium
 /ErasITCbyBT-Ultra
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EUEX10
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuropeanPi-Four
 /EuropeanPi-One
 /EuropeanPi-Three
 /EuropeanPi-Two
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /Eurostile
 /Eurostile-Bold
 /Eurostile-BoldCondensed
 /Eurostile-BoldExtendedTwo
 /Eurostile-BoldOblique
 /Eurostile-Condensed
 /Eurostile-Demi
 /Eurostile-DemiOblique
 /Eurostile-ExtendedTwo
 /EurostileLTStd-Demi
 /EurostileLTStd-DemiOblique
 /Eurostile-Oblique
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /ExPonto-Regular
 /FairfieldLH-Bold
 /FairfieldLH-BoldItalic
 /FairfieldLH-BoldSC
 /FairfieldLH-CaptionBold
 /FairfieldLH-CaptionHeavy
 /FairfieldLH-CaptionLight
 /FairfieldLH-CaptionMedium
 /FairfieldLH-Heavy
 /FairfieldLH-HeavyItalic
 /FairfieldLH-HeavySC
 /FairfieldLH-Light
 /FairfieldLH-LightItalic
 /FairfieldLH-LightSC
 /FairfieldLH-Medium
 /FairfieldLH-MediumItalic
 /FairfieldLH-MediumSC
 /FairfieldLH-SwBoldItalicOsF
 /FairfieldLH-SwHeavyItalicOsF
 /FairfieldLH-SwLightItalicOsF
 /FairfieldLH-SwMediumItalicOsF
 /Fences
 /Fenice-Bold
 /Fenice-BoldOblique
 /FeniceITCbyBT-Bold
 /FeniceITCbyBT-BoldItalic
 /FeniceITCbyBT-Regular
 /FeniceITCbyBT-RegularItalic
 /Fenice-Light
 /Fenice-LightOblique
 /Fenice-Regular
 /Fenice-RegularOblique
 /Fenice-Ultra
 /Fenice-UltraOblique
 /FlashD-Ligh
 /Flood
 /Folio-Bold
 /Folio-BoldCondensed
 /Folio-ExtraBold
 /Folio-Light
 /Folio-Medium
 /FontanaNDAaOsF
 /FontanaNDAaOsF-Italic
 /FontanaNDCcOsF-Semibold
 /FontanaNDCcOsF-SemiboldIta
 /FontanaNDEeOsF
 /FontanaNDEeOsF-Bold
 /FontanaNDEeOsF-BoldItalic
 /FontanaNDEeOsF-Light
 /FontanaNDEeOsF-Semibold
 /FormalScript421BT-Regular
 /Formata-Bold
 /Formata-MediumCondensed
 /ForteMT
 /FournierMT-Ornaments
 /FrakturBT-Regular
 /FrankfurterHigD
 /FranklinGothic-Book
 /FranklinGothic-BookItal
 /FranklinGothic-BookOblique
 /FranklinGothic-Condensed
 /FranklinGothic-Demi
 /FranklinGothic-DemiItal
 /FranklinGothic-DemiOblique
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItal
 /FranklinGothic-HeavyOblique
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothicITCbyBT-Heavy
 /FranklinGothicITCbyBT-HeavyItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumItal
 /FranklinGothic-Roman
 /Freeform721BT-Bold
 /Freeform721BT-BoldItalic
 /Freeform721BT-Italic
 /Freeform721BT-Roman
 /FreestyleScrD
 /Freestylescript
 /FreestyleScript
 /FrizQuadrataITCbyBT-Bold
 /FrizQuadrataITCbyBT-Roman
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura
 /FuturaBlackBT-Regular
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldCondensedItalic
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Heavy
 /FuturaBT-HeavyItalic
 /FuturaBT-Light
 /FuturaBT-LightCondensed
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /Futura-CondensedLight
 /Futura-CondensedLightOblique
 /Futura-ExtraBold
 /Futura-ExtraBoldOblique
 /Futura-Heavy
 /Futura-HeavyOblique
 /Futura-Light
 /Futura-LightOblique
 /Futura-Oblique
 /Futura-Thin
 /Galliard-Black
 /Galliard-BlackItalic
 /Galliard-Bold
 /Galliard-BoldItalic
 /Galliard-Italic
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Galliard-Roman
 /Galliard-Ultra
 /Galliard-UltraItalic
 /Garamond-Antiqua
 /GaramondBE-Bold
 /GaramondBE-BoldExpert
 /GaramondBE-BoldOsF
 /GaramondBE-CnExpert
 /GaramondBE-Condensed
 /GaramondBE-CondensedSC
 /GaramondBE-Italic
 /GaramondBE-ItalicExpert
 /GaramondBE-ItalicOsF
 /GaramondBE-Medium
 /GaramondBE-MediumCn
 /GaramondBE-MediumCnExpert
 /GaramondBE-MediumCnOsF
 /GaramondBE-MediumExpert
 /GaramondBE-MediumItalic
 /GaramondBE-MediumItalicExpert
 /GaramondBE-MediumItalicOsF
 /GaramondBE-MediumSC
 /GaramondBE-Regular
 /GaramondBE-RegularExpert
 /GaramondBE-RegularSC
 /GaramondBE-SwashItalic
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-Book
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-BookItalic
 /Garamond-Halbfett
 /Garamond-HandtooledBold
 /Garamond-HandtooledBoldItalic
 /GaramondITCbyBT-Bold
 /GaramondITCbyBT-BoldCondensed
 /GaramondITCbyBT-BoldCondItalic
 /GaramondITCbyBT-BoldItalic
 /GaramondITCbyBT-BoldNarrow
 /GaramondITCbyBT-BoldNarrowItal
 /GaramondITCbyBT-Book
 /GaramondITCbyBT-BookCondensed
 /GaramondITCbyBT-BookCondItalic
 /GaramondITCbyBT-BookItalic
 /GaramondITCbyBT-BookNarrow
 /GaramondITCbyBT-BookNarrowItal
 /GaramondITCbyBT-Light
 /GaramondITCbyBT-LightCondensed
 /GaramondITCbyBT-LightCondItalic
 /GaramondITCbyBT-LightItalic
 /GaramondITCbyBT-LightNarrow
 /GaramondITCbyBT-LightNarrowItal
 /GaramondITCbyBT-Ultra
 /GaramondITCbyBT-UltraCondensed
 /GaramondITCbyBT-UltraCondItalic
 /GaramondITCbyBT-UltraItalic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Garamond-Light
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Garamond-LightItalic
 /GaramondNo4CyrTCY-Ligh
 /GaramondNo4CyrTCY-LighItal
 /GaramondThree
 /GaramondThree-Bold
 /GaramondThree-BoldItalic
 /GaramondThree-BoldItalicOsF
 /GaramondThree-BoldSC
 /GaramondThree-Italic
 /GaramondThree-ItalicOsF
 /GaramondThree-SC
 /GaramondThreeSMSIISpl-Italic
 /GaramondThreeSMSitalicSpl-Italic
 /GaramondThreeSMSspl
 /GaramondThreespl
 /GaramondThreeSpl-Bold
 /GaramondThreeSpl-Italic
 /Garamond-Ultra
 /Garamond-UltraCondensed
 /Garamond-UltraCondensedItalic
 /Garamond-UltraItalic
 /GarthGraphic
 /GarthGraphic-Black
 /GarthGraphic-Bold
 /GarthGraphic-BoldCondensed
 /GarthGraphic-BoldItalic
 /GarthGraphic-Condensed
 /GarthGraphic-ExtraBold
 /GarthGraphic-Italic
 /Geometric231BT-HeavyC
 /GeometricSlab712BT-BoldA
 /GeometricSlab712BT-ExtraBoldA
 /GeometricSlab712BT-LightA
 /GeometricSlab712BT-LightItalicA
 /GeometricSlab712BT-MediumA
 /GeometricSlab712BT-MediumItalA
 /Giddyup
 /Giddyup-Thangs
 /GillSans
 /GillSans-Bold
 /GillSans-BoldCondensed
 /GillSans-BoldExtraCondensed
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-ExtraBold
 /GillSans-ExtraBoldDisplay
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSans-LightShadowed
 /GillSans-Shadowed
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /Gill-Special
 /Giovanni-Bold
 /Giovanni-BoldItalic
 /Giovanni-Book
 /Giovanni-BookItalic
 /Glypha
 /Glypha-Bold
 /Glypha-BoldOblique
 /Glypha-Oblique
 /Gothic-Thirteen
 /Goudy
 /Goudy-Bold
 /Goudy-BoldItalic
 /GoudyCatalogueBT-Regular
 /Goudy-ExtraBold
 /GoudyHandtooledBT-Regular
 /GoudyHeavyfaceBT-Regular
 /GoudyHeavyfaceBT-RegularCond
 /Goudy-Italic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-ExtraBold
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudySans-Black
 /GoudySans-BlackItalic
 /GoudySans-Bold
 /GoudySans-BoldItalic
 /GoudySans-Book
 /GoudySans-BookItalic
 /GoudySansITCbyBT-Black
 /GoudySansITCbyBT-BlackItalic
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Light
 /GoudySansITCbyBT-LightItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GoudySans-Medium
 /GoudySans-MediumItalic
 /Granjon
 /Granjon-Bold
 /Granjon-BoldOsF
 /Granjon-Italic
 /Granjon-ItalicOsF
 /Granjon-SC
 /GreymantleMVB-Ornaments
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Black-SemiBold
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Compressed
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-Light-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Condensed-Thin
 /Helvetica-ExtraCompressed
 /Helvetica-Fraction
 /Helvetica-FractionBold
 /HelveticaInserat-Roman
 /HelveticaInserat-Roman-SemiBold
 /Helvetica-Light
 /Helvetica-LightOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /HelveticaNeue-Black
 /HelveticaNeue-BlackCond
 /HelveticaNeue-BlackCondObl
 /HelveticaNeue-BlackExt
 /HelveticaNeue-BlackExtObl
 /HelveticaNeue-BlackItalic
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldCond
 /HelveticaNeue-BoldCondObl
 /HelveticaNeue-BoldExt
 /HelveticaNeue-BoldExtObl
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-ExtBlackCond
 /HelveticaNeue-ExtBlackCondObl
 /HelveticaNeue-Extended
 /HelveticaNeue-ExtendedObl
 /HelveticaNeue-Heavy
 /HelveticaNeue-HeavyCond
 /HelveticaNeue-HeavyCondObl
 /HelveticaNeue-HeavyExt
 /HelveticaNeue-HeavyExtObl
 /HelveticaNeue-HeavyItalic
 /HelveticaNeue-Italic
 /HelveticaNeue-Light
 /HelveticaNeue-LightCond
 /HelveticaNeue-LightCondObl
 /HelveticaNeue-LightExt
 /HelveticaNeue-LightExtObl
 /HelveticaNeue-LightItalic
 /HelveticaNeueLTStd-Md
 /HelveticaNeueLTStd-MdIt
 /HelveticaNeue-Medium
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-MediumExt
 /HelveticaNeue-MediumExtObl
 /HelveticaNeue-MediumItalic
 /HelveticaNeue-Roman
 /HelveticaNeue-Thin
 /HelveticaNeue-ThinCond
 /HelveticaNeue-ThinCondObl
 /HelveticaNeue-ThinItalic
 /HelveticaNeue-UltraLigCond
 /HelveticaNeue-UltraLigCondObl
 /HelveticaNeue-UltraLigExt
 /HelveticaNeue-UltraLigExtObl
 /HelveticaNeue-UltraLight
 /HelveticaNeue-UltraLightItal
 /Helvetica-Oblique
 /Helvetica-UltraCompressed
 /HelvExtCompressed
 /HelvLight
 /HelvUltCompressed
 /Humanist521BT-Bold
 /Humanist521BT-BoldCondensed
 /Humanist521BT-BoldItalic
 /Humanist521BT-ExtraBold
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist521BT-RomanCondensed
 /Humanist521BT-UltraBold
 /Humanist521BT-XtraBoldCondensed
 /Humanist531BT-BlackA
 /Humanist531BT-BoldA
 /Humanist531BT-RomanA
 /Humanist531BT-UltraBlackA
 /Humanist777BT-BlackB
 /Humanist777BT-BlackCondensedB
 /Humanist777BT-BlackItalicB
 /Humanist777BT-BoldB
 /Humanist777BT-BoldCondensedB
 /Humanist777BT-BoldItalicB
 /Humanist777BT-ExtraBlackB
 /Humanist777BT-ExtraBlackCondB
 /Humanist777BT-ItalicB
 /Humanist777BT-LightB
 /Humanist777BT-LightCondensedB
 /Humanist777BT-LightItalicB
 /Humanist777BT-RomanB
 /Humanist777BT-RomanCondensedB
 /Humanist970BT-BoldC
 /Humanist970BT-RomanC
 /HumanistSlabserif712BT-Black
 /HumanistSlabserif712BT-Bold
 /HumanistSlabserif712BT-Italic
 /HumanistSlabserif712BT-Roman
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /Iglesia-Light
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Imago-Book
 /Imago-BookItalic
 /Imago-ExtraBold
 /Imago-ExtraBoldItalic
 /Imago-Light
 /Imago-LightItalic
 /Imago-Medium
 /Imago-MediumItalic
 /Industria-Inline
 /Industria-InlineA
 /Industria-Solid
 /Industria-SolidA
 /Insignia
 /Insignia-A
 /IPAExtras
 /IPAHighLow
 /IPAKiel
 /IPAKielSeven
 /IPAsans
 /ITCGaramondMM
 /ITCGaramondMM-It
 /JAKEOpti-Regular
 /JansonText-Bold
 /JansonText-BoldItalic
 /JansonText-Italic
 /JansonText-Roman
 /JansonText-RomanSC
 /JoannaMT
 /JoannaMT-Bold
 /JoannaMT-BoldItalic
 /JoannaMT-Italic
 /Juniper
 /KabelITCbyBT-Book
 /KabelITCbyBT-Demi
 /KabelITCbyBT-Medium
 /KabelITCbyBT-Ultra
 /Kaufmann
 /Kaufmann-Bold
 /KeplMM-Or2
 /KisBT-Italic
 /KisBT-Roman
 /KlangMT
 /Kuenstler480BT-Black
 /Kuenstler480BT-Bold
 /Kuenstler480BT-BoldItalic
 /Kuenstler480BT-Italic
 /Kuenstler480BT-Roman
 /KunstlerschreibschD-Bold
 /KunstlerschreibschD-Medi
 /Lapidary333BT-Black
 /Lapidary333BT-Bold
 /Lapidary333BT-BoldItalic
 /Lapidary333BT-Italic
 /Lapidary333BT-Roman
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /LatinMT-Condensed
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LDecorationPi-One
 /LDecorationPi-Two
 /Leawood-Black
 /Leawood-BlackItalic
 /Leawood-Bold
 /Leawood-BoldItalic
 /Leawood-Book
 /Leawood-BookItalic
 /Leawood-Medium
 /Leawood-MediumItalic
 /LegacySans-Bold
 /LegacySans-BoldItalic
 /LegacySans-Book
 /LegacySans-BookItalic
 /LegacySans-Medium
 /LegacySans-MediumItalic
 /LegacySans-Ultra
 /LegacySerif-Bold
 /LegacySerif-BoldItalic
 /LegacySerif-Book
 /LegacySerif-BookItalic
 /LegacySerif-Medium
 /LegacySerif-MediumItalic
 /LegacySerif-Ultra
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldSlanted
 /LetterGothic-Slanted
 /Life-Bold
 /Life-Italic
 /Life-Roman
 /LINE10
 /LINEW10
 /Linotext
 /Lithos-Black
 /LithosBold
 /Lithos-Bold
 /Lithos-Regular
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOSL10
 /LOMD-Normal
 /LubalinGraph-Book
 /LubalinGraph-BookOblique
 /LubalinGraph-Demi
 /LubalinGraph-DemiOblique
 /LucidaHandwritingItalic
 /LucidaMath-Symbol
 /LucidaSansTypewriter
 /LucidaSansTypewriter-Bd
 /LucidaSansTypewriter-BdObl
 /LucidaSansTypewriter-Obl
 /LucidaTypewriter
 /LucidaTypewriter-Bold
 /LucidaTypewriter-BoldObl
 /LucidaTypewriter-Obl
 /LydianBT-Bold
 /LydianBT-BoldItalic
 /LydianBT-Italic
 /LydianBT-Roman
 /LydianCursiveBT-Regular
 /Machine
 /Machine-Bold
 /Marigold
 /MathematicalPi-Five
 /MathematicalPi-Four
 /MathematicalPi-One
 /MathematicalPi-Six
 /MathematicalPi-Three
 /MathematicalPi-Two
 /MatrixScriptBold
 /MatrixScriptBoldLin
 /MatrixScriptBook
 /MatrixScriptBookLin
 /MatrixScriptRegular
 /MatrixScriptRegularLin
 /Melior
 /Melior-Bold
 /Melior-BoldItalic
 /Melior-Italic
 /MercuriusCT-Black
 /MercuriusCT-BlackItalic
 /MercuriusCT-Light
 /MercuriusCT-LightItalic
 /MercuriusCT-Medium
 /MercuriusCT-MediumItalic
 /MercuriusMT-BoldScript
 /Meridien-Bold
 /Meridien-BoldItalic
 /Meridien-Italic
 /Meridien-Medium
 /Meridien-MediumItalic
 /Meridien-Roman
 /Minion-Black
 /Minion-Bold
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-BoldItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-DisplayItalic
 /Minion-DisplayRegular
 /MinionExp-Italic
 /MinionExp-Semibold
 /MinionExp-SemiboldItalic
 /Minion-Italic
 /Minion-Ornaments
 /Minion-Regular
 /Minion-Semibold
 /Minion-SemiboldItalic
 /MonaLisa-Recut
 /MrsEavesAllPetiteCaps
 /MrsEavesAllSmallCaps
 /MrsEavesBold
 /MrsEavesFractions
 /MrsEavesItalic
 /MrsEavesPetiteCaps
 /MrsEavesRoman
 /MrsEavesRomanLining
 /MrsEavesSmallCaps
 /MSAM10
 /MSAM10A
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM10A
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MTSYN
 /MusicalSymbols-Normal
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-CnBold
 /Myriad-CnBoldItalic
 /Myriad-CnItalic
 /Myriad-CnSemibold
 /Myriad-CnSemiboldItalic
 /Myriad-Condensed
 /Myriad-Italic
 /MyriadMM
 /MyriadMM-It
 /Myriad-Roman
 /Myriad-Sketch
 /Myriad-Tilt
 /NeuzeitS-Book
 /NeuzeitS-BookHeavy
 /NewBaskerville-Bold
 /NewBaskerville-BoldItalic
 /NewBaskerville-Italic
 /NewBaskervilleITCbyBT-Bold
 /NewBaskervilleITCbyBT-BoldItal
 /NewBaskervilleITCbyBT-Italic
 /NewBaskervilleITCbyBT-Roman
 /NewBaskerville-Roman
 /NewCaledonia
 /NewCaledonia-Black
 /NewCaledonia-BlackItalic
 /NewCaledonia-Bold
 /NewCaledonia-BoldItalic
 /NewCaledonia-BoldItalicOsF
 /NewCaledonia-BoldSC
 /NewCaledonia-Italic
 /NewCaledonia-ItalicOsF
 /NewCaledonia-SC
 /NewCaledonia-SemiBold
 /NewCaledonia-SemiBoldItalic
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothic-BoldOblique
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldCondensed
 /NewsGothicBT-BoldCondItalic
 /NewsGothicBT-BoldExtraCondensed
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Demi
 /NewsGothicBT-DemiItalic
 /NewsGothicBT-ExtraCondensed
 /NewsGothicBT-Italic
 /NewsGothicBT-ItalicCondensed
 /NewsGothicBT-Light
 /NewsGothicBT-LightItalic
 /NewsGothicBT-Roman
 /NewsGothicBT-RomanCondensed
 /NewsGothic-Oblique
 /New-Symbol
 /NovareseITCbyBT-Bold
 /NovareseITCbyBT-BoldItalic
 /NovareseITCbyBT-Book
 /NovareseITCbyBT-BookItalic
 /Nueva-BoldExtended
 /Nueva-Roman
 /NuptialScript
 /OceanSansMM
 /OceanSansMM-It
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OnyxMT
 /Optima
 /Optima-Bold
 /Optima-BoldItalic
 /Optima-BoldOblique
 /Optima-ExtraBlack
 /Optima-ExtraBlackItalic
 /Optima-Italic
 /Optima-Oblique
 /OSPIRE-Plain
 /OttaIA
 /Otta-wa
 /Ottawa-BoldA
 /OttawaPSMT
 /Oxford
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /Palatino-Roman
 /Parisian
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PhotinaMT
 /PhotinaMT-Bold
 /PhotinaMT-BoldItalic
 /PhotinaMT-Italic
 /PhotinaMT-SemiBold
 /PhotinaMT-SemiBoldItalic
 /PhotinaMT-UltraBold
 /PhotinaMT-UltraBoldItalic
 /Plantin
 /Plantin-Bold
 /Plantin-BoldItalic
 /Plantin-Italic
 /Plantin-Light
 /Plantin-LightItalic
 /Plantin-Semibold
 /Plantin-SemiboldItalic
 /Poetica-ChanceryI
 /Poetica-SuppLowercaseEndI
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /ProseAntique-Bold
 /ProseAntique-Normal
 /QuaySansEF-Black
 /QuaySansEF-BlackItalic
 /QuaySansEF-Book
 /QuaySansEF-BookItalic
 /QuaySansEF-Medium
 /QuaySansEF-MediumItalic
 /Quorum-Black
 /Quorum-Bold
 /Quorum-Book
 /Quorum-Light
 /Quorum-Medium
 /Raleigh
 /Raleigh-Bold
 /Raleigh-DemiBold
 /Raleigh-Medium
 /Revival565BT-Bold
 /Revival565BT-BoldItalic
 /Revival565BT-Italic
 /Revival565BT-Roman
 /Ribbon131BT-Bold
 /Ribbon131BT-Regular
 /RMTMI
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /RotisSansSerif
 /RotisSansSerif-Bold
 /RotisSansSerif-ExtraBold
 /RotisSansSerif-Italic
 /RotisSansSerif-Light
 /RotisSansSerif-LightItalic
 /RotisSemiSans
 /RotisSemiSans-Bold
 /RotisSemiSans-ExtraBold
 /RotisSemiSans-Italic
 /RotisSemiSans-Light
 /RotisSemiSans-LightItalic
 /RotisSemiSerif
 /RotisSemiSerif-Bold
 /RotisSerif
 /RotisSerif-Bold
 /RotisSerif-Italic
 /RunicMT-Condensed
 /Sabon-Bold
 /Sabon-BoldItalic
 /Sabon-Italic
 /Sabon-Roman
 /SackersGothicLight
 /SackersGothicLightAlt
 /SackersItalianScript
 /SackersItalianScriptAlt
 /Sam
 /Sanvito-Light
 /SanvitoMM
 /Sanvito-Roman
 /Semitica
 /Semitica-Italic
 /SIVAMATH
 /Siva-Special
 /SMS-SPELA
 /Souvenir-Demi
 /Souvenir-DemiItalic
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /Souvenir-Light
 /Souvenir-LightItalic
 /SpecialAA
 /Special-Gali
 /Sp-Sym
 /StempelGaramond-Bold
 /StempelGaramond-BoldItalic
 /StempelGaramond-Italic
 /StempelGaramond-Roman
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-PhoneticAlternate
 /StoneSans-PhoneticIPA
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /StoneSerif
 /StoneSerif-Italic
 /StoneSerif-PhoneticAlternate
 /StoneSerif-PhoneticIPA
 /StoneSerif-Semibold
 /StoneSerif-SemiboldItalic
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-BlackCondensedItalic
 /Swiss721BT-BlackExtended
 /Swiss721BT-BlackItalic
 /Swiss721BT-BlackOutline
 /Swiss721BT-BlackRounded
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldCondensedOutline
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-BoldOutline
 /Swiss721BT-BoldRounded
 /Swiss721BT-Heavy
 /Swiss721BT-HeavyItalic
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightCondensed
 /Swiss721BT-LightCondensedItalic
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Medium
 /Swiss721BT-MediumItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Swiss721BT-RomanExtended
 /Swiss721BT-Thin
 /Swiss721BT-ThinItalic
 /Swiss921BT-RegularA
 /Symbol
 /Syntax-Black
 /Syntax-Bold
 /Syntax-Italic
 /Syntax-Roman
 /Syntax-UltraBlack
 /Tekton
 /Times-Bold
 /Times-BoldA
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /Times-NewRoman
 /Times-NewRomanBold
 /Times-Oblique
 /Times-PhoneticAlternate
 /Times-PhoneticIPA
 /Times-Roman
 /Times-RomanSmallCaps
 /Times-Sc
 /Times-SCB
 /Times-special
 /TimesTenGreekP-Upright
 /TradeGothic
 /TradeGothic-Bold
 /TradeGothic-BoldCondTwenty
 /TradeGothic-BoldCondTwentyObl
 /TradeGothic-BoldOblique
 /TradeGothic-BoldTwo
 /TradeGothic-BoldTwoOblique
 /TradeGothic-CondEighteen
 /TradeGothic-CondEighteenObl
 /TradeGothicLH-BoldExtended
 /TradeGothicLH-Extended
 /TradeGothic-Light
 /TradeGothic-LightOblique
 /TradeGothic-Oblique
 /Trajan-Bold
 /TrajanPro-Bold
 /TrajanPro-Regular
 /Trajan-Regular
 /Transitional521BT-BoldA
 /Transitional521BT-CursiveA
 /Transitional521BT-RomanA
 /Transitional551BT-MediumB
 /Transitional551BT-MediumItalicB
 /Univers
 /Universal-GreekwithMathPi
 /Universal-NewswithCommPi
 /Univers-BlackExt
 /Univers-BlackExtObl
 /Univers-Bold
 /Univers-BoldExt
 /Univers-BoldExtObl
 /Univers-BoldOblique
 /Univers-Condensed
 /Univers-CondensedBold
 /Univers-CondensedBoldOblique
 /Univers-CondensedOblique
 /Univers-Extended
 /Univers-ExtendedObl
 /Univers-ExtraBlackExt
 /Univers-ExtraBlackExtObl
 /Univers-Light
 /Univers-LightOblique
 /UniversLTStd-Black
 /UniversLTStd-BlackObl
 /Univers-Oblique
 /Utopia-Black
 /Utopia-BlackOsF
 /Utopia-Bold
 /Utopia-BoldItalic
 /Utopia-Italic
 /Utopia-Ornaments
 /Utopia-Regular
 /Utopia-Semibold
 /Utopia-SemiboldItalic
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Viva-BoldExtraExtended
 /Viva-Regular
 /Weidemann-Black
 /Weidemann-BlackItalic
 /Weidemann-Bold
 /Weidemann-BoldItalic
 /Weidemann-Book
 /Weidemann-BookItalic
 /Weidemann-Medium
 /Weidemann-MediumItalic
 /WindsorBT-Elongated
 /WindsorBT-Light
 /WindsorBT-LightCondensed
 /WindsorBT-Roman
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfCalligraphic801BT-Bold
 /ZapfCalligraphic801BT-BoldItal
 /ZapfCalligraphic801BT-Italic
 /ZapfCalligraphic801BT-Roman
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Demi
 /ZapfChanceryITCbyBT-Medium
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfDingbatsITCbyBT-Regular
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZapfHumanist601BT-Ultra
 /ZapfHumanist601BT-UltraItalic
 /ZurichBT-Black
 /ZurichBT-BlackExtended
 /ZurichBT-BlackItalic
 /ZurichBT-Bold
 /ZurichBT-BoldCondensed
 /ZurichBT-BoldCondensedItalic
 /ZurichBT-BoldExtended
 /ZurichBT-BoldExtraCondensed
 /ZurichBT-BoldItalic
 /ZurichBT-ExtraBlack
 /ZurichBT-ExtraCondensed
 /ZurichBT-Italic
 /ZurichBT-ItalicCondensed
 /ZurichBT-Light
 /ZurichBT-LightCondensed
 /ZurichBT-LightCondensedItalic
 /ZurichBT-LightExtraCondensed
 /ZurichBT-LightItalic
 /ZurichBT-Roman
 /ZurichBT-RomanCondensed
 /ZurichBT-RomanExtended
 /ZurichBT-UltraBlackExtended
]
 /NeverEmbed [true
 /TimesNewRomanPS
 /TimesNewRomanPS-Bold
 /TimesNewRomanPS-BoldItalic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-Italic
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings for creating PDF files for submission to The Sheridan Press. These settings configured for Acrobat v6.0 08/06/03.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

