
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

GR focus review

Glacial paradoxes during the late Paleozoic ice age: Evaluating the equilibrium line
altitude as a control on glaciation

John L. Isbell a,⁎, Lindsey C. Henry a, Erik L. Gulbranson a,b, Carlos O. Limarino c,d, Margaret L. Fraiser a,
Zelenda J. Koch a, Patricia L. Ciccioli c,d, Ashley A. Dineen a

a Department of Geosciences, University of Wisconsin-Milwaukee, 3209 N. Maryland Avenue, Milwaukee, WI 53211, USA
b Department of Geology, University of California, One Shields Avenue, Davis, CA 95616, USA
c Departamento de Ciencias Geológicas, Universidad de Buenos Aires, IGeBA, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires, Argentina
d Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Buenos Aires, Argentina

a b s t r a c ta r t i c l e i n f o

Article history:
Received 2 August 2011
Received in revised form 7 November 2011
Accepted 15 November 2011
Available online 30 November 2011

Handling Editor: M. Santosh

Keywords:
Late Paleozoic ice age
Gondwana glaciation
Equilibrium line altitude
Carboniferous
Permian
Paleoclimate

The late Paleozoic ice age (LPIA) consists of multiple glaciations that waxed and waned across Gondwana
during the Carboniferous and Permian. Three key intervals are evaluated using the concept of the
equilibrium-line altitude (ELA) as a control on glaciation to provide insight into two intervals of paradoxical
ice distribution during and following glaciation. The LPIA began in the mid-latitudes during the Viséan in
western Argentina with the growth of glaciers in the Protoprecordillera. Glaciation was initiated by uplift
of the range above the ELA. In the Bashkirian, deglaciation occurred there while glaciation was beginning
at the same latitude in uplands associated with the Paraná Basin in Brazil. Analysis suggests that deglaciation
of the Protoprecordillera occurred due to extensional collapse of the range below the ELA during a westward
shift in the location of plate subduction. During Late Pennsylvanian–Early Permian peak glaciation for the
LPIA, extensive glacimarine deposits indicate that glaciers reached sea level, which corresponds to a major
lowering of the ELA due to global cooling. Finally, during the Early to early Late transition out of the LPIA,
polar Gondwana was unglaciated. However, three glacial intervals occurred at mid- to high-latitudes in east-
ern Australia from the Sakmarian to the Capitanian/earliestWuchiapingian. Themagnitude of global cooling dur-
ing these events is debatable as evidence indicates ice-free conditions and an elevated ELA at the South Pole in
Antarctica. This suggests that severe global cooling was not the cause of the final three Australian glaciations,
but rather that ELA-related conditions specific to eastern Australia drove these late-phase events. Possible causes
for the Australian glaciations include: 1) anomalous cold conditions produced by coastal upwelling, 2) the pres-
ence of uplands allowing nucleation of glaciers, 3) fluctuations in pCO2 levels, and 4) increased precipitation due
to the location of the area in the subpolar low pressure belt.
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Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Late Paleozoic Ice Age in Gondwana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. The equilibrium line altitude's control on glaciation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4. Carboniferous glaciation of the Protoprecordillera, western Argentina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2. Relationship between the ELA and Protoprecordilleran glaciation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5. Late Pennsylvanian to Early Permian LPIA Maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2. Relationship between the ELA and maximum LPIA glaciation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Gondwana Research 22 (2012) 1–19

⁎ Corresponding author at: Department of Geosciences, University of Wisconsin-Milwaukee, Rm. 366 Lapham Hall, 3209 N. Maryland Ave., Milwaukee, WI 53211, USA. Tel.: +1
414 229 2877.

E-mail addresses: jisbell@uwm.edu (J.L. Isbell), christi9@uwm.edu (L.C. Henry), gulbrans@uwm.edu (E.L. Gulbranson), oscarlimarino@gmail.com (C.O. Limarino),
mfraiser@uwm.edu (M.L. Fraiser), zjkoch@uwm.edu (Z.J. Koch), ciccioli@gl.fcen.uba.ar (P.L. Ciccioli), aadineen@uwm.edu (A.A. Dineen).

1342-937X/$ – see front matter © 2011 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.gr.2011.11.005

Contents lists available at SciVerse ScienceDirect

Gondwana Research

j ourna l homepage: www.e lsev ie r .com/ locate /gr



Author's personal copy

6. Icehouse to Greenhouse transition at the end of the LPIA: Sakmarian to Capitanian/earliest Wuchiapingian glaciations in eastern Australia and
ice-free conditions in polar Gondwana. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.2. Relationship between the ELA and mid Sakmarian to Capitanian/earliest Wuchiapingian glaciation . . . . . . . . . . . . . . . . . . . 13

7. Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1. Introduction

The late Paleozoic Ice Age (LPIA) and the ensuing Early to Late
Permian icehouse to greenhouse transition were two important inter-
vals during the Phanerozoic as they had a major impact on Earth's
physical, chemical, and biological systems (Heckel, 1994, 2008;
Falcon-Lang, 2004; Joachimski et al., 2006; Clapham and James,
2008; Grossman et al., 2008; Isbell et al., 2008a; Falcon-Lang and
DiMichele, 2010). The LPIA, which lasted for approximately 72 Myr
from the Viséan (Mississippian) to the Capitanian/earliestWuchiapin-
gian (Middle-earliest Late Permian), occurred on a biologically com-
plex Earth characterized by an extensive south polar landmass; low
atmospheric partial pressure of CO2 (pCO2); and multiple, possibly bi-
polar, glacial events (Isbell et al., 2003; Fielding et al., 2008a). Because
of these features, which also characterize Cenozoic glaciation, the LPIA
serves as the most recent and complete analog for modern environ-
mental change associated with global climate change (Gastaldo et
al., 1996; Montañez and Soreghan, 2006; Isbell et al., 2008a).

The stratigraphic, geochemical, and tectonic records of the LPIA con-
tinue to improve in resolution (e.g., papers in Fielding et al., 2008b;
Gulbranson et al., 2010; papers in López-Gamundí andBuatois, 2010) re-
vealing glacial and non-glacial intervals that occurred across Gondwana.
To date, these events are roughly correlatedwith changes in the paleola-
titude of Gondwana and to fluctuations in greenhouse gasses (Caputo
and Crowell, 1985; Royer et al., 2001; Montañez et al., 2007), whereas
shorter-term Earth system fluctuations (e.g. eustasy) are attributed to
Milankovitch forced glacial events (Heckel, 1994; Davydov et al.,
2010). However, the drivers behind the waxing and waning of each
LPIA glacial event, as well as the shorter duration glacial/interglacial cy-
cles, are likely a complex interplay of local, regional and global condi-
tions. These conditions are difficult to quantify under the current state
of knowledge, and determining why glaciers were maintained in one
areawhile adjacent areas were ice-free or undergoing de-glaciation, re-
main problematic. Unresolved problems, which are addressed in this
paper, include: 1) identifying the causes for the initiation of glaciation
in western Argentina during theMiddleMississippian to Early Pennsyl-
vanian, 2) determining why glaciers disappeared in western Argentina
during the Pennsylvanianwhile glaciers were forming in adjacent areas
to the east, 3) identifying causes for the LPIA glacial maximum during
the latest Pennsylvanian and Early Permian, and 4) determining the
controls on glaciation in eastern Australia during the late Early to
early Late Permian while areas located at higher paleolatitudes were
ice free. Much work is still necessary to unravel the causes of climatic
perturbations and their influence on LPIA glaciation.

The role that the EquilibriumLine Altitude (ELA) played in glaciation
and the insights it provides on the formation, waxing and waning, and
collapse of the Gondwana glaciers has not been previously investigated.
Traditionally, Gondwana glaciation is modeled as a single, massive, ice
sheet centered over the paleo-South Pole located in Antarctica and
extending outward into the mid-latitudes (e.g., Scotese, 1997; Ziegler
et al., 1997; Hyde et al., 1999). Ice is also hypothesized to have formed
in high northern latitudes on the East Asian crustal block and in low lat-
itude uplands in North America (Raymond andMetz, 2004; Soreghan et
al., 2008, 2009). The size and configuration of the hypothetical

Gondwanan ice sheet appears to have been determined by encircling
all known glacial deposits on paleogeographic maps. However, such
practices are highly inaccurate and would be misleading if conducted
on modern deposits due to the occurrence of alpine glaciers and ice
caps in low latitude uplands. A single, massive, Gondwanan ice sheet
is untenable (cf., Horton and Poulsen, 2009). Such a model does not
take into consideration the mass balance required to sustain such an
ice sheet (Isbell et al., 2003), nor the fact that the ELA varies in elevation
with respect to latitude. The ELA is the theoretical altitude on a glacier
that separates areas of annual net accumulation from areas of annual
net ablation (Benn and Evans, 2010). Because the ELA determines
where glaciers can form, consideration of factors that influence both
the local position and the global distribution of the ELA provide insight
on the formation and demise of glaciers in time and space (Fujita, 2008).
Although it is exceedingly difficult to accurately estimate paleo-
elevation, consideration of the ELA concept, comparison of synchronous
glaciated vs. non-glaciated areas, and the comparison withmodern ELA
curves can provide a tool for understanding ancient glacial successions.

This paper summarizes the current state of knowledge on the LPIA
and its main environmental drivers, and highlights problems that are
unresolved concerning the distribution of glaciers and timing of glaci-
ation across Gondwana. We then present a discussion on the ELA and
how it controls glaciation in time and space, and speculate on the role
that the ELA had as a driver of glacial and non-glacial intervals during
the LPIA in an attempt to better understand Earth's transition from
icehouse to greenhouse conditions.

2. Late Paleozoic Ice Age in Gondwana

Traditional models of LPIA glaciation depict a massive ice sheet(s)
that waxed and waned continuously across Gondwana for up to
100 million years (Figs. 1A and 2; cf. Veevers and Powell, 1987;
Frakes and Francis, 1988; Frakes et al., 1992; Ziegler et al., 1997;
Hyde et al., 1999; Blakey, 2008; Buggisch et al., 2011). This concept
is prevalent in geologic literature up to the present day. However, re-
cent work has identified evidence of numerous small ice centers that
waxed and waned diachronously across Gondwana through multiple
glacial intervals of 1–8 million years in duration alternating with non-
glacial periods of approximately equal duration (Figs. 1B and 2;
Crowell and Frakes, 1970; Caputo and Crowell, 1985; Dickins, 1997;
López-Gamundí, 1997; Isbell et al., 2003; Fielding et al., 2008a,
2008c, 2008d; Gulbranson et al., 2010). Although glaciation occurred
in northern South America and northern Africa during the Late Devo-
nian and early Mississippian (Caputo and Crowell, 1985; López-
Gamundí, 1997; Crowell, 1999; Isbell et al., 2003; Caputo et al.,
2008), most authors consider the LPIA to have begun in western
South America during the Viséan (Caputo et al., 2008; Pérez Loinaze
et al., 2010) and to have concluded in eastern Australia during the
Middle to earliest Late Permian (Capitanian/earliest Wuchiapingian;
Fielding et al., 2008a, 2008c, 2008d).

Continental drift of Gondwana across the South Pole (Fig. 3) has
long been recognized as a major control for the diachronous shifting
of glacial centers across the supercontinent during the LPIA (DuToit,
1921; Wegener, 1929; Crowell, 1978; Caputo and Crowell, 1985).

2 J.L. Isbell et al. / Gondwana Research 22 (2012) 1–19
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Glaciation began in the Precordilleran region of Argentina and in the
Parnaíba and Amazon Basins of Brazil during the Middle Mississippi-
an (Viséan) with possible ice centers also occurring in South Africa
and in Patagonia (Figs. 1 and 2; López-Gamundí, 1997; Isbell et al.,
2003; Limarino et al., 2006; Caputo et al., 2008; Isbell et al., 2008b;
Gulbranson et al., 2010; Taboada, 2010). During the Late Mississippi-
an–Early Pennsylvanian (Serpukhovian–Bashkirian), glaciers expand-
ed in western and southern South America (López-Gamundí, 1997;
Isbell et al., 2003; Limarino and Spalletti, 2006; Limarino et al.,

2006; Henry et al., 2008; Holz et al., 2008; Rocha-Campos et al.,
2008) and first appeared in eastern Australia (Fielding et al., 2008a,
2008c, 2008d). During the Late Pennsylvanian (Gzhelian) to Early
Permian (Sakmarian), widespread glaciation occurred, reaching its
maximum extent across Gondwana (Laskar and Mitra, 1976;
Veevers and Tewari, 1995; López-Gamundí, 1997; Visser, 1997a;
Isbell et al., 2003, 2008b, 2008c; Fielding et al., 2008a, 2008c,
2008d; Martin et al., 2008; Mory et al., 2008; Rocha-Campos et al.,
2008; Stollhofen et al., 2008; Melvin et al., 2010). This glaciation

Fig. 1. Traditional and Recent reconstructions of maximum glaciation during the late Paleozoic Ice Age. A) Traditional reconstruction showing a massive ice sheet covering much of
southern Gondwana (modified from Scotese, 1997, and Scotese and Barrett, 1990). B) Reconstruction of Gondwana during maximum glaciation during the Gzhelian to early
Sakmarian (Pennsylvanian–Early Permian) based on recent data and ice flow directions. Ice flow directions are from Frakes et al. (1975), Hand (1993), Veevers and Tewari
(1995), López-Gamundí (1997), Visser (1997a, 1997b), Visser et al. (1997), Fielding et al. (2008a), Isbell et al. (2008c), Mory et al. (2008), Rocha-Campos et al. (2008) and Isbell
(2010). C) Location map for selected Gondwana basins and highlands for the Carboniferous and Permian mentioned in the text.

3J.L. Isbell et al. / Gondwana Research 22 (2012) 1–19
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was centered over Antarctica, with ice centers also occurring in east-
ern South America, Patagonia, Africa, the Arabian Peninsula, India,
Australia, and some southern Asian crustal blocks (Figs. 1 and 2;
Isbell et al., 2003, 2011a; Fielding et al., 2008a; Wopfner and Jin,
2009a, 2009b; Taboada, 2010). Finally, from the late Sakmarian to
the Capitanian/earliest Wuchiapingian small ice centers and alpine
glaciation were located only in Australia (Fig. 2; Fielding et al.,
2008a, 2008c, 2008d).

The apparent polar wander path (APWP) proposed by Powell and
Li (1994) and Li and Powell (2001) is commonly used in interpreting
paleolatitude positions during the LPIA (Fig. 3; Isbell et al., 2003;
Fielding et al., 2008a; 2008b). Powell and Li (1994) referenced paleo-
magnetic poles from eastern and central Australia for their model, in
which the pole occurred in southern Argentina in the middle Devoni-
an and shifted to central Africa in the latest Devonian toMississippian,
thenmigrated into Antarctica in the Pennsylvanian (Fig. 3; Powell and
Li, 1994). The pole then shifted to the present-day central Transan-
tarctic Mountains and Marie Byrd Land in Antarctica by the Middle
Permian, and then moved toward and into eastern Australia by the
end of the Permian. This APWP is best constrained for the interval
from 320 to 280 Ma; however, from 280 to 250 Ma, including Austra-
lia's apparent drift onto the pole, the APWP is “less well constrained”
(Li and Powell, 2001), thus the APWP from 280 to 250 Ma is equivocal.

More recent APWPs for Gondwana include reconstructions based
on paleomagnetic data from Baltica and Laurentia (Van der Voo,
1993; Dalziel, 1997; Torsvik and Cocks, 2004; Lawver et al., 2008;
Torsvik et al., 2008), and combined data from various Gondwanan
crustal blocks (Fig. 3; Torsvik et al., 2008). Although the Laurentian
and Gondwanan APWPs have similar shapes, there is considerable
offset between the two curves (Fig. 3; Domeier et al., 2011), and be-
tween either curve and the APWP of Powell and Li (1994). Domeier
et al. (2011) showed that this offset is likely the result of the

incorporation of low-quality or systemically biased data “many of
which are considered unreliable by modern standards.” Using a rigor-
ous filter on the South American data set, they refined the Permian to
Early Triassic APWP for Gondwana (Fig. 3). This reconstruction does
not have the excursion into Australia depicted on the Powell and Li
(1994) curve. This paper uses APWP of Domeier et al. (2011) due to
its more highly constrained data set.

Although glaciation began in western Gondwana (South America)
and ended in eastern Gondwana (Australia), which supports the con-
cept of drift of Gondwana over the South Pole during the LPIA (Fig. 2),
the APWP only accounts for general trends in the distribution of gla-
ciation through time. However, drift across the South Pole does not
explain the vacillation between glacial and non-glacial conditions
within the ice age, the timing and variations in the extent of the var-
ious glacial events across Gondwana or within a particular region, or
the continued Middle to earliest Late-Permian glaciations in eastern
Australia following the Early Permian LPIA acme (Figs. 1 and 2). For
example, drift does not explain the disappearance of ice centers
from the Protoprecordillera region in western Argentina during the
Early Pennsylvanian, which occurred just prior to and during growth
of glaciers in the highlands surrounding the Paraná Basin farther to
the east in South America. In addition, during the Middle–earliest
Late Permian glaciations in eastern Australia, Antarctica remained
unglaciated despite being located closer to the pole (cf. Collinson et
al., 1994; Isbell et al., 2008c; Henry et al., in revision). Furthermore,
glaciation in eastern Australia ended in the late Capitanian/earliest
Wuchiapingian (~260 Ma), at a time when it may have made its clos-
est approach to the Permian South Pole (Figs. 2 and 3; cf. Fielding et
al., 2008a, 2008c, 2008d; Domeier et al., 2011).

Although the record is not well constrained, glaciation may have
also occurred in Northeastern Asia in the northern hemisphere during
the Pennsylvanian and Permian (Ustritsky and Yavshits, 1971; Frakes

Fig. 2. Glacial intervals of the LPIA discussed in the text showing the traditional view of glaciation (modified from Frakes and Francis 1988; and Crowley and Baum, 1991, 1992) and
the emerging view based on data from Truswell (1978), Collinson et al. (1994), Isbell et al. (2003, 2008b, 2008c), Fielding et al. (2008a, 2008c), Mory et al. (2008), Rocha-Campos et
al. (2008), Stollhofen et al. (2008), Taboada (2010), Gulbranson et al. (2010) and Henry et al. (in press). The Carboniferous time scale is from Davydov et al. (2010); the Permian
time scale is from Gradstein et al. (2004).
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et al., 1975; Pavlov, 1979; Epshteyn, 1981a, 1981b; Chumakov, 1985,
1994). However, the diamictites and lonestone-bearing beds of pre-
sumed glacial origin may have been deposited by shore or river ice
(Frakes et al., 1975; Crowell, 1999), or as Biakov et al. (2010) suggest,
the result of non-glacial marine slumping and debris flows associated
with the development of the Okhotsk–Taigonos Volcanic Arc. During
the late Paleozoic, the diamictites and lonestones paradoxically disap-
peared as Siberia drifted into and across the northern polar circle
(Blakey, 2008; Lawver et al., 2008).

Correlation of pCO2 and carbon and oxygen isotope fluctuations
within glacial and non-glacial intervals in the Carboniferous and
Permian suggests that greenhouse gasses were a major control on cli-
mate fluctuations during the LPIA (Fig. 4; Royer, 2006;Montañez et al.,
2007; Frank et al., 2008; Buggisch et al., 2011). However, the relation-
ships between some isotopic oscillations and glacial/non-glacial
events are not well understood, as there are assumptions and incon-
gruities in the geochemical record for the late Paleozoic that need to
be explained. One issue is that geochemical data appear incongruous
with certain glacial and non-glacial intervals. For example, during
Serpukhovian glaciation, δ13C and δ18O values of paleo-tropical
marine carbonates actually decrease, which typically occurs during
warming (Frank et al., 2008). Later in the Bashkirian and the subse-
quent C4 glaciation in Australia that extends into the Moscovian (cf.
Fielding et al., 2008c, 2008d), there is a dramatic positive excursion
in δ13C and δ18O values, but the expected increase in delta values
lags behind the deposition of glacial sediments in South America and
Australia by several million years. Frank et al. (2008) put forward
two different explanations for the discrepancies between the isotopic

and stratigraphic records: 1) The isotopic data set is too low resolution
at present to accurately represent the entirety of Late Mississippian
and Early Pennsylvanian glaciation; or 2) because this glaciation con-
sisted of multiple ice centers waxing and waning at different times in
different regions, the paleo-tropics were not influenced as consistent-
ly, creating variable isotopic ratios. Nevertheless, the isotopic data and
sedimentologic data are recording climatic signals, the timing of
which, and global significance of, require further analysis.

Another issue is that the geochemical record remains undeveloped
for Polar Regions of Gondwana. Data for pCO2 levels and δ13C and δ18O
values derived from paleo-tropical carbonates from Laurentia and
Eurasia are typically recovered from whole rock analyses or brachio-
pod calcite (cf. Hayes et al., 1999; Veizer et al. 1999; Frank et al.,
2008). The derived values are assumed to represent the chemical sig-
nature of the global ocean in areas where the isotopes are considered
to have been well mixed. However, the isotopic values from restricted
epicontinental seaways vary from samples taken from localities where
ocean waters were better mixed (Grossman et al., 2011). The far-field
data representing isotopic fluctuations in seawater are assumed to re-
cord the same climatic fluctuations that forced the ice volume changes
recorded in near-field glacigenic and post-glacial deposits. This as-
sumption is rarely checked against isotopic signatures of near-field re-
gions (with the exception of Scheffler et al., 2003), so a level of
uncertainty remains about the accuracy of using far-field chemical
proxies to draw conclusions about glacial intervals experienced in
the Polar Regions. More work needs to be conducted on the near-
field record to better correlate these two data sets. Proxies for atmo-
spheric CO2 concentrations derived from soil-formed minerals (e.g.,

Fig. 3. Polar view of Gondwana at 300 Ma and the apparent polar wander path of Domeier et al. (2011), which is used in this paper. The APWP of Powell and Li (1994) and Li and
Powell (2001) is plotted as a solid line where data is more reliable and as a dashed line where the data is less well constrained. The map also shows the APWPs of Torsvik et al.
(2008) for Laurasia (Larentia and Baltica) and Gondwana. The reconstruction of Gondwana is from Dalziel (1997) and Lawver et al. (2008). To construct the curve for Domeier
et al. (2011), their poles were attached to South America then rotated into the Gondwana configuration presented by Lawver et al. (2008) with the view centered over the
300 Ma pole of Domeier et al. (2011). The reconstruction and rotations are courtesy of the Institute of Geophysics' PLATES Project at the University of Texas-Austin.

5J.L. Isbell et al. / Gondwana Research 22 (2012) 1–19
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calcite and goethite) circumvent these seawater mixing problems as
they reflect pCO2 values estimated from physical and chemical con-
straints in soils (cf. Ekart et al., 1999). The pedogenic calcite paleo-
barometer is used to estimatemuch of the pCO2 record for the Phaner-
ozoic (Breecker et al., 2010).

In regards to the LPIA, the pCO2 record derived from paleosols has
only been developed for the latest Pennsylvanian (Gzhelian) through
the Permian (Fig. 4; Montañez et al., 2007), and does not exist for
older LPIA events. When this gap in the dataset is filled in, it will be
important to note if decreases in atmospheric pCO2 occurred during
the Mississippian and Pennsylvanian glacial events. The pCO2 record
shows strong correlation with the latest Pennsylvanian and Permian
glacial events (Royer, 2006; Montañez et al., 2007; Fielding et al.,
2008c). However, it should be noted that only the Late Pennsylvanian
(Gzhelian) to Early Permian (early Sakmarian) glacial event was
widespread. Later Permian lows in the pCO2 record correspond only
to regional glaciation in Australia and not to global glacial events as
much of polar Gondwana was unglaciated by that time. Therefore,
caution must be taken when applying the pCO2 record to terminal
events of the LPIA.

3. The equilibrium line altitude's control on glaciation

Topography is an obvious control on glaciation, as initiation and
growth of glaciers take place at altitudes where net accumulation of
snow and its conversion to ice occur. Nevertheless, paleotopography
and its relationship with glacial mass balance is often overlooked or
deemphasized as a glacial driver during the LPIA. Instead, most stud-
ies have focused on the paleolatitude of Gondwana and greenhouse
gasses as the primary forcing factors. Regardless, late Paleozoic
mountain ranges undoubtedly influenced atmospheric circulation,
precipitation, and snow accumulation, and therefore were important
in initiating glacial conditions during the LPIA (cf. Ziegler et al., 1997).
Powell and Veevers (1987), Eyles (1993), and Crowell (1999) sug-
gested that tectonic uplift along the Panthalassan margin of Gondwa-
na, beginning with the collision of the Chilenia terrane against
western South America in the late Tournasian–early Viséan (early
Mississippian), initiated the LPIA. Initiation of glaciation in South
America, and later initiation in Australia occurred while these regions
were located at mid-latitudes (30°–60°; Powell and Veevers, 1987).
These regions appear to have served as ice centers before regions
closer to the South Pole were glaciated (Figs. 2 and 3). Therefore,
the onset of glaciation in Gondwana appears to have coincided with
orogenesis rather than with high polar latitude: in South America,

convergence and accretion along the Panthalassan margin, and in
Australia, uplift along the Tasman Fold Belt (Powell and Veevers
1987; Eyles, 1993). At the end of the LPIA, glaciation continued in
eastern Australia for approximately 30 Myr after most of the Permian
Polar Regions became ice free (Fig. 2; cf. Fielding et al., 2008a, 2008c,
2008d; Isbell et al., 2008b, 2008c; Isbell, 2010; Stollhofen et al., 2008;
Henry et al., in press). At that time, most of eastern Australia was lo-
cated outside of the polar circle (Fig. 3), suggesting that local factors
including paleotopography may have played a role in continued glaci-
ation. Therefore, the availability of topographic surfaces at high eleva-
tions may have been an important mechanism that facilitated
nucleation and growth of LPIA glaciers (cf. Powell and Veevers,
1987; Eyles, 1993; Isbell et al., 2011b).

Isbell et al. (2011b) and Henry et al. (in press) suggested that
many of the local variations and problems with the distribution and
timing of Gondwana glaciations can be explained by considering the
relationship between the equilibrium line altitude (ELA) and the
paleo-land surface for a given region through time and space. The
ELA is the elevation in a region above which ice accumulation can
occur (Fig. 5A). The ELA is equivalent to the snowline, and on a glacier
the ELA is the boundary separating an upper area of accumulation
from a lower area of ablation (Fig. 5A; Benn and Evans, 2010). At
the ELA, the rate of accumulation is equal to the rate of ablation.
Therefore, glaciers cannot form if the ELA resides above the elevation
of the land in a particular region. In this sense, glaciation results from
lowering of the ELA relative to the elevation of the land surface,
whereas, glacial retreat or cessation occurs due to a rise in the ELA rel-
ative to the elevation of the surrounding landscape. The ELA for a
given location is controlled by glacial mass balance. Therefore, energy
input (local to global heat flux), precipitation, topography, and lati-
tude influence the position of the ELA (Fujita, 2008). Latitudinally,
the ELA is typically close to or at sea level near the poles and rises to-
wards the equator (Fig. 5B, C). The present ELA is just above sea level
at the North Pole, rises to between 4000 and 6000 m in the tropics,
and then falls in elevation southward where it intersects seal level
at ~65° S latitude (Broecker and Denton, 1990). In this sense, glaciers
in tropical regions only occur at high altitudes (e.g., above 4000 m in
Irian Jaya, Indonesia; Allison and Peterson, 1989), but in high-latitude
regions like Antarctica and Greenland, glaciers form at or near sea
level (Miller et al., 1975). Variations in precipitation and/or local
heat input/output can cause deviations in the overall latitudinal
trend and can depress or elevate the ELA locally from its overall lati-
tudinal tendency (Broecker and Denton, 1990). Moreover, high snow-
fall amounts will lower an ELA, but in locations with low snowfall,

Fig. 4. pCO2 fluctuations and glacial and non-glacial intervals in the Permian. Yellow dots are from Montañez et al. (2007), red dots represent data compiled by Royer (2006), and
the dashed line links the two data sets.
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such as arid regions, glaciers will have higher ELAs. Global warming
during climate cycles will also result in a latitude-dependent rise in
the position of the ELA, whereas global cooling will lower the ELA
globally. The elevation of the ELA is particularly sensitive to summer
precipitation and temperature, which are major controls on annual
ablation rates. Further, tectonic movement in a region can influence
the formation or destruction of glaciers: uplift of a region above the
ELA makes it possible for glaciers to nucleate, while subsidence of a
region below the ELA causes preexisting glaciers to ablate. The time
scales required for significant uplift or subsidence may extend over
multiple climate cycles and may produce a net effect over time rather
than an instantaneous glacial/deglaciation event. Thus, it is apparent
that glaciers can form during both icehouse and greenhouse condi-
tions as long as the land surface resides above the local ELA. There-
fore, the latitudinal position of the ELA is the manifestation of all
controls on the formation and later demise of glaciers in time and
space. Because the ELA changes due to climatic fluctuations and tec-
tonic events, the ELA was likely a controlling factor on glacier distri-
bution throughout the many phases of the LPIA (Fig. 5).

Precise estimates of paleotopography and the exact elevation of
the ELA may be impossible to reconstruct. However, consideration
of the relative position of the ELA is still a powerful tool to identify
the controls on glaciation/deglaciation events. Moreover, if glaciation
is occurring, then it is a requirement that the local ELA resides below
the land surface on which the glacier nucleated. Likewise, the local
ELA resides above the land surface during deglaciation. Use of the
ELA concept, comparison of synchronous glaciated vs. non-glaciated
areas, and comparison with predicted modern ELA curves can provide
insight on what factors governed initiation, expansion, contraction,
and collapse of glacial events during the LPIA. The interplay between

the ELA and paleotopography for important intervals during the LPIA
are explored in the following sections.

4. Carboniferous glaciation of the Protoprecordillera,
western Argentina

4.1. Background

The Protoprecordillera (Fig. 6) was an ancient mountain belt that
formed in what is now west-central Argentina due to the subduction
and collision of the disputed Chilenia terrane with western South
America (Cuyania terrane) during the Late Devonian and Mississippian
Chañic orogeny (Fig. 7; Ramos, 1988; López-Gamundí et al., 1994;
Limarino et al., 2002, 2006). Initially, the Protoprecordillera formed as
an obducted accretionary prism, and then developed into a fold–thrust
belt as the Chilenia terrain accreted to western Gondwana (Fig. 7). Dur-
ing and following collision in the Mississippian, the Protoprecordillera
was a substantial mountain belt that separated the Río Blanco and
Calingasta–Uspallata Basins to the west from the Proto-Paganzo Basin
to the east (Figs. 6 and 7). During the Pennsylvanian and Permian, the
active margin along this portion of Gondwana shifted to the west
with initiation of subduction beneath Chilenia. Such subduction, with
associated back-arc extension, is hypothesized to have resulted in the
transformation of the Proto-Paganzo basin into amore extensive exten-
sional back arc basin, the Paganzo Basin, which consisted of sub-basins
filled with Pennsylvanian and Permian strata separated by uplifted gra-
nitic basement blocks. Collapse of the Protoprecordillera was a bypro-
duct of this back-arc extension (Limarino et al., 2002, 2006).

Glaciation in the Protoprecordillera began during the Middle
Mississippian (Viséan; Limarino et al., 2006; Gulbranson et al., 2010;

Fig. 5. Equilibrium line altitude (ELA). A) Diagram of the equilibrium line of a glacier, which separates the zone of accumulation above from the zone of ablation below. B) Present
and Last Glacial Maxima (LGM) distribution of the ELA with latitude (modified from Broecker and Denton, 1990; Benn and Evans, 2010). C) Global change in the ELA during Glacial
Minimum and Glacial Maximum.
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Pérez Loinaze et al., 2010), with a second, more extensive glacial event
occurring during the Late Mississippian (Serpukhovian) to Early Penn-
sylvanian (Fig. 2; early Bashkirian; Limarino et al., 2002, 2006; Henry
et al., 2008, 2010; Gulbranson et al., 2010).

Glacimarine deposition during the Serpukhovian to early Bashkirian
(Latest Mississippian to Earliest Pennsylvanian) occurred in deeply
incised paleo-valleys in the Protoprecordillera, and in the adjacent
Calingasta–Uspallata and Río Blanco basins (Fig. 8; López-Gamundí,
1997; Limarino et al., 2002, 2006; Kneller et al., 2004; Dykstra et al.,
2006; Henry et al., 2008, 2010; Gulbranson et al., 2010; Césari et al.,
2011). The sedimentary record includes: 1) glacimarine and glacially
influenced marine deposits in the form of striated boulder pavements
resulting from grounded ice advance, 2) thick massive and stratified
diamictites deposited from a combination of settling from meltwater
plumes and iceberg rafting, 3) conglomerates and wedge-shaped
sandstone bodies deposited as grounding-line fans, 4) thin bedded
diamictites, massive sandstone beds, and thin-bedded graded sand-
stone bodies deposited from debris flows and turbidity currents, and
5) lonestone-bearing mudrocks deposited in distal marine environ-
ments (Fig. 8; López-Gamundí, 1987; Henry et al., 2008, 2010;
Gulbranson et al., 2010). Such deposits are well recognized in the
Calingasta–Uspallata Basin in the Agua de Jagüel, Tramojo, El Paso,
and Hoyada Verde Formations. Glacial deposits in the Paganzo Basin
are limited primarily to paleo-valleys cut into underlying basement
rocks (Fig. 8C). Glacial strata in the Paganzo Basin consist of grooved
and striated surfaces, and thin glacial and glacilacustrine rocks
(Buatois and Mángano, 1995, López-Gamundí and Martínez, 2000;
Pazos, 2002; Buatois et al., 2006; Dykstra et al., 2006). The deposits in
the paleofjords and in the Calingasta–Uspallata, Río Blanco, and
Paganzo Basins suggest that temperate tidewater glaciers reached the
sea (or inland lake in the Paganzo Basin) and drained radially away
from the Protoprecordillera through an extensive system of fjords
(López-Gamundí and Martínez, 2000; Kneller et al., 2004; Dykstra
et al., 2006; Henry et al., 2008, 2010). In the upper portions of the glacial
sequence and in the base of the post-glacial sequence at many sites, in-
cluding sites containing the Agua de Jagüel, Río del Peñón, and Jejenes
Formations, abundant mass movement deposits occur (Fig. 8E). These
deposits includemeters to tens of meters thick andmeters to hundreds
of meters long and wide slide and slump blocks (Kneller et al., 2004;
Dykstra et al., 2006; Henry et al., 2008, 2010).

Sandstone detrital modes and clast composition of conglomerates in
the basins surrounding the Protoprecordillera indicate that the moun-
tain belt served as a barrier to sediment dispersal, and that the basins
were segregated with respect to composition during early glacial time

Fig. 6. TheProtoprecordillera inwest central Argentina housedglaciers in the Serpukhovian–
Bashkirian (lateMississippian–early Pennsylvanian) and acted as a divide between the Río
Blanco and Calingasta–Uspallata Basins to the west, and the Paganzo Basin to the east,
until the collapse of the fold–thrust belt in the Pennsylvanian. Modified from Henry et
al. (2010)

Fig. 7. Cross-section showing the basins in western Argentina during formation of the Protoprecordillera and the later collapse of the mountain range in the Late Pennsylvanian–
Early Permian. Modified from Limarino et al. (2006), Henry et al. (2010) and Tedesco et al. (2010).
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(Limarino et al., 2006; Net and Limarino, 2006). During glacial deposi-
tion, Pampeanas and Famatina basement rocks served as source terrains
for much of the Paganzo Basin. However, portions of the Paganzo Basin
adjacent to the Protoprecordillera received sediment from the moun-
tain belt located to the west (Net and Limarino, 2006). In the

Calingasta–Uspallata and Río Blanco Basins, themetasedimentary clasts
and sand-sized rock fragments associated with rocks of the Devonian
accretionary prism in the Protoprecordillera served as the primary sed-
iment source. In late-glacial and post-glacial times, volcanic sediment,
derived from an arc that had formed to the west, entered the Paganzo

Fig. 8. Strata and facies of the deposits in the Protoprecordilleran Basins in western Argentina. A) Glacial and post-glacial deposits of the Agua de Jagüel Formation near Uspallata,
Argentina. Outcrop of the glacigenic deposits is ~500 m thick. B) Outcrop belt of the Agua de Jagüel in the Calingasta–Uspallata Basin showing the glacial and post-glacial deposi-
tional sequences and their onlap onto basement rock along the margin of the paleo-valley (modified from Henry et al., 2010). C) The Jejenes Formation and the margins of a narrow
paleo-valley near San Juan, Argentina. Trees for scale. D) Thin bedded diamictites and rhythmites with dropstones interpreted as debris flows and ice berg rafting deposits in the
Agua de Jagüel Formation. Hammer for scale. E) Large-scale slump blocks in the Río del Peñón Formation in the Río Blanco Basin.
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basin and granitic materials, derived from the Pampeanas and Famatina
systems to the east, were deposited in the Calingasta–Uspallata Basin.
Desegregation of sediments within the various basins suggests that dis-
persal systems had breached the Protoprecordillera by late glacial times
(cf. Limarino et al., 2006; Net and Limarino et al., 2006).

During the early Bashkirian (early Pennsylvanian), glaciers retreated
out of the basins and fjords resulting in glacimarine and glacilacustrine
deposits being overlain by organic-rich marine mudrocks (Limarino
et al., 2002; Pazos, 2002; López-Gamundí, 2010). The transgression is
well documented in the Calingasta–Uspallata and Río Blanco Basins, in
the Hoyada Verde, Agua de Jagüel, and Río del Peñón Formations
(López-Gamundí et al., 1994; López-Gamundí, 1997; Limarino et al.,
2002; Henry et al., 2008, 2010; Gulbranson et al., 2010). Marine incur-
sion into the Paganzo Basin is also indicated by early Pennsylvanian
transgressive deposits in the Guandacol, Lagares, Malanzán, and Jejenes
Formations (Limarino et al., 2002; Net et al., 2002; Pazos, 2002; Kneller
et al., 2004; Dykstra et al., 2006). This mudrock represents the first
major transgression into the Paganzo Basin during the Pennsylvanian
and indicates that the Protoprecordillera no longer served as a barrier
to marine incursions into the basin. Widespread deposition of marine
mudrock east of the Protoprecordillera indicates expansion of Paganzo
Basin depocenters and suggests that back arc extension was occurring
by that time (Limarino et al., 2002, 2006).

Following the early Bashkirian, glaciers disappeared from the
Protoprecordilleran region and did not return to west-central
Argentina until the Cenozoic. However, Pennsylvanian glaciation ei-
ther occurred or commenced farther east in the Paraná Basin in Brazil
as glaciation in the Protoprecordillera ended (Holz et al., 2008; Rocha-
Campos et al., 2008). During the early Pennsylvanian (Bashkirian?),
west-central Argentina and the Paraná Basin were located between
40°–60° S latitude (Scotese and Barrett, 1990; Powell and Li, 1994;
Torsvik and Cocks, 2004; Blakey, 2008; Lawver et al., 2008). The age of
glaciation in the Paraná Basin is controversial (cf. Holz et al., 2008;
Rocha-Campos et al., 2008). The conventional age of the glacial strata
in the basin based on palynological zonations is thought to range from
Moscovian to Early Permian (Asselian–Sakmarian) (Souza and
Marques-Toigo, 2005). SHRIMP ages from detrital zircon crystals in the
Itararé Group indicate that the deposits are younger than 323.6±
16Ma (Mississippian, Serpukhovian), and samples from a tonstein in
the coal-bearing Río Bonito Formation, which directly overlies the glaci-
genic Itararé Group, return an age of 298.5±2.6 Ma (earliest Asselian;
Rocha-Campos et al., 2008). A major source of ice for the Paraná Basin
was the Windhoek highlands in Namibia, Africa (Fig. 1; Rocha-Campos
et al., 2008). Paleo-valleys up to 1500 m deep occur along the margins
of the highlands. The highland may have originated as a rift shoulder
that stood greater than 3000 mabove sea level during the Pennsylvanian
and early Permian (Visser, 1987; Stollhofen et al., 2008).

4.2. Relationship between the ELA and Protoprecordilleran glaciation

At 40° to 60° S latitude, the Carboniferous ELA would have resided
well above sea level even in an icehouse world (Figs. 1, 3, and 5; cf.
Benn and Evans, 2010). Uplift of the Protoprecordillera during the Viséan
would have provided a land surface at high elevation whereby fluctua-
tions in the position of the local ELA at that latitude could have allowed
glaciers to nucleate (Fig. 7; Pérez Loinaze et al., 2010). Powell and
Veevers (1987) and Eyles (1993) previously reported that orogenesis ini-
tiated glaciation inwestern Argentina. Outcrops of Viséan glacial deposits
are relatively small and represent limited glaciation and/or erosional
remnants of once more laterally extensive deposits within the mountain
belt. Global cooling and uplift likely facilitated glaciation by changing the
relationship between the rising land surface and a falling ELA. Fluctua-
tions in the relative position of the ELA during the mid-Carboniferous
are suggested by an absence of upper Viséan to lower Serpukhovian gla-
cial deposits followed by later Serpukhovian to early Bashkirian glacial
strata. Recently, Balseiro et al. (2009) identified a Serpukhovian fossil

flora that contains pteridosperms, sphenophytes, as well as arborescent
lycopsids in strata between the two glacial intervals, which suggests
that a warm temperate climate existed at that time. High mass balances
for the Viséan and Serpukhovian–Bashkirian glaciers allowed them to
reach sea level, as indicated by glacimarine deposits contained in
paleo-fjords in the Calingasta–Uspallata and Río Blanco Basins (López-
Gamundí, 1997; Kneller et al., 2004; Dykstra et al., 2006; Henry et al.,
2008, 2010). Evidence supporting the ELA hypothesis includes: 1) glaci-
lacustrine conditions in the Paganzo Basin, which suggest that the
mountain belt served as a barrier to marine incursions into the Paganzo
Basin; 2) compositional segregation of sandstones in basins located on
opposite sides of the Protoprecordillera suggesting that the mountain
belt served as a barrier to sediment dispersal; (Net and Limarino,
2006), and paleo-valley relief of greater than 1000 m along themargins
of the mountain belt (cf. Kneller et al., 2004; Dykstra et al., 2006; Net
and Limarino, 2006; Henry et al., 2008, 2010).

Magmatism began in the Río Blanco Basin and within the
Protoprecordillera in the Viséan (Punta del Agua Formation,
Mississippian), which was related to compression associated with the
Chañic orogeny. Later, postorogenic extensional conditions were estab-
lished in the Pennsylvanian (Limarino et al., 2006). During the Early
Permian (Cisuralian), the eruption of the Choiyoi Group indicate estab-
lishment of a volcanic province that extended throughoutwesternArgen-
tina until the Early Triassic (López-Gamundí et al., 1994). Thismagmatism
also signaled a shift to an extensional tectonic regime that caused the col-
lapse of the Protoprecordillera and expansion of the Paganzo Basin to the
east (López-Gamundí et al., 1994; Limarino et al., 2006).

Evidence supporting collapse of the Protoprecordillera starting in
the Bashkirian includes: 1) establishment of the volcanic arc to the
west indicating a change in tectonic regime from that present when
the Protoprecordillera formed (cf. Net and Limarino, 2006), 2) expan-
sion of the Paganzo Basin to the east due to back-arc extension (cf.
Limarino et al., 2006), 3) marine incursion into the Paganzo Basin indi-
cating that themountain range was breached, allowingmarine connec-
tions between the eastern basin and basins to the west of the range (cf.
Limarino et al., 2002, 2006; Gulbranson et al., 2010; Tedesco et al.,
2010), 4) desegregation of the basinswith respect to sandstone compo-
sition, suggesting that the mountains no longer served as a barrier to
sediment dispersal systems (López-Gamundí et al., 1994; Limarino
et al., 2002, 2006; Net and Limarino, 2006), 5) an abundance of mass
movement deposits in upper glacial and lower post-glacial strata, that
may have been initiated by such movements, and 6) onlap of glacial
and postglacial strata onto and over the tops of the paleo-valley walls
indicating that a change in accommodation pattern fromuplift and inci-
sion to subsidence and valley-filling occurred (cf. Henry et al., 2008,
2010). Kneller et al. (2004), Dykstra et al. (2006), and Henry et al.
(2008, 2010) previously interpreted the mass movement deposits to
be due to a marine transgression that destabilized sediment along the
walls of the paleo-valleys or to glacial activity.

The isotopic composition of paleo-meteoric water can provide an
additional constraint on the existence of orographic moisture bar-
riers, because orographic lift and rainout result in distinct trends in
oxygen and hydrogen isotope ratios on the global meteoric water
line (Craig, 1961; Rozanski et al., 1993; Jouzel et al., 1997). Here we
use paleo-meteoric water estimates available from soil-formed goe-
thite that was collected in the Paganzo Basin and dated to 312.8 Ma
(Fig. 9; Gulbranson et al., 2010). δD and δ18O values of a pure goethite
end-member from these samples indicate that the goethite formed at
a temperature of 15 °C (±3 °C) at a soil depth of at least 10cm
(Gulbranson et al., 2011), which would indicate that the mean annual
temperature was likely >0 °C (Fig. 9). The oxygen and hydrogen iso-
topes of paleo-meteoric waters were estimated from the δD and δ18O
values corrected for silicates using the equilibrium fractionation fac-
tors for the goethite–water system (Yapp, 1993), and suggest a sea-
water moisture source with little to no isotopic distillation due to
rainout or orographic lift (Fig. 9). If the Protoprecordillera was a
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prominent topographic feature during the time represented by this
soil-formed goethite, then it would be expected that the paleo-
meteoric waters would be much more negative in both δD and δ18O
values. The paleo-meteoric water estimates suggest that the Proto-
precordillera was not a prominent atmospheric moisture barrier by
at least the early Moscovian and that mean annual temperatures
were above 0 °C, suggesting that the local ELA during the Moscovian
may have risen relative to the Serpukhovian–Bashkirian ELA.

Collapse of the Protoprecordillera mountain belt would have had a
profound impact on glaciation (Fig. 7). The loss of altitude would have
lowered the land surface below the local ELA, which would have trig-
gered deglaciation in the mountain belt. The rate of collapse of the
mountain range may have been of a different magnitude (slower)
than the duration of climatic fluctuations that lowered or raised the
ELA. However, a net lowering of the Protoprecordillera would have
prevented additional glaciations from occurring during later climate
cycles, as the land surface would have been lowered below the lowest
elevation of the ELA. There is no record of glaciation in the Calingasta–
Uspallata, Río Blanco, and Paganzo Basins following the collapse of
the Protoprecordillera. In the Early Permian, the climate in western
Argentina became increasingly arid as indicated by eolian deposits
in the Paganzo Basin (Limarino et al., 2006). Additionally, strata in
the Paganzo Basin record a shift from calcic vertisols to calcisols dur-
ing the middle to late Moscovian, indicating the development of a
semi-arid to arid climate (Gulbranson et al., 2010).

The loss of elevation would also explain why LPIA glaciation ended
in this region in the Bashkirian while glaciation was beginning or con-
tinuing at the same paleolatitude farther east in the Paraná Basin
(Figs. 1, 2, and 3; cf. Rocha-Campos et al., 2008). With an elevation
of greater than 3000 m, the Windhoek highlands (Namibia) which
fed ice into the Paraná Basin, remained at or above the ELA through-
out much of Pennsylvanian and Early Permian (Fig. 1).

5. Late Pennsylvanian to Early Permian LPIA Maximum

5.1. Background

In Gondwana, peak glaciation during the LPIA occurred in the late
Gzhelian to early Sakmarian (latest Pennsylvanian–Early Permian)

when numerous ice centers occurred across Gondwana (Figs. 1 and 2).
The ice sheets were centered over highlands that fed ice into adjacent
basins (Visser, 1997a; Isbell et al., 2008b, 2008c; Rocha-Campos et al.,
2008; Isbell, 2010). Major basins that received ice included: the Tepuel,
Paraná, Chaco–Paraná, and Sauce Grande basins in South America; the
Karoo and Kalahari basins in southern Africa; the Transantarctic Basin
in Antarctica, the Talchir Basins of greater India; and the Tasmanian,
Sydney, Bowen, Gunnedah, Officer, Canning, Perth, and Carnarvon ba-
sins of Australia (Fig. 3; Lindsay, 1997; Visser 1997a; Isbell et al., 2003,
2008b, 2008c; Stollhofen et al., 2008; Rocha-Campos et al., 2008; Holz,
et al., 2008; Fielding et al., 2008a, 2008b, 2008c;Mory et al., 2008; Isbell,
2010; Koch, 2010; Taboada, 2010; Henry et al., in press). Smaller ice
centers or alpine glaciers also occurred on Gondwana and extended
into the mid-latitudes. During this interval, pCO2 concentrations were
equivalent tomodern levels (Fig. 4; ~280 ppmv;Montañez et al., 2007).

During the Gzhelian to the Sakmarian, the South Pole resided in or
near the central Transantarctic Mountains, Antarctica (Fig. 3; cf.
Domeier et al., 2011). Antarctic strata from this interval contain primar-
ily glacimarine and glacially influenced marine deposits (Fig. 10). How-
ever, some successions also contain subglacially deposited units, such as
in parts of the Pagoda Formation (Fig. 10). Facies in the glacigenic strata
include: 1) sheared diamictites deposited as subglacial tills during
grounded ice advance into marine basins (Fig. 10B), 2) wedge-shaped
sandstone bodies containing proximal traction (cross-stratification)
and distal suspension settling structures deposited as grounding line
fans (Fig. 10C), 3) meters to tens of meters thick massive and weakly
stratified diamictites deposited from a combination of suspension set-
tling frommeltwater plumes and the incorporation of coarse clastic de-
bris rafted by icebergs (Fig. 10A), 4) thin-bedded diamictites deposited
fromdebris flows; and 5) lonestone-bearingmudstones deposited from
icebergs and distal settling from suspension (Fig. 10; Matsch and
Ojakangas, 1991; Isbell et al., 2008c; Isbell, 2010; Koch, 2010). Glaci-
marine conditions also occurred throughout the other basins residing
within and near the polar circle at that time, including: the Karoo
(South Africa), Tepuel (Patagonia, Argentina), and the Tasmanian
(Tasmania, Australia) basins (cf. Powell, 1990; Hand, 1993; Visser,
1997a; Isbell et al., 2008b; Fielding et al., 2010; Taboada, 2010; Isbell
et al., 2011a; Henry et al., in press).

In eastern Australia, the latest Pennsylvanian to Early Permian gla-
ciation is recorded in glacimarine sediments and proglacial continen-
tal deposits in multiple formations in the Bowen, Gunnedah, and
Sydney Basins (Figs. 1, 2, and 11; Fielding et al., 2008c, 2008d). Except
for the southernmost portion of the Sydney Basin, these basins oc-
curred just outside of the south polar circle, extending from ~52 to
65° S latitude during the LPIA maximum (cf. Domeier et al., 2011).
The latest Pennsylvanian–Early Permian glacial interval in eastern
Australia has been classified as the P1 glaciation by Fielding et al.
(2008c), during which ice sheets, valley glaciers, and ice caps oc-
curred in the region (Jones and Fielding, 2004; Fielding et al., 2008a,
2008c, 2008d). Paleogeographic reconstructions for eastern Australia
show ice centered over the Kanimblan or Central Highlands and radiat-
ing outward into the adjacent Bowen, Gunnedah, and Sydney Basins
(Veevers 2006; Fielding et al., 2008a, 2008b, 2008c, 2008d).

Other large glacigenic basins located outside of the South Polar
Circle containing glacimarine sediment include (Fig. 3): the Paraná
Basin of Brazil (Holz et al., 2008; Rocha-Campos et al., 2008); the
Kalahari Basin of southern Africa (Visser, 1997a); and the Perth,
Carnarvon, and Canning Basins of Western Australia (Eyles and Eyles,
2000; Eyles et al., 2001;Mory et al., 2008). Smaller fault-bounded basins
containing glacilacustrine and glacial terrestrial deposits also occurred
(e.g., Collie, Western Australia; Rafigi, Tanzania; Oman basins).

5.2. Relationship between the ELA and maximum LPIA glaciation

During the Late Pennsylvanian (Gzhelian) to Early Permian
(Sakmarian), wide-spread glaciation extended from the South Pole

Fig. 9. δD versus δ18O from Moscovian pedogenic goethite. Delta values reflect correc-
tions made from isotope measurements on silicate fraction relative to a mixture of sil-
icate and Fe-(oxy) hydroxide accounting for the mole fraction of each in the bulk
sample. Estimated paleotemperature is plotted as a square symbol. The circle symbol
represents estimated δD and δ18O values that were in isotopic equilibrium with the
studied goethite at a temperature of 15 °C. The global meteoric water line (GMWL) is
plotted from the results of Rozanski et al. (1993). Goethite isotherms (0° to 70 °C)
are plotted as a reference to the estimated goethite temperature. It is expected that
paleo-meteoric waters would become progressively depleted in D and 18O (i.e., more
negative) during rainout and orographic lift, the extremely positive delta values esti-
mated here suggest a position very close to the moisture source (i.e., seawater).
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across Gondwana and into lowpaleolatitudes (~30° S latitude; Frakes et
al., 1992; Wopfner and Casshyap, 1997; Wopfner and Jin, 2009a,
2009b). However, glaciationwas characterized by the occurrence of nu-
merous small ice sheets rather than by a single massive glacier (Fig. 1).
This interval was also associatedwith low atmospheric pCO2 concentra-
tions (Montañez et al., 2007). The correlation between widespread gla-
ciation and low atmospheric pCO2 values suggests that this part of the
LPIA was initiated by a major global cooling event. The abundance of
glacimarine strata in polar Gondwana suggests an ELA at or near sea
level, which is similar to that of the lowered ELA in the Polar Regions
during the Last Glacial Maximum of the Pleistocene and in present
day Antarctica. During the LPIA glacial maximum, the ELA would have
been lowered globally, thus allowing glaciers to nucleate on uplands
in the mid-latitudes. Such ice centers formed on uplands like the
Cargonian and Windhoek Highlands in southern Africa, which fed ice
into the Karoo, Kalahari, and Paraná Basins (Brazil). In reference to the
300 Ma pole position of Domeier et al. (2011) (Fig. 3), the Cargonian
Highlands were located between 59° and 66° S latitude and the
Windhoek Highlands were located at ~53° S latitude. Elevations for the

two uplands are estimated to have been >2500 m and >3000 m above
sea level respectively (Visser 1987; Stollhofen et al., 2008). Ice sheets
were able to form on these uplands located outside the polar circle be-
cause they rose above the position of the ELAat their givenpaleolatitudes.

6. Icehouse to Greenhouse transition at the end of the LPIA:
Sakmarian to Capitanian/earliest Wuchiapingian glaciations in
eastern Australia and ice-free conditions in polar Gondwana

6.1. Background

Middle Sakmarian strata in polar Gondwana contain sharp con-
tacts that separate glacigenic deposits below from post-glacial strata
above (Fig. 10D). In the central Transantarctic Mountains of Antarcti-
ca, which resided at or near the Permian South Pole, diamictites of the
Pagoda Formation are sharply overlain by mudrocks of the Sakmarian
Mackellar Formation. Strata in the Mackellar Formation only contain
extremely rare lonestones in mudrocks just above the glacial/post-
glacial contact (cf. Collinson et al., 1994, Seegers-Szablewski and

Fig. 10. Permian glacial and post-glacial strata in the Transantarctic Basin. A) Massive and weakly stratified diamictite in the Pagoda Formation at Tillite Glacier interpreted as de-
posited from settling from suspension from meltwater plumes and coarse debris deposited from iceberg rafting. B) Sheared diamictite in the Pagoda Formation at Tillite Glacier
interpreted to have been deposited as a subglacial till. C) Wedge-shaped sandstone contained in clast-poor diamictite in the Pagoda Formation at Tillite Glacier interpreted to
be the deposit of a grounding line fan. The sandstone body is approximately 2 m thick. D) The glacial/post-glacial contact at Sullivan Nunatak. The succession is approximately
60 m thick. E) The coal-bearing fluvial deposits of the Weller Coal Measures at Allan Hills, Southern Victoria Land. The succession is approximately 45 m thick. F) Permineralized
in situ fossil stump in the Weller Coal Measures at Allan Hills.
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Isbell, 1998; Isbell et al., 2008c; Isbell, 2010; Koch, 2010; Miller and
Isbell, 2010). The 150-m-thick Mackellar Formation consists of multi-
ple coarsening-upward successions of mudrock and thin-bedded
sandstones deposited as turbidites. Thick deltaic and fluvial sand-
stone of the 220-m-thick Lower to Middle Permian Fairchild Forma-
tion and interbedded fluvial sandstone, floodplain mudrock, coal,
and lacustrine siltstone of the 750(+)-m-thick Middle to Upper
Permian Buckley Formation (and correlative units throughout the
Transantarctic Mountains; Fig. 10E) successively overlie the Mackellar
Formation (Barrett, et al., 1986; Collinson et al., 1994; Isbell et al.,
1997). During deposition of strata in the Fairchild and Buckley
Formations, the central Transantarctic Mountains were located within
a few degrees of the Permian South Pole (Fig. 3; cf. Domeier et al.,
2011). The Buckley Formation and equivalent units, including the
Weller Coal Measures, contain a high-abundant low-diversity fossil
flora including numerous permineralized fossil forest horizons
(Fig. 10F). Tree rings in these fossilized stumps show no evidence of
frost damage (Taylor et al., 1992). However, rare pebble-sized lone-
stones,which suggest transport by river/lake or anchor ice, occurwithin
floodplain and lacustrine deposits near the base of the Buckley Forma-
tion and in equivalent units elsewhere in the Transantarctic Mountains.

Glacial/post-glacial signatures similar to that of the Antarctic suc-
cession occur throughout Gondwana and in strata deposited within
or near the South Polar circle of that time (Figs. 1, 2, and 3). In the
Karoo Basin of South Africa, diamictites of the Dwyka Group are
abruptly overlain by siltstone and mudstone of the mid-Sakmarian
to Artinskian Prince Albert Formation at the base of Ecca Group (cf.

Visser, 1997a; Catuneanu et al., 1998, 2005; Branch et al., 2007;
Herbert and Compton, 2007; Isbell et al., 2008b; Stollhofen et al.,
2008; López-Gamundí, 2010), and marine strata of the Ecca Group
are conformably overlain by fluvial sandstones and floodplain
mudrocks of the Upper Permian to Middle Triassic Beaufort Group
(Catuneanu et al., 1998). However, no other glacial indicators have
been found in the Karoo Basin higher in the section than those
found in the Dwyka Group strata (cf. López-Gamundí, 2010). In
Tasmania, diamictites of the Wynyard Formation are overlain by peb-
bly siltstones of the Inglis Formation (cf. Clarke and Forsyth, 1989).
Although lonestones, tentatively interpreted as iceberg rafted drop-
stones, occur throughout much of the Permian strata, diamictites in
the Wynyard Formation are the last known ice contact deposit within
the Tasmanian succession (cf. Hand, 1993; Fielding et al., 2010; Henry
et al., in press). In eastern Australia, which was located just outside of
the Asselian–Sakmarian Polar Circle (Figs. 2 and 3), strata in the latest
Pennsylvanian–Early Permian P1 glacial interval are sharply overlain
by mid-Sakmarian mudstone with rare pebbles and sandstones (e.g.,
Boonderoo Beds) or rhythmically laminated siltstone (e.g., Youlambie
Conglomerate; Jones and Fielding, 2004; Fielding et al., 2008a, 2008c,
2008d). Additionally, middle to upper Sakmarian, non-glacial strata in
Gondwana are correlated with a dramatic rise in atmospheric pCO2

values (Fig. 4; Montañez et al., 2007)
Above the Sakmarian glacial/post-glacial contact, there are no known

ice contact deposits in polar and mid- to high-latitude Gondwana
(Figs. 2, 10D, 10E, and 10F; Antarctica, Tasmania, Patagonia, Brazil, and
South Africa,), except in eastern Australia (Figs. 1, 2, 3, and 11), which
straddled the polar circle. There, Permian strata contain late Sakmarian
to Early Artinskian (P2; 287–280 Ma), late Kungurian to Roadian (P3;
273–268 Ma), and latestWordian to late Capitanian/earliestWuchiapin-
gian (P4; 267–260 Ma) glacial records (Fielding et al., 2008c, 2008d). At
those times, the Bowen, Gunnedah, and Sydney Basins were located be-
tween ~52 and 70° S latitude, with the southern Sydney Basin having its
closest approach to the South Pole at ~275 Ma (cf. Domeier et al., 2011).
The P2 glacial interval is characterized by outsized clasts and diamictites
in these basins, and the base of the P2 strata is marked by a flooding sur-
face in the southern Sydney Basin that is attributed to glacial isostatic
loading from advance of an adjacent ice sheet. P2 glaciers are interpreted
to have been ice sheets, based on interpreted isostatic loading and broad
geographic distribution of glacigenic sediments (Fielding et al., 2008c,
2008d) (Figs. 2 and 11). The P3 glacial event is identified by outsized
clasts in siltstones in the Sydney and Gunnedah Basins, and also by a
flooding surface in the basins attributed to glacial isostatic loading. The
glaciers of P3 are hypothesized to have been ice sheets as the geographic
distribution of glacigenic sediments is similar to that of P2 (Fielding et al.,
2008c, 2008d) (Figs. 2 and 11). The P4 glaciation is identified by outsized
clast- and glendonite-bearingmudrock in the Bowen and Sydney Basins,
and by a flooding surface in the Bowen Basin. Glaciers are interpreted to
have been smaller during the P4 event than those during P3. At that time
they may have been represented by small ice sheets or ice caps, because
dropstones are the only glacial signature for this interval, suggesting de-
position distal to a glacial front (Fig. 11; Fielding et al., 2008c, 2008d). A
correlation exists between the P2 to P4 events in eastern Australia with
the Middle to Upper Permian low pCO2 concentrations (Fig. 4; Royer,
2006; Montañez et al., 2007).

6.2. Relationship between the ELA and mid Sakmarian to
Capitanian/earliest Wuchiapingian glaciation

No ice-contact glacial deposits are known from polar Gondwana
during the mid-Sakmarian to the end of the Permian (Figs. 1, 2, and 3)
except in the southern Sydney Basin which straddled the South Polar
Circle. Instead, the polar record is of climate warming in Antarctica,
which consists of lonestone-free marine/basinal strata and fossil
plant-bearing fluvial deposits including fluvial coal measures. The ab-
sence of frost damage within permineralized wood (Fig. 10F) indicates

Fig. 11. Diagrams showing the extent of ice over Australia during the P1, P2, and P3/P4
glaciations. The Kanimblan highlands provided an uplifted region where glaciers could
nucleate through the Permian. Debris from glaciers housed in the Kanimblan highlands
were shed into the Bowen, Gunnedah, and Sydney Basins throughout the Carbonifer-
ous and Permian (after Veevers, 2006, Fielding et al. 2008a, 2008c, 2008d).
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warm conditions during the growing season (Taylor et al., 1992). How-
ever, lonestones contained within floodplain and lacustrine deposits at
the base of the Buckley Formation and equivalent units throughout the
Transantarctic Mountains suggest seasonal lake and river ice for a short
interval during the Mid Permian (cf. Kempema et al., 2001, 2002). Al-
though lonestones occur throughout the marine post-Wynyard Perm-
ian succession in Tasmania, no ice contact deposits are known. These
dropstones have been interpreted as ice rafted debris from either far-
traveled icebergs or sedimentation from sea ice (Fielding et al., 2010).
These findings are significant as they indicate that the ELA in polar
Gondwana resided well above sea level and well above the known
paleo-land surface. This suggests that following the Early Permian glaci-
ations, major global warming had occurred and that mean annual tem-
peratures remained above freezing throughout the remainder of the
Permian at the South Pole. Following the Early Permian glacial event,
Montañez et al. (2007) reported increasing pCO2 levels in the atmo-
sphere (Figs. 2 and 4). However, later decreases in pCO2 levels did not
cause glaciation in polar Gondwana.

In contrast to polar Gondwana, Fielding et al. (2008c, 2008d)
reported that glaciers continued to feed debris into the Bowen, Gun-
nedah, and Sydney Basins in eastern Australia until the end of the
Capitanian/earliest Wuchiapingian which were located between 52
and 70° S latitude (Figs. 2, 4, and 11). The occurrence of dropstones
in these strata suggests that the glaciers reached the sea. However,
it should be noted that clasts can be transported by other mechanisms
(Gilbert, 1990). Ice is hypothesized to have been most extensive dur-
ing the P2 event with glaciations depicted by Fielding et al. (2008c,
2008d) (Figs. 2 and 11) as an ice sheet that covered most of eastern
Australia. However, Fielding et al. (2008c, 2008d) suggested that the
ice centers diminished in size during the subsequent P3 and P4 events
(Fig. 11). The P3 and P4 events represent a more distal record of gla-
ciation than do strata defining the P2 event. The P2–P4 glaciations
correlate with intervals of low paleo-atmospheric CO2 concentration
(Fig. 3; Royer, 2006; Montañez et al., 2007), whereas the non-glacial
interval separating the P2 and P3 events is characterized by higher
pCO2 levels. Although the P2 to P4 glacial events in eastern Australia
correlate with low pCO2 values, neither these glacial events or the
pCO2 values are associated with Gondwana-wide glaciation or the
glaciation of Antarctica. Glacial indicators correlative with P2 have
not been identified elsewhere in Gondwana, with the possible excep-
tion of outsized clasts in the Liffey Group and Cascades Group in the
nearby Tasmania Basin, which are hypothesized to have been derived
from far-traveled icebergs possibly from eastern Australia (cf.
Fielding et al., 2010). Rather, an absence of glacial indicators from
higher latitude strata in Antarctica suggests that the P2 to P4 glacial
conditions were unique to eastern Australia, which therefore indi-
cates that the ELA for this latitude was locally lowered relative to
the global ELA for that time. Otherwise, a lowering of the ELA due to
a major global cooling event would have promoted the outbreak of
glaciers at higher latitudes in Gondwana.

Why would glaciation resume in eastern Australia in the late
Sakmarian and continue into the Capitanian/earliest Wuchiapingian
(earliest Late Permian), but not return to Gondwanan basins located
at higher latitudes? The answer to this question is currently unknown
and is likely a complicated combination of factors that resulted in
changes to the local ELA relative to the eastern Australian land sur-
face. Four factors may have played a role in producing the P2 to P4
glaciations in eastern Australia. These include: 1) anomalously cold
conditions for this sector of Gondwana during the Middle to Late
Permian due to upwelling of cold bottom waters (Jones et al., 2006),
2) high paleotopography, 3) fluctuations in pCO2 levels large enough
to cause minor fluctuations to the local ELA but not major enough to
have promoted polar glaciation, and perhaps 4) their location adja-
cent to the Panthalasan Ocean and in a subpolar low pressure conver-
gent zone located between the Polar Easterlies and the Mid-latitude
Westerlies.

Jones et al. (2006) suggested that cold upwelling waters allowed
anomalously cold conditions to persist into the Late Permian along
eastern Australia, whereas the rest of Gondwana remained relatively
warm. This hypothesis of upwelling of cold, nutrient rich, deep ocean
water is used to support the presence of glendonites in the Australian
strata, which formed originally in the sediments as the mineral ikaite
(Domack et al., 1993; Jones et al., 2006). Ikaite formation is prompted
by the upwelling of cold (−1.9 to +7 °C), high alkalinity waters that
interact with organic rich sediment (Suess et al., 1982; Bischoff et al.,
1993; Jones et al., 2006) like those contained within Permian strata
deposited in offshore environments along the paleo-coastline of east-
ern Australia. Wind and ocean circulation reconstructions for the re-
gion suggest offshore directed winds, which support the concept of
the upwelling of colder deep oceanic waters (cf. Gibbs et al., 2002;
Winguth et al., 2002; Jones et al., 2006). However, cold waters alone
cannot explain glaciations, otherwise glaciers would be forming
along the entire length of the Arctic and sub-Arctic coastline at the
present time, which they are not.

In addition to the possible influence of the upwelling of cold ocean
waters creating cool to cold conditions, paleotopography is also re-
quired to have fostered the P2–P4 glacial intervals in eastern Australia.
Because the ELA is closest to sea level at the poles and rises toward the
equator, substantial elevations are required to have raised the land sur-
face above the local ELA atmid-latitudes and to have allowed glaciers to
form.Glaciation in easternAustralia during P2, P3, and P4was likely fos-
tered by the presence and later remnants of the Kanimblan highlands
(Lachlan/Thomson Fold Belts) located to the west and southwest of
the Bowen, Gunnedah, and Sydney Basins (Fig. 11; cf. Veevers, 2006).
Reconstructions of the glacial centers for eastern Australia are located
over this upland (Fig. 11; cf. Fielding et al., 2008a, 2008c, 2008d). The
Kanimblan Highlands were uplifted by east–west compression in the
latest Devonian to early Carboniferous, and subsequent north–south
compression during the Serpukhovian–Bashkirian (mid-Carboniferous)
related to the collision of Gondwana and Laurasia further uplifted
the Kanimblan Highlands (Powell, 1984; Powell and Veevers, 1987;
Veevers, 2006). Later in the Pennsylvanian, intrusion of granites and
the merger of the margin with the Currububula Volcanic Arc allowed
the Kanimblan Highlands to maintain their elevation (Scheibner and
Veevers, 2000). Erosion dominated the uplands during the P1 glacial in-
terval (Veevers et al., 1994a). The tectonic regime later shifted to exten-
sion, which occurred from the Asselian to Kungurian (Early Permian,
including P1 and P2; Veevers et al., 1994b; Fielding et al., 2001). During
this time, the eastern parts of the Kanimblan uplands collapsed to form
the various basins in eastern Australia (Veevers et al., 1994a). However,
eastward directed paleocurrent orientations within coarse-grained
alluvial fan and fluvial deposits in the basins indicate upland sources
in at least remnants of the Kanimblan uplands (cf. Veevers et al.,
1994a, 1994b; Fielding et al., 2001). Then, during the Roadian to early
Capitanian (following the onset of P3), passive thermal subsidence
and associated marine transgression occurred. During this time, paleo-
current orientations within the strata show transport from west to
east, away from the former Kanimblan highlands (cf. Fielding et al.,
2001). Foreland loading took place during P4 from the Capitanian to
the Wuchiapingian (266–258 Ma; Late Permian), with uplift of the
New England Fold Belt to the north and the development of an uplifted
volcanic arc to the east. This orogenic activity may have elevated the
forebulge on the craton, thereby uplifting the former Kanimblan high-
lands during P4. Clastics continued to enter the basin from the west
from the direction of the former Kanimblan uplands during the P4 gla-
cial interval.

Powell and Veevers (1987), Eyles (1993), and Veevers (2006, 2009)
argued that, from the Serpukhovian to the Asselian, the highlands pro-
vided an uplifted land surface where glaciers nucleated. However, at-
tention was not directed towards glacial intervals P2–P4 by these
authors. Due to the fact that these ice centers continued to form in
this region, and because coarse clastic from thewest entered the eastern
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Australian basins throughout the Permian (Veevers et al., 1994a;
Veevers, 2000; Fielding et al., 2001, 2008c, 2008d), it is reasonable to
hypothesize that the former Kanimblan highlands and emplaced volca-
nic formations within the highlands still provided adequately elevated
land surfaces from the Sakmarian into the Capitanian/earliest Wuchia-
pingian. Because glaciers appear to have nucleated there, the land sur-
face must have resided above the local ELA in that region. Although
the elevation of the Kanimblan Highlands in eastern Australia has not
been constrained for the Pennsylvanian and Permian, Stephenson and
Lambeck (1985) suggested that at the end of the Permian, this upland
had elevations of between 2000 and 3000m.

The APWP of Domeier et al. (2011) place the Kanimblan Highlands
and the adjacent Bowen, Gunnedah, and Sydney Basins in a north
south belt that extended from 52 to 70° S latitude. This position
would have placed the uplands and basins in an area of convergent
wind patterns between the Polar Easterlies and the Mid-latitude
Westerlies. At the present time, the region at ~60° S is characterized
by subpolar low-pressure cells, which tend to result in cool to cold
wet weather (Rasmussen and Turner, 2003). Such a zone, in combina-
tion with relatively high elevations, may have produced depression of
the ELA on to the Kanimblan Highlands due to increased precipita-
tion, which may have produced conditions suitable for the nucleation
of glaciers.

The combination of the highlands, ocean circulation patterns that
promoted upwelling, and atmospheric circulation patterns may
have resulted in an anomalously cold, wet climate in eastern Australia
compared to other regions in Gondwana. Orographic lift of air masses
over the highlands likely contributed to increased precipitation, thus
influencing glacial mass balance. Additionally, pCO2 levels dropped
during the P2 and again during the P3 glacial events and remained
low (~300 ppmv) during the initiation of P4 (Figs. 2 and 4; cf.
Royer, 2006; Montañez et al., 2007). These combined conditions
may have allowed for depression of the ELA in eastern Australia and
the formation of glaciers during the P2, P3, and P4 glacial events.

pCO2 levels were low during P2 and P3, but glaciation was not oc-
curring elsewhere in Gondwana, even in regions closer to the South
Pole, so pCO2 levels were not the chief influence driving nucleation
of glaciers during these intervals (Figs. 2, 3, and 4). During P4, pCO2

levels rose and fluctuated (cf. Royer, 2006; Figs. 2 and 4) and perhaps
induced warmer temperatures that resulted in smaller glaciers and a
waning glacial signature (cf. Fielding et al., 2008c, 2008d). Foreland
loading during this time may have uplifted the Kanimblan highlands
as part of the forebulge, and this uplift may have been sufficient to
trigger glaciation due to a relative drop in the ELA. Ultimately, glacia-
tion across eastern Australia was driven by a complex interplay of
drivers that shifted the ELA up and down within the former Kanimblan
highlands, but the glacial signatures of P2 to P4 indicate that the ELA fell
to altitudes below the upper elevations of the highlands during those
intervals, allowing glaciers to form there.

7. Discussion and conclusions

In addition to the classically cited drivers of LPIA glaciation such as
paleo-latitude and pCO2, the position of the ELA relative to the land
surface should be taken into account when considering the initiation
and demise of glacial intervals of the LPIA. The ELA vs. paleotopogra-
phy is a built-in ‘driver’ for glaciation: elevations must be above the
ELA for glaciers to form, and this precondition should be remembered
when drivers of glaciation and deglaciation are discussed.

The presence of available land surfaces above the ELAwhere glaciers
could nucleate was an important controlling factor for glaciation during
the LPIA. Fluctuations in the position of the ELA then resulted in either
deglaciation during a rise in the ELA relative to the land surface, or
glaciation due to a fall in the ELA. Changes in the relative position of
the ELAwere facilitated by tectonism, global temperature changes asso-
ciated with fluctuations in greenhouse gasses, or factors that promoted

local fluctuations in temperature or precipitation as snow. In western
Argentina, glaciation occurred over the Protoprecordillera, a fold–thrust
belt, in the Viséan and in the Serpukhovian–Bashkirian due to uplift of
the mountain range above the local ELA. It is reasonable to conclude
that the Protoprecordillera provided the necessary elevation for gla-
ciers to maintain positive mass balance ratios during that glacial inter-
val. However, the Protoprecordillera collapsed below the ELA in the
early Pennsylvanian, and glaciation did not resume in that region fol-
lowing deglaciation in the Bashkirian. On the contrary, glaciation con-
tinued in eastern and southern South America during the rest of the
Pennsylvanian, and was likely controlled by a combination of altitude
and paleolatitude over the uplands that fed ice into the various basins.

Lowering of the global latitudinal distribution of the ELA during
the Gzhelian to Sakmarian allowed for widespread glaciation across
Gondwana and for glaciers to extend into themid-latitudes. Glacimarine
deposits in polar Gondwana indicate that the ELA resided at or near sea
level at that time, while in the mid-latitudes, glaciers nucleated on up-
lands areas. Abrupt mid-Sakmarian transitions from glacial to post-
glacial deposition including extensive coal deposits and an absence of
glacial deposits in Antarctica, indicate a rise in the ELA in the Polar
Regions and a rise in the ELA globally. The ELA remained high and well
above sea level in the Polar Regions throughout the rest of the Paleozoic.

In eastern Australia, glacial intervals continued into the Middle to
earliest Late Permian, even though glaciation had ceased in other higher
latitude regions in Gondwana by the mid-Sakmarian. The continued
glaciation in eastern Australia was likely fostered by elevation provided
by the Kanimblan highlands. However, due to its mid- to high-latitude
location, eastern Australia likely required additional factors to allow
lowering of the local ELA. These factorsmay have included anomalously
cool conditions promoted by upwelling of cold waters along the adja-
cent coastline, occurrence of the area within the belt of subpolar low-
pressure cells, and minor fluctuations in pCO2, which may have been
enough to trigger eastern Australian glaciation, but not enough to
have trigger glaciation at the Permian South Pole. The middle Sakmar-
ian to Capitanian/earliest Wuchiapingian is a complicated interval dur-
ing the LPIA with ice free poles and mid- to high-latitude eastern
Australian glaciers. Causes for this paradox are problematic. However
factors specific to eastern Australia as outlined abovemay have lowered
the ELA in that region.

Continued investigations of Carboniferous and Permian strata
promise to provide a better understanding of how Earth transitioned
out of the LPIA and into the Late Permian–Mesozoic greenhouse state.
Such deep-time studies are valuable as they provide insight into cur-
rent climate change on Earth.
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