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Moving objects produce trajectories, which are stored in databases by means of finite samples of time-stamped locations. When also
speed limitations in these sample points are known, space-time prisms (also called beads) (Egenhofer 2003, Miller 2005, Pfoser and Jensen
1999) can be used to model the uncertainty about an object’s location in between sample points. In this setting, a query of particular
interest, that has been studied in the literature of geographic information systems (GIS), is the alibi query. This boolean query asks
whether two moving objects can have physically met. This adds up to deciding whether the chains of space-time prisms (also called
necklaces of beads) of these objects intersect. This problem can be reduced to deciding whether two space-time prisms intersect.

The alibi query can be seen as a constraint database query. In the constraint database model, spatial and spatio-temporal data are
stored by boolean combinations of polynomial equalities and inequalities over the real numbers. The relational calculus augmented with
polynomial constraints is the standard first-order query language for constraint databases and the alibi query can be expressed in it.
The evaluation of the alibi query in the constraint database model relies on the elimination of a block of three existential quantifiers.
Implementations of general purpose elimination algorithms, such as provided by QEPCAD, Redlog and Mathematica, are, for practical
purposes, too slow in answering the alibi query for two specific space-time prisms. These software packages fail completely to answer
the alibi query in the parametric case (that is, when it is formulated in terms of parameters representing the sample points and speed
constraints).

The main contribution of this paper is an analytical solution to the parametric alibi query, which can be used to answer the alibi query
on two specific space-time prisms in constant time (a matter of milliseconds in our implementation). It solves the alibi query for chains
of space-time prisms in time proportional to the sum of the lengths of the chains. To back this claim up we implemented our method in
Mathematica alongside the traditional quantifier elimination method. Our solutions we propose are based on geometric argumentation
and they illustrate the fact that some practical problems require creative solutions, where at least in theory, existing systems could
provide a solution.
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1 Introduction and summary

The research on spatial databases, which started in the 1980s from work in geographic information systems,
was extended in the second half of the 1990s to deal with spatio-temporal data. In this field, one particular
line of research, concentrates on moving object databases (MODs) (Güting and Schneider 2005, Wolfson
2002), a field in which several data models and query languages have been proposed to deal with moving
objects whose position is recorded at discrete moments in time. Some of these models are geared towards
handling uncertainty that may come from various sources (measurements of locations, interpolation, ...)
and several query formalisms have been proposed (Su et al. 2001, Geerts 2004, Kuijpers and Othman 2007).
For an overview of models and techniques for MODs, we refer to the book by Güting and Schneider (Güting
and Schneider 2005).

In this paper, we focus on the trajectories that are produced by moving objects and which are stored
in a database as a collection of tuples (ti, xi, yi), i = 0, ..., N , together with an object identifier. That is,
trajectories are given as a finite sample of time-stamped locations in the plane. These samples may have
been obtained by GPS-measurements or from other location aware devices. To reconstruct the trajectory
of a moving object from such a sample, typically, linear interpolation is used. This model assumes that
the object moves at constant minimal speed between the sample points and it does not cover uncertainty
of the object’s location.

One particular model for the management of the uncertainty of the moving object’s position in between
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sample points is provided by the space-time prism model. Space-time prisms are also referred to as beads by
some authors (Egenhofer 2003, Pfoser and Jensen 1999). In this model, it is assumed that besides the time-
stamped locations of the object also some background knowledge, in particular a (e.g., physically or law
imposed) speed limitation vi at location (xi, yi) is known. The space-time prism between two consecutive
sample points is defined as the collection of time-space points where the moving objects could have passed,
given the speed limitation (see Figure 1 for an illustration). The chain of space-time prisms connecting
consecutive trajectory sample points is called a lifeline necklace (Egenhofer 2003). Whereas space-time
prisms were already conceptually known in the time geography of Hägerstrand in the 1970s (Hägerstrand
1970), they were introduced in the area of GIS by Pfoser (Pfoser and Jensen 1999) and later studied by
Egenhofer and Hornsby (Egenhofer 2003, Hornsby and Egenhofer 2002), and Miller (Miller 2005), and in
a query language context by the present authors (Kuijpers and Othman 2007). Earlier, Wolfson proposed
a cylinder model to deal with uncertainty (Wolfson 2002), but space-time prisms occupy only one third of
space and therefore are a more efficient model for managing uncertainty, reducing the uncertainty of an
objects location by two thirds.

In this setting, a query of particular interest that has been studied, mainly by Egenhofer and
Hornsby (Egenhofer 2003, Hornsby and Egenhofer 2002), is the alibi query. This boolean query asks
whether two moving objects, that are given by samples of time-space points and speed limitations, could
have physically met. This question adds up to deciding whether the necklaces of space-time prisms of these
moving objects intersect or not. This problem can be considered solved in practice, when we can efficiently
decide whether two space-time prisms intersect.

Although approximate solutions to this problem have been proposed (Egenhofer 2003), also an exact
solution is possible. We show that the alibi query can be formulated in the constraint database model by
means of a first-order constraint database query (Kuijpers and Othman 2007, Paredaens et al. 2000). It is
well-known that first-order constraint queries can be effectively evaluated and there exists implementations
of quantifier-elimination algorithms for first-order logic over the real numbers that can be used to evaluate
queries (Paredaens et al. 2000). Experiments with software packages such as QEPCAD (Hong 1990) and
Mathematica (Wolfram 2007) on a variety of space-time prisms show that deciding if two concrete space-
time prisms intersect can be computed on average in 2 minutes (running Windows XP Pro, SP2, with a
Intel Pentium M, 1.73GHz, 1GB RAM). This means that evaluating the alibi query on the lifeline necklaces
of two moving objects that each consist of 100 beads would take, if we test intersection of space-time prisms
in the two necklaces pairwise, around 100 × 100 × 2 minutes, which is almost two weeks. If we would first
check whether the time domains of the space-time prisms in the two necklaces overlap, we could reduce
the computation time to (100 + 100) × 2 minutes, or almost 7 hours. Clearly, both amounts of time are
unacceptable from a practical point of view.

Another solution within the range of constraint databases is to find a formula, in which the apexes and
limit speeds of two space-time prisms appear as parameters, that parametrically expresses that two beads
intersect. We call this problem the parametric alibi query. A quantifier-free formula for this parametric
version could, in theory, also be obtained by eliminating one block of three existential quantifiers using
existing quantifier-elimination software packages. We have attempted this approach using Mathematica
and QEPCAD, but after several days of running (with the above processor), we have interrupted the
computation, without successful outcome. It is known that these implementations fail on complicated,
higher-dimensional problems. The benefit of having a quantifier-free first-order formula that expresses
that two beads intersect is that the alibi query on two beads can be answered in constant time. The
problem of deciding whether two lifeline necklaces intersect can then be done in time proportional to the
sum of the lengths of the two necklaces of beads (if we first check if the time domains of the prisms overlap).

The main contribution of this paper is the description of an analytic solution to the alibi query. We give
a quantifier-free formula, that contains square roots, however, and that expresses the (non-)emptiness of
the intersection of two parametrically given space-time prisms. Although, in a strict sense, this formula
cannot be seen as quantifier-free first-order formula (due to the roots), it still gives the above mentioned
complexity benefits. At the basis of our solution is a geometric theorem that describes three exclusive
cases in which space-time prisms can intersect. These three cases can then be transformed into an analytic
solution that can be used to answer the alibi query on the lifeline necklaces consisting of 100 space-time
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prisms each in less than a minute. This provides a practical solution to the alibi query.
To back up our claim that the execution time of our method requires milliseconds or less we implemented

this in Mathematica and compared it to using traditional quantifier elimination to decide this query. We
have included this implementation in the appendix and used it to perform numerous experiments which
only confirm our claims.

This paper is organized as follows. In Section 2, we describe a model for trajectory (or moving object)
databases with uncertainty using beads. In Section 3, we discuss the alibi query. An analytic solution to
this query is given in Section 5.

2 A model for moving object data with uncertainty

In this paper, we consider moving objects in the two-dimensional (x, y)-space R2 and describe their
movement in the (t, x, y)-space R× R2, where t is time (we denote the set of the real numbers by R).

In this section, we define trajectories, trajectory samples, space-time prisms and trajectory (sample)
databases. Although it is more traditional to speak about moving object databases, we use the term
trajectory databases to emphasize that we manage the trajectories produced by moving objects.

2.1 Trajectories and trajectory samples

Moving objects, which we assume to be points, produce a special kind of curves, which are parameterized
by time and which we call trajectories.

Definition 2.1 A trajectory T is the graph of a mapping I ⊆ R → R2 : t 7→ α(t) = (αx(t), αy(t)), i.e.,

T = {(t, αx(t), αy(t)) ∈ R× R2 | t ∈ I},

where I is the time domain of T . �

In practice, trajectories are only known at discrete moments in time. This partial knowledge of trajecto-
ries is formalized in the following definition. If we want to stress that some t, x, y-values (or other values)
are constants, we will use sans serif characters.

Definition 2.2 A trajectory sample is a finite set of time-space points {(t0, x0, y0), (t1, x1, y1), ..., (tN , xN ,

yN )}, on which the order on time, t0 < t1 < · · · < tN , induces a natural order. �

For practical purposes, we may assume that the (ti, xi, yi)-tuples of a trajectory sample contain rational
values.

A trajectory T , which contains a trajectory sample {(t0, x0, y0), (t1, x1, y1), ..., (tN , xN , yN )}, i.e.,
(ti, αx(ti), αy(ti)) = (ti, xi, yi) for i = 0, ..., N , is called a geospatial lifeline for this trajectory sample (Egen-
hofer 2003). A common example of a lifeline, is the reconstruction of a trajectory from a trajectory samples
by linear interpolation (Güting and Schneider 2005).

2.2 Modeling uncertainty with space-time prisms

Often, in practical applications, more is known about trajectories than merely some sample points
(ti, xi, yi). For instance, background knowledge like a physically or law imposed speed limitation vi at
location (xi, yi) might be available. Such a speed limit might even depend on ti. The speed limits that hold
between two consecutive sample points can be used to model the uncertainty of a moving object’s location
between sample points.

More specifically, we know that at a time t, ti ≤ t ≤ ti+1, the object’s distance to (xi, yi) is at most
vi(t − ti) and its distance to (xi+1, yi+1) is at most vi(ti+1 − t). The spatial location of the object is
therefore somewhere in the intersection of the disc with center (xi, yi) and radius vi(t − ti) and the disc
with center (xi+1, yi+1) and radius vi(ti+1 − t). The geometric location of these points is referred to as a
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space-time prism (Pfoser and Jensen 1999, Egenhofer 2003) and defined, for general points p = (tp, xp, yp)
and q = (tq, xq, yq) and speed limit vmax as follows.
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Figure 1. A space-time prism and a lifeline necklace.

Definition 2.3 The space-time prism with origin p = (tp, xp, yp), destination q = (tq, xq, yq), with tp ≤ tq,
and maximal speed vmax ≥ 0 is the set of all points (t, x, y) ∈ R×R2 that satisfy the following constraint
formula1

ΨP(t, x, y, tp, xp, yp, tq, xq, yq, vmax) := (x− xp)
2 + (y − yp)

2 ≤ (t− tp)
2v2

max

∧ (x− xq)
2 + (y − yq)

2 ≤ (tq − t)2v2
max ∧ tp ≤ t ≤ tq.

We denote this set by P(p, q, vmax) or P(tp, xp, yp, tq, xq, yq, vmax). �

In the formula ΨP(t, x, y, tp, xp, yp, tq, xq, yq, vmax), we consider tp, xp, yp, tq, xq, yq, vmax to be parameters,
whereas t, x, y are considered variables defining the subset of R× R2.

Figure 2 illustrates the notion of space-time prism in time-space. Whereas a continuous curve connecting
the sample points of a trajectory sample was called a geospatial lifeline, a chain of space-time prisms
connecting succeeding trajectory sample points is called a lifeline necklace (Egenhofer 2003).

2.3 Trajectory databases

We assume the existence of an infinite set Labels = {a, b, ..., a1, b1, ..., a2, b2, ...} of trajectory labels, that
serve to identify individual trajectory samples. We now define the notion of trajectory database.

Definition 2.4 A trajectory (sample) database is a finite set of tuples (ai, ti,j , xi,j, yi,j , vi,j), with i = 1, ..., r
and j = 0, ..., Ni, such that ai ∈ Labels cannot appear twice in combination with the same t-value, such
that {(ti,0, xi,0, yi,0), (ti,1, xi,1, yi,1), ..., (ti,Ni

, xi,Ni
, yi,Ni

)} is a trajectory sample for each i = 1, ..., r and such
that the vi,j ≥ 0 for each i = 1, ..., r and j = 0, ..., Ni. �

3 Trajectory queries and the alibi query

In this section, we define the notion of trajectory database query, we show how constraint database
languages can be used to query trajectories and we define the alibi query and the parametric alibi query.

1Later on, this type of formula’s will be refered to as FO(+,×, <, 0, 1)-formulas.
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3.1 Trajectory queries

A trajectory database query has been defined as a partial computable function from trajectory databases
to trajectory databases (Kuijpers and Othman 2007). Often, we are also interested in queries that express
a property, i.e., in boolean queries. More formally, we can say that a boolean trajectory database query is
a partial computable function from trajectory databases to {True,False}.

When we say that a function is computable, this is with respect to some fixed encoding of the trajectory
databases (e.g., rational numbers are represented as pairs of natural numbers in bit representation).

3.2 A constraint-based query language

Several languages have been proposed to express queries on moving object data and trajectory databases
(see (Güting and Schneider 2005) and references therein). One particular language for querying trajectory
data, that was recently studied in detail by the present authors, is provided by the formalism of constraint
databases. This query language is a first-order logic which extends first-order logic over the real numbers
with a predicate S to address the input trajectory database. We denote this logic by FO(+,×, <, 0, 1, S)
and define it as follows.

Definition 3.1 The language FO(+,×, <, 0, 1, S) is a two-sorted logic with label variables a, b, c, ... (pos-
sibly with subscripts) that refer to trajectory labels and real variables x, y, z, ..., v, ... (possibly with sub-
scripts) that refer to real numbers. The atomic formulas of FO(+,×, <, 0, 1, S) are

• P (x1, ..., xn) > 0, where P is a polynomial with integer coefficients in the real variables x1, ..., xn;

• a = b; and

• S(a, t, x, y, v) (S is a 5-ary predicate).

The formulas of FO(+,×, <, 0, 1, S) are built from the atomic formulas using the logical connectives
∧,∨,¬, ... and quantification over the two types of variables: ∃x, ∀x and ∃a, ∀a. �

The label variables are assumed to range over the labels occurring in the input trajectory database
and the real variables are assumed to range over R. The formula S(a, t, x, y, v) expresses that a tuple
(a, t, x, y, v) belongs to the input trajectory database. The interpretation of the other formulas is standard.

For example, the FO(+,×, <, 0, 1, S)-sentence

∃a∃b(¬(a = b) ∧ ∀t∀x∀y∀vS(a, t, x, y, v) ↔ S(b, t, x, y, v))

expresses the boolean trajectory query that says that there are two identical trajectories in the input
database with different labels.

When we instantiate the free variables in a FO(+,×, <, 0, 1, S)-formula ϕ(a, b, ..., t, x, y, ...) by concrete
values a, b, ..., t, x, y, ... we write ϕ[a, b, ..., t, x, y, ...] for the formula we obtain.

3.3 The alibi query

The alibi query is the boolean query which asks whether two moving objects, say with labels a and a′, that
are available as samples in a trajectory database, can have physically met. Since the possible positions of
these moving objects are, in between sample points, given by space-time prisms, the alibi query asks to
decide if the two lifeline necklaces of a and a′ intersect or not.

More concretely, if the trajectory a is given in the trajectory database by
the tuples (a, t0, x0, y0, v0), ...., (a, tN , xN , yN , vN ) and the trajectory a′ by the tuples
(a′, t′0, x

′
0, y

′
0, v

′
0), ...., (a

′, t′M , x′M , y
′
M , v

′
M ), then a has an alibi for not meeting a′ if for all i, 0 ≤ i ≤ N − 1

and all j, 0 ≤ j ≤M − 1,

P(ti, xi, yi, ti+1, xi+1, yi+1, vi) ∩ P(t′j , x
′
j , y

′
j , t

′
j+1, x

′
j+1, y

′
j+1, v

′
j) = ∅. (†)

We remark that the alibi query can be expressed by a formula in the logic FO(+,×, <, 0, 1, S), which we
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now give. To start, we denote the subformula

S(a, t1, x1, y1, v1) ∧ S(a, t2, x2, y2, v2) ∧ ∀t3∀x3∀y3∀v3(S(a, t3, x3, y3, v3) → ¬(t1 < t3 ∧ t3 < t2)),

that expresses that (t1, x1, y1) and (t2, x2, y2) are consecutive sample points on the trajectory a by
σ(a, t1, x1, y1, v1, t2, x2, y2, v2).

The alibi query on a and a′ is then expressed as ϕalibi[a, a
′] =

¬∃t1∃x1∃y1∃v1∃t2∃x2∃y2∃v2∃t′1∃x′1∃y′1∃v′1∃t′2∃x′2∃y′2∃v′2
(σ(a, t1, x1, y1, v1, t2, x2, y2, v2) ∧ σ(a′, t′1, x

′
1, y

′
1, v

′
1, t

′
2, x

′
2, y

′
2, v

′
2) ∧ ∃t∃x∃y(t1 ≤ t ≤ t2 ∧ t′1 ≤ t ≤ t′2 ∧

(x− x1)
2 + (y − y1)

2 ≤ (t− t1)
2v2

1 ∧ (x− x2)
2 + (y − y2)

2 ≤ (t2 − t)2v2
1 ∧

(x− x′1)
2 + (y − y′1)

2 ≤ (t− t′1)
2v′21 ∧ (x− x′2)

2 + (y − y′2)
2 ≤ (t′2 − t)2v′21 )).

It is well-known that FO(+,×, <, 0, 1, S)-expressible queries can be evaluated effectively on arbitrary
trajectory database inputs (Paredaens et al. 2000, Kuijpers and Othman 2007). Briefly explained, this
evaluation can be performed by (1) replacing the occurrences of S(a, t, x, y, v) by a disjunction describ-
ing all the sample points belonging to the trajectory sample a; the same for a′; and (2) eliminating all
the quantifiers in the obtained formula. In concreto, using the notation from above, each occurrence of
S(a, t, x, y, v) would be replaced in ϕalibi[a, a

′] by
∨N−1

i=0 (t = ti ∧x = xi ∧ y = yi ∧ v = vi), and similar for a′.
This results in a (rather complicated) first-order formula over the reals ϕ̃alibi[a, a

′] in which the predicate
S does not occur any more. Since first-order logic over the reals admits the elimination of quantifiers (i.e.,
every formula can be equivalently expressed by a quantifier-free formula), we can decide the truth value of
ϕ̃alibi[a, a

′] by eliminating all quantifiers from this expression. In this case, we have to eliminate one block
of existential quantifiers.

We can however simplify the quantifier-elimination problem. It is easy to see, looking at (†) above, that
¬ϕ̃alibi[a, a

′] is equivalent to

N−1
∨

i=0

M−1
∨

j=0

ψalibi[ti, xi, yi, ti+1, xi+1, yi+1, vi, t
′
j , x

′
j , y

′
j , t

′
j+1, x

′
j+1, y

′
j+1, v

′
j ],

where the restricted alibi-query formula ψalibi(ti, xi, yi, ti+1, xi+1, yi+1, vi, t
′
j , x

′
j , y

′
j, t

′
j+1, x

′
j+1, y

′
j+1, v

′
j) ab-

breviates the formula

∃t∃x∃y(ti ≤ t ≤ ti+1 ∧ t′j ≤ t ≤ t′j+1 ∧ (x− xi)
2 + (y − yi)

2 ≤ (t− ti)
2v2

i ∧
(x− xi+1)

2 + (y − yi+1)
2 ≤ (ti+1 − t)2v2

i ∧
(x− x′j)

2 + (y − y′j)
2 ≤ (t− t′j)

2v′2j ∧ (x− x′j+1)
2 + (y − y′j+1)

2 ≤ (t′j+1 − t)2v′2j )

that expresses that two space-time prisms intersect.
So, the instantiated formula

ψalibi[ti, xi, yi, ti+1, xi+1, yi+1, vi, t
′
j, x

′
j , y

′
j , t

′
j+1, x

′
j+1, y

′
j+1, v

′
j ]

expresses (†). To eliminate the existential block of quantifiers (∃t∃x∃y) from this expression, existing
software-packages for quantifier elimination, such as QEPCAD (Hong 1990), Redlog (Sturm 2000) and
Mathematica (Wolfram 2007) can be used. We experimented QEPCAD, Redlog and Mathematica to
decide if several space-time prisms intersected. The latter two programs have a similar performance and
they outperform QEPCAD. To give an idea of their performance, we give some results with Mathematica:
the computation of ψalibi[0, 0, 0, 1, 2, 2,

√
8, 0, 3, 3, 1, 2, 2, 2] took 6 seconds; that of ψalibi[0, 0, 0, 1, 2, 2,

√
8, 0,

3, 4, 1, 2, 2, 2] took 209 seconds and the computation of ψalibi[0, 0, 0, 1,−1,−1, 1, 0, 1, 1, 2,−1, 1, 2] took 613
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seconds. Roughly speaking, our experiments show that, using Mathematica , this quantifier elimination
can be computed on average in about 2 minutes (running Windows XP Pro, SP2, with a Intel Pentium M,
1.73GHz, 1GB RAM). This means that evaluating the alibi query on the lifeline necklaces of two moving
objects that each consist of 100 space-time prisms would take around 100 × 100 × 2 minutes, which is
almost two weeks, when applied naively and at most (100 + 100) × 2 minutes or a quarter day, when first
the intersection of time-intervals is tested. Clearly, in both cases, such an amount of time is unacceptable.

There is a better solution, however, which we discuss next, that can decide if two space-time prisms
intersect or not in a couple of milliseconds.

3.4 The parametric alibi query

The uninstantiated formula

ψalibi(ti, xi, yi, ti+1, xi+1, yi+1, vi, t
′
j, x

′
j , y

′
j , t

′
j+1, x

′
j+1, y

′
j+1, v

′
j)

can be viewed as a parametric version of the restricted alibi query, where the free variables are consid-
ered parameters. This formula contains three existential quantifiers and the existing software-packages for
quantifier elimination could be used to obtain a quantifier-free formula ψ̃alibi(ti, xi, yi, ti+1, xi+1, yi+1, vi, t

′
j ,

x′j, y
′
j, t

′
j+1, x

′
j+1, y

′
j+1, v

′
j) that is equivalent to ψalibi. The formula ψ̃alibi could then be used to straight-

forwardly answer the alibi query in time linear in its size, which is independent of the size of the input
and therefore constant. We have tried to eliminate the existential block of quantifiers ∃t∃x∃y from ψalibi

using Mathematica, Redlog and QEPCAD. After some minutes of running, Redlog invokes QEPCAD.
After several days of running QEPCAD on the configuration described above, we have interrupted the
computation without result. Also Mathematica ran into problems without giving an answer. It is clear that
eliminating a block of three existential quantifiers from a formula in 17 variables is beyond the existing
quantifier-elimination implementations. Also, the instantiation of several parameters to adequately chosen
constant values does not help to produce a solution. For instance, without loss of generality we can locate
(ti, xi, yi) in the origin (0, 0, 0) and locate the other apex of the first space-time prism above the y-axis,
i.e., we can take xi+1 = 0. Furthermore, we can take vi = 1 and ti+1 = 1. But Mathematica, Redlog and
QEPCAD cannot also not cope with this simplified situation.

The main contribution of this paper is a the description of a quantifier-free formula equivalent to ψalibi(ti,
xi, yi, ti+1, xi+1, yi+1, vi, t

′
j , x

′
j , y

′
j, t

′
j+1, x

′
j+1, y

′
j+1, v

′
j). The solution we give is not a quantifier-free first-order

formula in a strict sense, since it contains root expressions, but it can be easily turned into a quantifier-
free first-order formula of similar length. It answers the alibi query on the lifeline necklaces of two moving
objects that each consist of 100 space-time prisms in less than a minute. This description of this quantifier-
free formula is the subject of the next section.

4 Preliminaries on the geometry of space-time prisms

Before we can give an analytic solution to the alibi query and prove its correctness, we need to introduce
some terminology concerning space-time prisms.

4.1 Geometric components of space-time prisms

Various geometric properties of space-time prisms have already been described (Egenhofer 2003, Kuijpers
and Othman 2007, Miller 2005). Here, we need some more definitions and notations to describe various
components of a space-time prism. These components are illustrated in Figure 2. In this section, let
p = (tp, xp, yp) and q = (tq, xq, yq) be two time-space points, with tp ≤ tq and let vmax be a positive real
number.

The space-time prism P(p, q, vmax) is the intersection of two filled cones, given by the equations (x −
xp)

2 + (y − yp)
2 ≤ (t− tp)

2v2
max ∧ tp ≤ t and (x− xq)

2 + (y − yq)
2 ≤ (tq − t)2v2

max ∧ t ≤ tq respectively.
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The border of its bottom cone is the set of all points (t, x, y) that satisfy

ΨC−(t, x, y, tp, xp, yp, vmax) := (x− xp)
2 + (y − yp)

2 = (t− tp)
2v2

max ∧ tp ≤ t

and is denoted by C−(p, vmax) or C−(tp, xp, yp, vmax); and the border of its upper cone is the set of all
points (t, x, y) that satisfy

ΨC+(t, x, y, tq, xq, yq, vmax) := (x− xq)
2 + (y − yq)

2 = (tq − t)2v2
max ∧ t ≤ tq

and is denoted by C+(q, vmax) or C+(tq, xq, yq, vmax).
The set of the two apexes of P(p, q, vmax) is denoted by τP(p, q, vmax), i.e., τP(p, q, vmax) = {p, q}.
We call the topological border of the space-time prism P(p, q, vmax) its mantel and denote it by ∂P(p,

q, vmax). It can be easily verified that the mantel consists of the set of points (t, x, y) that satisfy

Ψ∂(t, x, y, tp, xp, yp, tq, xq, yq, vmax) := tp ≤ t ≤ tq ∧
(

2x(xp − xq) + x2
q − x2

p + 2y(yp − yq) + y2
q − y2

p ≤ v2
max

(

2t(tp − tq) + t2q − t2p
)

∧
(x− xp)

2 + (y − yp)
2 = (t− tp)

2v2
max ∨ (x− xq)

2 + (y − yq)
2 = (tq − t)2v2

max

∧ 2x(xp − xq) + x2
q − x2

p + 2y(yp − yq) + y2
q − y2

p ≥ v2
max

(

2t(tp − tq) + t2q − t2p
))

.

The first conjunction describes the lower half of the mantel and the second conjunction describes the
upper half of the mantel. The upper and lower half of the mantel are separated by a plane. The intersection
of this plane with the space-time prism is an ellipse, and the border of this ellipse is what we will refer to
as the rim of the space-time prism. We denote the rim of the space-time prism P(p, q, vmax) by ρP(p, q,
vmax) and remark that it is described by the formula

Ψρ(t, x, y, tp, xp, yp, tq, xq, yq, vmax) := (x− xp)
2 + (y − yp)

2 = (t− tp)
2v2

max ∧ tp ≤ t ≤ tq ∧
2x(xp − xq) + x2

q − x2
p + 2y(yp − yq) + y2

q − y2
p = v2

max

(

2t(tp − tq) + t2q − t2p
)

.

The plane in which the rim lies splits the space-time prism into an upper-half space-time prism and a
bottom-half space-time prism. The bottom-half space-time prism is the set of all points (t, x, y) that satisfy

ΨP−(t, x, y, tp, xp, yp, tq, xq, yq, vmax) := (x− xp)
2 + (y − yp)

2 ≤ (t− tp)
2v2

max ∧ tp ≤ t ≤ tq ∧
2x(xp − xq) + x2

q − x2
p + 2y(yp − yq) + y2

q − y2
p ≤ v2

max

(

2t(tp − tq) + t2q − t2p
)

and is denoted by P−(tp, xp, yp, tq, xq, yq, vmax).
The upper space-time prism is the set of all points (t, x, y) that satisfy

ΨP+(t, x, y, tp, xp, yp, tq, xq, yq, vmax) := (x− xq)
2 + (y − yq)

2 ≤ (tq − t)2v2
max ∧ tp ≤ t ≤ tq ∧

2x(xp − xq) + x2
q − x2

p + 2y(yp − yq) + y2
q − y2

p ≥ v2
max

(

2t(tp − tq) + t2q − t2p
)

and is denoted by P+(tp, xp, yp, tq, xq, yq, vmax).

4.2 The intersection of two cones

Let C−(t1, x1, y1, v1) and C−(t2, x2, y2, v2) be two bottom cones. A bottom cone, e.g., C−(t1, x1, y1, v1),
can be seen as a circle in 2-dimensional space (x, y)-space with center (x1, y1) and linearly growing radius
(t− t1)v1 as t1 ≤ t.

Let us assume that the apex of neither of these cones is inside the other cone, i.e., (x1−x2)
2+(y1−y2)

2 >

(t1 − t2)
2v2

1 ∨ t1 < t2 and (x1 − x2)
2 + (y1 − y2)

2 > (t1 − t2)
2v2

2 ∨ t2 < t1. This assumption implies that at
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(tq, xq, yq)

t

y

x

ρP

C+

C−

τP

(tp, xp, yp)

P+

P−

Figure 2. A dissection of the space-time prism P(tp, xp, yp, tq , xq, yq, vmax).

t1 and t2 neither radius is larger than or equal to the distance between the two cone centers. So, at first
the two circles are disjoint and after growing for some time they intersect in one point. We call the first
(in time) time-space point where the two circles touch in a single point, and thus for which the sum of the
two radii is equal to the distance between the two centers the initial contact of the two cones C−(t1, x1,

y1, v1) and C−(t2, x2, y2, v2). It is the unique point (t, x, y) that satisfies the formula

ΨIC−(t, x, y, t1, x1, y1, v1, t2, x2, y2, v2) := t1 ≤ t ∧ t2 ≤ t ∧
(x− x1)

2 + (y − y1)
2 = (t− t1)

2v2
1 ∧ (x− x2)

2 + (y − y2)
2 = (t− t2)

2v2
2 ∧

((t− t1)v1 + (t− t2)v2)
2 = (x1 − x2)

2 + (y1 − y2)
2.

The initial contact of two cones C+(t1, x1, y1, v1) and C+(t2, x2, y2, v2) is given by the formula
ΨIC+(t, x, y, t1, x1, y1, v1, t2, x2, y2, v2) that we obtain from ΨIC− by replacing in t1 ≤ t ∧ t2 ≤ t by
t ≤ t1 ∧ t ≤ t2. We denote the singleton sets containing the initial contacts by IC(C−(t1, x1, y1, v1),
C−(t2, x2, y2, v2)) and IC(C+(t1, x1, y1, v1),C

+(t2, x2, y2, v2)).

����

initial contact

(t2, x2, y2)
(t1, x1, y1)

(t, x, y)

v2(t− t2)

v1(t− t1)

(x1, y1)

(x2, y2)

Figure 3. Intersecting cones and their initial contact (3-dimensional view on the left and 2-dimensional view on the right).

From the last equation in of the system in ΨIC− and ΨIC+, we easily obtain t =√
(x1−x2)2+(y1−y2)2+t1v1+t2v2

v1+v2
. To compute the other two coordinates (x, y) of the initial contact, we ob-

serve that for in the plane of this time value t, it is on the line segment bounded by (x1, y1) and (x2, y2)
and that its distance from (x1, y1) is v1(t− t1) and its distance from (x1, y1) is v2(t− t2). We can conclude
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that the initial contact has (t, x, y)-coordinates given by the following system of equations















t =

√
(x1−x2)2+(y1−y2)2+t1v1+t2v2

v1+v2

x = x1 + v1(t− t1)
x2−x1√

(x2−x1)2+(y2−y1)2

y = y1 + v1(t− t1)
y2−y1√

(x2−x1)2+(y2−y1)2
.

This means that we can give more explicit descriptions to replace ΨIC− and ΨIC+ .

5 An analytic solution to the alibi query

In this section, we first describe our solution to the alibi query on a geometric level. Next, we prove its
correctness and transform it into an analytic solution and finally we show how to construct a quantifier-free
first-order formula out of the analytic solution.

5.1 Preliminary geometric considerations

Figure 4. One space-time prism is contained in the other.

The solution we present is based on the observation that the two main cases of intersection (that do not
exclude each other) are: (1) an apex of one space-time prism is in the other; and (2) the mantels of the
space-time prisms intersect.

The inclusion of one space-time prism in the other, illustrated in Figure 4, is an example of the first case.
It is clear that if no apex is contained in another space-time prism and we still assume that the space-time
prisms intersect, than their mantels must intersect. We show this more formally in Lemma 5.1. In this
second case, the idea is to find a special point (a witness point) that is easily computable and necessarily
in the intersection.

Let us consider two space-time prisms with bottom cones C−(t1, x1, y1, v1) and C−(t2, x2, y2, v2) and
let us assume that none of the apeces is inside the other cone. One special point is the point of initial
contact IC(C−(t1, x1, y1, v1),C

−(t2, x2, y2, v2)). However, this point can not be guaranteed to be in the
intersection if the mantels of the two space-time prisms intersect, as we will show in the following example.
Consider two space-time prisms with bottom cones C−(0, 0, 0, 1) and C−(0, 2, 0, 1). The intersection is a
hyperbola in the plane x = 1 with equation t2 − y2 = 1. The initial contact of the two bottom cones is
the point (1, 0, 1). To show that this point of initial contact does not need to be in the intersection of
the two space-time prisms, the idea is to cut this point out of the intersection as follows. Suppose one
space-time prism has apexes, (0, 0, 0) and (a, b, c) and speed 1. The plane in which its rim lies is given by
−2ax + a2 − 2by + b2 + 2ct − c2 = 0. This plane cuts the plane α given by the equality x = 1 in a line
given by the equation −2by + 2ct − 2a + a2 − c2 = 0. Clearly, we can choose (a, b, c) such that the line

contains the points
(√

5
2 , 1,

1
2

)

and
(√

2, 1, 1
)

. Everything below this line will be part of the first space-time
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Figure 5. Clean cut between cones.

prism and the second cone, but the initial contact is situated above the line, effectively cutting it out of
the intersection. All this is illustrated in Figure 6.

initial contact

α ↔ x = 1

α

−2by + 2ct − 2a + a2
− c2

= 0

Figure 6. The initial contact cut out.

We notice how the plane in which the rim lies and the rim itself is the evil do-er. If neither rim intersects
the mantel of the other space-time prism, then the intersection of mantels is the same as an intersection
of cones. In which case the initial contact will not be cut out and can be used to determine if there is
intersection in this manner.

Using contraposition on the statement in the previous paragraph we get: if there is an intersection and
no initial contact is in the intersection then a rim must intersect the other space-time prism’s mantel.

To verify intersection with the apexes and initial contacts is straightforward. Verifying if a rim intersects
a mantel results in solving a quartic polynomial equation in one variable and verifying the solution in a
single inequality in which no variable appears with a degree higher than one.

5.2 Outline of the solution

Suppose, for the remainder of this section, we wish to verify if the space-time prisms P1 = P(t1, x1, y1,

t2, x2, y2, v1) and P2 = P(t3, x3, y3, t4, x4, y4, v2) intersect. Moreover, we assume the space-time prisms are
non-empty, i.e., (x2 − x1)

2 + (y2 − y1)
2 ≤ (t2 − t1)

2v2
1 and (x4 − x3)

2 + (y4 − y3)
2 ≤ (t4 − t3)

2v2
2 .

We first observe that an intersection between space-time prisms can be classified into three, mutually
exclusive, cases. The three cases then are:

(I) an apex of one space-time prism is contained in the other, i.e.,

τP1 ∩ P2 6= ∅ or P1 ∩ τP2 6= ∅;
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(II) not (I), but the rim of one space-time prism intersects the mantel of the other, i.e.,

ρP1 ∩ ∂P2 6= ∅ or ρP2 ∩ ∂P1 6= ∅;

(III) not (I) and not (II) and the initial contact of the upper or lower cones is in the intersection of the
space-time prisms, i.e.,

IC(C−
1
,C−

2
) ⊂ P1 ∩ P2 or IC(C+

1
,C+

2
) ⊂ P1 ∩ P2.

If none of these three cases occur then the space-time prisms do not intersect, as we show in the
correctness proof below. First, we give the following geometric lemma.

Lemma 5.1 If P1 ∩ P2 6= ∅, τP1 ∩ P2 = ∅ and τP2 ∩ P1 = ∅, then ∂P1 ∩ ∂P2 6= ∅.
Proof From the assumptions, we know there is a point p1 in P2, e.g., an apex of P2, that is not in P1.
Also, there is a point p2 that is in P2 and in P1. The line segment bounded by p1 and p2 lies in P2, since
P2 is convex. The line segment cuts the mantel of P1 since p2 is inside P1 and p1 is not. Let p be this
point where the segment bounded by p1 and p2 intersects ∂P1. This point lies either on the upper-half
space-time prism P+

1 or on the bottom-half space-time prism P−
1 . Let r be the apex of this half space-time

prism. Since p is inside P2 and r is not, the line segment bounded by p and r must cut ∂P2 in a point
q. This point lies of course on ∂P2 and on ∂P1 since the line segment bounded by p and r is a part of
∂P1. Hence their mantels must have a non-empty intersection if the space-time prisms have a non-empty
intersection and neither space-time prism contains the apexes of the other. �

Now, we show that if P1 and P2 intersect and neither (I), nor (II) occur, then (III) occurs.

Theorem 5.2 If P1 ∩ P2 6= ∅, τP1 ∩ P2 = ∅, P1 ∩ τP2 = ∅, ρP1 ∩ ∂P2 = ∅ and ρP2 ∩ ∂P1 = ∅, then
IC(C−

1
,C−

2
) ⊂ P1 ∩ P2 or IC(C+

1
,C+

2
) ⊂ P1 ∩ P2.

Proof Let us assume that the hypotheses of the statement of the theorem is true. It is sufficient to prove
that either C−

1
∩ C−

2
⊂ P−

1 ∩ P−
2 or C+

1
∩ C+

2
⊂ P+

1 ∩ P+
2 . We will split the proof in two cases. From the

fourth and fifth hypotheses it follows that either (1) ρP1 ⊂ P2 or ρP2 ⊂ P1; or (2) ρP1 ∩ P2 = ∅ and
ρP2 ∩ P1 = ∅.
Case (1): We assume ρP2 ⊂ P1 (the case ρP1 ⊂ P2 is completely analogous). We prove C−

1
∩C−

2
⊂ P−

1 ∩P−
2

(the case for upper cones is completely analogous). The following argument is illustrated in Figure 7.
Since ρP2 ⊂ P1, we know that ρP2 is inside C−

1
, and (t3, x3, y3) is outside. We can show that v2 < v1.

Consider the plane spanned by the two axis of symmetry of both C−
1

and C−
2
. Both C−

1
and C−

2
intersect

this plane in two half lines each. Moreover, we know that C−
1

intersects the axis of symmetry of C−
2
. Let

t0 be the moment at which this happens. Obviously t0 > t1, but we also know t0 > t3 since (t3, x3, y3) is

outside C−
1
. We have that v1(t0 − t1) =

√

(x1 − x3)2 + (y1 − y3)2. Since ρP2 is inside C−
1

and (t3, x3, y3)
is outside, this means both half lines from C−

2
intersect the half lines from C−

1
. Let t′0 and t′′0 be the

moments in time at which this happens and let t′0 > t′′0. We have again that t′0 > t1 and t′0 > t3. Then

v1(t
′
0 − t1) =

√

(x1 − x3)2 + (y1 − y3)2 + v2(t
′
0 − t3) if and only if v1(t

′
0 − t0) = v2(t

′
0 − t3). Since t0 > t3,

we get v2 < v1. This is depicted in Figure 7.
It follows that every straight half line starting in (t3, x3, y3) on C−

2
intersects C−

1
between (t3, x3, y3) and

ρP2, since ρP2 is inside C−
1
, and (t3, x3, y3) is outside. We also know that this line does not intersect C−

1

beyond ρP2 since the cone C−
2

is entirely inside C−
1

beyond the rim ρP2. Therefore, C−
1
∩ C−

2
⊂ P−

2 .
Clearly, P−

2 intersects P−
1 since it can not intersect P+

1 . We know C−
1
∩∂P−

2 is a closed continuous curve
that lies entirely in C−

1
. This curve is also contained in P−

1 . Indeed, if we assume this is not the case, then
it intersects the plane in which ρP1 lies, and hence it intersects ρP1 itself, contradicting the assumption
ρP1 ∩ ∂P2 = ∅.
Case (2): Now assume ρP1 ∩P2 = ∅ and ρP2 ∩P1 = ∅. Clearly, v1 can not be equal to v2, otherwise the
depicted intersection can not occur. So suppose without loss of generality that v2 < v1. Now either P−

2
intersects both P−

1 and P+
1 or P+

2 intersects both P−
1 and P+

1 . These cases are mutually exclusive because
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t
′′

0

C
−

1

C
−

2

t0

t
′

0

t1

t3

t

Figure 7. Illustration to the proof.

of the following. If P+
2 intersects P+

1 then ρP2 is inside C+
1
, likewise if P−

2 intersects P−
1 then ρP2 is inside

C−
1
. Hence ρP2 ⊂ P1 which contradicts our hypothesis. If P+

2 intersects P−
1 then ρP2 must be outside C−

1

and thus P−
2 must be as well, hence P−

2 intersects neither P−
1 nor P+

1 . Likewise, if P−
2 intersects P+

1 then
P+

2 can not intersect P1.
To prove that if P−

2 intersects P−
1 then it also intersects P+

1 and if P−
2 intersects P+

1 then it also intersects
P−

1 we proceed as follows (the case for P+
2 is analogous). Suppose P−

2 intersects P−
1 , then P−

2 ∩P−
1 ⊂ P1,

but ρP2 is outside P1, that means P−
2 must intersect P+

1 since it can not intersect P−
1 anymore. This is

the “what goes in must come out”-principle. Likewise, suppose P−
2 intersects P+

1 , then P−
2 ∩ P+

1 ⊂ P1,
but (t3, x3, y3) is outside P1, that means P−

2 must intersect P−
1 since it can not intersect P−

1 anymore.
So suppose now that P−

2 intersects both P−
1 and P+

1 (the case for P+
2 is completely analogous). If P−

2
intersects P−

1 that means ρP2 is completely inside C−
1

and therefore that C−
1
∩ C−

2
⊂ P−

2 . We proceed like
in the first case, we know that C−

1
∩P−

2 is a closed continuous curve. This curve lies entirely in C−
1
. If this

curve is not entirely in P−
1 that means it intersects the plane in which ρP1 lies, and hence intersects ρP1

itself. But this is contradictory to the assumption that ρP1 ∩ ∂P2 = ∅. �

Figure 8. Case (II) is not redundant: P(0, 0, 0, 2, 0, 2, 1.9) and P(0, 3, 0, 2, 3, 2, 1.9) seen from the top and the side.

In Theorem 5.2, we proved that if there is an intersection and neither rim cuts the other space-time
prism’s mantel and neither apex of a space-time prism is contained in the other then there must be an
initial contact in the intersection. Visualizing how space-time prisms intersect might tempt one to think
there is always an initial contact in the intersection. There exist counterexamples in which there is an
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intersection and no initial contact is in that intersection. That means case (II) is not redundant. This
situation is depicted in Figure 8. The space-time prisms are P(0, 0, 0, 2, 0, 2, 1.9) and P(0, 3, 0, 2, 3, 2, 1.9).

Figure 9. Intersection of Figure 8 with the plane y = 0 (left) and with the plane y = 3 (right).

It is clear that the initial contact of the bottom cones lies in the plane spanned by the axis of symmetry
of those bottom cones, in this case this is the plane y = 0. The intersection of Figure 8 can be seen in
Figure 9 on the left, where the two space-time prisms clearly have no intersection and thus no initial
contact in the intersection.

In the case of the upper cones the initial contact must lie in the plane y = 3. The intersection of Figure 8
can be seen in Figure 9 on the right, where the two space-time prisms clearly have no intersection and
there is again no initial contact in the intersection.

This concludes the outline.

5.3 A formula for Case (I)

In Case (I), we verify whether τP1 ∩P2 6= ∅ or P1 ∩ τP2 6= ∅. To check if that is the case we merely need
to verify if one of the apexes satisfies the set of equations of the other space-time prism. In this way we
obtain

ΦI (t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2) :=

(ΨP (t3, x3, y3, t1, x1, y1, t2, x2, y2, v1) ∨ ΨP (t4, x4, y4, t1, x1, y1, t2, x2, y2, v1) ∨
ΨP (t1, x1, y1, t3, x3, y3, t4, x4, y4, v2) ∨ ΨP (t2, x2, y2, t3, x3, y3, t4, x4, y4, v2)) .

For the following sections we assume that the apex sets of the space-time prisms are not singletons, i.e.,
t1 < t2 and t3 < t4.

5.4 A formula for Case (II)

Now, let us assume that ΦI failed in the previous section. Note that we can always apply a speed-
preserving (Kuijpers and Othman 2007) transformation to R × R2 to obtain easier coordinates. We
can always find a transformation such that (t′1, x

′
1, y

′
1) = (0, 0, 0) and that the line-segment connecting

(t′1, x
′
1, y

′
1) and (t′2, x

′
2, y

′
2) is perpendicular to the y-axis, i.e., y′2 = 0. This transformation is a composition

of a translation in R × R2, a spatial rotation in R2 and a scaling in R × R2 (Kuijpers and Othman
2007). Let the coordinates without a prime be the original set, and let coordinates with a prime be the
image of the same coordinates without a prime under this transformation. Note that we do not need to
transform back because the query is invariant under such transformations (Kuijpers and Othman 2007).
The following formula returns the transformed coordinates (t′, x′, y′) of (t, x, y) given the points (t1, x1, y1)
and (t2, x2, y2):

ϕA(t1, x1, y1, t2, x2, y2, t, x, y, t
′, x′, y′) :=

(

y2 6= y1 ∧ t′ = (t− t1)
√

(x2 − x1)2 + (y2 − y1)2
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∧ x′ = (x− x1)(x2 − x1) +(y − y1)(y2 − y1) ∧ y′ = (x− x1)(y1 − y2) + (y − y1)(x2 − x1)
)

∨
(

y2 = y1 ∧ t′ = (t− t1) ∧ x′ = (x− x1) ∧ y′ = (y − y1)
)

.

The translation is over the vector (−t1,−x1,−y1), the rotation over minus the angle that (t2 − t1, x2 −
x1, y2 − y1) makes with the x-axis, and a scaling by a factor

√

(x2 − x1)2 + (y2 − y1)2. Notice that the
rotation and scaling only need to occur if y2 is not already in place, i.e., if y2 6= y1.

The formula ψcrd(t
′
1, x

′
1, y

′
1, t1, x1, y1, t

′
2, x

′
2, y

′
2, t2, x2, y2, t

′
3, x

′
3, y

′
3, t3, x3, y3, t

′
4, x

′
4, y

′
4, t4, x4, y4) is short for

ϕA(t1, x1, y1, t2, x2, y2, t1, x1, y1, t
′
1, x

′
1, y

′
1) ∧ ϕA(t1, x1, y1, t2, x2, y2, t2, x2, y2, t

′
2, x

′
2, y

′
2) ∧ ϕA(t1, x1, y1, t2,

x2, y2, t3, x3, y3, t
′
3, x

′
3, y

′
3) ∧ ϕA(t1, x1, y1, t2, x2, y2, t4, x4, y4, t

′
4, x

′
4, y

′
4).

This transformation yields some simple equations for the rim ρP1:

ρP1 ↔







x2 + y2 = t2v2
1

2x(−x′2) + x′22 = v2
1(2t(−t′2) + t′22 )

0 ≤ t ≤ t′2 .

Not only that, but with these equations we can deduce a simple parametrization in the x-coordinate for
the rim,

ρP1 ↔















t = 2xx′
2−x′2

2 +v2
1t′22

2v2
1t′2

y = ±
√

v2
1

(

2xx′
2−x′2

2 +v2
1t′22

2v2
1t′2

)2
− x2

0 ≤ t ≤ t′2 .

We remark that this implies t′2 6= 0 and v1 6= 0. If t′2 = 0, then P1 is a point, hence degenerate. If
v1 = 0, then P1 is a line segment, and again degenerate. Next we will inject these parameterizations in the
constraints for ∂P+

2 and ∂P−
2 separately. The constraints for ∂P−

2 are







(x− x′3)
2 + (y − y′3)

2 = (t− t′3)
2v2

2

2x(x′3 − x′4) + x′24 − x′23 + 2y(y′3 − y′4) + y′24 − y′23 ≤ v2
2

(

2t(t′3 − t′4) + t′24 − t′23
)

t′3 ≤ t ≤ t′4 .

We will explain how to proceed to compute the intersection with ∂P−
2 and simply reuse formulas for

intersection with ∂P+
2 . First, we insert our expressions for x and y in the first equation. This is equivalent

to computing intersections of ρP1 with C−
2

and gives

(

x− x′3
)2

+



±
√

v2
1

(

2xx′2 − x′22 + v2
1t

′2
2

2v2
1t

′
2

)2

− x2 − y′3





2

=

(

2xx′2 − x′22 + v2
1t

′2
2

2v2
1t

′
2

− t′3

)2

v2
2 ,

or equivalently

±2y′3

√

v2
1

(

2xx′2 − x′22 + v2
1t

′2
2

)2 −
(

2v2
1t

′
2

)2
x2 =

(

2xx′2 − x′22 + v2
1t

′2
2 −

(

2v2
1t

′
2

)

t′3
)2
v2
2 −

(

2v2
1t

′
2

)2
(x− x′3)

2

−
(

2v2
1t

′
2

)2
y′23 −

(

v2
1

(

2xx′2 − x′22 + v2
1t

′2
2

)2 −
(

2v2
1t

′
2

)2
x2
)

or equivalently

±v12y′3
√

x24
(

x′22 − v2
1t

′2
2

)

+ x4x′22
(

v2
1t

′2
2 − x′22

)

+
(

v2
1t

′2
2 − x′22

)2
= x24x′22

(

v2
2 − v2

1

)

+
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x4
(

−x′22 v2
2

(

−x′22 + v2
1t

′2
2 − 4v4

1t
′2
2 t

′
3

)

+ 2v4
1t

′2
2 x

′
3 + v2

1x
′
2

(

v2
1t

′2
2 − x′22

))

+
(

v2
2

(

−x′22 + v2
1t

′2
2 − 4v4

1t
′2
2 t

′
3

)2 − 4v4
1t

′2
2

(

x′23 + y′23
)

− v4
1

(

−x′22 + v2
1t

′2
2

)

)

.

By squaring left and right hand in this last expression, we rid ourselves of the square root and obtain
the following polynomial equation of degree four. Squaring may create new solutions, so to ensure we only
get useful solutions, we have to add the condition that the square root exists. This is the case if and only
if

φ
√

(x, t′2, x
′
2, v1) := x24

(

x′22 − v2
1t

′2
2

)

+ x4x′22
(

v2
1t

′2
2 − x′22

)

+
(

v2
1t

′2
2 − x′22

)2 ≥ 0

is satisfied.
We notice that if P1 is degenerate, i.e., x′22 = v2

1t
′2
2 , then the square root vanishes and the polynomial

in φ4 is the square of a polynomial of degree two, yielding to at most two roots and intersection points
as we expect. The case were v1 = 0 is captured by the formula in the next section, that is why we leave
that case out here and demand that v1 6= 0. So the following still works if one or both space-time prisms
is degenerate:

φ4(x, t
′
2, x

′
2, v1, t

′
3, x

′
3, y

′
3, v2) := ∃a∃b∃c∃d∃e

(

ax4 + bx3 + cx2 + dx+ e = 0

∧ a =
(

4x′22
(

v2
2 − v2

1

))2 ∧ b = −32x′42 v
2
2

(

v2
2 − v2

1

) (

−x′22 + v2
1t

′2
2 − 4v4

1t
′2
2 t

′
3 + 2v4

1t
′2
2 x

′
3 + v2

1x
′
2

(

v2
1t

′2
2 − x′22

))

∧ c = 8
(

x′22 − v2
1t

′2
2

)

(

−4v4
1t

′2
2

(

x′23 + y′23
)

+ v2
2

(

−x′22 + v2
1t

′2
2 − 4v4

1t
′2
2 t

′
3

)2 − v4
1

(

−x′22 + v2
1t

′2
2

)

)

+
(

2v1y
′
3

)2 (
x′22 − v2

1t
′2
2

)

+
(

4
(

−x′22 v2
2

(

−x′22 + v2
1t

′2
2 − 4v4

1t
′2
2 t

′
3

)

+ 2v4
1t

′2
2 x

′
3 + v2

1x
′
2

(

v2
1t

′2
2 − x′22

)))2

∧ d = 8
(

−x′22 v2
2

(

−x′22 + v2
1t

′2
2 − 4v4

1t
′2
2 t

′
3

)

+ 2v4
1t

′2
2 x

′
3 + v2

1x
′
2

(

v2
1t

′2
2 − x′22

))

(

v2
2

(

−x′22 + v2
1t

′2
2 − 4v4

1t
′2
2 t

′
3

)2 − 4v4
1t

′2
2

(

x′23 + y′23
)

− v4
1

(

−x′22 + v2
1t

′2
2

)

)

+
(

2v1y
′
3

)2 (
4x′22

(

v2
1t

′2
2 − x′22

))

∧ e =
(

2v1y
′
3

)2 (
v2
1t

′2
2 − x′22

)2
+
(

v2
2

(

−x′22 + v2
1t

′2
2 − 4v4

1t
′2
2 t

′
3

)2 − 4v4
1t

′2
2

(

x′23 + y′23
)

− v4
1

(

−x′22 + v2
1t

′2
2

)

)2
)

.

The quantifiers we introduced here are only in place for esthetical considerations and can be eliminated
by direct substitution.

We note that if v1 = v2, we get polynomials of degree merely two. This can be solved in an exact manner
using nested square roots (or Maple if you will). This gives us at most four values for x. Let

φroots(xa, xb, xc, xd, t
′
2, x

′
2, v1, t

′
3, x

′
3, y

′
3, v2)

be a formula that returns all four real roots, if they exist, that satisfy both φ4(x, t
′
2, x

′
2, v1, t

′
3, x

′
3, y

′
3, v2)

and φ
√

(x, t′2, x
′
2, v1). We substitute these values in the parameter equations of ρP1. By substituting these

in the last equation above, we can determine the sign of the square root we need to take for y. A point
(t, x, y) satisfies the following formula is a point on ρP1, but instead of using the square root for y, we use
an expression from above to get the correct sign for the square root if y′3 6= 0. If y′3 = 0 we have to use the
square root expression and then it does not matter which sign the square root has; we need both:

ψρ(t, x, y, t
′
2, x

′
2, v1, t

′
3, x

′
3, y

′
3, v2) :=

(

y′3 6= 0 ∧ t
(

2v2
1t

′
2

)

= 2xx′2 − x′22 + v2
1t

′2
2 ∧

2y′3
(

2v2
1t

′
2

)

y =
(

2xx′2 − x′22 + v2
1t

′2
2 −

(

2v2
1t

′
2

)

t′3
)2
v2
2 −

(

2v2
1t

′
2

)2
(x− x′3)

2 −
(

2v2
1t

′
2

)2
y′23

−
(

v2
1

(

2xx′2 − x′22 + v2
1t

′2
2

)2 −
(

2v2
1t

′
2

)2
x2
)

∧ 0 ≤ t ≤ t′2

)

∨
(

y′3 = 0 ∧ t
(

2v2
1t

′
2

)

= 2xx′2 − x′22 + v2
1t

′2
2

∧ 0 ≤ t ≤ t′2 ∧
(

2v2
1t

′
2

)2
y2 =

(

2xx′2 − x′22 + v2
1t

′2
2

)2 −
(

2v2
1t

′
2

)2
x2
)

.
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The four roots give us four spatio-temporal points on ρP1 ∩ C−
2
. In order for these points (t, x, y) to be

in ρP1 ∩ ∂P−
2 , they need to satisfy

ψ−(t, x, y, t′3, x
′
3, y

′
3, t

′
4, x

′
4, y

′
4, v2) :=

2x(x′3 − x′4) + x′24 − x′23 + 2y(y′3 − y′4) + y′24 − y′23 ≤ v2
2

(

2t(t′3 − t′4) + t′24 − t′23
)

.

This formula returns True if (t, x, y) lies in the same half space as the bottom-half space-time prism.

C−
2

ρP1 P−
2

Figure 10. The rim intersects the cone and solutions are verified in a half-space.

The formula ψ+ returns True if (t, x, y) lies in the same half space as the upper-half space-
time prism, i.e., ψ+(t, x, y, t′3, x

′
3, y

′
3, t

′
4, x

′
4, y

′
4, v2) := ψ−(t, x, y, t′4, x

′
4, y

′
4, t

′
3, x

′
3, y

′
3, v2). By combining

ψρ(t, x, y, t
′
2, x

′
2, v1, t

′
3, x

′
3, y

′
3, v2) and ψ−(t, x, y, t̂, x̂, ŷ, t̃, x̃, ỹ, v) we get a formula that decides the empti-

ness of the intersection ρP1 ∩ ∂P−
2 in terms of a parameter x:

ψρ∩∂±(x, t′2, x
′
2, v1, t

′
3, x

′
3, y

′
3, v2, t̂, x̂, ŷ, t̃, x̃, ỹ, v) :=

∃y
(

y′3 = 0 ∧ y2
(

2v2
1t

′
2

)2
=
(

2xx′2 − x′22 + v2
1t

′2
2

)2
v2
1 −

(

2v2
1t

′
2

)2
x2
)

∨
(

y′3 6= 0 ∧

2y′3
(

2v2
1t

′
2

)

y =
(

2xx′2 − x′22 + v2
1t

′2
2 −

(

2v2
1t

′
2

)

t′3
)2
v2
2 −

(

2v2
1t

′
2

)2
(x− x′3)

2 −
(

2v2
1t

′
2

)2
y′23 −

(

v2
1

(

2xx′2 − x′22 + v2
1t

′2
2

)2 −
(

2v2
1t

′
2

)2
x2
))

∧
(

2x(x̂− x̃) + x̃2 − x̂2 + 2y(ŷ − ỹ) + ỹ2 − ŷ2
) (

2v2
1t

′
2

)

≤

v2
(

2
(

2v2
1t

′
2

) (

2xx′2 − x′22 + v2
1t

′2
2

)

(t̂− t̃) +
(

2v2
1t

′
2

) (

t̃2 − t̂2
))

∧ 0 ≤ t′2
(

2xx′2 − x′22 + v2
1t

′2
2

)

≤ 2v2
1t

′3
2

∧
(

t̂
(

2v2
1t

′2
2

)

≤ t′2
(

2xx′2 − x′22 + v2
1t

′2
2

)

≤ t̃
(

2v2
1t

′2
2

)

∨ t̃
(

2v2
1t

′2
2

)

≤ t′2
(

2xx′2 − x′22 + v2
1t

′2
2

)

≤ t̂
(

2v2
1t

′2
2

))

.

We are ready now to construct the formula that decides if ρP1 and P−
2 have a non-empty intersection:

ϕρ1∩∂−

2
(t′2, x

′
2, v1, t

′
3, x

′
3, y

′
3, t

′
4, x

′
4, y

′
4, v2) := ∃x∃xa∃xb∃xc∃xd ( φroots(xa, xb, xc, xd, t

′
2, x

′
2, v1, t

′
3, x

′
3, y

′
3, v2)

∧ (x = xa ∨ x = xb ∨ x = xc ∨ x = xd) ∧ ψρ∩∂±(x, t′2, x
′
2, v1, t

′
3, x

′
3, y

′
3, v2, t

′
3, x

′
3, y

′
3, t

′
4, x

′
4, y

′
4, v

′
2)
)

.

The formula that decides if ρP1 intersects ∂P+
2 looks strikingly similar:

ϕρ1∩∂+

2
(t′2, x

′
2, v1, t

′
3, x

′
3, y

′
3, t

′
4, x

′
4, y

′
4, v2) := ∃x∃xa∃xb∃xc∃xd ( φroots(xa, xb, xc, xd, t

′
2, x

′
2, v1, t

′
4, x

′
4, y

′
4, v2)

∧ (x = xa ∨ x = xb ∨ x = xc ∨ x = xd) ∧ ψρ∩∂±(x, t′2, x
′
2, v1, t

′
4, x

′
4, y

′
4, v2, t

′
4, x

′
4, y

′
4, t

′
3, x

′
3, y

′
3, v

′
2)
)

.

The quantifiers introduced here can also be eliminated in a straightforward manner. Notice that φroots

acts as a function rather than a formula that inputs (t′2, x
′
2, v1, t

′
4, x

′
4, y

′
4, v2) to construct a polynomial of

degree four and returns the four roots (xa, xb, xc, xd), if they exist, of that polynomial. The existential
quantifier for the variable x is used to cycle through those roots to see if any of them does the trick.
Finally we are ready to present the formula for Case (II):

ΦII (t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2) := (v1 6= 0 ∧ v2 6= 0) ∧
¬ ΦI (t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2) ∧ ∃t′1∃x′1∃y′1∃t′2∃x′2∃y′2∃t′3∃x′3∃y′3∃t′4∃x′4∃y′4

( ψcrd(t
′
1, x

′
1, y

′
1, t1, x1, y1, t

′
2, x

′
2, y

′
2, t2, x2, y2, t

′
3, x

′
3, y

′
3, t3, x3, y3, t

′
4, x

′
4, y

′
4, t4, x4, y4) ∧
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(

ϕρ1∩∂−

2
(t′2, x

′
2, v1, t

′
3, x

′
3, y

′
3, t

′
4, x

′
4, y

′
4, v

′
2) ∨ ϕρ1∩∂+

2
(t′2, x

′
2, v1, t

′
3, x

′
3, y

′
3, t

′
4, x

′
4, y

′
4, v2)

)

∨

ψcrd(t
′
3, x

′
3, y

′
3, t3, x3, y3, t

′
4, x

′
4, y

′
4, t4, x4, y4, t

′
1, x

′
1, y

′
1, t1, x1, y1, t

′
2, x

′
2, y

′
2, t2, x2, y2) ∧

(

ϕρ1∩∂−

2
(t′3, x

′
3, v2, t

′
1, x

′
1, y

′
1, t

′
2, x

′
2, y

′
2, v

′
1) ∨ ϕρ1∩∂+

2
(t′3, x

′
3, v2, t

′
1, x

′
1, y

′
1, t

′
2, x

′
2, y

′
2, v

′
1)
))

.

The reader may notice that a lot of quantifiers have been introduced in the formula above. These
quantifiers are merely there to introduce easier coordinates and can be straightforwardly computed (and
eliminated) by the formula ψcrd and hence the formula ϕA(t1, x1, y1, t2, x2, y2, t, x, y, t

′, x′, y′). The lat-
ter actually acts like a function, parameterized by (t1, x1, y1, t2, x2, y2), that inputs (t, x, y) and outputs
(t′, x′, y′).

5.5 A formula for Case (III)

Here, we assume that both ϕI and ϕII fail. So, there is no apex contained in the other space-time prism
and neither rim cuts the mantel of the other space-time prism.

As we proved in Theorem 5.2, the intersection between two half space-time prisms will reduce to the
intersection between two cones and that means there is an initial contact that is part of the intersection.
To verify if this is the case we compute the two initial contacts and verify if they are effectively part of
the intersection.

Using the expression for the initial contact IC(C−
1
,C−

2
), we computed in Section 4.2 we can construct a

formula that decides if it is part of P−
1 ∩ P−

2 . We will recycle the formulas ψ− from the previous section
to construct an expression without the need for extra variables. The following formula that returns True

if IC(C−
1
,C−

2
) = (t0, x0, y0) satisfies ψ−(t0, x0, y0, t

′, x′, y′, t̂, x̂, ŷ, v):

φ−(t1, x1, y1, v1, t3, x3, y3, v2, t
′, x′, y′, t̂, x̂, ŷ, v) :=

2(x′ − x̂)
(

(x1v2 + x3v1)
√

(x1 − x3)2 + (y1 − y3)2 + v1 ((t3 − t1)v2) (x3 − x1)
)

+ 2(y′ − ŷ)
(

(y1v2 + y3v1)
√

(x1 − x3)2 + (y1 − y3)2 + v1 ((t3 − t1)v2) (y3 − y1)
)

+
√

(x1 − x3)2 + (y1 − y3)2(v1 + v2)
(

x̂2 − x′2 + ŷ2 − y′2
)

≤ v2
((

t̂2 − t′2
)

(v1 + v2)

+ 2
(

√

(x1 − x3)2 + (y1 − y3)2 + t1v1 + t3v2

)

(

t′ − t̂
)

)

√

(x1 − x3)2 + (y1 − y3)2 .

The following formula expresses that the time coordinate t0 of IC(C−
1
,C−

2
) satisfies the constraints t′ ≤

t ≤ t′′ and t̂ ≤ t ≤:

ψt

(

t1, x1, y1, v1, t3, x3, y3, v2, t
′, t′′, t̂,

)

:=

t′(v1 + v2) ≤
√

(x1 − x3)2 + (y1 − y3)2 + t1v1 + t3v2 ≤ t′′(v1 + v2)

∧ t̂(v1 + v2) ≤
√

(x1 − x3)2 + (y1 − y3)2 + t1v1 + t3v2 ≤ (v1 + v2) .

Now, IC(C−
1
,C−

2
) ⊂ P−

1 ∩ P−
2 if and only if ψIC

−(t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2) where
ψIC

−(t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2) := ψt(t1, x1, y1, v1, t3, x3, y3, v2, t1, t2, t3, t4) ∧ φ−(t1,
x1, y1, v1, t3, x3, y3, v2, t1, x1, y1, t2, x2, y2, v1) ∧ φ−(t1, x1, y1, v1, t3, x3, y3, v2, t3, x3, y3, t4, x4, y4, v2) and
IC(C+

1
,C+

2
) ⊂ P+

1 ∩ P+
2 if and only if ψIC

+(t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2) := ψt(t2, x2, y2,

v1, t4, x4, y4, v2, t1, t2, t3, t4) ∧ φ−(t2, x2, y2, v1, t4, x4, y4, v2, t2, x2, y2, t1, x1, y1, v1) ∧ φ−(t2, x2, y2, v1, t4,

x4, y4, v2, t4, x4, y4, t3, x3, y3, v2).
The formula that expresses the criterium for Case (III) then looks as follows:

ΦIII (t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2) :=
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(v1 + v2 6= 0) ∧ ¬ ΦI (t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2) ∧
(ψIC

−(t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2) ∨ ψIC
+(t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2)) .

5.6 The formula for the parametric alibi query

The final formula that decides if two space-time prisms, P1 = P(t1, x1, y1, t2, x2, y2, v1) and P2 = P(t3, x3,

y3, t4, x4, y4, v2), do not intersect looks as follows

ψalibi (t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2) := ¬ ((t1 < t2 ∧ t3 < t4) ∧
(ΦIII (t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2)

∨ ΦII (t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2))

∨ ΦI (t1, x1, y1, t2, x2, y2, v1, t3, x3, y3, t4, x4, y4, v2)) .

6 Experiments

In this section, we compare our solution to the alibi query (using the formula given in Section 5.6) with
the method of eliminating quantifiers of Mathematica.

In the following table it is clear that traditional quantifier elimination performs badly on the example
space-time prisms. Its running times highly deviates from their average and range in the minutes. Whereas
the method described in this paper performs in running times that consistently only needs milliseconds or
less. This shows our method is efficient and our claim, that it runs in milliseconds or less, holds.

For this first set of space-time prisms we chose to verify intersection of two oblique space-time prisms
(1-2) and the intersection of one oblique and one straight space-time prism (3-4). The space-time prisms
that actually intersected had a remarkable low running time with the QE-method.

The space-time prisms The running times
P1 P2 QE Our Method

1 (0, 0, 0, 2, 0, 2, 1.9) (0, 3, 0, 2, 3, 2, 2) 0.656 Seconds 0.016 Seconds
2 (0, 0, 0, 2, 0, 2, 1.9) (0, 4, 0, 2, 4, 2, 2) 324.453 Seconds 0.063 Seconds
3 (0, 0, 0, 2, 0, 2, 1.9) (0, 3, 0, 2, 3, 0, 2) 0.438 Seconds 0.015 Seconds
4 (0, 0, 0, 2, 0, 2, 1.9) (0, 4, 0, 2, 4, 0, 2) 475.719 Seconds 0.031 Seconds

The type of space-time prisms in this second set are as in the first. However, these space-time prisms all
have overlapping time intervals unlike the first set, where the time intervals coincided.

The space-time prisms The running times
P1 P2 QE Our Method

1 (0, 0, 0, 2, 0, 2, 1.9) (1, 3, 0, 3, 3, 2, 2) 63.375 Seconds 0.078 Seconds
2 (0, 0, 0, 2, 0, 2, 1.9) (1, 4, 0, 3, 4, 2, 2) 59.485 Seconds 0.078 Seconds
3 (0, 0, 0, 2, 0, 2, 1.9) (1, 3, 0, 3, 3, 0, 2) 29.734 Seconds 0.031 Seconds
4 (0, 0, 0, 2, 0, 2, 1.9) (1, 4, 0, 3, 4, 0, 2) 27.281 Seconds 0.032 Seconds

The type of space-time prisms in this third set are as in the first. But this time the time intervals are
completely disjoint. Note that the running times for the QE-method are more consistent in this set and
the previous one.

The space-time prisms The running times
P1 P2 QE Our Method

1 (0, 0, 0, 2, 0, 2, 1.9) (3, 3, 0, 4, 3, 2, 2) 63.641 Seconds 0.046 Seconds
2 (0, 0, 0, 2, 0, 2, 1.9) (3, 4, 0, 4, 4, 2, 2) 61.781 Seconds 0.016 Seconds
3 (0, 0, 0, 2, 0, 2, 1.9) (3, 3, 0, 4, 3, 0, 2) 52.735 Seconds 0.031 Seconds
4 (0, 0, 0, 2, 0, 2, 1.9) (3, 4, 0, 4, 4, 0, 2) 56.875 Seconds 0.046 Seconds
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After conducting numerous experiments, we have to conclude that there is no consistent trend in the
running times of the traditional method. The only trend that showed is that the time the traditional
quantifier elimination method takes is several orders of magnitude higher than our own method and that
our method runs consistently under a tenth of a second.

7 The alibi query at a fixed moment in time

7.1 Introduction

In this section, we present another example where common sense prevails over the general quantifier-
elimination methods. The problem is the following. As in the previous setting, we have lists of time
stamped-locations of two moving objects and upper bounds on the object’s speed between time stamps.
We wish to know if two objects could have met at a given moment in time.

For the remainder of this section, we reuse the assumptions from the previous section. We wish to verify
if the space-time prisms P1 = P(t1, x1, y1, t2, x2, y2, v1) and P2 = P(t3, x3, y3, t4, x4, y4, v2) intersect at a
moment in time t0. Moreover, we assume the space-time prisms are non-empty, i.e., (x2−x1)

2+(y2−y1)
2 ≤

(t2 − t1)
2v2

1 and (x4 − x3)
2 + (y4 − y3)

2 ≤ (t4 − t3)
2v2

2 and that t1 ≤ t0 ≤ t2 and t3 ≤ t0 ≤ t4 are satisfied.
This means we need to eliminate the quantifiers in

∃x∃y
(

(x− x1)
2 + (y − y1)

2 ≤ v2
1(t0 − t1)

2 ∧ (x− x2)
2 + (y − y2)

2 ≤ v2
1(t0 − t2)

2

∧ (x− x3)
2 + (y − y3)

2 ≤ v2
2(t0 − t3)

2 ∧ (x− x4)
2 + (y − y4)

2 ≤ v2
2(t0 − t4)

2
)

.

Eliminating quantifiers gives us a formula that decide whether or not four discs have a non-empty
intersection. For ease of notation we will use the following abbreviations: (x, y) ∈ Di if and only if (x −
xi)

2 + (y − yi) ≤ r2i and (x, y) ∈ Ci if and only if (x− xi)
2 + (y − yi) = r2i .

7.2 Main theorem

Using Helly’s theorem we can simplify the problem even more. Helly’s theorem states that if you have a
set S of m convex sets in n dimensional space and if any subset of S of n+ 1 convex sets has a non-empty
intersection, then all m convex sets have a non-empty intersection. For the plane, this means we only
need to find a quantifier free-formula that decides if three discs have a non-empty intersection. For the
remainder of this section assume that we want to verify whether D1 ∩D2 ∩D3 is non-empty.

Theorem 7.1 Three discs, D1, D2 and D3, have a non-empty intersection if and only if one of the
following cases occur:

(i) there is a disc whose center is in the other two discs; or
(ii) the previous case does not occur and there exists a pair of discs for which one of both intersection

points of their bordering circles lies in the remaining disc.

Proof The if -direction is trivial. The only if -direction is less trivial. We will use the following abbreviations,
D = D1 ∩D2 ∩D3 and C = ∂D.

Assume D is non-empty and that neither (1) nor (2) holds. The intersection D is convex as it is the
intersection of convex sets. We distinguish between the case where D is a point or and the case where D
is not a point.

• Suppose D is a single point p. This point p can not lie in the interior of the three discs, because D would
not be a point then.

Nor can p lie in the interior of two discs. If that would be the case then there exists a neighborhood
of p that is part of the intersection of those two discs, say D1 and D2. Moreover p would be part of C3

and this neighborhood would intersect the interior of D3. This means D is not a point.
So p must lie on the border of two discs, say D1 and D2, and p must also be part of D3 because

D = {p}. This contradicts our assumption that (2) does not hold.
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• Assume D is not a point. All points on C belong to at least one Ci. If there is a point that does not
belong to any Ci, then it is in the interior of all Di and there exists a neighborhood of that point that
is in the interior of all Di and hence in D. That contradicts to the fact that this point is in C.

Furthermore, not all points of C belong to a single Ci. If that was the case then Di would be part of
(and equal to) D and its center would be inside the other two discs which contradicts the assumption
that (1) does not hold.

So, C is made up of parts of the Ci, of which some may coincide but not all of them. When traveling
along C you will encounter a point p that connects part of a Ci and part of a Cj, where i 6= j, that do
not coincide, otherwise (1) must occur again which is a contradiction. However, this p also yields to a
contradiction since it belongs to two different Ci, say C1 and C2, and is part of C hence D and D3. This
contradicts the assumption that (2) does not occur.

�

7.3 Translating the theorem in a formula

We can simplify the equations even further using coordinate transformations. By applying a translation,
rotation and scaling we may assume that (x1, y1) = (0, 0), x2 ≥ 0, r1 = 1 and y2 = 0. Using these
simplifications and translating Theorem 7.1, we get the following formula.

Ψ1(x2, r2, x3, y3, r3) :=
(

(−x2)
2 ≤ r22 ∧ (−x3)

2 + (−y3)
2 ≤ r23

)

∨
∃x∃y

(

x2 + y2 = 1 ∧ (x− x2)
2 + y2 = r22 ∧ (x− x3)

2 + (y − y3)
2 ≤ r23

)

.

This is a formula that decides if either the center of the first disc is part of the two other discs, see the
first line, or if either there exists a point in the intersection of the first two circles that is part of the third
disc. All that remains now is making the expression

∃x∃y
(

x2 + y2 = 1 ∧ (x− x2)
2 + y2 = r22 ∧ (x− x3)

2 + (y − y3)
2 ≤ r23

)

quantifier free.
To do this we assume that C1 and C2 do not coincide but have a non-empty intersection. This is

equivalent to x2 6= 0 ∧ x2 ≤ r2 + 1. Next, we need to compute the point(s) where C1 and C2 intersect.

{

x2 + y2 = 1
(x− x2)

2 + y2 = r22
or







x = x2
2+1−r2

2

2x2

y = ±
√

1 −
(

x2
2+1−r2

2

2x2

)2

or







x = x2
2+1−r2

2

2x2

y = ±
√

(

1 − x2
2+1−r2

2

2x2

)(

1 + x2
2+1−r2

2

2x2

)

or







x = x2
2+1−r2

2

2x2

y = ± 1
2x2

√

(

r22 − (x2 − 1)2
)(

(1 + x2)
2 − r22

)

.

If y = 0, then verifying if that single point of intersection is part of D3 is easy, one only needs to verify if

(

x2
2 + 1 − r22

2x2
− x2

)2

+ y2
3 ≤ r23
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or equivalently
(

1 − r22 − x2
2

)2
+ 4x2

2y
2
3 ≤ 4x2

2r
2
3 .

If y 6= 0, then verifying if one both points of intersection is part of D3 is less trivial, since this involves
square roots

(

x2
2 + 1 − r22

2x2
− x3

)2

+

(

± 1

2x2

√

(

r22 − (x2 − 1)2
)(

(1 + x2)
2 − r22

)

− y3

)2

≤ r23

or
(

x2
2 + 1 − r22 − 2x2x3

)2
+

(

±
√

(

r22 − (x2 − 1)2
)(

(1 + x2)
2 − r22

)

− 2x2y3

)2

≤ 4x2
2r

2
3

or
(

x2
2 + 1 − r22 − 2x2x3

)2
+
(

r22 − (x2 − 1)2
)(

(1 + x2)
2 − r22

)

+(2x2y3)
2 ± 4x2y3

√

(

r22 − (x2 − 1)2
)(

(1 + x2)
2 − r22

)

≤ 4x2
2r

2
3

or
(

x2
2 + 1 − r22 − 2x2x3

)2
+
(

r22 − (x2 − 1)2
)(

(1 + x2)
2 − r22

)

+(2x2y3)
2 − 4x2

2r
2
3 ≤ ±4x2y3

√

(

r22 − (x2 − 1)2
)(

(1 + x2)
2 − r22

)

.

This is almost a FO(+,×, <, 0, 1)-formula except for the square root. However, the square root can be
eliminated as we will show next. The previous expression is of the form L ≤ ±a

√
W . The presence of the

± simplifies this a lot, this means either sign of the square root will do, and also that we may assume the
right hand-side is positive. Of course the square root must exist as well, this means W ≥ 0.

This expression can then be simplified to

W ≥ 0 ∧
(

L ≤ 0 ∨ L2 ≤ a2W
)

and gives us the expression

Φ2(x2, r2, x3, y3, r3) :=
(

r22 − (x2 − 1)2
)(

(1 + x2)
2 − r22

)

≥ 0

∧
(

(

x2
2 + 1 − r22 − 2x2x3

)2
+
(

r22 − (x2 − 1)2
)(

(1 + x2)
2 − r22

)

+ (2x2y3)
2 − 4x2

2r
2
3 ≤ 0

∨
(

(

x2
2 + 1 − r22 − 2x2x3

)2
+
(

r22 − (x2 − 1)2
)(

(1 + x2)
2 − r22

)

+ (2x2y3)
2 − 4x2

2r
2
3

)2

≤ (4x2y3)
2
(

r22 − (x2 − 1)2
)(

(1 + x2)
2 − r22

))

.

7.4 The safety formula

Now, all that remains to be constructed is a formula that returns the convenient coordinates and a formula
that guarantees that C1 and C2 actually intersect for safety, i.e., to exclude the case of empty intersection.
The latter is constructed as follows. The formula ϕ(x1, y1, r1, x2, y2, r2) returns True if and only if the two
circles, with centers (x1, y1) and (x2, y2) and radii r1 and r2 respectively, have a distance between their
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centers that is not larger that the sum of their radii and not equal to zero to ensure they do not coincide.
We have

ϕ(x1, y1, r1, x2, y2, r2) := 0 < (x2 − x1)
2 + (y2 − y1)

2 ≤ (r1 + r2)
2 .

The formula φ(x1, y1, r1, x2, y2, r2) returns True if and only if the second circle is not fully enclosed by
the first, i.e., the sum of the distance between the centers plus the second radius is bigger than the first
radius and vice versa. We can write

φ(x1, y1, r1, x2, y2, r2) := (x2 − x1)
2 + (y2 − y1)

2 ≥ (r1 − r2)
2 .

These two safety conditions give us our safety formula

Φsafety(x1, y1, r1, x2, y2, r2) := ϕ(x1, y1, r1, x2, y2, r2) ∧ φ(x1, y1, r1, x2, y2, r2) .

7.5 The change of coordinates

The transformation consists of a translation, rotation and scaling. The translation to move the first circle’s
center to the origin. The rotation to align the second center with the x-axis. Finally the scaling to ensure
that the first circle’s radius is equal to one. First, the translation T (x, y) := (x− x1, y − y1). The rotation
is

R(x, y) :=
1

√

(x2 − x1)2 + (y2 − y1)2

(

x2 − x1 y2 − y1

y1 − y2 x2 − x1

)(

x

y

)

and finally, the scaling is S(x, y) := 1
r1

(x, y). The transformation is then a composition of those three
transformations A(x, y) = (S ◦R ◦ T )(x, y) :=

(

(x2 − x1)(x− x1) + (y2 − y1)(y − y1)

r1
√

(x2 − x1)2 + (y2 − y1)2
,
(y1 − y2)(x− x1) + (x2 − x1)(y − y1)

r1
√

(x2 − x1)2 + (y2 − y1)2

)

.

The following formula takes three circles with centers (xi, yi) and radii ri respectively, and transforms
them in three new circles where the first circle has center (0, 0) and radius 1, the second circle has center
(x′2, 0) and radius r′2 and the third circle has center (x′3, y

′
3) and radius r′3.

Φtransformation(x1, y1, r1, x2, y2, r2, x3, y3, r3, x
′
2, r

′
2, x

′
3, y

′
3, r

′
3) := x′2 =

√

(x2 − x1)2 + (y2 − y1)2

r1
∧ r′2 =

r2

r1

∧ r′3 =
r3

r1
∧ x′3 =

(x2 − x1)(x3 − x1) + (y2 − y1)(y3 − y1)

r1
√

(x2 − x1)2 + (y2 − y1)2
∧ y′3 =

(y1 − y2)(x3 − x1) + (x2 − x1)(y3 − y1)

r1
√

(x2 − x1)2 + (y2 − y1)2
.

Note that this is not a FO(+,×, <, 0, 1)-formula anymore due to the square roots and fractions. This
”formula” is meant to act like a function, which substitutes coordinates. The substituted coordinates have
fractions and square roots but these can easily be disposed of when having the entire inequality on a
common denominator, isolating the square root and squaring the inequality, as we showed in Section 7.3.
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7.6 The formula for the alibi query at a fixed moment in time

First, we construct a formula that checks for any of two circles out of three if any of the conditions in
Theorem 7.1 are satisfied.

Ψ2/3(x1, y1, r1, x2, y2, r2, x3, y3, r3) :=

∃x′2∃r′2∃x′3∃y′3∃r′3
(

Φtransformation(x1, y1, r1, x2, y2, r2, x3, y3, r3, x
′
2, r

′
2, x

′
3, y

′
3, r

′
3) ∧

(

Ψ1(x
′
2, r

′
2, x

′
3, y

′
3, r

′
3) ∨ Φsafety(x1, y1, r1, x2, y2, r2) ∧ Φ2(x

′
2, r

′
2, x

′
3, y

′
3, r

′
3)
)

∨ Φtransformation(x1, y1, r1, x3, y3, r3, x2, y2, r2, x
′
2, r

′
2, x

′
3, y

′
3, r

′
3) ∧

(

Ψ1(x
′
2, r

′
2, x

′
3, y

′
3, r

′
3) ∨ Φsafety(x1, y1, r1, x3, y3, r3) ∧ Φ2(x

′
2, r

′
2, x

′
3, y

′
3, r

′
3)
)

∨ Φtransformation(x2, y2, r2, x3, y3, r3, x1, y1, r1, x
′
2, r

′
2, x

′
3, y

′
3, r

′
3) ∧

(

Ψ1(x
′
2, r

′
2, x

′
3, y

′
3, r

′
3) ∨ Φsafety(x2, y2, r2, x3, y3, r3) ∧ Φ2(x

′
2, r

′
2, x

′
3, y

′
3, r

′
3)
))

.

This formula is all we need to incorporate Helly’s theorem in our final formula. Four discs have a
non-empty intersection if and only if the following formula is satisfied

Ψ(x1, y1, r1, x2, y2, r2, x3, y3, r3, x4, y4, r4) :=

Ψ2/3(x1, y1, r1, x2, y2, r2, x3, y3, r3) ∧ Ψ2/3(x1, y1, r1, x2, y2, r2, x4, y4, r4)

∧ Ψ2/3(x1, y1, r1, x3, y3, r3, x4, y4, r4) ∧ Ψ2/3(x2, y2, r2, x3, y3, r3, x4, y4, r4).

This is almost a quantifier free-formula except for the fractions and square roots. However, as we showed
before these can easily be disposed of. We omitted these tedious conversions for the sake of clarity.

7.7 Notes on experiments

First we remark that the formula above is a lot shorter than the formula ψalibi, so it is reasonable to
assume that this formula evaluates even faster than ψalibi. Before we started looking for a FO(+,×, <, 0,
1)-formula to answer the alibi query, we tried several software packages, that support quantifier elimination,
to produce a formula for us. In both cases, the general alibi query and the alibi query for a fixed moment
in time, the quantifier elimination methods failed to produce an answer at all after prolonged sessions.
This was expected and, at the same time, a motivation to find such a formula ourselves.

For the non-parametric case however, Mathematica returns an answer in a matter of hundreds of
seconds. In this case, the non-parametric alibi query for a fixed moment in time, the general methods do
produce an answer efficiently. The relative differences were inconsistent, the same parameters would take,
for example, .014 and .031 seconds, depending on the other processes the system was running and which
we could not control. For this reason we decided not to include experimental results in this case.

8 Conclusion

In this paper, we proposed a method that decides if two space-time prisms have a non-empty intersection
or not. Existing quantifier-elimination methods could achieve this already through means of quantifier
elimination though not in a reasonable amount of time. Deciding intersection of concrete space-time prisms
took of the order of minutes, while the parametric case could be measured at least in days if a solution
would ever be obtained. The parametric solution we laid out in this paper only takes a few milliseconds
or less.
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The solution we present is a first-order formula containing square root-expressions. These can easily
be disposed of using repeated squarings and adding extra conditions, thus obtaining a true quantifier
free-expression for the alibi query.

We also give a solution to the alibi query at a fixed moment in time.
The solutions we propose are based on geometric argumentation and they illustrate the fact that some

practical problems require creative solutions, where at least in theory, existing systems could provide a
solution.
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