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Abstract. The two-body Coulomb problem with sources is studied. Closed form solutions

are provided for particular non-homogeneities used within the J-matrix method. The results

are employed to build analytical solutions having incoming, outgoing and standing wave

asymptotic conditions.
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1 Introduction

Scattering theory is of fundamental importance in atomic physics. It allows for a description

and an interpretation of many atomic collision processes such as, e.g., excitation and ioniza-

tion by particle or radiation impact, among many others. In many cases, the wave function

satisfying the full (time-independent) Schrödinger equation may be written as the sum of a

known initial state of a simplified hamiltonian and an unknown scattering solution which

describes the dynamics of the collision [1, 2]. This separation leads straightforwardly to a

non–homogeneous (driven) equation where the source is the product of the neglected inter-

actions and the asymptotic solution. For example, this is the line followed by the Exterior

Complex Scaling approach [3–5], which has been widely and successfully used in treating a

large variety of scattering problems.

In a previous paper [6], we studied a two-body driven Schrödinger equation which in-

cludes a Coulomb interaction, a case of fundamental importance for the atomic physics com-

munity. Here, we shall apply some of the closed form results to the construction of an asymp-

totical cosine-like stationary function used by the J-matrix approach [7–9].
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The J-matrix has proven to be a very successful method to treat a large variety of scattering

problems, as reviewed by Alhaidari et al. [7]. It has been formulated for two-body problems

without [10] and with [8,11] Coulomb interaction, but also for multichannel processes [10–

12]. The method can be considered as a variant of the variational approach for continuum

states [13]. It bears some analogy with the R-matrix theory which divides the coordinate space

into two regions, an inner region and an asymptotic region. The main idea of the J-matrix

method is to separate the wave function into two parts: (i) an internal term which contains

the information about the dynamics of the problem associated to a given potential V , and

(ii) a term containing the asymptotic solution of the problem. The first part depends upon a

large number of parameters which are used to solve the Schrödinger equation in the reaction

zone where the interaction potential V is not negligible. This term is usually expanded in a

complete and orthogonal basis set. The second – asymptotic – part, on the other hand, ignores

V and is written as a linear combination ϕs(r)+tanδϕc(r) of two stationary functions which

at large distances r from the origin behave as free particle – or Coulomb – waves with sine-

like (ϕs) and cosine–like (ϕc) behaviors. This linear combination involves the coefficient tanδ

usually associated to the transition matrix of the scattering problem. The transition matrix and

the expansion coefficients are determined by enforcing the proposal to satisfy the Schröginger

equation.

The two functions ϕs and ϕc used to represent the asymptotic part must be linearly inde-

pendent functions satisfying a Schrödinger equation which does not contain the interaction

potential V . However, a problem arises: for a given radial Schrödinger equation, two solu-

tions with the asymptotic behavior of ϕs and ϕc, and being both regular at the origin, are not

available. Thus the J-Matrix method makes use of a function ϕc which, having cosine–like

behavior, satisfies a non–homogeneous Schrödinger equation; its expansion on L2 Laguerre

basis functions was proposed, e.g., in Refs. [8, 11, 12]. The primary purpose of this paper is

to give a closed form solution for ϕc.

The paper is arranged as follows. In Sec. II, we provide in closed form the particular solu-

tion for the two-body Coulomb Schrödinger equation with a particular non–homogeneity. This

involves a two-variable hypergeometric function which can be considered as a generalization

of the Kummer function associated to the pure Coulomb problem. In Sec. III, we give the

asymptotic behavior of this solution, as well as that of the regular and irregular homogeneous

solutions. We then use these results to construct, through an appropriate linear combination,

pure incoming, outgoing or cosine-like waves which can be used within the J-matrix method.

Atomic units are used throughout.

2 The two-body Coulomb problem with a particular source

The J-matrix method makes use of a function ϕc which is solution of the following radial

non–homogeneous equation [8,12]

�

−
1

2µ

�
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dr2
−
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hl ,σ(r)=al ,σe−λr r l+σ, (1)
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where the energy E=k2/(2µ) will be taken hereafter as positive (scattering states), and two

charges z1 and z2 are interacting through a Coulomb potential; let α= z1z2µ/k denote the

Sommerfeld parameter where µ is the reduced mass. In Eq. (1), l is the angular momentum,

λ is chosen as a real positive parameter, σ is a non-negative integer, and al ,σ is an arbitrary

constant. The general solution of Eq. (1), hG
l ,σ

(r), can be written as a sum of the three terms

hG
l ,σ

(r)=A
Reg

l
v

Reg

l
(r)+A

I r reg

l
v

I r reg

l
(r)+hP

l ,σ
(r). (2)

The first two, v
Reg

l
(r) and v

I r reg

l
(r), are, respectively, the regular and irregular solutions

of the corresponding homogeneous equation, which is the well–known Coulomb differential

equation [2,14].

In Ref. [6]we studied Eq. (1) and provided a closed form for its particular solution hP
l ,σ

(r).
It can be expressed as follows

hP
l ,σ(r)=−2µal ,σ

1

(σ+1)(2l+2+σ)
eikr r l+σ+2

×Θ
(1)

�
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�

�

�

�

;−(ik+λ)r,−2ikr

�

, (3)

where Θ
(1) represents a two–variable, Kampé de Fériet, hypergeometric function; its primary

power series representation reads [15]
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Other formulations (as series or integral representations) exist [15]. From a particular series

representation (see Ref. [6]), the asymptotic behavior of hP
l ,σ
(r) can be extracted and written

in a simple form (see next section).

At this point we should mention that the particular solution can also be obtained by mak-

ing use of the partial wave Coulomb Green function GC ,l(r,r ′) (see, e.g., [16]), through

hP
l ,σ(r)=

∫ ∞

0

GC ,l(r,r ′)
�

al ,σe−λr′(r ′)l+σ
�

dr ′. (5)

It is normally stated that one theoretical advantage related to this approach is that it formally

provides the appropriate asymptotic behavior of the solutions [1, 2]. As can be shown in

the present case, the actual calculation of (5) leads to an alternative series representation

of hP
l ,σ
(r) which numerically provides the appropriate asymptotic limit. However, it is not

obvious how to extract from it a simple closed form expression for the asymptotic behavior.

Moreover, as shown by the authors [17], the Green function approach can lead to erroneous

conclusions when dealing with long–range Coulomb interactions and inappropriate initial

states.
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3 Wave functions with different asymptotic behaviors

3.1 Properties of the functions v
Reg

l
, v

I r reg

l
and hP

l ,σ

Both solutions of the homogeneous equation, v
Reg

l
(r) which behaves as r l+1 for r∼0 (regular)

and v
I r reg

l
(r) which behaves as r−l for r∼0 (irregular), are real functions. The (asymptotic

unit flux) Coulomb wave functions possess the following well-known large distances behaviors

[18]

v
Reg

l
(r) −→ sin[ΦC (l)+σC (l)], (6a)

v
I r reg

l
(r) −→ cos[ΦC (l)+σC (l)], (6b)

where

ΦC (l)=kr−αln(2kr)−
π

2
l, (7)

σC(l)=Arg[Γ(iα+ l+1)]. (8)

The term ln(2kr) is the characteristic logarithmic distortion due to the long range of the

Coulomb potential.

From expression (3), it is clear that the particular solution hP
l ,σ
(r) of the non–homogeneous

differential equation (1) is regular at the origin. As shown by the authors [6], the function is

real as long as the al ,σ is real, although this does not appear straightforwardly from expres-

sion (3). By studying the mathematical properties of the Θ
(1) hypergeometric function [19],

and using a special series representation (Eq. (24) of [6]), the asymptotic behavior of hP
l ,σ

(r)
has been shown [6] to have the following cosine behavior

hP
l ,σ(r)−→Nsourcecos[ΦC (l+σ+2)+δ(l,σ,λ)] , (9)

with

Nsource=al ,σNsource (10a)

Nsource=−2µ
2(1)σΓ(2l+σ+2)

(2k)l+σ+2
�

�Γ(iα+ l+σ+2)
�

�

�

�

2F1

�

�e
π

2
α, (10b)

2F1

�

σ+1,2l+2+σ
iα+ l+2+σ

�

�

�

�

;
1

2

�

1+
λ

ik

�

�

= | 2F1|e
i∆(l ,σ,λ), (10c)

δ(l,σ,λ)=σC (l+σ+1)−∆(l,σ,λ), (10d)

and where the functions ΦC (l) and σC(l) are defined by (7) and (8), respectively.

The non-homogeneous Schrödinger equation (1) is stationary. This means that a time

independent flux of particle is observed in the system. The particular solution, given by Eq.

(3), has the cosine-like behavior (9), thus expressing the stationary character of the flux.
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The appearing phase-shift is entangled in a complicated way as it depends on the different

ingredients of the source. The effect of the exponential parameter λ appears only in the Gauss

function (10c). The power index σ, on the other hand, appears in all the terms building the

phase-shift. This shows that it is not possible to disentangle the individual effects of both

contributions of the source included in the non–homogeneous equation (1).

While the prefactor Nsource depends on the source itself through λ,σ and al ,σ, we could

introduce some normalization in such a way that the solution hP
l ,σ

(r) behaves at large values

of the coordinates as a pure cosine function with unit amplitude. This is discussed in the next

subsection.

3.2 The J-matrix wave functions

As mentioned in the Introduction, the J-matrix method requires wave functions having pure

Coulomb cosine–like (ϕc) and sine–like (ϕs) behavior at large distances. So far, the method

has always been presented using Laguerre expansions for both functions. In Ref. [8], Yamani

and Reinhardt presented a comparison between the Coulomb wave function vReg(r) and its

expansion in terms of Laguerre functions; they gave analytic expressions for the coefficients.

No analytic expression for the function ϕc having pure cosine–like behavior was provided

aside from that resulting from the Laguerre expansion. The aim of this paper is to give closed

form expressions not only for the function having cosine–like behavior, but also functions

having pure incoming and outgoing behaviors at large distances r.

With this purpose in mind, we can set the constants of the general solution hG
l ,σ

(r) given

by (2) to provide the desired behavior. First of all, A
I r reg

l
is set equal to zero to avoid the

irregular behavior of v
I r reg

l
(r) at the origin. To choose the appropriate asymptotic behavior

of hG
l ,σ

(r), we take its asymptotic limit

hG
l ,σ

(r)−→A
Reg

l
sin(ΦC (l)+σC (l))+al ,σNsourcecos(ΦC (l+σ+2)+δ(l,σ,λ)). (11)

By separating the incoming and outgoing waves, the previous equation can be re-written as

follows

hG
l ,σ

(r) −→
1

2

�

al ,σNsourcee
iδl,σ,λ−iA

Reg

l
eiσC (l)
�

eiΦC (l)

+
1

2

�

al ,σNsourcee
−iδl,σ,λ+iA

Reg

l
e−iσC (l)
�

e−iΦC (l) (12)

where

δl ,σ,λ=δ(l,σ,λ)−
π

2
(σ+2). (13)

Hence, to provide the general solution

hG
l ,σ

(r)=A
Reg

l
v

Reg

l
(r)+hP

l ,σ
(r), (14)
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with a pure incoming (+) or outgoing (−) behavior (e±iΦC (l)), the constants A
Reg

l
and al ,σ of

the source must be chosen as

A
Reg±
l

=±i
e∓iδl,σ,λ

cos
�

δl ,σ,λ−σC(l)
� , a±

l ,σ
=

1

Nsource

e∓iσC (l)

cos
�

δl ,σ,λ−σC(l)
� , (15)

while, for standing wave cosine–like behavior cos(ΦC (l)+σC (l)) ,

A
Reg

l
= tan
�

δl ,σ,λ−σC(l)
�

, al ,σ=
1

Nsourcecos
�

δl ,σ,λ−σC(l)
� . (16)

In Fig. 1, we plot as a function of r the solution hG
l ,σ

(r) (the ϕc(r) of Ref. [8]) constructed

to have standing wave cosine-like behavior, for l=0 and l=1. For the illustration, we elected

the following parameters: µ=1, z1z2=−1, k=1, λ=0.5 and σ=0. This is the case considered

by Yamani and Reinhardt [8] and besides is the one used in J-matrix calculations nowadays

(see, e.g., [20]). We plot also the non-homogeneity e−λr , and the sought after cosine-like

behavior cos(ΦC(l)+σC (l)). It is clear that this asymptotic behavior is reached by the func-

tion hG
l ,σ

(r) only in a region where the exponential vanishes. This, however, depends on the

parameters λ,l and σ; for example, the cosine-like behavior is reached further away for l=1

than for l=0.
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Figure 1: The funtion hG
l,σ

(r) onstruted to have standing wave osine-like behavior is plotted (solidirles) as a funtion of r for l =0,1, and ompared to the osine-like behavior cos(ΦC (l)+σC (l)) (openirles). The parameters used are: µ=1, z1z2=−1, k=1, λ=0.5 and σ=0. The exponential e−λr (dashedline) is also inluded for omparison.
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l,σ

(r) onstruted to have standing wave osine-like behavior is plotted (solidirles) as a funtion of r for l=0, and ompared to v
Reg

l
(r) (open squares) possessing the sine-like behavior

sin(ΦC (l)+σC (l)) assoiated to the homogeneous solution. The parameters used are: µ=1, z1z2 =−1,
k=1, λ=0.5 and σ=0. The exponential e−λr (dashed line) is also inluded for omparison.

In Fig. 2 we compare the functions hG
l ,σ

(r) (the ϕc(r) of Ref. [8]) and v
Reg

l
(r) (the ϕs(r)

of Ref. [8]). The two solutions become linearly independent, only asymptotically, i.e., in the

region where e−λr becomes negligible. This linear independency, however, depends upon the

parameters λ,l and σ. Other values of λ and σ have been considered and lead to similar

observations; for increasing values of λ, i.e., a source of shorter range, the convergence to a

cosine-like behavior is faster as one would expect.

Finally, it is interesting to consider the situation where the Coulomb potential is absent,

z1z2 =0. For the same non–homogeneity, the particular solution of the non–homogeneous

Schrödinger equation (1) is given by Eq. (3) with α= 0. This case has been considered

in, e.g., Refs. [7, 8, 11], within the context of a L2 representation of scattering functions

and J-matrix approaches for short-range potentials. The regular and irregular homogeneous

solutions reduce to spherical Bessel functions, and behave at large distances as [18]

v
Reg

l
(r) −→ sin

�

kr−
π

2
l

�

, (17a)

v
I r reg

l
(r) −→ cos

�

kr−
π

2
l

�

. (17b)
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In this case, the conditions to obtain a pure incoming (+) or outgoing (−) behavior are

A
Reg±
l

=±i[1∓tan
�

δl ,σ,λ

�

], a±
l ,σ

=
1

Nsource

1

cos
�

δl ,σ,λ

� , (18)

while, for standing wave cosine–like behavior,

A
Reg

l
= tan(δl ,σ,λ), al ,σ=

1

Nsourcecos
�

δl ,σ,λ

� , (19)

where

δl ,σ,λ=−arg

�

2F1

�

σ+1,2l+2+σ
l+2+σ

�

�

�

�

;
1

2

�

1+
λ

ik

�

��

−
π

2
(σ+2). (20)

4 Summary

In the present contribution we have provided a closed form solution for a radial Coulomb non-

homogeneous Schrödinger equation used within the J-matrix approach (the free-particle, cor-

responding to z1z2=0, was also considered as a subcase). The particular solution is expressed

in terms of a two–variable hypergeometric function, and presents a cosine-like asymptotic

behavior at large distances. When compared with the cosine-like behavior associated to the

homogeneous solution, a phase-shift depending on the source parameters appears. An ap-

propriate linear combination of the homogeneous and the particular solution was found in

such a way to obtain functions having pure incoming, outgoing and standing-wave cosine-like

behavior with Coulombic phase. All this functions are real and regular at the origin.

The results presented in this article can be used for solving scattering problems within the

J-matrix or alternative variational methods [13]. Besides, the present results and those of

Ref. [6] are important for studying the details of a formulation such as the exterior complex

scaling [3, 5]. This method is based on the solution of a non-homogeneous equation as the

one considered here where an artificial cut–off is introduced on the source term. How this

cut–off affects the solution of the scattering problem is the object of our current investigations.
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