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The original “modal interpretation” of non-relativistic quantum theory was
born in the early 1970s, and at that time the phrase referred to a single
interpretation. The phrase now encompasses a class of interpretations, and
is better taken to refer to a general approach to the interpretation of
quantum theory. We shall describe the history of modal interpretations,
how the phrase has come to be used in this way, and the general program
of (at least some of) those who advocate this approach.
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1. The origin of the modal approach

In traditional approaches to quantum measurement theory a central role is
played by the projection postulate, which asserts that upon measurement
of a physical system its state will be projected (“collapses”) onto a state
corresponding to the value found in the measurement. However, this
postulate leads to many difficulties: What causes this discontinuous
change in the physical state of a system? What exactly is a “measurement”
as opposed to an ordinary physical interaction? The postulate is especially
worrying when applied to entangled compound systems whose
components are well-separated in space. For example, in the Einstein-
Podolsky-Rosen (EPR) experiment there are strict correlations between
two systems that have interacted in the past, in spite of the fact that the
correlated quantities are not sharply defined in the individual systems. The
projection postulate in this case implies that the collapse resulting from a
measurement on one of the systems instantaneously defines a sharp
property in the distant other system. (See the discussion of the collapse or
projection postulate in the entry on philosophical issues in quantum
theory.)

A possible way clear of these problems was noticed by van Fraassen
(1972, 1974, 1991), who proposed to eliminate the projection postulate
from the theory. Others had made this proposal before, as Bohm (1952) in
his theory (itself preceded by de Broglie’s proposals from the 1920s),
Everett (1957) in his relative-state interpretation and De Witt (1970) with
the many-worlds interpretation. (See the entries on Bohmian mechanics,
Everett’s relative-state formulation of quantum mechanics, and the many-
worlds interpretation of quantum mechanics.) Van Fraassen’s proposal
was, however, different from these other approaches. It relied, in
particular, on a distinction between what he called the “dynamical state”
and the “value state” of a system at any instant:
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The dynamical state determines what may be the case: which
physical properties the system may possess, and which properties the
system may have at later times.
The value state represents what actually is the case, that is, all the
system’s physical properties that are sharply defined at the instant in
question.

The dynamical state is just the quantum state of the ordinary textbook
approach (a vector or density matrix in Hilbert space). For an isolated
system, it always evolves according to the Schrödinger equation (in non-
relativistic quantum mechanics): so the dynamical state never collapses
during its evolution.

The value state is (typically) different from the dynamical state. The
general idea of this original proposal, and of modal interpretations in
general, is that physical systems at all times possess a number of well-
defined physical properties, i.e., definite values of physical quantities;
these properties can be represented by the system’s value state. Which
physical quantities are sharply defined, and which values they take, may
change in time. Empirical adequacy of course requires that the dynamical
state generate the correct Born frequencies of observable quantities.

An essential feature of this approach is that a system may have a sharp
value of an observable even if the dynamical state is not an eigenstate of
that same observable. The proposal thus violates the so-called “eigenstate-
eigenvalue link”, which says that a system can only have a sharp value of
an observable (namely, one of its eigenvalues) if its quantum state is the
corresponding eigenstate. In the value state terminology, the eigenstate-
eigenvalue link would say that a system has the value state corresponding
to a given eigenvalue of a given observable if and only if its dynamical
state is an eigenstate of the observable corresponding to that eigenvalue.

Olimpia Lombardi and Dennis Dieks
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This original modal approach accepts the “if” part, but denies the “only if”
part.

What are the possible “value states” for a given system at a given time?
Van Fraassen stipulates the following restriction: propositions about a
physical system cannot be jointly true, unless they are represented by
commuting observables. In other words, the non-commutativity of
observables imposes limits not on our knowledge about the properties of a
system, but rather on the possibility of joint existence of properties,
independently of our knowledge. Non-commuting quantities, like position
and momentum, cannot jointly be well-defined quantities of a physical
system.

Empirical adequacy requires that, in cases of measurement, the after-
measurement value state of the apparatus corresponds to the (definite)
measurement result. Therefore, in these cases one would expect the
dynamical state to generate a probability measure over exactly the set of
possible measurement results. However, van Fraassen’s original modal
approach is more liberal in its assignment of possible value states, and
according to many this does not yield a satisfactory account of
measurements (see Ruetsche 1996).

Van Fraassen’s proposal is “modal” because it naturally connects to a
modal logic of quantum propositions. Indeed, the dynamical state in
general only tells us what is possible. According to van Fraassen, one does
not need to view this as arising from an incompleteness of the description,
which it is the aim of science to remove—quantum mechanics may be
inherently probabilistic and modal (see Bueno 2014 for the relation
between this and van Fraassen’s constructive empiricism, which is hostile
to modal realism).

Modal Interpretations of Quantum Mechanics
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It is easy to see how, along the lines of van Fraassen’s ideas, a program
could come into being for providing a more elaborate “realist”
interpretation of quantum theory, a program to which we now turn.

2. General features of modal interpretations

In the 1980s several authors presented realist interpretations which, in
retrospect, can be regarded as elaborations or variations on the just-
mentioned modal themes (for an overview and references, see Dieks and
Vermaas 1998). In spite of the differences among them, all the modal
interpretations agree on the following points:

The interpretation should be based on the standard formalism of
quantum mechanics, with one exception: the projection postulate is
left out.
The interpretation should be “realist” in the precise sense that it
assumes that quantum systems always possess a number of definite
properties, which may change with time. It should be noted, however,
that this semantic realism is compatible with agnosticism or van
Fraassen’s brand of empiricism (van Fraassen 1991, Bueno 2014),
and does not presuppose epistemological realism.
Quantum mechanics is taken to be fundamental: it applies both to
microscopic and macroscopic systems.
The dynamical state of the system (pure or mixed) tells us what the
possible properties of the system and their corresponding
probabilities are. This is achieved by a precise mathematical rule that
specifies a probabilistic relationship between the dynamical state and
possible value states.
A quantum measurement is an ordinary physical interaction. There is
no collapse of the dynamical state (the wavefunction): the dynamical
state always evolves unitarily according to the Schrödinger equation.

Olimpia Lombardi and Dennis Dieks
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The Kochen-Specker theorem (1967) is a barrier to any realist classical-
like interpretation of quantum mechanics, since it proves the impossibility
of ascribing precise values to all physical quantities (observables) of a
quantum system simultaneously, while preserving the functional relations
between commuting observables. (See the entry on the the Kochen-
Specker theorem.) Therefore, realist non-collapse interpretations are
committed to selecting a privileged set of definite-valued observables out
of all observables. Each modal interpretation thus supplies a “rule of
definite-value ascription” or “actualization rule”, which picks out, from
the set of all observables of a quantum system, the subset of definite-
valued properties.

The question is: what should this actualization rule look like? Since the
mid-1990s a series of approaches faced this question (Clifton 1995a,b;
Dickson 1995a,b; Dieks 1995). Each one of them proposed a group of
conditions that the set of definite-valued properties should obey, and
characterized this set in terms of the dynamical state  of the system.
The common result was that the possible value states of the components of
a two-part composite system are given by the states occurring in the
Schmidt (bi-orthogonal) decomposition of the dynamical state, or,
equivalently, by the projectors occurring in the spectral decomposition of
the density matrices representing partial systems (obtained by partial
tracing)—see Section 4 for more details.

The definite-valued properties have also been characterized somewhat
differently (Bub and Clifton 1996; for an improved version, see Bub,
Clifton and Goldstein 2000), that is, in terms of the quantum state  plus
a “privileged observable” , which is privileged in the sense that it
represents a property that is always definite-valued (see also Dieks 2005,
2007). On this basis, Bub (1992, 1994, 1997) suggests that with hindsight
a number of traditional interpretations of quantum theory can be
characterized as modal interpretations. Notable among them are the Dirac-

∣ϕ⟩

∣ϕ⟩
R
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von Neumann interpretation, (what Bub takes to be) Bohr’s interpretation,
and Bohm’s theory. Bohm’s theory is a modal interpretation in which the
privileged observable  is the position observable.

3. Atomic modal interpretation

The Hilbert space of the universe , like any Hilbert space, can be
factorized in countless ways. If one supposes that each factorization
defines a legitimate set of subsystems of the universe, the multiple
factorizability implies that there exists a multiplicity of ways of defining
the building blocks of nature. If the properties (value states) of all these
quantum systems are defined by means of the partial trace with respect to
the rest of the universe (see later for more details), it turns out that a
contradiction of the Kochen-Specker type arises (Bacciagaluppi 1995).

The Atomic Modal Interpretation (AMI, Bacciagaluppi and Dickson 1999)
tries to overcome this obstacle by assuming that there is in nature a fixed
set of mutually disjoint atomic quantum systems  that constitute the
building blocks of all the other quantum systems. From the mathematical
point of view, this means that the Hilbert space  of the entire
universe can only be meaningfully factorized in a single way, which
defines a preferred factorization. If each atomic quantum system  is
represented by its corresponding Hilbert space , then the Hilbert space 

 of the universe must be written as

The main appeal of this idea is that it is in consonance with the standard
model of particle physics, where the fundamental blocks of nature are the
elemental particles, e.g., quarks, electrons, photons, etc., and their
interactions. The property ascription to the atomic quantum systems in the

R

univ

Sj

univ

Sj

j

univ

= ⊗ ⊗ ⋯ ⊗ ⊗ ⋯univ 1 2 j
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AMI further follows the general idea of modal interpretations, that is, the
ascription depends via a fixed rule on the dynamical state of the system.

The main challenge for the AMI is to justify the assumption that there is a
preferred partition of the universe and to provide some idea about what
this factorization should look like. AMI also faces a conceptual problem.
In this interpretation, a non-atomic quantum system , defined as
composite of atomic quantum systems, does not necessarily have
properties that correspond to the outcomes of measurements. The reason is
that the system  might be in the quantum state  with an eigenprojector

 such that . This implies that if one measured the
property represented by , one would obtain a positive outcome with
probability 1. But it may be the case that the projector  is not a
composite of atomic properties and, therefore, according to the AMI, it is
not a property possessed by the composite quantum system .

Two answers to this conceptual difficulty have been proposed. The first
allows the existence of dispositional properties in addition to ordinary
properties (Clifton 1996). According to the second answer, the projector 

 of the composite system  shows that  has a collective dynamical
effect onto the measurement device, that is, an effect that cannot be
explained by the action of the atomic components (Dieks 1998). In other
words, the composite quantum system, when interacting with its
environment, can behave as a collective entity, screening off the
contribution of the atomic quantum systems. This means that sometimes a
non-atomic quantum system  may be taken as if it were an atomic
quantum system within the framework of a coarse-grained description.

4. Biorthogonal-decomposition and spectral-
decomposition modal interpretations

Sσ

Sσ ϱσ

Πσ ( ) = 1Trσ ϱσ Πσ

Πσ

Πσ

Sσ

Πσ Sσ Sσ

Sσ
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In the biorthogonal-decomposition interpretation (BDMI, sometimes
known as “Kochen-Dieks modal interpretation”, Kochen 1985; Dieks
1988, 1989a,b, 1994a,b), the definite-valued observables are picked out by
the biorthogonal (Schmidt) decomposition of the pure quantum state of the
system:

Biorthogonal Decomposition Theorem:
Given a vector  in a tensor-product Hilbert space , there
exist bases  and  for  and  respectively, such that 

 can be written as a linear combination of terms of the form 
. If the absolute values (modulus) of the coefficients in this

linear combination are all unequal, then the bases are unique (see, for
example, Schrödinger 1935 for a proof).

In quantum mechanics the theorem means that, given a composite system
consisting of two subsystems, its state picks out (in many cases, uniquely)
a basis for each of the subsystems. According to the BDMI, those bases
generate the definite-valued properties (the value states) of the
corresponding subsystems.

The BDMI is particularly appropriate to account for quantum
measurement. Let us consider an ideal measurement under the standard
von Neumann model, according to which a quantum measurement is an
interaction between a system  and a measuring apparatus . Before the
interaction,  is prepared in a ready-to-measure state , eigenvector of
the pointer observable  of , and the state of  is a superposition of the
eigenstates  of an observable  of . The interaction introduces a
correlation between the eigenstates  of  and the eigenstates  of :

∣ψ⟩ ⊗1 2
{∣ ⟩}ai {∣ ⟩}pi 1 2

∣ψ⟩
∣ ⟩ ⊗ ∣ ⟩ai pi
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M ∣ ⟩p0

P M S
∣ ⟩ai A S

∣ ⟩ai A ∣ ⟩pi P

∣ ⟩ = ∣ ⟩ ⊗ ∣ ⟩ → ∣ψ⟩ = ∣ ⟩ ⊗ ∣ ⟩ψ0 ∑
i

ci ai p0 ∑
i

ci ai pi
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In this case, according to the BDMI prescription, the preferred context of
the measured system  is defined by the set  and the preferred
context of the measuring apparatus  is defined by the set .
Therefore, the pointer position is a definite-valued property of the
apparatus: it acquires one of its possible values (eigenvalues) . And
analogously in the measured system: the measured observable is a
definite-valued property of the measured system, and it acquires one of its
possible values (eigenvalues) .

In spite of the fact that this modal interpretation is characterized by the
central role played by biorthogonal decomposition, two different versions
can be distinguished. One of them adopts a metaphysics in which all
properties are relational and, as a consequence, the fact that the application
of the interpretation is restricted to subsystems of a two-component
compound system is not a problem (Kochen 1985). This relation has been
called “witnessing”: properties are not possessed by the system absolutely,
but only when it is “witnessed” by another system. Consider the
measurement described above: the pointer “witnesses” the value acquired
by the measured observable of the measured system.

By contrast, according to the other version (Dieks 1988, 1989a,b) the
properties ascribed to the system do not have a relational character. This
proposal therefore faces consistency questions about the assignments of
definite values to observables according to different ways of splitting up
the total system into components. Consider, for example, the three-
component composite system . We could apply the biorthogonal
decomposition theorem to the two-component system (i) , or (ii) 

 or (iii) . Suppose that, as a result of this, in case (i) the system 
 has the definite-valued property , in case (ii) the system  has the

definite-valued property , and in case (iii) the system  has the definite-
valued property . How do the definite-valued properties of  and  relate

S {∣ ⟩}ai
M {∣ ⟩}pi

pi

ai

αβχ
α(βχ)

β(χα) χ(αβ)
α P β

Q αβ
R α β
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to those of ? Are the definite-values properties of system  , or 
, or both?

This problem has been addressed by different authors during the 1990s
(see Vermaas 1999; Bacciagaluppi 1996). This work led to the spectral-
decomposition modal interpretation (SDMI, sometimes known as
“Vermaas-Dieks modal interpretation”, Vermaas and Dieks 1995) a
generalization of the BDMI interpretation to mixed states. The SDMI is
based on the spectral decomposition of the reduced density operator: the
definite-valued properties  of a system and their corresponding
probabilities  are given by the non-zero diagonal elements of the
spectral decomposition of the system’s state,

This new proposal matches the old one in cases where the old one applies,
and generalizes it by fixing the definite-valued properties in terms of
multi-dimensional projectors when the biorthogonal decomposition is
degenerate: definite-valued properties need not always be represented by
one-dimensional vectors—higher-dimensional subspaces of the Hilbert
space can also occur.

The SDMI also has a direct application to the measurement situation.
Consider quantum measurement as described above, where the reduced
states of the measured system  and the measuring apparatus  are

According to the SDMI, the preferred context of  is defined by the
projectors  and the preferred context of  is defined by projectors .

αβ αβ P & Q
R

Πi
Pri

ϱ = = Tr(ϱ )∑
i

αiΠi Pri Πi

S M

ϱS
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Therefore, also in the SDMI, the observables  of  and  of  acquire
actual definite values, whose probabilities are given by the diagonal
elements of the diagonalized reduced states.

The SDMI faces the same difficulty as the non-relational version of the
BDMI: the fact that a system can be decomposed in a variety of different
ways. In particular, the factorization of a given Hilbert space  into two
factors, , can be “rotated” to produce different
factorizations . Are we to apply the SDMI to each such
factorization? How are the results related, if at all? A theorem due to
Bacciagaluppi (1995, see also Vermaas 1997) shows, in essence, that if
one applies the SDMI to the “subsystems” obtained in every factorization
and insists that the definite-valued properties so-obtained are not
relational, then one will be led to a mathematical contradiction of the
Kochen-Specker variety. In response, one could adopt the view that
subsystems have their definite-valued properties “relative to a
factorization”; we will come back to this issue below.

Healey (1989) was also among the first to make use of the biorthogonal
decomposition theorem, developing these ideas in a somewhat different
direction. His main concern was the apparent non-locality of quantum
mechanics. Healey’s intuition about the way a modal interpretation based
on the biorthogonal decomposition theorem would be applied to, say, an
EPR experiment is to implement the idea that an EPR pair possesses a
“holistic” property; this can then explain why the apparatus on one side of
the experiment acquires a property that is correlated to the result on the
other side.

In Healey’s proposal, the biorthogonal decomposition theorem is used, but
the set of possible properties is subsequently modified in order to fulfill a
variety of desiderata. The first is consistency: the aim is to avoid Kochen-
Specker-type results. A second is to maintain a plausible theory of the

A S P M



 = ⊗1 2
= ⊗′ 1′ 2′
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relationship between composite systems and their subsystems. A third is to
maintain a plausible account of the relations among definite-valued
properties at a given time. A fourth is to maintain a plausible account of
the relations among definite-valued properties at different times. The
structure of definite-valued properties that emerges from these conditions
is extremely complicated. Some progress has been made since Healey’s
book was published (see for example Reeder and Clifton 1995) but, in
general, it remains difficult to see what the set of definite-valued properties
is according to his approach.

5. Non-ideal measurements

Above we suggested that the BDMI and the SDMI solve the measurement
problem in a particularly direct way. This is right in the case of the ideal
von Neumann measurement, as explained in the previous section, where
the eigenstates  of an observable  of the measured system  are
perfectly correlated with the eigenstates  of the pointer  of the
measuring apparatus . However, ideal measurement is a situation that
can never be achieved in practice: the interaction between  and  never
introduces a completely perfect correlation. Two kinds of non-ideal
measurements are usually distinguished in the literature:

Imperfect measurement (first kind) 
 (in general,  with 

Disturbing measurement (second kind) 
 (in general, )

Note, however, that disturbing measurement can be rewritten as imperfect
measurements (and vice versa).

Imperfect measurements pose a challenge to the BDMI and the SDMI,
since their rules for selecting the definite-valued properties do not pick out

∣ ⟩ai A S
∣ ⟩pi P

M
S M

∣ ⟩ ⊗ ∣ ⟩ → ∣ ⟩ ⊗ ∣ ⟩∑i ci ai p0 ∑ij dij ai pj ≠ 0dij i ≠ j)

∣ ⟩ ⊗ ∣ ⟩ → ∣ ⟩ ⊗ ∣ ⟩∑i ci ai p0 ∑i ci ad
i pi ⟨ ∣ ⟩ ≠ad

i ad
j δij
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the right properties for the apparatus in the imperfect case (see Albert and
Loewer 1990, 1991, 1993; also Ruetsche 1995). An example that clearly
brings out the difficulties introduced by non-ideal measurements was
formulated in the context of Stern-Gerlach experiments (Elby 1993). This
argument uses the fact that the wavefunctions in the -variable typically
have infinite “tails” that introduce non-zero cross-terms; therefore, the
“tail” of the wavefunction of the “down” beam may produce detection in
the upper detector, and vice versa (see Dickson 1994 for a detailed
discussion).

In fact, if the biorthogonal decomposition is applied to the non-perfectly
correlated state , according to the
BDMI the result does not select the pointer  as a definite-valued property,
but a different observable  with eigenstates . In this case, in which
the definite-valued properties selected by a modal interpretation are
different from those expected, the question arises how different they are.
In the case of an imperfect measurement, it may be assumed that the 

, with , be small; then, the difference might be also small. But
in the case of a disturbing measurement, the , with , need not
be small and, as a consequence, the disagreement between the modal
interpretation assignment and the experimental result might be
unacceptable (see a full discussion in Bacciagaluppi and Hemmo 1996).
This fact has been considered as a “silver bullet” for killing the modal
interpretations (Harvey Brown, cited in Bacciagaluppi and Hemmo 1996).

There is another important problem related to non-ideal measurements.
When the final state of the composite system (measured system plus
measuring device) is very nearly degenerate when written in the basis
given by the measured observable and the apparatus’s pointer (that is,
when the probabilities for the various results are nearly equal), the spectral
decomposition does not, in general, select as definite-valued properties
close to those ideally expected. In fact, the observables so selected may be

z

∣ ⟩ ⊗ ∣ ⟩ = ∣ ⟩ ⊗ ∣ ⟩∑ij dij ai pj ∑i c′
i a′

i p′
i

P
P′ ∣ ⟩p′

i

≠ 0dij i ≠ j
≠ 0dij i ≠ j
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incompatible (non-commuting) with the observables that we expect on the
basis of observation (Bacciagaluppi and Hemmo 1994, 1996).

In order to face the problems that non-ideal measurements pose to the
BDMI and the SDMI, several authors have appealed to the phenomenon of
decoherence; this will be discussed below.

6. Properties of composite systems

Let us take a composite system , whose component subsystems  and 
are represented by the Hilbert spaces  and , respectively, and
consider a property represented by the projector  defined on . It is
usual to assume that  represents the same property as that represented
by  defined on , where  is the identity operator on 

. This assumption is based on the observational indistinguishability of
the magnitudes represented by  and : if the -measurement
has a certain outcome, then the -measurement has exactly the
same outcome.

The question is then: If the rules of the BDMI and the SDMI applied to 
assign a value to , do those rules applied to the composite system 
assign the same value to  (condition known as Property
Composition), and vice versa (Property Decomposition)? The answer to
this question is negative: the BDMI and the SDMI violate Property
Composition and Property Decomposition (for a proof, see Vermaas
1998).

Of course, if one maintains that the projectors  and  represent
the same property, the violation of Property Composition and Property
Decomposition is a serious problem for any interpretation. This is the
position adopted by Arntzenius (1990), who judges this violation to be
bizarre, since it assigns different truth values to propositions like ‘the left-

αβ α β
α β

Πα α

Πα

⊗Πα Iβ ⊗α β Iβ

β

Πα ⊗Πα Iβ Πα

⊗Πα Iβ

α
Πα αβ

⊗Πα Iβ
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hand side of a table is green’ and ‘the table has a green left-hand side’,
which are normally not distinguished; a similar argument is put forward
by Clifton (1996, see also Clifton 1995c).

However, Vermaas (1998) argues that the observational
indistinguishability of the magnitudes represented by  and 
does not force one to consider these two projectors as representing the
same property: in fact, they are distinguishable from a theoretical
viewpoint, since they are defined on different Hilbert spaces. Moreover, he
argues that the examples developed by Arntzenius and Clifton sound
bizarre precisely in the light of Property Composition and Property
Decomposition. But in the quantum realm we must accept that the
questions of which properties are possessed by a system and which by its
subsystems are different questions: the properties of a composite system 

 don’t reveal information about the properties of subsystem , and vice
versa. Vermaas concludes that the tenet that  and  do represent
the same property can be viewed as an addition to quantum mechanics,
which can be denied as, for instance, van Fraassen (1991) did.

7. Dynamics of properties

As we have seen, modal interpretations intend to provide, for every
instant, a set of definite-valued properties and their probabilities. Some
advocates of modal interpretations may be willing to leave the matter,
more or less, at that. Others take it to be crucial for any modal
interpretation that it also answers questions of the form: Given that the
property  of a system has the actual value  at time , what is the
probability that its property  has the actual value  at time ? In
other words, they want a dynamics of actual properties.

There are arguments on both sides. Those who argue for the necessity of
such a dynamics maintain that we have to assure that the trajectories of

Πα ⊗Πα Iβ

αβ α
Πα ⊗Πα Iβ

P α t0
P′ β >t1 t0
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actual properties really are, at least for macroscopic objects, like we see
them to be, i.e., like the records contained in memories. For example, we
should require not only that the book at rest on the desk possess a definite
location, but also that, if undisturbed, its location relative to the desk does
not change in time. Accordingly, one cannot get away with simply
specifying the definite properties at each instant of time. We need also to
show that this specification is at least compatible with a reasonable
dynamics; better still, specify this dynamics explicitly.

Those who consider a dynamics of actual properties to be superfluous
reply that such a dynamics is more than what an interpretation of quantum
mechanics needs to provide. Memory contents for each instant are enough
to make empirical adequacy possible.

As pointed out by Ruetsche (2003), in this debate about the need for a
dynamics of actual properties it is important whether the modal
interpretation is viewed as leading to a hidden-variables theory, in which
value states are added as hidden variables to the original formalism in
order to obtain a full description of the physical situation, or rather as only
equipping the original formalism with a new semantics. In the first
approach one would expect a full dynamics of actual properties, in the
second this is not so clear.

Of course, modal interpretations do admit a trivial dynamics, namely, one
in which there is no correlation from one time to the next. In this case, the
probability of a transition from the property  having the actual value  at 

, to the property  having the actual value  at  is just the single-
time probability for  having  at . However, this dynamics is unlikely
to interest those who feel the need for a dynamics at all. Several
researchers have contributed to the project of constructing a more
interesting form of dynamics for modal interpretations (see Vermaas 1996,
1998). An important account is due to Bacciagaluppi and Dickson (1999,

P α
t0 P′ β >t1 t0

P′ β t1
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see also Bacciagaluppi 1998). That work shows the most significant
challenges that the construction of a dynamics of actual properties must
face.

The first challenge is posed by the fact that the set of definite-valued
properties—let us call it ‘ ’—may change over time. One therefore has to
define a family of maps, each one being a 1–1 map from  at time  to a
different  at time , for any time. With such a family of maps, one can
effectively define conditional probabilities within a single state space, and
then translate them into “transition” probabilities. For this technique to
work,  must have the same cardinality at any time. However, in general
this is not the case: for instance, in the SDMI, the number of different
projectors appearing in the spectral decomposition of the density matrix
may vary with time.

A way out of this is to augment  at each time so that its cardinality
matches the highest cardinality that  ever achieves. Of course, one hopes
to do so in a way that is not completely ad hoc. For example, in the
context of the SDMI, Bacciagaluppi, Donald and Vermaas (1995) show
that the “trajectory” through Hilbert space of the spectral components of
the reduced state of a physical system will, under reasonable conditions,
be continuous, or have only isolated discontinuities, so that the trajectory
can be naturally extended to a continuous trajectory (see also Donald
1998). This result suggests a natural family of maps as discussed above:
map each spectral component at one time to its unique continuous evolved
component at later times.

The second challenge to the construction of a dynamics arises from the
fact that one wants to define transition probabilities over infinitesimal units
of time, and then derive the finite-time transition probabilities from them.
Bacciagaluppi and Dickson (1999) argue that, adapting results from the

S
S0 t0

St t

St

S
S
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theory of stochastic processes, one can show that the procedure may, more
or less, be carried out for modal interpretations of at least some varieties.

Finally, one must actually define infinitesimal transition probabilities that
will give rise to the proper quantum-mechanical probabilities at each time.
Following earlier papers by Bell (1984), Vink (1993) and others,
Bacciagaluppi and Dickson (1999) define an infinite class of such
infinitesimal transition probabilities, such that all of them generate the
correct single-time probabilities, which arguably are all we can really test.
However, Sudbery (2002) has contended that the form of the transition
probabilities would be relevant to the precise form of spontaneous decay
or the “Dehmelt quantum jumps”; he independently developed the
dynamics of Bacciagaluppi and Dickson and applied it in such a way that
it leads to the correct predictions for these experiments. Gambetta and
Wiseman (2003, 2004) developed a dynamical modal account in the form
of a non-Markovian process with noise, also extending their approach to
positive operator-valued measures (POVMs). More recently, Hollowood
(2013a, 2013b, 2014) has elaborated the idea that the dynamics of value
states can be modeled by a discrete-time Markov chain.

8. Perspectival modal interpretation

As we have seen, both the SDMI and the non-relational version of the
BDMI have to face the problem of the multiple factorizability of a given
Hilbert space: if the definite-valued properties are monadic (i.e., non-
relational), both interpretations led to a Kochen-Specker-type
contradiction (Bacciagaluppi 1995). This points to the direction of an
interpretation that makes properties relational, in this case relative to a
factorization.

Extending this idea, a perspectival modal interpretation (PMI, Bene and
Dieks 2002) was developed, in which the properties of a physical system
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have a relational character and are defined with respect to another physical
system that serves as a “reference system” (see Bene 1997). This
interpretation is similar in spirit to the idea that systems have properties as
“witnessed” by the rest of the universe (Kochen 1985). However, the PMI
goes further by defining states of a system not only with respect to the
universe, but also with respect to arbitrary larger systems. The PMI is
closely related to the SDMI since similar rules are used to assign
properties to quantum systems.

In the PMI, the state of any system  needs the specification of a
“reference system”  with respect to which the state is defined: this state
of  with respect to  is denoted by . In the special case in which 
coincides with , the state  is called “the state of S with respect to itself”.
If the system  is contained in a system , the state  is defined as the
density operator that can be derived from  by taking the partial trace
over the degrees of freedom in  that do not pertain to :

With these definitions, the point of departure of the PMI is the quantum
state of the whole universe with respect to itself, which it is assumed to be
a pure state  which evolves unitarily according to the
Schrödinger equation. For any system  contained in the universe, its state
with respect to itself  is postulated to be one of the projectors of the
spectral resolution of

In particular, if there is no degeneracy among the eigenvalues of , these
projectors are one-dimensional and  is the one-dimensional projector 

.
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Within this PMI conceptual framework it can be shown that a system may
be localized from the perspective of one observer and, nevertheless, may
be delocalized from a different perspective. But it also follows that
observers who look at the same macroscopic object, at the same time and
under identical circumstances, will see it (practically) at the same spot.

The core idea of this interpretation is that all different relational
descriptions, given from different perspectives, are equally objective and
all correspond to physical reality (which has a relational character itself).
We cannot explain the relational states by appealing to a definition in
terms of more basic non-relational states. Further analysis shows that in
this interpretation EPR-type situations can be understood in a basically
local manner. Indeed, the change in the relational state of particle 2 with
respect to the 2-particle system can be understood as a consequence of the
change in the reference system brought about by the local measurement
interaction between particle 1 and the measuring device. This local
measurement is responsible for the creation of a new perspective, and
from this new perspective there is a new relational state of particle 2 (see
also Dieks 2009).

The PMI agrees with Bohr’s qualitative argument that any reasonable
definition of physical reality in the quantum realm should include the
experimental setup. However, the PMI is more general in the sense that
the state of a system is defined with respect to any larger physical system,
not necessarily an instrument. This removes the threat of subjectivism,
since the relational states follow unambiguously from the quantum
formalism and the physics of the situation.

It is interesting to consider the connections between the PMI and other
relational proposals. For instance, Berkovitz and Hemmo (2006) propose
the prospects of a relational modal interpretation in the relativistic case
(we will come back to this point below). In turn, Rovelli and coworkers
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propose an explicit ‘relational quantum mechanics’ that emphasizes the
possibility of different descriptions of a physical system depending on the
perspective (Rovelli 1996; Rovelli and Smerlak 2007; Laudisa and Rovelli
2008; see also van Fraassen 2010 and the entry on relational quantum
mechanics). In spite of the points of contact between the PMI and
Rovelli’s relational interpretation, there are significant differences. In
Rovelli’s proposal, the concepts of measurement interaction and of definite
outcomes of measurements are primary; moreover, the state has to be
updated every time that a measurement event occurs and, as a
consequence, it changes discontinuously with every new event. On the
contrary, the PMI is a realist interpretation where a measurement is
nothing else than a quantum interaction, and where unitary evolution is the
main dynamical principle, also when systems interact (see Dieks 2009).

9. Modal-Hamiltonian interpretation

As Bub (1997) points out, in most modal interpretations the preferred
context of definite-valued observables depends on the state of the system.
An exception is Bohmian mechanics, in which the preferred context is a
priori defined by the position observable; in this case, property
composition and property decomposition hold. But this is not the only
reasonable possibility for a modal interpretation with a fixed preferred
observable. In fact, the modal-Hamiltonian interpretation (MHI, Lombardi
and Castagnino 2008; Ardenghi, Castagnino, and Lombardi 2009;
Lombardi, Castagnino, and Ardenghi 2010; Ardenghi and Lombardi 2011)
endows the Hamiltonian of a system with a determining role, both in the
definition of systems and subsystems and in the selection of the preferred
context.

The MHI is based on the following postulates:
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Systems postulate (SP):
A quantum system  is represented by a pair  such that (i)  is a
space of self-adjoint operators on a Hilbert space, representing the
observables of the system, (ii)  is the time-independent
Hamiltonian of the system , and (iii) if  (where  is the dual
space of  is the initial state of , it evolves according to the
Schrödinger equation.

Although any quantum system can be decomposed in parts in many ways,
according to the MHI a decomposition leads to parts which are also
quantum systems only when the components’ behaviors are dynamically
independent of each other, that is, when there is no interaction among the
subsystems:

Composite systems postulate (CSP):
A quantum system represented by , with initial state 

, is composite when it can be partitioned into two quantum
systems  and  such that (i) ,
and (ii)  (where  and  are the identity
operators in the corresponding tensor product spaces). In this case, we
say that  and  are subsystems of the composite system 

. If the system is not composite, it is elemental.

With respect to the preferred context, the basic idea of the MHI is that the
Hamiltonian of the system defines actualization. Any observable that does
not have the symmetries of the Hamiltonian cannot acquire a definite
actual value, since this actualization would break the symmetry of the
system in an arbitrary way.

Actualization rule (AR):
Given an elemental quantum system represented by , the
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actual-valued observables of  are  and all the observables
commuting with  and having, at least, the same symmetries as .

The selection of the preferred context exclusively on the basis of a
preferred observable has been criticized by arguing that in the Hilbert
space formalism all observables are on an equal footing. However,
quantum mechanics is not just Hilbert space mathematics: it is a physical
theory that includes a dynamical law in which the Hamiltonian is singled
out to play a central role.

The justification for selecting the Hamiltonian as the preferred observable
ultimately lies in the success of the MHI and its ability to solve
interpretive difficulties. With respect to the first point: the scheme has
been applied to several well-known physical situations (free particle with
spin, harmonic oscillator, free hydrogen atom, Zeeman effect, fine
structure, the Born-Oppenheimer approximation), leading to results
consistent with empirical evidence (Lombardi and Castagnino 2008,
Section 5). With respect to interpretation, the MHI confronts quantum
contextuality by selecting a preferred context, and has proved to be able to
supply an account of the measurement problem, both in its ideal and its
non-ideal versions; moreover, in the non-ideal case it gives a criterion to
distinguish between reliable and non-reliable measurements (Lombardi
and Castagnino 2008, Section 6), a criterion that can be generalized when
expressed in informational terms (Lombardi, Fortin and López 2015).

In the MHI property composition and property decomposition hold
because the actualization rule only applies to elemental systems: the
definite-valued properties of composite systems are selected on the basis
of those of the elemental components, and following the usual quantum
assumption according to which the observable  of a subsystem  and
the observable  of the composite system 
represent the same property (Ardenghi and Lombardi 2011).

S H
H H

A1 S1
A = ⊗A1 I2 S = ∪S1 S2
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The preferred context of the MHI does not change with time: the definite-
valued observables always commute with the Hamiltonian and, therefore,
they are constants of motion of the system. This means that they are the
same during the whole “life” of the quantum system as a closed system,
since its initial “birth”, when it arises as a result of an interaction, up to its
final “death”, when it disappears by interacting with another system. As a
consequence, there is no need of accounting for the dynamics of the actual
properties as in the BDMI and the SDMI.

In more recent years, the MHI has extended its applications to further
situations, such as the non-collapse account of consecutive measurements
in physics (Ardenghi, Lombardi and Narvaja 2013) and the problem of
optical isomerism in chemistry (Fortin, Lombardi and Martínez González
2016a, 2016b). Moreover, on the basis of its closed-system perspective,
the MHI opens the way toward a top-down view of quantum mechanics,
according to which reduced states are coarse-grained states of a closed
system (Fortin and Lombardi 2014) and decoherence is a phenomenon
relative to the particular partition of the closed system considered in each
case (Lombardi, Fortin and Castagnino 2012, Fortin and Lombardi 2016).

10. The interpretation of probability

One of the leading ideas of the modal interpretations is probabilism:
quantum mechanics does not correspond in a one-to-one way to actual
reality, but rather provides us with a list of possibilities and their
probabilities. Therefore, the notions of possibility and probability are
central in this interpretive framework. This raises two issues: the formal
treatment of probabilities, and the interpretation of probability.

Since the set of events corresponding to all projector operators on a given
Hilbert space does not have a Boolean structure, the Born probability
(which is defined over these projectors) does not satisfy the definition of
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probability of Kolmogorov (which applies to a Boolean algebra of events).
For this reason, some authors define a generalized non-Kolmogorovian
probability function over the ortho-algebra of quantum events (Hughes
1989; Cohen 1989). Modal interpretations do not follow this path: they
conceive probabilities as represented by a Kolmogorovian measure on the
Boolean algebra representing the definite-valued quantities, generated by
mutually commuting projectors. The various modal interpretations differ
from each other in their definitions of the preferred context on which the
Kolmogorovian probability is defined.

As we have seen, the definite-valued properties of a system are usually
characterized in terms of the quantum state  and a privileged
observable  (Bub and Clifton 1996; Bub, Clifton, and Goldstein 2000;
Dieks 2005). Dieks (2007) derives a uniqueness result, namely that given
the splitting of a total Hilbert space into two factors spaces, representing
the system and its environment, respectively, the Boolean lattice of
definite-valued observables is fixed by the state of the system alone.
Furthermore, it follows that the Born measure is the only one that is
definable from just the product structure of Hilbert space, the state in the
Hilbert space, and the definite-valued observables selected by the state.

The MHI defines a context as a complete set of orthogonal projectors 
, such that  and , where  is the identity

operator in . Since each context generates a Boolean structure, the
state of the system defines a Kolmogorovian probability function on each
individual context (Lombardi and Castagnino 2008). However, only the
probabilities defined on the context determined by the eigenprojectors of
the Hamiltonian of an elemental closed system correspond to the possible
values one of which becomes actual.

In modal interpretations the event space on which the (preferred)
probability measure is defined is a space of possible events, among which

∣ϕ⟩
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only one becomes actual. The fact that the actual event is not singled out
by these interpretations is what makes them fundamentally probabilistic.
This aspect distinguishes modal interpretations from many-worlds
interpretations, where the probability measure is defined on a space of
events that are all actual. Nevertheless, this does not mean that all modal
interpretations agree about the interpretation of probability.

In the context of the BDMI, the SDMI and the PMI, it is usually claimed
that, given the space of possible events, the state generates an ignorance-
interpretable probability measure over this set: quantum probabilities
quantify the ignorance of the observer about the actual values acquired by
the system’s observables (see, e.g., Dieks 1988; Clifton 1995a; Vermaas
1999; Bene and Dieks 2002).

By contrast to actualism—the conception that reduces possibility to
actuality (see Dieks 2010, Bueno 2014)—some modal interpretations, in
particular the MHI, adopt a possibilist conception, according to which
possible events—possibilia—constitute a basic ontological category (see
Menzel 2007). The probability measure is in this case seen as a
representation of an ontological propensity of a possible quantum event to
become actual (Lombardi and Castagnino 2008; see also Suárez 2004).

These views do not all exclude each other. If probabilities quantify
ignorance about the actual values of the observables, this need not mean
that this ignorance can be removed by the addition of further information.
If quantum probabilities are ontological propensities, our ignorance about
the possible event that becomes actual is a necessary consequence of the
indeterministic nature of the system because there simply is no additional
information specifying a more accurate state of the system.

11. The role of decoherence
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According to the environment-induced approach to decoherence (Zurek
1981, 2003; see also Schlosshauer 2007), the measuring apparatus is an
open system in continuous interaction with its environment; as a
consequence of this interaction, the reduced state of the apparatus and the
measured system becomes, almost instantaneously, indistinguishable from
a state that would represent an ignorance mixture (“proper mixture”) over
unknown values of the apparatus’ pointer. The idea that decoherence might
play a role in modal interpretations was proposed by several authors early
on (Dieks 1989b; Healey 1995). But it has acquired a central relevance in
relation to the discussion of non-ideal measurements in the modal
interpretation.

As we have seen, in the BDMI and the SDMI, the biorthogonal or the
spectral decomposition does not pick out the right properties for the
apparatus in non-ideal measurements. Bacciagaluppi and Hemmo (1996)
show that, when the apparatus is a finite-dimensional system in interaction
with an environment with a huge number of degrees of freedom,
decoherence guarantees that the spectral decomposition of the apparatus’
reduced state will be very close to the ideally expected result and, as a
consequence, the apparatus’ pointer is—approximately—selected as an
actual definite-valued observable. Alternatively, Bub (1997) proposes that
it is not decoherence—with the “tracing out” of the environment and the
diagonalization of the reduced state of the apparatus—that is relevant for
the definite value of the pointer, but the triorthogonal or -orthogonal
decomposition theorem, since it singles out a unique pointer basis for the
apparatus.

In either case, the interaction with the environment is a great help to the
BDMI and the SDMI for handling non-ideal measurements with finite-
dimensional apparatuses. However, the case of infinitely many distinct
states for the apparatus is more troublesome. Bacciagaluppi (2000) has
analyzed this situation, using a continuous model of the apparatus’

n
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interaction with the environment. He concludes that in this case the
spectral decomposition of the reduced state of the apparatus generally does
not pick out states that are close enough to the ideally expected state. This
result seems to apply also to other cases where a macroscopic system (not
described as finite-dimensional) experiences decoherence due to
interaction with its environment (see Donald 1998). However, model
calculations in perspectival versions of the modal interpretation (Bene and
Dieks 2002; Hollowood 2013a, 2013b, 2014) indicate that the problem is
less severe in realistic circumstances than originally supposed.

As said above, in the case of the MHI decoherence is not explicitly
appealed to in order to account for the definite reading of the apparatus’
pointer (neither in ideal nor in non-ideal measurements). However, there
still is a relation with the decoherence program. In fact, the measuring
apparatus is always a macroscopic system with a huge number of degrees
of freedom, and the pointer must be a “collective” and empirically
accessible observable; as a consequence, the many degrees of freedom
corresponding to the degeneracies of the pointer play the role of a
decohering “internal environment” (for details, see Lombardi 2010;
Lombardi et al. 2011). The role of decoherence in the MHI becomes
clearer when the phenomenon of decoherence is understood from a closed-
system perspective (Castagnino, Laura, and Lombardi 2007; Castagnino,
Fortin, and Lombardi 2010; Lombardi, Fortin, and Castagnino 2012). (See
the entry on the role of decoherence in quantum mechanics.)

12. Open problems and perspectives

There are a number of open problems and perspectives in the modal
program. Here we will consider some of them.

Modal interpretations are based on the standard formalism of quantum
mechanics (in the Hilbert space version or in the algebraic version).
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However, Brown, Suárez and Bacciagaluppi (1998) argue that there is
more to quantum reality than what is described by operators and quantum
states: they claim that gauges and coordinate systems are important to our
description of physical reality as well, while modal interpretations (AM,
BDMI and SDMI) have standardly not taken such things into
consideration. In a similar vein, it has been argued that the Galilean space-
time symmetries endow the formal skeleton of quantum mechanics with
the physical flesh and blood that identify the fundamental physical
magnitudes and that allow the theory to be applied to concrete physical
situations (Lombardi and Castagnino 2008). The set of definite-valued
observables of a system should be left invariant by the Galilean
transformations: it would be unacceptable that this set changed as a mere
result of a change in the perspective from which the system is described.
On the basis of this idea, the MHI rule of actualization has been
reformulated in an explicitly invariant form, in terms of the Casimir
operators of the Galilean group (Ardenghi, Castagnino, and Lombardi
2009; Lombardi, Castagnino, and Ardenghi 2010).

Another fundamental question is the relativistic extension of the modal
approach. Dickson and Clifton (1998) have shown that a large class of
modal interpretations of ordinary quantum mechanics cannot be made
Lorentz-invariant in a straightforward way (see also Myrvold 2002). With
respect to the extension to algebraic quantum field theory (see Dieks 2002;
Kitajima 2004), Clifton (2000) proposed a natural generalization of the
non-relativistic modal scheme, but Earman and Ruetsche (2005) showed
that it is not yet clear whether it will be able to deal with measurement
situations and whether it is empirically adequate. The problems revealed
by these investigations are due to the non-relativistic nature of the
formalism of quantum mechanics that is employed, in particular to the fact
that the concept of a state of an extended system at one instant is central.
In a local field-theoretic context this becomes different, and this may avoid
conflicts with relativity (Earman and Ruetsche 2005). Berkovitz and
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Hemmo (2005) and Hemmo and Berkovitz (2005) propose a different way
out: they argue that perspectivalism can come to the rescue here (see also
Berkovitz and Hemmo 2006). In turn, in the context of the MHI, it has
been argued that the actualization rule, expressed in terms of the Casimir
operators of the Galilean group in non-relativistic quantum mechanics, can
be transferred to the relativistic domain by changing the symmetry group
accordingly: the definite-valued observables of a system would be those
represented by the Casimir operators of the Poincaré group. Since the
mass operator and the squared spin operator are the only Casimir operators
of the Poincaré group, they would always be definite-valued observables.
This conclusion would be in agreement with a usual assumption in
quantum field theory: elemental particles always have definite values of
mass and spin, and those values are precisely what define the different
kinds of elemental particles of the theory (Lombardi and Fortin 2015).

There are also specifically philosophical issues concerning ontological
matters: about the nature of the items referred to by quantum mechanics,
that is, about the basic categories of the quantum ontology. As we have
seen, in general the properties of quantum systems are considered to be
monadic, with the exception of the relational version of the BDMI and the
PMI where these properties are relational. In any case, it might be asked
whether a quantum system has to be conceived as an individual
substratum supporting properties or as a mere “bundle” of properties.
Following an original idea of Lombardi and Castagnino (2008), da Costa,
Lombardi and Lastiri (2013) and da Costa and Lombardi (2014) have
suggested that, in the modal context, the bundle view might be appropriate
to supply an answer to the problem of indistinguishability (see also French
and Krause 2006). Nevertheless, this quantum ontology of propertied does
not prevent the emergence of particles under certain particular
circumstances (see Lombardi and Dieks 2016).
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Recently, modal interpretations have begun to be considered by practicing
physicists and mathematicians interested in foundational matters. For
instance, Hollowood (2014) offers an interpretation of quantum mechanics
inspired by the perspectival modal interpretation: the state of an open
system describes its properties from the perspective of the closed system
of which it is a sub-system. In turn, Barandes and Kagan (2014a, 2014b)
propose a “minimal modal interpretation”, inspired by the SDMI,
according to which the preferred context is given by the evolving reduced
state of the open system. Nakayama (2008a, 2008b) has explored
connections between the modal interpretation and the framework of topos
theory.

These and similar developments have arisen in the context of detailed
technical investigations. This illustrates one of the advantages of the
modal approach: it makes use of a precise set of rules that determine the
set of definite-valued observables, and this makes it possible to derive
rigorous results. It may well be that several of these results, e.g., no-go
theorems, can be applied to other interpretations as well (e.g., to the many-
worlds interpretation, see Dieks 2007). Whatever the merit of the modal
ideas in the end, one can at least say that they have given rise to a serious
and fruitful series of investigations into the nature of quantum theory.
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