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ABSTRACT

Quite often a single or a combination of protein
mutations is linked to specific diseases. However,
distinguishing from sequence information which
mutations have real effects in the protein’s
function is not trivial. Protein design tools are
commonly used to explain mutations that affect
protein stability, or protein–protein interaction, but
not for mutations that could affect protein–DNA
binding. Here, we used the protein design algorithm
FoldX to model all known missense mutations in the
paired box domain of Pax6, a highly conserved tran-
scription factor involved in eye development and in
several diseases such as aniridia. The validity of
FoldX to deal with protein–DNA interactions was
demonstrated by showing that high levels of
accuracy can be achieved for mutations affecting
these interactions. Also we showed that protein-
design algorithms can accurately reproduce experi-
mental DNA-binding logos. We conclude that 88% of
the Pax6 mutations can be linked to changes in
intrinsic stability (77%) and/or to its capabilities to
bind DNA (30%). Our study emphasizes the import-
ance of structure-based analysis to understand the
molecular basis of diseases and shows that protein–
DNA interactions can be analyzed to the same level

of accuracy as protein stability, or protein–protein
interactions.

INTRODUCTION

The paired box gene 6 (PAX6) is a member of the Pax
gene family of transcription factors (TFs) and it is mainly
involved in tissue specification during early development
(1). Pax6 is required for the multipotent state of retinal
progenitor cells (2) and is usually related to the develop-
ment of the eyes and sensory organs (3,4). Mutations in
this TF are linked to eye diseases such as aniridia, foveal
hypoplasia, cataracts and nystagmus (5). Because of its
importance in human ocular disease and the vast
amount of biological information regarding this protein,
a database of disease-related mutations of PAX6 is avail-
able (6).
Most of the time, a specific disease can be described as

the consequence of protein mutations, being a single one
or a combination of several. However, establishing the
exact effect on the function of protein based on its
sequence alone is not trivial. The effects of mutations on
protein stability and protein–protein interaction can be
reasonably well predicted using protein design tools, as
we previously demonstrated in the analysis of the relation-
ship between the stability changes of the human phenyl-
alanine hydroxylase and phenylketonuria (7). Similarly,
mutations favoring protein aggregation or amyloid
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disease in unstructured protein regions can be accurately
predicted (8,9). However, similar studies have not been
performed on mutations affecting protein–nucleic acid
interactions, although studies predicting the effect of mu-
tations on DNA recognition of specific sequences have
been published (10–12).
Protein–DNA interactions are a key process in tran-

scriptional regulation and replication. To carry out their
function, DNA-binding proteins must find and bind to
infrequent and small specific binding sites and discrimin-
ate them from a huge excess of non-specific DNA.
Protein–DNA complexes involve direct and indirect inter-
actions and there is not a general recognition code to
predict base–residue interactions. For some well
characterized families [zinc fingers (13,14), homeodomains
(11,15) and bHLHs (16)] some general rules can be
applied. However, for the majority of DNA-binding
proteins the main way to identify the DNA recognition
sequence is through experimental methods.
DNA-binding sites are traditionally characterized using

a limited number of sequences by biochemical assays.
However, in the last few years, several experimental tech-
niques and an increasing number of sequenced genomes
allowed a more detailed analysis. Several computational
methods for discovering TF binding sites have been
described (17,18). Experimental methods that challenge
the protein to a library of DNA sequences and successive-
ly enrich those with high affinity have been developed,
such as in vitro selection (19,20) or yeast or bacterial
one-hybrid assays (21). Additionally, universal protein-
binding microarrays (PBMs) (10,12,22,23) expose the
protein to all possible DNA-binding site sequence
variants making universal PBMs the only exhaustive tech-
nique available.
In the past years, different in silico approaches have

been developed to predict DNA-binding site motifs for
DNA-binding proteins using structures. There have been
successful attempts either by using existing crystal struc-
tures (24–32), homology modeling (33) or by a docking
approach (13). In particular, structure-based predictions
were evaluated in zinc fingers (28,34) where a sensitivity to
docking geometry was reported (35), and in
meganucleases (30–32), highlighting the importance of
having multiple templates to enhance the accuracy.
Here we use the protein design algorithm FoldX

(http://foldx.crg.es) to do a global analysis of the effect
of all described mutations on the paired box domain
(PD) of Pax6. FoldX incorporates DNA base mutations,
movement of DNA bases, automatic identification of the
complementary base and is able to predict the effect of
base mutations on DNA stability and binding to a
target protein (30–32). First, we validated the DNA
capabilities of FoldX by predicting both changes in
affinity upon protein or DNA mutation and the
DNA-binding specificity from structure of an extensive
set of publicly available TF recognition patterns (motifs)
and by testing new predictions against novel PBM-
determined motifs. We then analyzed all disease-related
mutations in Pax6, and looked for structural and energetic
reasons that may impair its function and trigger different
eye diseases. We looked for both destabilizing mutations

and mutations in the interface of DNA that might have an
effect on the Pax6 regulation of genes. We find that 88%
of the mutations have a negative impact on the stability
and/or binding energy of Pax6, thus impairing its function
and causing disease.

MATERIALS AND METHODS

Quantitative benchmark sets

Two different data sets were used to quantitatively
evaluate the performance of FoldX: one containing
protein mutations in the interface with DNA and the
other made of wild-type proteins interacting with different
DNA sequences.

The set of protein mutants in protein–DNA complexes
was initially taken from the ProNIT database (36).
However, due to internal inconsistencies of the database,
the actual data (physical data of the experiments and the
change in interaction energy due to the mutation, ��Gint)
were taken from the papers describing the original experi-
ments. The final set contains 97 mutations, among them
59 conservative mutations (Supplementary Table S1).

The set of proteins binding to different DNA sequences
was compiled in ref. (24). We analyzed those for which a
crystal structure is available, and we compared the correl-
ation factors obtained between experiments and predic-
tions for each TF with our method and their software.

FoldX DNA force field

The classical four bases -A, C, G and T-, as well as the
methylated A and C bases, were incorporated using
standard FoldX parameters for defining atoms (37)
(charges, Van der Waals radii, volumes, electrostatic inter-
actions, solvation energies and hydrogen bond param-
eters) without parameter fitting. In order to better take
into account the stacking of bases and their preferred con-
formation, we put an entropy-like term inside the Van der
Waals clash term of FoldX for adjacent bases. This term
was derived from a statistical analysis of all DNA struc-
tures in the Protein Data Bank (PDB) looking at each
possible pairs of consecutive bases and looking at the
angles made by the planes of each bases. Those angles
were discretized and for each bin of 2�, an energy cost
was calculated based on the probability P of having two
bases in such angles [�G=� RTln(p)].

Qualitative TF benchmark set

We selected all experimental motifs we found in three dif-
ferent databases (JASPAR database (38), TRANSFAC
7.0 Public 2005 database (39) and the UniPROBE (40)
database of PBM-derived motifs). Each motif had to
fulfill several requirements in order to be included in the
validation set: (i) it had to be connected to a PDB struc-
ture through a SwissProt accession or a UniProt ID;
(ii) this structure had to come from a crystallization ex-
periment; (iii) contain at least one protein chain and
double-stranded DNA that do not include any
non-standard base; and (iv) all residues in the interface
should be solved.
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Mutation protocol for PWMs

For each template considered, the positions of the amino
acid side chains and bases in the crystal structure were first
energetically optimized using the FoldX RepairPDB
function, which moves slightly all side chains to eliminate
small Van der Waals clashes. Then, each base was mutated
to the other three possible bases five times to increase the
conformational space analyzed. Each mutation involves
searching for the rotamer of the new residue whose
energy is better, while slightly moving the side chains of
the surrounding residues to accommodate for it. No
backbone movement is included. Each single point
mutation takes <60 s using a single CPU (Intel Xeon
3.00GHz, 8GB of RAM).

Using the average value, the difference in the interaction
energy with respect to the wild-type (��Gint) was
calculated, adding the difference in intramolecular
clashes if they were higher than for the crystal structure.
This extra term penalizes those DNA variants that may
have a good binding energy, but are forced into the DNA
structure. This function is graphically displayed as infor-
mation content by means of the R package seqLogo (41),
where the height of a given nucleotide is proportional to
exp(���Gint/RT). When more than one structure/chain
exists for a given protein, then the one with the better
resolution was chosen. In the case of Gcn4, both 2DGC
and 1YSA were used as they differ in binding site length.
In all the cases, the same physical conditions were
assumed: temperature of 298K, pH of 7.0 and ion
strength of 150mM.

Divergence coefficient

In order to get a quantitative sense of how good or bad a
PWM prediction is, we have used a divergence coefficient,
D, that is the root mean square deviation between the
probabilities in the logo:

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i,j �P2

ij

N

s

where �Pij is the difference in probability of having base j
in position i between the experimental and the
FoldX-predicted PWM, and N is the binding site length.
The way this coefficient is defined is so that the closer D is
to zero, the better the prediction is.

ffiffiffi
2
p

is the maximum
value and 0.87 is the value obtained when comparing a
fully specific PWM and a completely unspecific one.
Experimental logos coming from different methods
have an average coefficient of 0.2 (see Supplementary
Figure S1)

We consider that the prediction for a position (or the
whole motif) fails if the coefficient for this position (or for
the whole motif) is above 0.58, which is the value we
obtain when comparing a PWM where a base in each
position has 100% probability against a PWM where
this probability has decreased to 50%. Also, as a reference
in between the perfect logo (D< 0.2) and a failed one
(D> 0.58), we use the value when the probability has
only decreased to 66% (D=0.38) (Supplementary
Figure S2).

PBMs

PBM experiments were performed as previously described
using 200 nM final concentration for Gcn4, cJun(216–318)
and cFos and ‘all 10-mer’ universal PBMs synthesized on
the 4� 44K format Agilent platform (16,23). For the
cJun/cFos PBM experiment, both proteins were mixed
and pre-incubated for 60 min at room temperature
before applying to the microarray slide. Neither
cJun(216–318) nor cFos are able to homodimerize (42).
Therefore, only those instances where the proteins do
form functional DNA-bound heterodimers are being
detected by the Alexa488-labeled anti-GST antibody.
Microarray data were quantified using the GenePix

6.0 software (Axon) and data analysis was performed
using the Seed and Wobble algorithm (15).

Pax6 thresholds

For the Pax6 analysis, we used a change in energy upon
mutation (either of protein stability or of protein–DNA
interaction) of 0.8 kcal/mol as the minimum threshold
above which the stability or the interaction might be sig-
nificantly affected. This is the value usually considered as
FoldX error (37) and corresponds to a Kd_mutant/Kd_WT of
around 4. The threshold of 1.6 kcal/mol, twice the FoldX
error and corresponding to a Kd_mutant/Kd_WT of 15, was
considered as minimum value for a change that very sig-
nificantly affects binding.
Also, we looked at the divergence coefficient between

the wild-type and mutant for each of the DNA positions,
and we consider that any value above 0.58 is linked to a
significant change in specificity.

Neutral Pax6 mutation set

We have taken all orthologs of the paired domain of Pax6
in the 6PAX structure from SwissProt (see Supplementary
Figure S3), aligned their PDs to the human Pax6 and per-
formed the necessary mutation to the 6PAX structure with
FoldX to obtain them. We use this set as a neutral
mutation set, as these are not mutations causing disease.

Scripts

The Python scripts used to wrap FoldX, speed up and
semi-automate the PWM calculations and the creation
of logos—that could be used for similar purposes—are
available upon request. They take the user from an
input PDB structure of a protein–DNA complex to a
final recognition pattern.

Database submissions

GCN4-ATF and Jun-Fos data are deposited in the
UniPROBE database at http://the_brain.bwh.harvard
.edu/uniprobe/

RESULTS

Validation of the force field for dealing with DNA

We first used the set of entries in the ProNIT database (36)
that are linked to a structure in the PDB. After manually
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curating the data set, we obtained a quantitative bench-
mark with 10 protein–DNA complexes containing 97 mu-
tations, 58 of which are conservative (i.e. any amino acid
to Ala or Gly, Ile to Val or Thr) or isosteric (Asn-Asp,
Gln-Glu, Thr-Val) (Supplementary Table S1). Correlation
analysis between the experimental and predicted changes
in binding energies for conservative mutations
(Supplementary Figure S4) showed a significant correl-
ation (r=0.64), close to the one found for mutations in
proteins [set from (37)] (r=0.73). It is important to note
that the SD between predicted and experimental values is
similar in both cases (0.80 kcal/mol in the case of the
protein mutants and 0.86 kcal/mol in the case of protein
mutants in complex with DNA). However, it is clear from
Supplementary Figure S4 that the scarcity of data for
protein–DNA interaction, compared to protein stability
(>1000 mutants), should introduce a note of caution in
terms of assessment the reliability of mutations on
protein–DNA binding energies. More points will be
needed to see if the quality is the same.
As an alternative way to assess predictability we also

tested for mutations in the DNA bases for the set of
protein and DNA complexes that come from X-ray ex-
periments and were used by Morozov et al. (24). In all
cases, the correlation between predicted and experimental
data was good and we obtained significantly better results
for 10 of the 13 TFs (Table 1).

Prediction of DNA-binding profiles using FoldX

In order to get a current set of TF binding site motifs for
an accurate comparison of predicted versus experimental
profiles, we searched several databases of TF
DNA-binding site sequence motifs [JASPAR (38),
TRANSFAC (39) and UniPROBE (40)]. We selected all
proteins in any of these databases with a co-crystal struc-
ture available at the PDB (see ‘Materials and Methods’
section for the selection criteria), in total 23 proteins.

Then, for these proteins we derived the DNA-binding
site motifs using FoldX.

Profile comparison is not trivial, thus to attain an
unbiased evaluation of derived DNA-binding profiles,
we calculated an index D (based on a root mean square
deviation between the experimental and the predicted
motifs, see ‘Materials and Methods’ section) that,
together with a visual inspection of the corresponding
graphical sequence logos (Figure 1; Supplementary
Figures S5 and S6; Table 2), facilitates comparison. The
baseline for a perfect base prediction with this coefficient
is 0.2, which is the coefficient we get for motifs of the same
TF taken from different experimental methods (see
Supplementary Figure S1). A D value of 0.87 is the
value obtained when comparing a non-degenerate (100%
specific) PWM and a completely degenerate one (i.e. no
sequence preference at all). To be conservative, we con-
sidered D values above 0.58 as base mispredictions (see
‘Materials and Methods’ section for explanations about
the D determination and Supplementary Figure S2 for il-
lustration) even if they still contain some information. For
30% of the motifs, we found almost perfect agreement
between predicted and experimental values (Figure 1A
and B), while for 65% of the cases the agreement
is quite good (i.e. shows a useful prediction power;
Figure 1C).

In total, out of the 255 bases in the binding motifs
analyzed, we consider that FoldX mispredicts 51 (20%)
bases even if some of the information content still remains
in the prediction. In fact, there is on average a slight loss
of specificity (measured in terms of difference in informa-
tion content per position) of 0.21, between the experimen-
tal and predicted logos (Table 2). For those cases where
the experimental specificity is partially or totally lost (85%
of all the failing positions), we observe in the crystal struc-
ture the absence of any DNA contacting residue or specific
water-mediated interaction (e.g. the fourth position in the
1UBD logo, Supplementary Figure S5, where we cannot
find the preference towards an adenine that is found ex-
perimentally). In all the cases where specificity is gained
(15%), the backbone configuration of DNA, through
steric hindrance, dictates the change.

We have analyzed the capacity of several experimental
and predicted PWMs to find similar hits. We have used as
probability threshold for each PWM as the one which
made possible to reach all combinations of nucleotides
whose individual probability in the experimental PWM
was >10%. The predicted PWMs being less specific than
the experimental ones have then a lower threshold. With
those probability thresholds, we have scanned all possible
sequences of the length of the binding site and counted the
number of occasions where the same hit was found with
both PWMs (Supplementary Table S2A). We can
compare these results with what we obtain if we
compare the scanning results obtained from a PWM re-
sulting from a non-exhaustive technique, such as the ones
found in the TRANSFAC database, and another PWM
from an exhaustive technique such as PBMs (some
examples in Supplementary Table S2B). So, the same
way as PWMs coming from two different experimental
methods, predicted PWMs can get as hits almost all

Table 1. Correlation factors for changes in interaction energy upon

change in DNA base predicted by FoldX and Morozov et al. (24).

The cases where FoldX performs better than the dynamic model are

shown in green, otherwise in red

PDB Name Correlation (24) Correlation
FoldX

Contact
model

Dynamic
model

1LMB lambdaR 0.42 0.4 0.49
1TRO trpR 0.052 0.39 0.76
6CRO CroR 0.12 0.4 0.26a

1RUN Crp 0.38 0.47 �0.03b

1MNN Ndt80 0.63 0.74 0.83
1YRN MAT_a1_alpha2 0.35 0.37 0.57
1AAY zif268 0.064 0.1 0.7
1JK1 Zif268 D20A 0.064 0.1 0.45
1ECR Tus-Ter 0.71 0.25 0.39
1EFA LacR 0.72 0.59 0.64
1HCQ ER 0.33 0.28 0.37
1BHM BamHI – 0.24 0.28
1PUE ETS_domain_of_PU.1 – 0.7 0.47

1AAY and 1JK1 are considered together in Morozov et al. (24).
a0.63 without two outliers.
b0.58 without three outliers.
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experimental hits, but they would be surrounded by a lot
of false positives. This finding leads us to suggest the use
of PWMs as scanning tools should be restricted to short
sequences where it is known to be a binding site, such as
the results of a ChIP-on-chip experiment.

Validating predictions with comprehensive
DNA-binding profiles

With the aim of testing our predictive power, we decided
to predict the DNA-binding specificity for proteins
without known DNA-binding site motifs coming from ex-
haustive experimental evaluations. Among all crystal
structures of protein–DNA complexes, we selected Gcn4
bound to the ATF/CREB site (PDB id 2DGC) and the
Jun/Fos heterodimer (PDB id 1FOS). The two proteins
were produced and their DNA-binding specificity
determined by universal PBMs (23) (Figure 1E and F).
Comparison with the predicted DNA motifs by FoldX
shows that we correctly predict the ATF/CREB site
since there are no failing positions and the overall D is
0.32. For the second TF, we found also a good prediction
(D=0.40) with the base with the highest probability cor-
responding to the one in the experimentally derived motif
in all cases, except the central base that does not contact
the protein (Figure 1F).

Structural analysis of Pax6 and its relation to disease

Pax6 is made of a PD, whose structure in complex with
DNA has been solved (43) (PDB id 6PAX), a
DNA-binding homeo box domain (HD) and a
proline-serine-threonine rich domain. The PD contains
two globular subdomains: the N-terminal subdomain
(residues 4–63) is composed of three a-helices folded like
a homeodomain and a b-hairpin, the C-terminal one
(residues 80–136) is also composed of three a-helices in a
homeodomain-like fold. The two subdomains interact
symmetrically with the major groove of the DNA
through a Helix-Turn-Helix motif and the rest of the
specific contacts come from the binding to the minor
groove of the linker (residues 64–79) that connects the
two subdomains (Figure 2). The DNA recognition
pattern of the PD is known (44) and our in silico predic-
tion (Figure 3) yields a good D of 0.37. Although an ex-
perimental PWM for the HD is available (10), there is no
structure of it in complex with DNA that we can use to
predict the effect of the four missense mutations that have
been found there.
The Human PAX6 Mutation Database (6), single re-

pository of all mutations observed in patients, contains,
at the moment of writing, 50 mutations that can be
mapped to the structure of the PD of Pax6 (Figure 4).
We analyzed the effect of those mutations both on the

Figure 1. Qualitative evaluation of FoldX-derived DNA-binding profiles. Experimental logos for a subset of proteins displaying different D values
(see Table 2) are presented above each FoldX prediction. Correctly predicted positions according to our criterion (individual coefficient D< 0.58) are
shown in blue, while those mispredicted (individual coefficient D> 0.58) are shown in black. For the PBM-derived logos (E and F), Enrichment
Scores for the top seeds resulting in the PBM PWMs are 0.485 for Gcn4 (ATF) and 0.497 for Jun/Fos.
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capability of the Paired domain to bind DNA and on its
intrinsic stability.
Out of the 50 mutations, FoldX is capable to assign an

energetic explanation for the relation to disease for 44 of
them. Among those, 37 involve significant changes in
stability, 6 have their binding with DNA seriously
perturbed and 9 may have their specificity towards
their DNA-binding site changed (see Figure 5 and

Supplementary Table S3). These features are not
mutually exclusive, and a destabilizing mutant could
also affect DNA binding or specificity (e.g. N9I
mutation, see the predicted changes in specificity in
Supplementary Figure S7).

These results can be compared to what we obtained by
modeling a set of neutral mutations (Supplementary
Figure S3 and Supplementary Table S4) made of close
orthologs. Only for two (Drosophila melanogaster and
Xenopus laevis) out of nine organisms, the mutations
introduce a slightly significant destabilization. In the
case of Xenopus, it is only slightly above our threshold
and for Drosophila, the main destabilization comes from
the G110N mutation, which in the 6PAX structure
presents a backbone conformation that is only tolerated
by Gly. This residue is at the beginning of a long loop that
we speculate changes its conformation locally upon
mutation.

Only three of these 50 mutations have been analyzed
in vitro and in vivo (45,46). The P68S mutant was
analyzed both by a chloramphenicol acetyltransferase
assay and by analyzing its ability to repress PAX2 expres-
sion (46). Its capacity to bind to the consensus promoter
was impaired and the PAX2 repression activity was also
significantly decreased. We found that this mutation
slightly destabilizes the structure but produces a change
in the specificity. The activity of the I87R and R26G
mutants were assessed with an in vivo transcriptional
assay and both of them had lost the ability to activate
the transcription of the reporter gene (45). However,
while in vitro I87R showed a dramatic 14-fold decrease
of its binding capacity to the consensus sequence, R26G
showed only a 4-fold decrease. For I87R, we predicted a
strong destabilization, confirming the conclusion of the
authors who hypothesized a change in the general con-
formation of the paired domain leading to a loss of
activity, while for R26G we predict a smaller effect
(��Gint around 1 kcal/mol).

Only for six mutations, R44Q, Q47R, V53L, K55R,
E93K and R128C, the predicted changes in stability and
binding are within the error of FoldX and the change of
specificity is not significant. For the V53L, K55R and
R128C mutations, our method does not predict any
effect that could be linked to disease and carefully
looking at its potential effects in the structure does not
give any insight. We can hypothesize that even if they
were found in patients suffering from eye disease, these
mutations might not be direct cause and other factors
not described may be at play. Finally, residues R44, Q47
and E93 are on the surface of the protein and could be
involved in interactions with other proteins, such as SOX2
(47). Indeed, in the case of Q47R, most members of the
Pax family contain Arg47 while Pax6 has Gln47. We
suggest that this mutation will not affect overall stability,
as an Arg at that position is structurally and evolutionar-
ily accepted. In the case of E93K, the Pax family position
93 is quite variable, accepting Asp, Arg, Gln, Glu, Gly and
Ser, but not Lys. E93 may interact with the HD domain
(48) and its mutation to Lys affects this interaction, or
more likely is a miss assignment and the mutation respon-
sible for the disease is in another gene.

Table 2. Quantitative evaluation of FoldX-derived DNA-binding

profiles

PDB TF Resolution
(Å)

Organism Binding
site
length

Source D IC/N
exp

IC/N
pred

1AN4 USF1 2.9 Hsa 7 J 0.22 1.61 1.63
1MNN NDT80 1.4 Sce 12 U 0.31 1.12 1.07
2DGC GCN4 2.2 Sce 12 New 0.32 1.02 1.10

1R4I ANDR 3.1 Rno 9 J 0.33 0.85 0.72
1AAY EGR1 1.6 Mmu 11 U 0.35 1.03 1.29
1PUE SPI1 2.1 Mmu 11 U 0.36 0.92 0.68
6PAX PAX6 2.5 Hsa 14 J 0.37 0.99 0.69
1H9D PEBB 2.6 Hsa 8 J 0.37 1.32 0.98

1E3O PO2F1 1.9 Hsa 10 U 0.39 0.99 1.07
1FOS JUN/FOS 3.05 Hsa 11 New 0.40 0.96 0.49

3COQ GAL4 2.4 Sce 19 U 0.40 0.69 0.67
1UBD TYY1 2.5 Hsa 6 J 0.41 1.35 1.21
1MNM MCM1 2.3 Sce 20 U 0.46 0.53 0.69
3DFX GATA3 2.7 Mmu 8 U 0.46 1.44 1.05
1ODH GCM1 2.85 Mmu 10 U 0.47 1.18 0.74
1APL MTAL2 2.7 Sce 9 T 0.49 0.77 1.32
1H89 MYB 2.45 Mmu 11 U 0.49 0.99 0.74
1EGW MEF2A 1.5 Hsa 10 J 0.50 1.57 0.77
2ERE LEU3 3 Sce 8 U 0.50 1.22 0.83
1YSA GCN4 2.9 Sce 12 U 0.50 1.08 0.53

1IF1 IRF1 3 Mmu 12 T 0.52 1.54 0.89
1KB2 VDR 2.7 Hsa 15 J 0.53 1.36 0.54
1IG7 MSX1 2.2 Mmu 9 U 0.54 1.18 0.83
1MDY MYOD1 2.8 Mmu 10 T 0.55 1.10 0.71
1A0A PHO4 2.8 Sce 14 U 0.60 0.82 1.13

Source: J, JASPAR (38); T, TRANSFAC (39); U, UniPROBE (40) and
newly reported here.
Divergence coefficient values (see ‘Materials and Methods’ section) for
each structure analyzed and a group is assigned according to its diver-
gence coefficient (D< 0.38: white, 0.38�D< 0.58: light gray, D> 0.58:
dark gray). The average information content for each position, IC/N,
for the experimental and predicted logos is also shown. Logos pre-
sented in Figure 1 are in bold and are examples of different divergence
coefficients.

Figure 2. Structure of the Pax6 paired domain (PDB id 6PAX) (43).
Cartoon representation showing both N- and C-terminal domains. The
figure was done with the molecular visualization software Pymol (57).
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DISCUSSION

We have shown that using a self-consistent force field, not
specifically trained for protein–DNA interactions, it is
possible to accurately predict protein–DNA binding spe-
cificity using a crystal structure. Both speed and accuracy
can be improved at the expense of one another, but when
applying FoldX into a high throughput analysis, a balance
can be made between them. To benchmark our predic-
tions, we contrasted our results with sets of protein or
DNA mutations, achieving a good correlation with the
experimental results. We also compared them to experi-
mentally determined DNA-binding specificity motifs.
From a total of 25 proteins evaluated (23 existing in
public databases plus two new ones reported here), we

accurately predict a third of them (D< 0.38), and reason-
ably well another 65% (D< 0.58). The lack of any specific
protein–DNA contacts at some DNA positions is the
source of most of the failed predictions. Incorrect predic-
tions of specificity in positions where there is no contact
may be the result of intrinsic local conformation of the
DNA, emphasizing the importance of local backbone
moves. Adding DNA and protein backbone flexibility, es-
pecially at the edges of the binding site, should improve
the prediction. Also problems in the crystal structure, like
low resolution or local artifacts, may be affecting our
predictions.
We showed that FoldX can be used as a tool to predict

DNA-binding specificities if there is a structure of the
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Figure 3. Comparison of the experimental logo (44) (top panel) and the predicted logo for the wild-type Pax6 (bottom panel).
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protein–DNA complex available, as well as for designing
changes in specificity (31,32). In this work, we have only
used crystal structures, but structures coming from NMR
or homology modeling with high percentage identity (es-
pecially in the interface with DNA) could also be used.
However, it has been shown (31) that structures coming
from high percentage identity DNA-binding proteins can
have important differences in the DNA conformation,
making predictions based on models of even very similar
proteins more unreliable than in the case of those based on
crystal structures.
FoldX in combination with a protein–DNA structure

could provide the user with a PWM to be used in com-
bination with ChIP-on-chip experiments, to find the
binding sites within the �1000-bp sequences resulting
from this technique. Given the (small) loss of information
content reported, which is related to the predicted specifi-
city, it would be advisable to rely only on the top hits
found. With over 1500 protein–DNA complexes currently
in the PDB (a number that steadily increases by 15–20%
each year) and only a few hundred PWMs available from
the literature, structure-based prediction is a promising
tool for filling the gap between structural and genomic
fields.
Using this validated protein design tool, we have

analyzed the effects of mutations found in humans on
the PD of Pax6. Pax6 is part of a complex system as it
has been described as the master gene in eye development,
but it also has an important role in the development of the
central nervous system (49). With the Pax6 example, we
have seen that we are now capable of finding structural
and energetic explanations for the majority of the reported
missense mutations in its PD (44 out of 50 mutations). We
observed that most of the Pax6 mutations in the paired
domain leading to ocular developmental diseases are
driven by a loss of stability of the domain, which is

coherent with the early concept that aniridia was due to
the haploinsufficiency. Indeed, a destabilization of the
domain could lead to its spatial reorganization and a
total loss of binding as a truncated protein would do. It
has been described (50) that in the complete Human PAX6
Mutation Database, most of the non-aniridia phenotypes
were caused by missense mutations. However, this is
non-reciprocal and most of the observed missense muta-
tions still lead to aniridia-related phenotypes. As for the
general mutations, we did not find here any correlation
between the energetic and structural effects of the
missense mutations and their phenotypic outcome. The
only part worth notifying is that all but one of the
foveal hypoplasia cases here included are caused by mu-
tations that do not affect the general stability of the paired
domain, but rather the binding affinity and/or specificity.
This finding may indicate, as already suggested (5,51), that
the number of missense mutations in PAX6 is greatly
underestimated, as their effects could be more subtle. As
Pax6 in general and its PD in particular are highly
conserved in chordates, any mutation should give rise to
a phenotypical trait different from the wild-type, but only
relatively few mutations have been reported. Indeed if
most of the detected mutations abolish the activity,
either by unfolding the domain or by making its interface
improper to DNA binding, leading to classical aniridia, it
is reasonable to think that some of the possible missense
mutations would have mild effects and rather change the
specificity of binding. Therefore, the expressed phenotype
would differ greatly from classical aniridia, and as most of
the PAX6 analyses have been done on aniridia patients,
this data is missed. A broader look at the pathologies that
may be caused by Pax6 mutations could increase the
knowledge about this TF if more biochemical data is
analyzed.
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To further assess the disease effects of TF in general,
and Pax6 in particular, it would be interesting to do
transcriptomics analyses not only on null mutants as has
been done up to now (52–54), but also on point mutations
that have proven to give rise to developmental (or cancer)
problems.

The approach shown here could be applied to other
DNA-binding proteins, by assigning a potential effect to
mutations detected in utero so that their potential involve-
ment in a future disease could be known in advance.
Moreover, analyzing precisely the molecular effects of
such single point mutations in the interface with DNA
represents a way to differentiate between neutral or func-
tionally important non-synonymous SNPs in DNA-
binding proteins. As such, this is complementary of the
more traditional genomic approach. Those diseases
caused by mutations that destabilize the protein could
be treated using specifically designed small molecules
that would help stabilize it back (55,56), while those that
are caused by a loss of binding or a change in specificity
would need gene therapy to be cured. As such, knowledge
derived from structure-based protein design analysis could
be a key factor to fully develop personalized medicine.

SUPPLEMENTARY DATA
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