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Abstract: A biclique of a graph G is a maximal induced complete bipar-
tite subgraph of G. Given a graph G, the biclique matrix of G is a {0,1,−1}
matrix having one row for each biclique and one column for each vertex
of G, and such that a pair of 1, −1 entries in a same row corresponds
exactly to adjacent vertices in the corresponding biclique. We describe a
characterization of biclique matrices, in similar terms as those employed
in Gilmore's characterization of clique matrices. On the other hand, the
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biclique graph of a graph is the intersection graph of the bicliques of G.
Using the concept of biclique matrices, we describe a Krausz-type char-
acterization of biclique graphs. Finally, we show that every induced P3 of
a biclique graph must be included in a diamond or in a 3-fan and we also
characterize biclique graphs of bipartite graphs. � 2009 Wiley Periodicals, Inc. J Graph

Theory 63: 1–16, 2010
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1. INTRODUCTION

Bicliques of a graph have been considered in a variety of contexts. For example,
in optimization problems as that of finding a maximum biclique of a graph, e.g.
[21, 26, 27], in covering problems, e.g. [2, 25], among others. Also bicliques have been
studied from the structural point of view, as in [13, 20, 22, 23]. In connection with the
Helly Property, bicliques have been considered in [14, 15]. Algorithms for generating
all the bicliques of a graph have been described in articles such as [1, 6].

On the other hand, intersection graphs of certain special subgraphs of a general
graph have been studied extensively. Among others, we can mention the intersection
graphs of the edges of a graph, intersection graphs of intervals of a line and of the
maximal cliques of a graph, leading to the classes of line graphs, interval graphs and
clique graphs, respectively. For example, see [4, 5, 7, 8, 10, 17, 18].

In this article, we study biclique graphs, the intersection graphs of the (maximal)
bicliques of a graph. We describe a characterization for this class, using some similar
ideas to those employed in the characterization of clique graphs, by Roberts and
Spencer [24]. Afterwards, we show that in any biclique graph, every induced P3 is
contained in a diamond (K4 minus an edge) or in a 3-fan (P4 with an additional
universal vertex). As a consequence, we describe a characterization for the graphs
whose biclique graphs are diamond free. We also examine biclique graphs of bipartite
graphs and characterize them.

The method of the proposed characterization of biclique graphs employs the concept
of a biclique matrix of a graph. This has lead us to define biclique matrices and also
characterize them. The latter is explicitly used in the study of biclique graphs.

We believe that the concept of biclique matrices might be of interest in general,
independent of its use in biclique graphs. We describe a characterization for biclique
matrices, in similar terms as those used for clique matrices. The latter have been
characterized by Gilmore in 1960, and have been employed in several different contexts.
For example, in the characterizations of interval graphs [12], Helly circular-arc graphs
[9], self-clique graphs [3, 16], among others.

In Section 2, we present some definitions relevant to our purposes. The character-
izations of biclique matrices and biclique graphs are described in Sections 3 and 4,
respectively. In Section 5, we examine some special classes of biclique graphs, and
prove a simple and useful necessary condition for a graph to be a biclique graph.

Section 6 considers biclique matrices of bipartite graphs and Section 7 describes
biclique graphs of bipartite graphs. The last section contains some final remarks.

Journal of Graph Theory DOI 10.1002/jgt
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2. PRELIMINARIES

Denote by H a hypergraph, with vertex set V (H) and hyperedge set E(H). Write
V (H)={v1, . . . ,vn} and E(H)={E1, . . . ,Em},Ei ⊆V (H). When |Ei |=2, for all 1≤
i≤m, then say that the hypergraph is a graph and the hyperedges are edges. Usually, we
denote a graph by G. For a graph G, write ek =viv j , with the meaning of Ek ={vi ,v j }
for some k, and say that vertices vi ,v j are adjacent. The 2-section of a hypergraphH is a
graph G2(H), where V (G2(H))=V (H) and such that there is an edge viv j ∈E(G2(H))
precisely when there exists some hyperedge Ek ⊇{vi ,v j }, for all 1≤ i �= j ≤n. Say
that H is conformal when each clique of G2(H) is contained in some hyperedge of
H. Say that H is Helly when every subfamily of intersecting hyperedges contains a
common vertex. The neighborhood of a vertex v, N (v), is the set of adjacent vertices
to v. Given a graph G, when its family of neighborhoods is Helly, we say that G is
neighborhood-Helly.

Finally, the dual of a hypergraph H is the hypergraph H∗, where V (H∗)=E(H),
E(H∗)=V (H), and such that for v∗

i ∈V (H∗) and E∗
j ∈E(H∗), v∗

i ∈E∗
j precisely when

v j ∈Ei ∈E(H).
For a graph G, say that V ′ ⊆V (G) is a complete set when vi ,v j are adjacent, for all

vi ,v j ∈V ′. A complete bipartite set is a subset B⊆V (G), which admits a bipartition
V1∪V2= B, where vi ,v j ∈ B are adjacent exactly when vi ,v j belong to distinct parts
of the bipartition. We restrict to proper bipartitions, that is, V1,V2 �=∅. A clique is a
maximal complete set, while a biclique is a maximal complete bipartite set. Denote by
KB(G) the biclique graph of G, that is, the intersection graph of the bicliques of G.
Figure 1 illustrates a graph G and its biclique graph KB(G), while Figure 2 depicts
some graphs which are not biclique graphs.

If G has c cliques {C1, . . . ,Cc} then the clique matrix of G is the c×n {0,1}
matrix A, defined as aki =1 if and only if vi ∈Ck . Finally, when G has d bicliques
B1, . . . , Bd ⊆V (G), the biclique matrix of G is the d×n {0,1,−1} matrix A, where
aki =−ak j �=0, precisely when vi ,v j ∈ Bk and vi ,v j are adjacent, for all 1≤k≤d and
1≤ i �= j ≤n. The definition of biclique matrix suggests the concept of “row-similarity”
between matrices, to be given later.

FIGURE 1. A graph and its biclique graph.

FIGURE 2. Graphs which are not biclique graphs.
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A coloring c of a hypergraph H is an assignment of a color white or black to each of
the occurrences of the vertices in the hyperedges of H. That is, if vertex v belongs to
hyperedges E1, . . . ,Ek , then v has k independent colors white or black, one in each Ei .
In this case, H is a colored hypergraph. Say that c is compatible when for any pair of
vertices vi ,v j ∈V (H) and any pair of hyperedges Ek,El ⊇{vi ,v j }, either vi ,v j have
the same color in Ek,El , or have different colors in Ek,El . If H is a hypergraph
with a coloring c, then its dual hypergraph H∗ has a coloring c∗ defined as follows.
Let vi ∈V (H) and E j ∈E(H), where vi ∈E j . Denote by v∗

j and E∗
i the vertex and

hyperedge of H∗, corresponding to E j and vi , respectively. Then the color of v∗
j in E∗

i
is precisely the same as the color of vi in E j .

LetH be a colored hypergraph and Ei ∈E(H). Denote by Ew
i the subset of Ei formed

exactly by the white vertices of it. Similarly, define Eb
i ⊆Ei , for the black vertices

of Ei . Say that Ei is a dominated hyperedge when there exists a hyperedge E j �=Ei ,
such that Ew

j ⊇Ew
i and Eb

j ⊇Eb
i , or Ew

j ⊇Eb
i and Eb

j ⊇Ew
i . Finally, say that E(H)

bicovers V (H) when for each vertex vi ∈V (H) there are hyperedeges E j ,Ek ⊇{vi },
such that vi is colored white in E j and black in Ek .

Given a hypergraph H and a coloring c of it, a family of hyperedges E⊆E(H) is
monochromatically intersecting if, for any two hyperedges Ei ,E j ∈E , either Ei ∩E j= ∅
or each v∈Ei ∩E j has the same color in both Ei and E j . Consider a bipartition
E=E1∪E2 of E . Say that E is bipartite-intersecting if E1, E2 are both monochromatically
intersecting, and for every pair of hyperedges E1∈E1, E2∈E2, there exists a vertex
v∈E1∩E2, such that v has different colors in E1 and E2. Finally, say thatH is bipartite
Helly if c is compatible and every bipartite-intersecting subfamily E=E1∪E2⊆E(H)
contains a common vertex.

In Figure 3, there is an example of a colored hypergraph H, using colors white and
black, where vw and vb mean that vertex v is colored white and black, respectively.
Observe that E(H) bicovers V (H). However, examining the coloring of the hyperedges
E1 and E2, we conclude that the coloring is not compatible. On the other hand, the
coloring restricted to the partial hypergraph formed by the hyperedges E1 and E3
is compatible. The subfamily {E1,E6} is not monochromatically intersecting. On the
other hand, {E3}∪{E4,E6} and {E5}∪{E1,E4} are examples of bipartite-intersecting
subfamilies of E(H). The latter contains a common element, while the former does
not, meaning that H is not bipartite-Helly.

The coloring of a hypergraph also defines a coloring of the edges of the 2-section
G2(H) ofH, using the colors white or black, as follows. Each viv j ∈E(G2(H)) is black
when there exists some hyperedge Ek ⊇{vi ,v j }, where vi and v j have different colors
in Ek ; otherwise viv j is white. Define the black section ofH, as the subgraph Gb(H) of
G2(H), containing exactly the black edges of G2(H). Say thatH is bipartite-conformal,

FIGURE 3. Example of a colored hypergraph.

Journal of Graph Theory DOI 10.1002/jgt



BICLIQUE GRAPHS AND BICLIQUE MATRICES 5

relative to c, when each biclique B of Gb(H) is contained in some hyperedge of H.
That is, there is a hyperedge Ek such that viv j is an edge of B precisely when vi ,v j
have different colors in Ek .

3. BICLIQUE MATRICES

In this section, we characterize biclique matrices of a graph.
Given a {0,1,−1} matrix A= (ai j ), the associated hypergraph HA of A is the

hypergraph having one vertex vi for each column i and one hyperedge Ek for each
row k of A, such that vi ∈Ek precisely when aki �=0. The canonical coloring of HA is
the coloring such that vertex vi ∈V (H) is white in Ek when aki =1, while vi is black
in Ek when aki =−1.

Similarly, given a colored hypergraph H, the associated matrix AH= (ai j ) of H is a
{0,1,−1} matrix defined as follows: ai j =0, whenever v j �∈Ei ; otherwise, ai j =1 when
v j is a white vertex of Ei , while ai j =−1 when v j is black in Ei .

For a family C of subsets Ci of some set, the associated hypergraph HC of C is
defined as V (HC)=

⋃
Ci∈CCi and E(HC)=C.

Let A be a {0,1,−1} matrix. Denote by Ai the {0,1,−1} vector consisting of row
i of A. Call the vectors Ai and −Ai symmetric. Say that row k is dominated by row l
when, for all i , (i) aki =1 implies ali =1 and aki =−1 implies ali =−1 or (ii) aki =1
implies ali =−1 and aki =−1 implies ali =1. Let A, A′ be two {0,1,−1} matrices. Say
that A is row-similar to A′ when there is a bijection between the sets of rows of A and
A′, such that corresponding rows either coincide or are symmetric. Finally, say that a
{0,1,−1} matrix A is compatible when no pair of rows and no pair of columns, both
not necessarily consecutive, form the matrix M1 or any matrix which is row-similar
to M1. See Figure 4.

Figure 5 illustrates an example of a {0,1,−1} matrix with dominated rows. The
last row of A1 is dominated by the first row. The hypergraphs H1, H2 associated
to the matrices A1 and A2, respectively, have as vertex sets V (H1)=V (H2)=
{v1,v2,w1,w2,w3,w4}, and hyperedges H1={E1,E2,E3}, H2={E1,E2,E ′

3},
where E1={v1,w2,w3,w4}, E2={v2,w1,w2,w3}, E3={v1,w2,w4} and E ′

3=
{v1,v2,w2,w3}. In Figure 6, we show the 2-section G2 of H2 and the black section Gb
of the hypergraphsH1 andH2. Although A1 and A2 and their corresponding 2-sections
are distinct, their black sections coincide. Observe that H1 is not bipartite-conformal,
and that A2 is a biclique matrix of Gb.

Notice that whenever A, A′ are two row-similar matrices, then the 2-sections G2,G ′
2

of their corresponding associated hypergraphs are isomorphic. Moreover, if e∈E(G2)
and e′ ∈E(G ′

2) are two corresponding edges in the isomorphism G2∼=G ′
2 then they

have identical colors in the respective canonical colorings.

FIGURE 4. Forbidden submatrix.
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FIGURE 5. {0,1,−1} matrices.

FIGURE 6. Graphs G2(H2) and Gb(H2).

The characterization of clique matrices can be formulated in terms of the above
concepts, applied to {0,1} matrices.

Theorem 3.1 (Gilmore [11]). Let A be a {0,1} matrix and H its associated hyper-
graph. Then A is a clique matrix of some graph if and only if

(i) each row of A has at least one 1,
(ii) A has no dominated rows, and
(iii) H is conformal.

The following theorem characterizes biclique matrices of graphs.

Theorem 3.2. Let A be an m×n {0,1,−1} matrix, andH its associated hypergraph.
Then A is a biclique matrix of some graph if and only if

(i) each row of A has at least one 1 and at least one −1,
(ii) A has no dominated rows,
(iii) A is compatible, and
(iv) H is bipartite-conformal, relative to its canonical coloring.

Proof. Assume that A is a biclique matrix of some graph G. Let V (G)={v1, . . . ,vn},
and denote its bicliques by B1, . . . , Bm ⊆V (G). We know that aki =−ak j �=0, precisely
when vi ,v j are adjacent and belong to Bk . By definition, there is at least one edge
viv j in biclique Bk . In this case, aki =−ak j �=0, meaning that row k has at least one 1
and one −1. Then (i) holds. Next, observe that A is a biclique matrix of some graph if

Journal of Graph Theory DOI 10.1002/jgt
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and only if any of the matrices row-similar to A is so. Consequently, row k cannot be
dominated by any other row; otherwise, Bk would not be maximal. Hence (ii) holds.

For (iii), assume that A contains M1 as a submatrix. Let k, l and i, j be the pairs of
rows and columns of A, respectively, which contain M1. Then row k implies that vi ,v j
are not adjacent, while row l implies that they are adjacent, which is a contradiction.
The cases of matrices row-similar to M1 are similar.

Next, examine (iv). Let Bk be a biclique of G, with bipartition V1∪V2= Bk . Then
row k of A has entries

aki =

⎧⎪⎨
⎪⎩

0 if vi �= Bk

1 if vi ∈V1

−1 if vi ∈V2,

for all 1≤ i≤n, where the choice of V1, V2 is arbitrary. By the construction of the
associated hypergraph H, the hyperedge Ek ∈E(H) contains all vertices vi , such that
aki �=0. Then Ek ⊇ Bk . Let G2 be the 2-section of H and Gb its black section. We
show that G=Gb. Clearly, V (Gb)=V (G)={v1, . . . ,vn}. Let vi ,v j ∈{v1, . . .vn}, i �= j .
First, suppose viv j ∈E(Gb). Then viv j is a black edge of G2, meaning that vi ,v j are
assigned different colors in some edge El ∈E(H). That is, ali =−al j �=0. However,
A is a biclique matrix of G. Then row l implies that vi ,v j are adjacent also in G.
Consequently, E(Gb)⊆E(G). Finally, consider viv j ∈E(G). Then viv j belong to some
biclique Br of G. That is, there is a row r of A, such that ari =−ar j �=0. The latter
implies that vi ,v j ∈Er ∈E(H), meaning that viv j is a black edge of G2, i.e. viv j ∈
E(Gb). Consequently E(G)⊆E(Gb). That is, G=Gb. Then Bk is an arbitrary biclique
of Gb. Since Ek ⊇ Bk , it follows that H is bipartite-conformal.

Conversely, assume that A satisfies (i)–(iv). We show that A is a biclique matrix. In
fact, we show that A is a biclique matrix of the black section Gb of H, relative to the
canonical coloring.

To start, we show that every biclique B of Gb corresponds to a row of A. Let
V1∪V2=B be the bipartition of B, V1,V2 �=∅. From (iv), we conclude that B is contained
in some hyperedge Ek of H. Let vi ,v j ∈ B and examine the possible alternatives. In the
first alternative, suppose vi ∈V1 and v j ∈V2. Then viv j ∈E(Gb). By definition, viv j is
a black edge of G2. Consequently, vi ,v j have distinct colors in some hyperedge of H.
In addition, we know that vi ,v j must have distinct colors in any hyperedge of H that
contain both of these vertices. Otherwise A would contain as a submatrix, a matrix
row-similar to M1, contradicting (iii). Consequently, the row k of A, corresponding to
Ek , is such that aki =−ak j �=0. In the next alternative, let vi ,v j ∈V1. Since vi ,v j ∈Ek ,
each of these vertices has a color in Ek . Because viv j is not a black edge of G2, it
follows that both vertices vi ,v j must have identical colors in Ek . That is, aki =ak j �=0.
Finally, when vi �∈ Bk it easily follows that aki =0. The alternative vi ,v j ∈V2 is similar.
Consequently, B corresponds to Ek , hence to row k of A.

We now show that every row k of A corresponds to some biclique of Gb. Let
V1⊆V (H) be the set of vertices of H corresponding to the 1 entries of row k of A, and
V2⊂V (H), those corresponding to the −1 entries. From (i), it follows that V1,V2 �=∅.
First, let vi ∈V1 and v j ∈V2. Then vi ,v j are assigned distinct colors in the hyperedge
Ek ∈E(H). Consequently, viv j is a black edge of G2; hence, viv j ∈E(Gb). Next, let

Journal of Graph Theory DOI 10.1002/jgt
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vi ,v j ∈V1. Then vi ,v j are both white in Ek . Again, we know that whenever vi ,v j
are both contained in some hyperedge El ∈E(H), then vi ,v j have identical colors in
El ; otherwise, A would contain a forbidden submarix of (iii). Consequently, viv j is a
white edge of G2, meaning that viv j �∈E(Gb), the situation where vi ,v j ∈V2 is similar.
Consequently, V1∪V2 is a complete bipartite set of Gb included in a biclique B. Let
l be the row corresponding to B. Because of (ii), row k is not dominated by any
other row. Consequently, l=k and V1∪V2 is indeed the biclique B of Gb, completing
the proof. �

The following property is a consequence of Theorem 3.2.

Corollary 3.1. A matrix is a biclique matrix of some graph if and only if it is a
biclique matrix of the black section of its associated hypergraph.

4. CHARACTERIZATION OF BICLIQUE GRAPHS

In this section we give a characterization of biclique graphs.
The following observations are clear.

Observation 4.1. Let A be a {0,1,−1} matrix and HA its associated hypergraph.
Then row i is a dominated row of A if and only if Ei ∈E(HA) is a dominated hyperedege
of HA.

Observation 4.2. Let A be a {0,1,−1} matrix and c the canonical coloring of its
associated hypergraphHA. Then A is a compatible matrix if and only if c is a compatible
coloring.

Observation 4.3. Let H be a hypergraph with a coloring c. Then c is compatible if
and only if the coloring c∗ of H∗ is compatible.

Lemma 4.1. Let H be a colored hypergraph relative to the coloring c and H∗ its
dual colored hypergraph. Then the coloring c of H is compatible and H is bipartite-
conformal if and only if the family of hyperedges of H∗ is bipartite-Helly.

Proof. By observation 4.3, c is compatible if and only if c∗ is also compatible. Then,
it remains to prove that H is bipartite-conformal if and only every bipartite-intersecting
subfamily of hyperedges of H∗ has a common vertex.

Suppose H is bipartite-conformal and let Gb(H) be its black section. Consider
E1∪E2 a bipartite-intersecting family of hyperedges of H∗, where E1={E∗

i1
, . . . ,E∗

ik
}

and E2={E∗
ik+1

, . . . ,E∗
is
}.

Since E1,E2 are monochromatically intersecting families, both sets of vertices, V1=
{vi1, . . . ,vik } and V2={vik+1, . . . ,vis }, induce independent sets in Gb(H). On the other
hand, since for every i , j such that E∗

i ∈E1 and E∗
j ∈E2, E∗

i ,E
∗
j intersect in a vertex

with different color, vertices vi ∈V1,v j ∈V2 are adjacent in G. It follows that V1,V2
induce a bipartite complete subgraph in G. Since H is bipartite-conformal, there is an

Journal of Graph Theory DOI 10.1002/jgt
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hyperedge Et which contains the vertices of V1∪V2. We conclude that Et in H∗ is a
common element of the family E1∪E2.

Conversely, let B be a biclique of Gb(H) and let V1={vi1, . . . ,vis },V2={vis+1, . . . ,vit }
be its bipartition. Consider E1={E∗

i1
, . . . ,E∗

is
}, E2={E∗

is+1
, . . . ,E∗

it
} hyperedges of H∗.

Since V1,V2 are independent sets, then E1,E2 are monochromatically intersecting
families. Since every vertex of V1 intersects every vertex of V2, E1∪E2 is a bipartite-
intersecting family in H∗. Finally, as c∗ is compatible and H∗ is bipartite-Helly, by
hypothesis there is a vertex Et common to E1,E2. We conclude that the hyperedge Et
of H contains all the vertices of B and H is bipartite-conformal. �

Observation 4.4. Let A be a {0,1,−1} compatible matrix. Let H be its associated
colored hypergraph. Then H is bipartite-conformal if and only if the columns of A are
bipartite-Helly.

The following is the main characterization.

Theorem 4.1. Let G be a graph with no isolated vertices. Then G is a biclique graph
if and only if G contains a family C of not necessarily distinct complete subgraphs
covering the edges of G,whose associated hypergraphHC admits a coloring c satisfying

(1) C bicovers V (G).
(2) H∗

C has no dominated hyperedeges.
(3) c is a compatible coloring.
(4) HC is bipartite-Helly, relative to c.

Proof. By hypothesis, G=KB(H ) for some graph H . Let A be a {0,1,−1} biclique
matrix of H , HA its associated hypergraph and c the canonical coloring of HA. Each
biclique Bj of H corresponds to a hyperedge E j ∈E(HA) and to a vertex v j ∈V (G).
Define a family C of subsets of V (G) as follows. For each wi ∈V (H ), there is a subset
Ci ∈C satisfying v j ∈Ci precisely when wi ∈ Bj , for all v j ∈V (G), that is, C is the
family of columns of A. First, we show that each Ci is a complete subset. Let v j ,vk
be vertices of G, belonging to a common subset Ci ∈C. In this situation, wi ∈ Bj ∩Bk ,
implying that the corresponding vertices v j ,vk in G must be adjacent. Therefore C is
a family of complete subsets.

Furthermore, because G is the biclique graph of H , each edge viv j ∈E(G) corre-
sponds to a pair of intersecting bicliques Bi , Bj of H . That is, some vertex wk ∈V (H )
belongs to both Bi , Bj . The latter implies that vi ,v j ∈Ck , meaning that C covers the
edges of G.

Next, consider the associated hypergraph HC of C with a coloring c′ defined as
follows: the color of v j in hyperedgeCi is the same as the color of vertexwi ∈E j inHA.

In other words, every vertex vi ∈V (G) corresponds to a biclique Bi of H and every
complete subset C j of C corresponds to a vertex w j ∈V (H ), satisfying: wi ∈ Bj if and
only if v j ∈Ci . Furthermore, wi ,w j are adjacent in H precisely when Ci ∩C j contains
at least one vertex having different color in these subsets.

Observe that V (HA)∼=V (H∗
C)∼=V (H ), while E(HA)∼=E(H∗

C)∼=V (G). We conclude
that HA∼=H∗

C and c′∗ =c.
Because A is a biclique matrix, it satisfies conditions (i)–(iv) of Theorem 3.2.

Examine each of them.

Journal of Graph Theory DOI 10.1002/jgt
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From (i), for each row i of A= (ai j ), there are two columns j,k satisfying ai j =−aik .
This implies that Ei ∈E(HA) contains w j ,wk ∈V (H ) and the colors of w j ,wk in Ei
are different. Consequently, vi ∈C j ∈C, vi ∈Ck ∈C and vi has distinct colors in C j ,Ck .
Then C bicovers V (G), and (1) holds.

From (ii), A has no dominated rows. By Observation 4.1, HA has no dominated
hyperedges, implying that H∗

C also does not have dominated hyperedges. Hence (2)
holds.

From (iii), A is a compatible matrix. By Observations 4.2 and 4.3, we conclude that
c∗ is also compatible, and (3) is valid.

Finally, from (iv), the isomorphism HA∼=H∗
C and Lemma 4.1 imply (4), terminating

the proof of necessity.
Conversely, by hypothesis, G contains a family C of complete subgraphs, which

covers the edges of G and whose associated hypergraph HC admits a coloring c
satisfying (1)–(4). First, considerHC , its dualH∗

C and the associated matrix AH∗
C ofH∗

C .
We prove that G is the biclique graph of H =Gb(H∗

C).
Examine matrix AH∗

C . Each row i of it corresponds to a vertex vi ∈V (G) and each
column corresponds to a complete subgraph C j ∈C. Because of condition (1), it follows
that each row of AH∗

C has at least a 1 and a −1. Also, (2) implies that AHC∗ has no
dominated rows. From (3) and Observation 4.2, we conclude that AH∗

C is compatible,
and from (4) and Lemma 4.1, H∗

C is bipartite-conformal, relative to c∗. Consequently,
by Theorem 3.2, AH∗

C is the biclique matrix of the graph H =Gb(H∗
C). That is, every

biclique Bi of H corresponds to a row vi of A, and each complete subgraph C j
corresponds to a vertex wi of H . We show below that G=KB(H ).

Let vi ,v j be adjacent vertices of G. Because C covers the edges of G, there is a
complete subgraph Ck ∈C containing both vi ,v j . Because AH∗

C is a biclique matrix of
H , the bicliques Bi , Bj of H contain a common vertex wk ∈V (H ), i.e. Bi ∩Bj �=∅.
Conversely, when Bi , Bj are intersecting bicliques of H , let wk ∈ Bi ∩Bj . Then Ck ⊇
{vi .v j }. Since Ck is a complete subset, the latter implies viv j ∈E(G). Consequently,
G=KB(H ). The proof is complete. �

The following observation is direct from the proof of Theorem 4.1.

Observation 4.5. Let G be a graph and C a family of complete subgraphs of it. Then
C satisfies the conditions of Theorem 4.1 if and only if AH∗

C is the biclique matrix of
some graph H . Furthermore, G=KB(H ) and H ∼=Gb(H∗

C).

5. BICLIQUE GRAPHS AND DIAMONDS

In this section, we examine the question of finding classes of biclique graphs. We give
a simple necessary condition for a graph to be a biclique graph, in terms of a 3-fan
(Fig. 7) and a diamond (Fig. 8). As a consequence, we obtain a characterization for
biclique graphs, restricted to the class of diamond-free graphs.

Start by examining complete graphs.

Lemma 5.1. Complete graphs are biclique graphs of bipartite graphs.
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Proof. We will use an inductive argument. First, observe that KB(P4)=K2. Assume
that KB(G)=Kn , G being a bipartite graph. We construct inductively a bipartite graph
G ′ such that KB(G ′)=Kn+1. Let V1 and V2 be the bipartition of G. Add to G vertices
v′
1 and v′

2 and the set of edges {(v′
1,w), w∈V2}∪{(v′

1,v
′
2)}. The resulting bipartite

graph G ′ verifies that K (G ′)=Kn+1. �

Next, we give a necessary condition for biclique graphs.

Theorem 5.1. Let G a biclique graph. Then, every induced P3 of G is contained in
a diamond or in a 3-fan.

FIGURE 7. A 3-fan.

FIGURE 8. A diamond.

Proof. Suppose G contains an induced P3 formed by vertices v1,v2,v3∈V (G),
where v1,v2 are not adjacent. Assume that G is a biclique graph of some graph H .
Then G has a vertex vi for each biclique Bi of H . By Theorem 4.1 and Observation 4.5,
G contains a family C of complete subgraphs C j satisfying (1)–(4), such that G=
KB(Gb(H∗

C)). Let Gb(H∗
C)=H . Furthermore, we know that vertices wi ,w j ∈V (H ) are

adjacent in H precisely when Ci ,C j both contain a vertex having different colors in
these complete subgraphs. Moreover, wi ∈ Bj if and only if v j ∈Ci .

Because C covers the edges of G, there is a complete subset C1∈C satisfying
v1,v3∈C1. From (2), there is a complete set C3∈C that contains v1 but not v3. Observe
that v2 /∈C3.

Case 1. v1 has different colors in C1 and C3, for some C3∈C that contains v1 but
not v3.

Because C covers the edges of G, there exists a complete subgraph C2∈C that
contains the edge v3v2. Examine the further alternatives.

Case 1.1. v3 has different colors in C1,C2, for some C2∈C that contains edge v3v2.
Also, there exists a complete subgraph C4∈C, where v2∈C4 has different colors in C2
and C4.

Then, the corresponding vertices w3,w1,w2,w4 form a path in H . Examine the
possible additional adjacencies between these vertices of H . Observe that, if v3∈C4,
then the color of v3 in C4 is the same as in C1, according to (3). Moreover, if w1w4
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is edge then there exists a vertex v∈C1∩C4, v �=v3, such that v1,v2,v3,v form a
diamond. Analogously, if w3w2 is an edge, then the Theorem holds. If w3w4 is an
edge of H , the complete bipartite set w1,w2,w3,w4 is included in some biclique B4
and its corresponding vertex v4 belongs to C1,C2,C3,C4. Then, a diamond containing
P3 is formed.
Next, consider the case w3,w1,w2 form a P3 in H , which is contained in a

biclique B5. Consider vertex v5 of G corresponding to B5.
It follows that v5∈C1,C2,C3. Since v3 /∈C3, v3 �=v5. Consequently, v3,v1,v2,v5

induce a diamond in G.

Case 1.2. v3 has identical colors in C1 and C2, for all C2.

Again, let C4 be a complete subgraph, where v2∈C2∩C4 has different colors in C2
and C4.

We affirm that v3 /∈C4. Arguing by contradiction, suppose that v3∈C4. By (3), v3
has different colors in C2,C4. Then, C4 is a complete subgraph that contains the edge
v3v2, such that v3 has different colors in C1,C4, a contradiction. Then, if C1∩C4 �=∅,
then a diamond containing P3 is formed.

Let C5 be a complete subgraph that contains v3 with a color different from the color
that v3 has in C1.

Then, v2 /∈C5 (by the assumption of Case 1.2). Consider vertices w3,w1,w5. Either
they form an induced path included in a biclique or a triangle in H . In any of these
cases, there exists a vertex v6∈C5, v6 �=v3, v6 adjacent to v3 and either adjacent or
equal to v1.

Similarly, considering the path w4,w2,w5 we conclude that there is a vertex v7∈C5
adjacent to v3, v2 and v6. Finally, consider the following possibilities for v6 and v7:

• v6=v7,
• v6=v1,
• v6 is adjacent to v2,
• v7 is adjacent to v1.

If any of the above alternatives occur, then vertices v1,v3,v2,v7 or v1,v3,v2,v6
induce a diamond in G that contains the P3 formed by v1,v2,v3.

Otherwise, vertices v1,v6,v7,v2,v3 induce a 3-fan in G that contains the P3 formed
by v1,v2,v3.

Case 2. v1 has identical colors in C3 and C1, for all C3∈C that contain v1 but not v3.

Let C6 be a complete subgraph, v1∈C6, such that v1 has different colors in C1,C6.
Then v3∈C6 and, by (3), the color of v3 in C1 is different from the color of v3 in C6.
If there exists a complete subgraph C2, where v2,v3∈C2 such that the colors of v3 in
C6 and C2 are different, considering C6 instead of C1 in Case 1.1, we complete the
proof. Otherwise, the color of v3 in C6 is identical to the color of v3 in C2, for every
complete subgraph containing v2,v3. In this situation, following the proof of Case 1.2
we conclude that the P3 formed by v1v2v3 is contained in a diamond. �
Observation 5.1 (Montero [19]). The converse of Theorem 5.1 is not true. The graph
of Figure 9 is a counterexample.

It follows from the next corollary that the theorem is actually somewhat stronger.
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FIGURE 9. A Crown.

Corollary 5.1. Let G be a connected diamond-free graph. Then G is a biclique graph
if and only if G is a complete graph.

Corollary 5.2. The induced cycles Ck,k≥4, are not biclique graphs.

Corollary 5.3. Trees with more than 2 vertices are not biclique graphs.

6. BICLIQUE MATRICES OF BIPARTITE GRAPHS

In this section we examine biclique matrices of bipartite graphs.
The following concept is useful. A {0,1,−1} matrix A is bipartite when it admits a

row-similar matrix A′, such that no column of A′ has both entries 1 and −1. It is clear
that a graph is bipartite if and only if its biclique matrix is bipartite. We observe that
bipartite matrices can be recognized in polynomial-time.

As a direct corollary of Theorem 3.2, Corollary 6.1 is a characterization for biclique
matrices of bipartite graphs.

Corollary 6.1. Let A be a m×n, {0,1,−1} matrix, andH its associated hypergraph.
Then A is a biclique matrix of some bipartite graph if and only if

(i) each row of A has at least one 1 and at least one −1,
(ii) A has no dominated rows,
(iii) H is bipartite-conformal, relative to its canonical coloring,
(iv) A is bipartite.

Next, we consider matrices to describe bicliques in the context of {0,1} matrices
and not {0,1,−1} matrices. Given a graph G with d bicliques B1, . . . , Bd ⊆V (G), a
positive biclique matrix A of G is a d×n, {0,1} matrix such that ai j =1 if vertex
v j belongs to biclique Bi and ai j =0 otherwise. Clearly, a positive biclique matrix is
the matrix obtained from a biclique matrix by replacing each −1 by 1. We need the
following definitions. A bicoloring of G is a bipartition of the vertices of G into subsets
V1,V2. A clique of G is bichromatic relative to a bicoloring V1,V2 if it contains at
least a vertex of V1 and a vertex of V2. A weak 2-coloring of G is a bicoloring such
that every clique of G is bichromatic, relative to V1,V2. When the considered matrix
is a clique matrix, the following holds:

Theorem 6.1. Let G be a graph, A be a clique matrix of G and H the associated
hypergraph of A. Then, the following statements are equivalent:

(1) A is a positive biclique matrix of a bipartite graph H.
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(2) A is a positive biclique matrix of a neighborhood-Helly bipartite graph H.
(3) G admits a weak 2-coloring V1,V2⊆V (G) andH is bipartite-conformal, relative

to the bicoloring V1,V2.

Proof. (1)⇒ (2): Suppose A is a positive matrix of a bipartite graph H , with bipar-
tition V1,V2. We prove that H is neighborhood-Helly. Let V ′ be a set of vertices
of H whose neighborhoods pairwise intersect. Without loss of generality, V ′ ⊆V1.
The columns of A corresponding to V ′ pairwise intersect, since any two vertices in
V ′ belong to a common biclique. Then, columns of A corresponding to V pairwise
intersect and V ′ is a complete subset of G, contained in some clique C . Finally,
the columns of A corresponding to V ′ intersect at the row which corresponds to C
in A.

(2)⇒ (3): Let V1,V2 be the bipartition of H . Consider V1,V2 as a bicoloring of
vertices of G. Since A is a positive biclique matrix of H , every clique of G is bichro-
matic, implying that V1,V2 is a weak 2-coloring of G. It is clear that H is bipartite
conformal, by Corollary 6.1.

(3)⇒ (1): Let V1,V2 be the bicoloring of G. Define the bipartite matrix B as
follows: for every i , bi j =ai j if j ∈V1 and bi j =−ai j for j ∈V2. Since V1,V2 is a weak
2-coloring of G, every row of B has at least a 1 and a −1. Since A is a clique matrix, B
has not dominated rows. Finally, by hypothesis, H is bipartite conformal. Corollary 6.1
says that B is a biclique matrix of a bipartite graph H , ie. A is a positive biclique
matrix of H . �

7. BICLIQUE GRAPHS OF BIPARTITE GRAPHS

In this section, we consider the question of characterizing biclique graphs of bipartite
graphs. For formulating a full characterization of it, we need some additional notation.

A coloring of a hypergraph H is stable when each vertex of H receives the same
color, in all the hyperedges containing it. Therefore, bipartite matrices are exactly those
such that the coloring of the associated hypergraph is stable. The following lemma is
clear.

Lemma 7.1. Stable colorings are compatible.

The following Theorem characterizes biclique graphs of bipartite graphs.

Theorem 7.1. Let G be a graph with no isolated vertices. Then, G is a biclique
graph of a bipartite graph if and only if G contains a family C of complete subgraphs
covering the edges of G, and whose associated hypergraph HC admits a coloring c,
satisfying

(1) C bicovers V (G).
(2) H∗

C has no dominated hyperedges.
(3) c∗ is a stable coloring.
(4) HC is bipartite-Helly, relative to c.
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8. CONCLUSIONS

We have described a Krausz-type characterization of biclique graphs, that is, the inter-
section graphs of the bicliques of a graph. We have given some necessary conditions
for a graph to be a biclique graph and we have presented some classes of graphs which
are biclique graphs and some which are not.

Although the biclique graph characterization is not as short as the clique graph
characterization by Roberts and Spencer, the study of iterated biclique graphs seems to
be simpler than that of iterated clique graphs. In fact, unlike the latter, iterated biclique
graphs can be characterized in a simple way [19].

In the characterization of biclique graphs, we have employed the concept of the
biclique matrix of a graph. This has motivated us to study and characterize the biclique
{0,1,−1} matrix of a graph, in similar terms as the well-known characterization of
{0,1} clique matrices by Gilmore. However, we leave as an open question, to charac-
terize positive {0,1} biclique matrices of a graph and determine the complexity of its
recognition.

REFERENCES

[1] G. Alexe, S. Alexe, Y. Crama, S. Foldes, P. Hammer, and B. Simeone, Consensus
algorithms for the generation of all maximal bicliques, Discrete Appl Math 145(1)
(2004), 11–21.

[2] J. Amilhastre, M. C. Vilarem, and P. Janssen, Complexity of minimum biclique
cover and minimum biclique decomposition for bipartite domino-free graphs,
Discrete Appl Math 86(2–3) (1998), 125–144.

[3] G. Lin, M. C. Bondy, A. Durán, and J. Szwarcfiter, Self-clique graphs and matrix
permutations, J Graph Theory 44(3) (2003), 178–192.

[4] K. Booth and G. Lueker, Testing for the consecutive ones property, interval graphs,
and graph planarity using PQ-tree algorithms, J Comput System Sci 13(3) (1976),
335–379.

[5] A. Brandstädt, V. B. Le, and J. P. Spinrad, Graph Classes: A Survey, SIAM
Monographs on Discrete Mathematics and Applications, Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 1999.

[6] M. F. Dias, C. M. H. de Figueiredo, and J. L. Szwarcfiter, Generating bicliques of
a graph in lexicographic order, Theoret Comput Sci 337(1–3) (2005), 240–248.

[7] F. Escalante, Über iterierte Clique-Graphen, Abh Math Sem Univ Hamburg 39
(1973), 59–68.

[8] D. R. Fulkerson and O. A Gross, Incidence matrices and interval graphs, Pacific
J Math 15 (1965), 835–855.

[9] F. Gavril, Algorithms on circular-arc graphs, Networks 4 (1974), 357–369.
[10] F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal

graphs, J Combinatorial Theory Ser B 16 (1974), 47–56.

Journal of Graph Theory DOI 10.1002/jgt



16 JOURNAL OF GRAPH THEORY

[11] P. C. Gilmore, Families of sets with faithful graph representations, IBM Research
Note N. C. 184, 1962.

[12] P. C. Gilmore and A. J. Hoffman, A characterization of comparability graphs and
of interval graphs, Canad J Math 16 (1964), 539–548.

[13] M. C. Golumbic and C. F. Goss, Perfect elimination and chordal bipartite graphs,
J Graph Theory 2(2) (1978), 155–163.

[14] M. Groshaus and J. L. Szwarcfiter, Biclique-Helly graphs, Graphs Combinatorics
26(6) (2007), 633–645.

[15] M. Groshaus and J. L. Szwarcfiter, On hereditary Helly classes of graphs, Discrete
Math Theor Comput Sci 10(1) (2008), 71–78.

[16] F. Larrión, V. Neumann-Lara, M. A. Pizaña, and T. D. Porter, A hierarchy of
self-clique graphs, Discrete Math 282(1–3) (2004), 193–208.

[17] P. G. H. Lehot, An optimal algorithm to detect a line graph and output its root
graph, J ACM 21(4) (1974), 569–575.

[18] T. A. McKee and F. R. McMorris, Topics in Intersection Graph Theory, SIAM
Monographs on Discrete Mathematics and Applications, Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 1999.

[19] L. Montero, Convergencia y divergencia del grafo biclique iterado, Master’s
thesis, Departamento de Computación, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, 2008.

[20] H. Müller, On edge perfectness and classes of bipartite graphs, Discrete Math
149(1–3) (1996), 159–187.

[21] R. Peeters, The maximum edge biclique problem is NP-complete, Discrete Appl
Math 131(3) (2003), 651–654.

[22] E. Prisner, Bicliques in graphs. II. Recognizing k-path graphs and underlying
graphs of line digraphs, In: Graph Theoretic Concepts in Computer Science
(Berlin, 1997), Lecture Notes in Computer Science 1335, Springer, Berlin, 1997,
pp. 273–287.

[23] E. Prisner, Bicliques in graphs. I. Bounds on their number, Combinatorica 20(1)
(2000), 109–117.

[24] F. Roberts and J. Spencer, A characterization of clique graphs, J Combinatorial
Theory Ser B 10 (1971), 102–108.

[25] Z. Tuza, Covering of graphs by complete bipartite subgraphs: Complexity of 0–1
matrices, Combinatorica 4(1) (1984), 111–116.

[26] M. Yannakakis, Node-and edge-deletion NP-complete problems, STOC ’78:
Proceedings of the 10th Annual ACM Symposium on Theory of Computing,
ACM, New York, NY, USA, 1978, pp. 253–264.

[27] M. Yannakakis, Node-deletion problems on bipartite graphs, SIAM J Comput
10(2) (1981), 310–327.

Journal of Graph Theory DOI 10.1002/jgt


