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Abstract4

We give a commentary on the challenges of big data for Statistics. We then narrow our5

discussion to one of those challenges: dimension reduction. This leads to consideration of6

one particular dimension reduction method – partial least squares (PLS) – for prediction in7

big high-dimensional regressions. We show that in some regression contexts PLS predictions8

converge at the usual root-n rate regardless of the number of predictors. These results support9

the conjecture that PLS can be an effective method for prediction in big high-dimensional10

regressions.11
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1 Introduction13

Statistics has coexisted for decades with the data-centric sciences in a type of symbiotic mutual-14

ism: The applied sciences relied on Statistics for novel methods and ideas to help resolve their15

questions, while Statistics relied on the applied sciences for questions to drive research. By and16

large, our research frontiers are not stimulated by introspection but come from evolving experi-17

mental constructs and data types. We exist as a distinct discipline because the results of research18

stimulated by one science are nearly always widely applicable. For instance, around twenty years19

ago the statistics community began addressing high-dimensional data. At the time our interest20
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was driven in part by questions arising from the human genome project: How can we sort though21

tens of thousands of genes to find the ones associated with a particular condition like cancer? The22

advances in Statistics on high-dimensional data are now being embraced by other disciplines.23

Issues that we face today seem unique and go under various headings – Big Data, Data An-24

alytics and Data Science – all of which reflect a promise that society can store and subsequently25

exploit large amounts of data in novel ways. But realizing this promise involves myriad issues that26

cut across the applied sciences generally. The appeal to Big Data has, we think, been overhyped.27

The term has been applied so liberally that it has ceased to have a useful meaning, conveying in-28

stead a muddled impression of size and difficulty. The other designators – Data Science and Data29

Analytics – have implications that are less tied to one particular feature of data and are thus more30

inclusive.31

The role of Statistics in our new data-centric world has been the subject of debate among statis-32

ticians and others. Some place Data Science at the intersection of Statistics, Computer Science,33

Mathematics and applications. Others see Data Science as a largely distinct speciality, as Statistics34

is distinct from Mathematics. Writing on big data in Chemometrics, Martens (2015) gave a sting-35

ing commentary on the role of statisticians. He wrote of an abyss that exists between the Statistics36

culture and the applied sciences, of our predilection for “macho mathematics” over real-world so-37

lutions and of our arrogance in judging the work of others, concluding in part that Chemometrics38

needs more statistics but not more statisticians. This is of course only one person’s view of one39

applied science and it might be dismissed as out of touch with Statistics, perhaps thereby confirm-40

ing Marten’s impressions. But we have heard the same texture described by others, albeit in more41

measured tones, and we would be wise to keep it in mind as big data shapes the future.42

Our view of the proper relationship between Statistics and Data Science is depicted in Figure 1.43

Statisticians have been dealing directly with data science issues since the beginnings of our disci-44

pline some 200 years ago (See, for example, Bernoulli (1777), and Newcomb (1886)). Some in45

data science, broadly interpreted, eshew the mathematical side of Statistics. We think that is wrong.46

Understanding the theoretical underpinnings of methodology can give us insights and confidence47

that result in real improvements in application. But there is more to Data Science than Statistics,48

involving perhaps business acumen and advanced computing skills. This article is focused largely49

on the Statistics portion of Figure 1.50

Twenty five years ago, Cox (1992) wrote on the role of the computer in statistics:51

A classification of statistical problems via their computational demands hinges on four52

components (i) the amount and complexity of the data, (ii) the specificity of the ob-53
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Figure 1: Schematic representation of the relationship between Statistics, Computer Science and
Data Science.

jectives of the analysis, (iii) the broad aspects of the approach to the analysis (iv) the54

conceptual, mathematical and numerical analytic complexity of the methods.55

Although computing was quite different in 1992, Cox’s statement was (and perhaps still is)56

prophetic in that it seems to accurately characterize contemporary computational demands in57

Statistics. Certainly, both Data Science and Statistics cover most if not all of Cox’s four com-58

ponents, although component (i) has perhaps been emphasized the most. Regarding the amount59

of data, Huber (1992) graded datasets according to their size, ranging from tiny at 100 bytes to60

huge at 10 gigabytes or more. We have seen contemporary opinions on the Internet that classify61

a 10 gigabyte dataset as of medium size, with at least one terabytes being required for the “Big”62

designation. According to this benchmark then, 100 of Huber’s huge datasets from 1992 give the63

minimal size of a big dataset today. It seems to us that our understanding of size hasn’t changed all64

that much in the past 25 years. But there has been a big change in prevalence: Huge datasets, rare65

in the early 1990’s, are now commonplace, with concomitant increases in the number of people66

that see potential value in data and in the variety of proposals for its treatment. And this has led,67

perhaps inevitably, to competition for pieces of the big data pie.68

One of the promises of big data is that we might uncover surprising relationships or variables69

that lead to process improvements or deeper scientific understanding. Because of problems stem-70

ming from multiplicity and time, analyses with weakly specified objectives were relatively diffi-71
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cult 1990’s and remain so today. The results of an exploratory analysis can be useful if tested and72

verified independently, but statistically spurious relationships will be found with the appropriate73

frequency no matter how surprised we are that they should be found in our data.74

Data scientists seems to embrace algorithmic approaches to analysis much more than statisti-75

cians. The notion that a clever algorithm can produce useful answers has a certain appeal, but it76

often fails to provide a desired qualitative understanding of the algorithm and its relationship to77

the data, making it difficult to extrapolate beyond the case at hand. If an algorithm works for a78

particular problem, what are our expectations for its performance in the next problem? It might79

be argued that such characterizations are unnecessary because we can always try an algorithm, but80

the implied paradigm becomes problematic when there are tens of algorithms available and the81

problem is big.82

The mathematical and numerical complexity of a method can also lead to heavy demands on83

computing. Although the size of the problem might not be big by a byte count, computing can84

be just a daunting. Running an MCMC algorithm for a Bayesian analysis of a three-dimensional85

image can be every bit as challenging as performing a relatively straightforward analysis on big86

data. Surely, such issues fall in the domains of both Statistics and Data Science.87

We round out this Introduction by discussing broadly a few additional issues that can arise in88

Statistics/Data Science studies.89

Data management. When thinking of big or large-scale problems, one tends to imagine un-90

usually large amounts of data that do not fit within a typical workstation, but must currently be91

stored, managed, cleaned and analyzed with clusters or the cloud. While associated issues can be92

daunting, there is a sense in which they are transient. Datasets considered large by the standards93

of the 1970’s are tiny by contemporary standards. The first Macintosh computers at 128K quickly94

gave way to the Fat Mac and Mac Plus. The capacity of contemporary portable hard drives is95

now measured in terabytes, and affordable petabyte drives are probably not far off. Whether this96

trend will slow or the size of large datasets will continue to outpace our ability to manage them97

conveniently is the subject of conjecture. But it does seem safe to conclude that data management98

issues a decade or two from now will differ from those we face today.99

Data complexity. The notion of an independent and identically distributed sample is often100

inappropriate for large data. Instead large datasets may be comprised of data from many relatively101

small correlated data sources with each exhibiting some unique features. They typically have102

several different variable types, are high dimensional and may contain relatively few experimental103

units. Letting n represent a generic sample size and p a generic count of the parameters to be104
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estimated, complex data can arise as big n, small p or small n, big p or a combination thereof.105

For instance, the Alzheimer’s Disease Neuroimaging Initiative (ADNI, http://adni.loni.usc.edu/)106

contains substantial information on a few hundred persons with Alzheimer’s Disease, including107

demographic, clinical, genetic, image and biomarker data. Even with a focused inquiry, this is a108

large warehouse of data with high dimension and low sample size (small n, big p). Complexity109

can also be measured relative to the past: Finding useful methods to model the regression of a110

tensor valued response on a tensor valued predictor requires fresh thinking about structure and111

dimension reduction (Zhou, 2013; Hoff, 2015; Li and Zhang, 2016). Such problems might be112

high-dimensional or large, but fundamental statistical issues remain, apart from the size of the113

dataset.114

Inference. Is traditional inference still relevant in big n, small p problems? The phenomenon at115

play here is reflected by the notion that point null hypotheses will almost always be rejected in big116

n data (eg. Demidenko, 2016): An arbitrarily small difference between the hypothesized and true117

value will be detected with high probability if the sample size is sufficiently large, which aligns118

with the philosophy that point null hypotheses are always, strictly speaking, false. If we always119

reject then using traditional diagnostic methods for model criticism must necessarily lead to the120

conclusion that all models for big data are demonstrably wrong (with acknowledgement to George121

Box, 1979). How do we assess model adequacy in big data?122

Relatedly, the editors of Basic and Applied Social Psychology recently announced that their123

journal would no longer publish papers that rely on p-values to support conclusions (Trafimow124

and Marks, 2015). This caused considerable discussion, including an official statement by the125

American Statistical Association (Wasserstein and Lazar, 2016) that mentioned the proliferation126

of large, complex datasets as partial motivation for their declaration. I found the ASAs statement127

interesting as a reflection of how Statistics relates to the scientific community. Acknowledging the128

proper and limited role of p-values, they concluded in essence that p-values wouldn’t be an issue129

if we all just learned to be better scientists.130

Many of these issues can be avoided when prediction is the ultimate goal and the predictions131

themselves can be assessed in the context for which they are intended. It doesn’t matter if models132

or methods are “wrong” if the predictions are useful. Perhaps this is why so many data science133

problems seem to center on prediction.134
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2 Dimension reduction135

Dimension reduction has always been an essential notion in Statistics (see, for example, Edge-136

comb, 1884), and reducing data to an essential core of information is often an indispensable part of137

an analysis regardless of the size of the problem, but particularly in big problems. Two distinct ap-138

proaches to dimension reduction have emerged over the past couple of decades. To describe these139

and for the rest of this article we concentrate on the regression of a univariate response Y ∈ R1
140

on a vector of p predictors X ∈ Rp, assuming throughout that Y and X are jointly distributed.141

This context is simple relative to those that may be encountered in large complex problems, but142

it is rich enough to allow us to contrast foundations that are applicable more generally. Both of143

the contemporary approaches to dimension reduction attempt to infer about a linear transformation144

X → ηTX , where η ∈ Rp×d with d ≤ p, of the predictors with the property that145

Y X | ηTX, (1)

where means independent.146

2.1 Sufficient dimension reduction, SDR147

A subspace S ⊆ Rp is called a dimension reduction subspace (DRS) for the regression of Y on148

X if Y X | PSX , so PSX holds all the information about Y that is available from X . The149

overarching goal in SDR is to replace X with its projection PSX onto a DRS without requiring a150

parsimoniously parameterized parametric model. The parsimonious target of an SDR enquiry is151

the central subspace SY |X , defined as the intersection of all dimension reduction subspaces (Cook152

1994, 1998). Since no pre-specified model for Y | X is required and because PY |XX provides a153

minimal sufficient linear reduction of X , this context can be useful for studying high-dimensional154

regressions regardless of the size of n. The columns of the matrix η that appears in (1) give a basis155

for a DRS, possibly SY |X .156

The first SDR methods were sliced inverse regression (Li, 1991) and sliced average variance157

estimation (Cook and Weisberg, 1991). Many methods for estimating SY |X have been developed158

since then, including contour regression (Li et al., 2005), the inverse regression estimator (Cook159

and Ni, 2005), principal fitted components (Cook, 2007; Cook and Forzani, 2008), directional160

regression (Li and Wang, 2007), likelihood acquired directions (Cook and Forzani, 2009), semi-161

parametric dimension reduction methods (Ma and Zhu, 2012) and a general theory for nonlinear162

sufficient dimension reduction (Lee et al., 2013). See Cook (1998, Ch. 6) for an introduction to163
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SDR.164

2.2 Sparsity165

Another category of dimension reduction methods, which is broadly identified by the use of spar-166

sity as a driving constraint, is based on the notion that only a few d � p predictors are relevant167

to the regression and is driven by the goal of identifying those predictors. In this scenario, the168

columns of the matrix η in (1) are limited to orthogonal vectors, each with a single non-zero el-169

ement. However, since most SDR methods estimate only span(η), they are not well-suited for170

identifying the active predictors. Sparse regression is now typically carried out by assuming a171

model that is (generalized) linear in the predictors and then estimating the relevant predictors by172

optimizing a penalize objective function. While there are contexts where sparsity is required as173

part of the overarching science, some seem to view sparsity as akin to a natural law: If you are174

faced with a high-dimensional regression then naturally it must be sparse. Others have seen spar-175

sity as the only recourse. In the logic of Bartlett et al. (2004), the bet-on-sparsity principle arose176

because, to continue the metaphor, there is otherwise little chance of a reasonable payoff.177

The contemporary use of sparsity was stimulated by the introduction of the lasso (Tibshirani,178

1996) and the elastic net (Zou and Hastie, 2005; Zou, 2006). The Statistics community has now179

widely embraced sparsity as a principle for the development of solutions to nearly any problem in180

high dimensions. Fan and Liu (2013) and Fan, Han and Liu (2014) have written enthusiastically181

about the value of imposing sparsity in big data analyses.182

2.3 Linear regression183

Because SDR methods are largely model-free and sparse methods are largely model-based, com-184

paring these approaches directly is problematic. Nevertheless, it is possible to gain insights about185

the basic ideas in the context of prediction based on the usual linear regression model186

Y = µ+ βT (X − E(X)) + ε, (2)

where ε X with E(ε) = 0, var(ε) = τ 2 and (Y,X) is distributed as a multivariate normal187

random vector. The assumption of multivariate normality facilitates later calculations and allows188

us to highlight essential differences, but is not critical. Let Σ = var(X) and σ = cov(X, Y ).189

Imagine adding predictors to (2) en route to high-dimensional or big data. On one extreme,190

we might base an analysis on sparsity, presuming that only a few of the predictors matter, so β191
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has nearly all 0 elements. On another extreme, one might see the regression as abundant. In192

this scenario nearly all predictors bring added information about the response, so the population193

R2 = βTΣβ/var(Y ) increases as predictors are added. Since var(Y ) = βTΣβ + τ 2 is constant, τ194

must correspondingly decrease. We assume throughout that τ is bounded away from 0 as p→∞.195

While there are many methods for proceeding via sparsity, there is a relative paucity of good196

methods available for prediction under abundance when n is not large relative to p. Cook, Forzani197

and Rothman (2012, 2013) demonstrated that it is possible to construct predictions with good198

performance in abundant regressions when n < p, but it is still unclear if abundance is a wide-199

spread phenomenon.200

In the context of model (2), d = 1 and SY |X = span(β), so it is not helpful to pursue the central201

subspace since that leads us back to the estimation of β. However progress may still be possible if202

we know or can estimate a DRS H that is a proper upper bound on SY |X ⊂ H. Let u = dim(H),203

let H be a semi-orthogonal basis matrix for H, let (H,H0) be an orthogonal matrix and assume204

temporarily that H is known. In this idealized scenario, we could predict the response from the205

regression of Y on HTX without loss of predictive information.206

We pause here to introduce more notation. Let PA(∆) denote the projection in the ∆ inner207

product onto span(A) if A is a matrix or onto A itself if it is a subspace. We use the shorthand208

notation PA := PA(I) to denote projections in the usual inner product and QA = I − PA. We209

assume througout that the data (Yi, Xi), i = 1, . . . , n are independent copies of (Y,X). Let Υ =210

(y1, . . . , yn)T and let F denote the p×n matrix with columns (Xi− X̄), i = 1, . . . , n. Then model211

(2) can be represented also in vector form as Υ = α1n + F Tβ + ε, where 1n represents the n× 1212

vector of ones, α = µ + βT (X̄ − E(X)) and ε = (εi). Let Σ = var(X) > 0 and σ = cov(X, y).213

We use W (Ω, q) to denote the Wishart distribution with q degrees of freedom and scale matrix Ω.214

Turning to notation for a sample, let σ̂ = n−1FY and Σ̂ = n−1FF T ≥ 0 denote the usual moment215

estimators of σ and Σ using n for the divisor. With W = FF T ∼ W (Σ, n− 1), we can represent216

Σ̂ = W/n, σ̂ = n−1(Wβ + Fε).217

Still assuming that H is know, suppose that Σ̂ > 0, and let B = Σ̂−1σ̂ denote the ordinary least218

squares estimator of β. Then following the reduction X 7→ HTX , ordinary least squares could219

used to estimate the coefficient vector βY |HTX for the multivariate regression of Y onHTX , giving220

estimated coefficient matrix β̃Y |HTX = (HT Σ̂H)−1HT σ̂. The known-H estimator β̃H of β is then221

β̃H = Hβ̃Y |HTX (3)

= PH(Σ̂)B. (4)
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Equation (4) describes β̃H as a projection of B onto span(H) and shows that β̃H depends on H222

only via span(H). Representation (3) shows that β̃H requires HT Σ̂H > 0, but does not actually223

require Σ̂ > 0. Thus by reducing the predictors to HTX while requiring n� u, we could handle224

prediction from high-dimensional regression in a relatively straightforward manner. In practice225

span(H) will typically be unknown and so we need a good method of estimation. It turns out that226

an apparently successful method for estimating span(H) has been available for decades: partial227

least squares regression.228

3 Partial Least Squares229

3.1 PLS review230

Partial least squares (PLS) is one of the first methods for prediction in high-dimensional linear231

regressions in which the sample size n may not be large relative to the number of predictors p. It232

was introduced by Svante Wold for prediction in chemometrics (Geladi, 1988, Wold, 2001; Phatak233

et al., 2002). Although PLS studies have appeared in statistics literature from time to time (eg.234

Helland, 1990, 1992, 2001; Frank and Friedman, 1993; Delaigle and Hall, 2012; Cook, Helland235

and Su, 2013), the development of PLS regression has taken place mainly within the chemometrics236

community where emiprical prediction is a central issue and PLS is now a core method. Martens237

and Næs (1989) is a classical reference for PLS within the chemometrics community. PLS also238

has a substantial following outside of the chemometrics and statistics communities (eg. Boulesteix239

and Strimmer 2006; Nguyen and Rocke 2002, 2004).240

In view of the apparent success of PLS in Chemometrics and elsewhere, we might anticipate241

that it has reasonable statistical properties in high-dimensional regression. However, the algorith-242

mic nature of PLS evidently made it difficult to study using traditional statistical measures, with243

the consequence that PLS was long regarded as a technique that is useful, but whose core statistical244

properties are elusive. The high-dimensional predictive behavior of PLS is largely unknown. Our245

goal in this section is to study the (n, p)-asymptotic behavior of PLS predictions in a relatively246

simple case, with the hope of gaining insights about its operating characteristics and its suitability247

for use in big data problems, particularly when n < p. Zeng and Li (2014) developed an incre-248

mental version of PLS for regressions with big streaming data and scalable versions of PLS were249

proposed by Schwartz et al. (2010) and Tabei et al. (2016). Because of such recent advances, PLS250

seems computationally feasible for big data regressions.251

The following is the population statement of the SIMPLS algorithm (de Jong 1993) developed252
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by Cook et al. (2013). Let `max(A) be an eigenvector associated with the largest eigenvalue of a253

symmetric matrix A, `max = arg max`T `=1 `
TA`. Set w0 = 0 and W0 = w0. For k = 0, . . . , u− 1,254

set255

Sk = span(ΣWk)

wk+1 = `max(QSkσσ
TQSk)

Wk+1 = (w0, . . . , wk, wk+1).

At termination, span(H) = span(Wu). Assuming u to be known, SIMPLS depends on only two256

population quantities – σ and Σ – that must be estimated. The sample version of SIMPLS is257

constructed straightforwardly by replacing σ and Σ by their sample counterparts and terminating258

after u steps. If u = p and Σ > 0 then span(Wp) = Rp and PLS reduces to the ordinary least259

squares estimator. Let G = (σ,Σσ, . . . ,Σu−1σ) and Ĝ = (σ̂, Σ̂σ̂, . . . , Σ̂u−1σ̂) denote population260

and sample Krylov matrices. Helland (1990) showed that span(H) = span(G), giving a closed-261

form expression for a basis of the population PLS subspace, and that the sample version of the262

SIMPLS algorithm gives span(Ĝ).263

Cook, Helland and Su (2013) showed that span(H) from the population SIMPLS algorithm264

is equal to the smallest reducing subspace of Σ that contains B := span(β), which is called the265

Σ-envelope of B and denoted as EΣ(B) (Cook, Li and Chiaromonte, 2010). Since B ⊆ EΣ(B), it266

follows trivially that SY |X ⊂ EΣ(B) and so EΣ(B) is a DRS. It follows from this characterization267

and (2) that Y X | HTX and HTX HT
0 X , which together imply that (Y,HTX) HT

0 X .268

As a consequence, the distribution of Y can respond to changes in HTX , but changes in HT
0 X269

affect neither the distribution of Y nor the distribution of HTX . For this reason we refer to HT
0 X270

as the noise in X . This connection with envelopes led Cook et al. (2013) to develop an envelope271

model for PLS and corresponding likelihood-based estimators whose performance was shown to272

dominate that of SIMPLS in the traditional fixed p context. Unfortunately, this likelihood-based273

estimator requires a large n, matrix inverses and optimization over a Grassmannian, and its present274

version is intractable in big regressions. PLS in effect provides an alternative moment-based es-275

timator of span(H) = EΣ(B) and, as mentioned previously, scalable versions are available in276

the literature. However, informative asymptotic characterizations of PLS predictions in high di-277

mensions are not available. Chun and Keleş (2010) implied that sparsity is a necessary construct278

to insure good performance of PLS in high dimensions, which seems at odds with the numerous279

successful applications of PLS over the past few decades.280
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In the next section we consider the asymptotic behavior of PLS predictions assuming that281

u = 1. While confining attention to regressions with u = 1 is a clear restriction on the scope of our282

study, predictions with u = 1 have proven useful in some applications and our results are sufficient283

to give strong clues about the value of PLS in high dimensions. Corresponding results when u > 1284

are still under study.285

A latent variable model that leads to PLS with u = 1 can be constructed as follows. Suppose286

that X can be modeled as287

X = E(X) + Θν + e, (5)

where ν ∈ R1 is a latent variable that is normally distributed with mean 0 and variance 1, Θ ∈ Rp,288

e ∈ Rp is normally distributed with mean 0 and variance π2Ip, and e (ν, Y ). Since Θ is unknown289

and unconstrained, there is no loss of generality in the restriction that var(ν) = 1. We further290

assume that cov(ν, Y ) 6= 0 so the dependence between X and Y arises fully via ν. It follows as a291

consequence of this model that X ν | ΘTX , and thus the linear combination ΘTX carries all of292

the information that X has about Y . The variance of X can be expressed as293

Σ = ΘΘT + π2Ip = H(ΘTΘ + π2)HT + π2QH ,

where H = Θ(ΘTΘ)−1/2 ∈ Rp is a semi-orthogonal basis matrix for span(Θ). Since σ =294

Θcov(ν, Y ) and cov(ν, Y ) 6= 0, it follows that EΣ(B) = span(Θ) = span(H). We can now295

appeal to PLS to estimate EΣ(B). This model can be extended straightforwardly to allow u > 1.296

3.2 Technical objective297

Let β̂ denote the estimator of β following reduction by the SIMPLS algorithm. When u = 1, β =298

Σ−1σ = σ(σTΣσ)−1σTσ and β̂ = σ̂(σ̂T Σ̂σ̂)−1σ̂T σ̂. Our interest lies in studying the predictive299

performance of β̂ as n and p grow in various alignments.300

Let YN = µ + βT (XN − E(X)) + εN denote a new observation on Y at a new independent301

observation XN of X . The PLS predicted value of YN at XN is ŶN = Ȳ + β̂T (XN − X̄), giving a302

difference of303

ŶN − YN = (Ȳ − µ) + (β̂ − β)T (XN −E(X))− (β̂ − β)T (X̄ −E(X))− βT (X̄ −E(X)) + εN .

The first term Ȳ − µ = Op(n
−1/2). Since var(Y ) = βTΣβ + τ 2 remains constant as p → ∞,304

βTΣβ � 1 as p → ∞ and thus the fourth term βT (X̄ − E(X)) = Op(n
−1/2) by Chebyschev’s305

11



inequality: var(βT (X̄ − E(X))) = βTΣβ/n→ 0 as n, p→∞. The term (β̂ − β)T (X̄ − E(X))306

must have order smaller than or equal to the order of (β̂−β)T (XN −E(X)), which will be at least307

Op(n
−1/2).308

Consequently we have the essential asymptotic representation309

ŶN − YN = Op{(β̂ − β)T (XN − E(X))}+ εN as n, p→∞.

Since εN is the intrinsic error in the new observation, the n, p-asymptotic behavior of the prediction310

ŶN is governed by311

DN := (β̂ − β)T eN =
(
σ̂T σ̂(σ̂T Σ̂σ̂)−1σ̂T − σTσ(σTΣσ)−1σT

)
eN , (6)

where eN = XN −E(X) ∼ N(0,Σ). Our goal now is to determine the order of DN as n, p→∞.312

Since var(DN | β̂) = (β̂−β)TΣ(β̂−β), results forDN also tell us about the large-sample behavior313

of β̂ in the Σ inner product.314

In the PLS context with u = 1 we have,315

Σ = λ``T + `0Ω0`
T
0 , (7)

where ` = σ/(σTσ)1/2, (`, `0) ∈ Rp×p is an orthogonal matrix, λ = σTΣσ/σTσ is the eigenvalue316

of Σ associated with eigenvector ` and Ω0 ∈ R(p−1)×(p−1) is positive definite. As a consequence,317

Σk = `λk`T + `0Ωk
0`
T
0 and tr(Σk) = λk + tr(Ωk

0). The asymptotic properties of PLS predictions318

turn out to depend crucially on the relationship between C(p, k) := tr(Ωk
0), which measures the319

variation of the noise in X , and σTσ, which measures the signal. Since Σσ = λσ, Σkσ = λkσ and320

β = λ−1σ, we have321

βTΣkβ = λk−2(σT `)2 = λk−2σTσ = λk−3σTΣσ, (8)

and, since βTΣβ � 1,322

σTΣσ � (σTσ)2, λ � σTσ and βTΣkβ � λk−1 � (σTσ)k−1. (9)

Consequently, λ provides a measure of the signal that is asymptotically equivalent to σTσ.323
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3.3 Asymptotic results for PLS predictions with u = 1324

In this section we give an overview of our calculations on the convergence rate of PLS predictions,325

which depends on the following proposition.326

In preparation, let327

H = n−1/2 +
C(p, 1)

nσTσ
(10)

J = n−1/2 +
C(p, 1)

nσTσ
+

C(p, 2)

n(σTσ)2
+
C1/2(p, 3)

n(σTσ)3/2
. (11)

Proposition 1 Assume that H and J converge to 0 as (n, p)→∞. Then, under (2) and PLS with328

u = 1,329

σ̂T Σ̂σ̂

σTΣσ
= 1 +Op(J) (12)

σ̂T σ̂

σTσ
= 1 +Op(H) (13)

σ̂T σ̂

σ̂T Σ̂σ̂
=

σTσ

σTΣσ
Op(1). (14)

PROOF. Since the justification for these conclusions is rather long, we have included it in a330

supplement to this article.331

From (6), we need to find the order of332

DN = (λ̂−1σ̂ − λ−1σ)T eN

= λ̂−1(σ̂ − σ)T eN − λ̂−1(σ̂T Σ̂σ̂ − σTΣσ)(σTΣσ)−1σT eN

+(σ̂T σ̂ − σTσ)(σTΣσ)−1σT eN .

It follows from (14) of Proposition 1 that λ̂−1λ = Op(1). Consequently, multiplying the first two333

addends of DN by λλ−1 we have334

DN = (λ̂−1λ)λ−1(σ̂ − σ)T eN − (λ̂−1λ)λ−1(σ̂T Σ̂σ̂ − σTΣσ)(σTΣσ)−1σT eN

+(σ̂T σ̂ − σTσ)(σTΣσ)−1σT eN .
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Therefore an order for DN can be found by adding the orders of the following three terms.335

I = λ−1(σ̂ − σ)T eN

II = λ−1(σ̂T Σ̂σ̂ − σTΣσ)(σTΣσ)−1σT eN

III = (σ̂T σ̂ − σTσ)(σTΣσ)−1σT eN .

Orders for these three terms are given in the following three lemmas.336

Lemma 1

I = Op

(
n−1/2 +

√
C(p, 2)

n(σTσ)2

)
. (15)

PROOF. Since var(σ̂) � n−1(var(y)Σ + σσT ) (Cook et al., 2013) we have337

var(I) = λ−2E((σ̂ − σ)TΣ(σ̂ − σ)) � λ−2 tr{var(σ̂)Σ}

� λ−2 var(y) tr(Σ2) + σTΣσ

n
� n−1λ−2var(y)

{
λ2 + C(p, 2)

}
+ n−1λ−2σTΣσ

� n−1 +
C(p, 2)

n(σTσ)2
.

2338

339

Lemma 2

II = Op(J). (16)

PROOF. From conclusion (12) of Proposition 1, (σ̂T Σ̂σ̂ − σTΣσ)(σTΣσ)−1 = Op(J) and, from340

(9), var(λ−1σT eN) = (λ−1)
2
σTΣσ = (σTσ)2(σTΣσ)−1 � 1. 2341

342

Lemma 3

III = Op(H). (17)

PROOF. It follows from conclusion (13) of Proposition 1, that (σ̂T σ̂ − σTσ)(σTσ)−1 = O(H)343
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and, from Lemma 2, var
(
λ−1σT eN

)
=
(
(σTΣσ)−1σTσ

)2
σTΣσ � 1. 2344

345

Using Lemmas 1–3 we have346

DN = I + II + III

= Op

(
n−1/2 +

(
C(p, 2)

n(σTσ)2

)1/2

+
C(p, 1)

nσTσ
+

C(p, 2)

n(σTσ)2
+
C1/2(p, 3)

n(σTσ)3/2

)
.

Since (H, J)→ 0, C(p,2)
n(σT σ)2

≤ 1 for sufficient large n and p, we have our main result:347

Theorem 1 Assume that H and J converge to 0 as (n, p) → ∞. Then, under (2) and PLS with348

u = 1,349

DN = Op

(
n−1/2 +

(
C(p, 2)

n(σTσ)2

)1/2

+
C(p, 1)

nσTσ
+
C1/2(p, 3)

n(σTσ)3/2

)
.

The following four corollaries give characterizations of PLS predictions in various scenarios.350

Corollaries 1–3 require that the eigenvalues of Ω0 from (7) are bounded as p → ∞. This re-351

quirement holds for the latent variable model given in (5). We relax this condition in Corollary 4.352

Corollary 1 gives a direct contrast between sparsity and abundance:353

Corollary 1 Assume the conditions of Theorem 1 and that the eigenvalues of Ω0 are bounded as354

p→∞.355

I. Abundance: If σTσ � p then DN = Op{(1/n)1/2}.356

II. Sparsity: If σTσ � 1 then DN = Op{(p/n)1/2}.357

The first conclusion says informally that if most predictors are correlated with the response then358

PLS predictions will converge at the usual root-n rate, even if n < p. The second conclusion359

says that if few predictors are correlated with the response or σTσ increases very slowly, then for360

predictive consistency the sample size needs to be large relative to the number of predictors. The361

second case clearly suggests a sparse solution, while the first case does not. In view of the apparent362

success of PLS over the past four decades, it seems a good bet that many regressions are closer to363

abundant than sparse.364

Intermediate cases for high dimensional regression are possible as well. The next corollary365

deals with regressions in which the number of predictors is essentially bounded by the sample size.366
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Corollary 2 Assume the conditions of Theorem 1 and that the eigenvalues of Ω0 are bounded as367

p→∞. Assume also that p � na for 0 < a ≤ 1 and that σTσ � ps for 0 ≤ s ≤ 1. Then368

I. DN = Op{n−1/2} if s ≥ 1/2.369

II. DN = Op{n−1/2+a(1/2−s)} if s ≤ 1/2.370

The requirement from Theorem 1 that H and J converge to 0 forces n−1/2+a(1/2−s) → 0 to insure371

consistency, which limits the values of a and s. The corollary predicts that s = 1/2 is a breakpoint372

for the convergence rate of PLS predictions in high dimensional regressions. If the signal accumu-373

lates at a rate that is greater than σTσ � p1/2 then predictions converge at the usual root-n rate.374

Otherwise a price is paid in terms of a slower rate of convergence. For example, if σTσ � p1/4 and375

p � n then DN = Op(n
−1/4). This corollary also suggests sparse solutions in some regressions376

even if it appears that p � n. If p =
√
n and σTσ � 1 then DN = Op(n

−1/4), which could be377

likely be improved by using a sparse fit.378

The next corollary deals with the case in which p essentially larger than or equal to n.379

Corollary 3 Assume the conditions of Theorem 1 and that the eigenvalues of Ω0 are bounded as380

p→∞. Assume also that p � na for a ≥ 1 and that σTσ � ps for 0 ≤ s ≤ 1. Then381

I. DN = Op{n−1/2} if a(1− s) ≤ 1/2382

II. DN = Op{n−1+a(1−s)} if 1/2 ≤ a(1− s) < 1.383

The conditions of Theorem 1 in the context of this corollary imply that for consistency we need384

a(1 − s) < 1, with the usual root-n convergence rate being achieved when a(1 − s) ≤ 1/2. For385

instance, if a = 2 so p � n2 then we need s ≥ 3/4 for root-n convergence.386

The previous three corollaries require that the eigenvalues of Ω0 be bounded, so for application387

of Theorem 1, C(p, j) � p, j = 1, 2, 3. In the next corollary we relax this condition by allowing388

a finite number of eigenvalues ωj of Ω0 to be asymptotically equivalent to p (ωj � p for a finite389

collection of indices j), while keeping the remaining eigenvalues bounded. In this case, C(p, j) �390

pj , j = 1, 2, 3. To illustrate how this might happen, consider the latent variable model (5) with391

var(e) having compound symmetry, var(e) = π2ρ1p1
T
p + π2(1 − ρ)Ip, where 1p denotes a p × 1392

vector of ones and 0 ≤ ρ < 1 is constant. Since we are restricting consideration to u = 1, Θ393

must fall in one of the two eigenspaces of var(e): either Θ ∈ span(1p) or Θ ∈ span⊥(1p). The394

first possibility is covered by Corollaries 1–3, so we take Θ ∈ span⊥(1p). Then the eigenvalues of395

Ω0 are π2(1 + (p− 1)ρ) with multiplicity 1 and π2(1− ρ) with multiplicity p− 2. Consequently,396
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ω1 � p while ωj � 1, j ≥ 2. PLS regressions with u > 1 are possible in this context, but are397

outside the scope of this report.398

Corollary 4 Assume the conditions of Theorem 1 and that ωj � p for a finite collection of indices399

j while the other eigenvalues of Ω0 are bounded as p → ∞. Assume also that p � na for a ≥ 1400

and that σTσ � ps for 0 ≤ s ≤ 1. Then401

DN = Op(n
−1/2+a(1−s)).

The conditions of Theorem 1 in the context of Corollary 4 imply that for consistency we need402

a(1− s) < 1/2, with the usual root-n convergence rate being essentially achieved when a(1− s)403

is small. If s = 1 then DN = Op(n
−1/2), which agrees with the conclusion of Corollary 1.404

This highlights one important conclusion from Corollary 4: PLS predictions can still have root-n405

convergence when some of the eigenvalues of Ω0 increase like p, but for this to happen we need406

an abundant signal, σTσ � p. Second, Corollary 4 shows the interaction between the number of407

predictors and the signal rate in high-dimensional regression. Write408

n−1/2+a(1−s) =
1√
n

na

nas
� 1√

n

p

ps
.

Thinking of ps roughly as the number of active predictors, this says that the number of predictors409

per active predictor must be small relative to the square root of the sample size for a good conver-410

gence rate. For instance, with n = 625, p = 1000 and about 250 active predictors, so a ∼ 1.075411

and s ∼ 0.8, we get a corresponding convergence rate of about n0.3. If we increase the active412

predictors to 500, the corresponding convergence rate becomes about n0.4.413

3.4 Simulation support414

In this section we report a few simulation results in support of our general conclusions. To illustrate415

the conclusions of Corollaries 1–3, we generated bpsc elements of σ as standard normal variates,416

and set the remaining p−bpsc elements to 0. We then generated Σ according to (7) with λ = σTσ.417

From here we generated X ∼ N(0,Σ), ε ∼ N(0, 1) and Y according to (2) with µ = 0. Following418

the PLS fit with u = 1, we generated 250 predictions. The entire simulation was then repeated 200419

times as summarized as420

D̂2 =
1

200× 250

200∑
i=1

250∑
j=1

D̂2
ij,
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where D̂ij = (β̂i − βi)T (Xij − X̄i) is the error for the j-th prediction in the i-th sample.
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Figure 2: Simulation results illustrating Corollaries 1–3.
421

Figure 2A shows results corresponding to Corollaries 1 and 2 with n = p/2. For curve a we422

set s = 1, giving σTσ � p and from Corollary 1 a predicted convergence rate of
√
n. Curve b423

was constructed with s = 1/2, giving σTσ � √p and from conclusion I of Corollary 2 a predicted424

convergence rate of
√
n. For curve c we set s = 1/2 giving from conclusion II of Corollary 1425

a predicted convergence rate of n1/4. We also ran simulations with n = p/2 and only 16 non-426

zero elements of σ, giving σTσ � 1. According to conclusion II of Corollary 1 this senario is427

inconsistent. Our simulation results (not shown) showed no decrease in D̂2 over the range of p’s428

for Figure 2A.429

Figure 2B shows results corresponding to Corollary 3 with n =
√
p. For curve a we set430

s = 3/4, giving σTσ � p3/4 and from conclusion I of Corollary 3 a predicted convergence rate431

of
√
n. Curve b was constructed with s = 1/2, giving a convergence rate of n1/4 according to432

conclusion II of Corollary 3.433

To illustrate Corollary 4 we generated all elements of σ as standard normal variates, so s = 1,434

and then set435

Σ = λ``T + p`0,1`
T
0,1 + `0,2`

T
0,2,

where λ = σTσ � p, `0,1 ∈ Rp and (`, `0,1, `0,2) is an orthogonal matrix. We set n =
√
p and again436

D̂2 was used to summarize the prediction errors. According to Corollary 4, the convergence rate437

should again be root-n, which seems to be supported by the simulation results shown in Figure 3.438
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Figure 3: Simulation results illustrating Corollary 4.

4 Conclusions439

Partial least squares has been used for decades as a successful method of prediction in high-440

dimensional regression. Our results support this practice by showing that there is a wide range441

of signal-noise scenarios where PLS predictions have the usual root-n convergence rate and an442

even wider range where the rate is slower but may still produce practically useful results. In addi-443

tion, our results show that the success of PLS predictions is tied closely to abundance. In view of444

the success of PLS, this reinforces the notion that abundance is a wide-spread phenomenon. The445

restriction to u = 1 is of course a notable limitation, but so far our study of regressions with u > 1446

have yielded similar results plus perhaps complications due to collinearity and other phenomena.447

In view of the availability of scalable versions of PLS, we think it is a good method to keep in mind448

for prediction in big regressions where many predictors may contribute useful information about449

the response.450
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