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Disordered geometrical boundaries such as rough surfaces induce important modifications to the mode

spectrum of the electromagnetic quantum vacuum. In analogy to Anderson localization of waves induced

by a random potential, here we show that the Casimir-Polder interaction between a cold atomic sample

and a rough surface also produces localization phenomena. These effects, that represent a macroscopic

manifestation of disorder in quantum vacuum, should be observable with Bose-Einstein condensates

expanding in proximity of rough surfaces.
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Introduction.—Waves propagating in disordered poten-
tials undergo multiple scattering processes that strongly af-
fect their usual diffusive transport and can result in localized
states. In one-dimensional systemsAnderson localization is a
ubiquitous phenomenon [1]. Recently, it has been observed
in a 1D Bose-Einstein condensate (BEC) expanding in the
presence of a random laser speckle field [2] or a bichromatic
potential [3]. The asymptotic density profile shows exponen-
tial localization even in the weak disorder limit [4]. In this
Letter, we show that the high sensitivity to disorder of 1D
cold atomic systems can be strong enough to yield localiza-
tion of matter waves due to disorder in vacuum.

The Casimir-Polder (CP) interaction between a BEC and
a flat surface has been recently measured (see [5] and
references therein). Cold atoms act as local probes of the
electromagnetic quantum vacuum, and they have been pro-
posed as good probes of the influence of nontrivial geomet-
rical effects on the CP atom-surface interaction potential
[6,7]. Charge and current quantum fluctuations in a rough
surface induce a disordered CP potential that directly affects
the dynamics of a BEC trapped close to such a surface and
may lead to localization of matter waves. In this Letter, we
will investigate the localization properties of the BEC,
which reveal the CP disordered interaction with a random
surface. An essential tool for computing the Casimir-Polder
potential above a disordered surface is the scattering ap-
proach [8] that computes the Casimir interaction between
bodies as a nontrivial multiscattering process.

Atom-surface Casimir interaction.—For simplicity, we
will consider a surface with translational invariance along
some direction (say, y) and a generic uniaxial profile
hðxÞ ¼ P1

i¼1 hi cosðkixþ �iÞ (see Fig. 1). Here hi are the
amplitudes of the Fourier spectrum of the profile, �i ¼
2�=ki the corresponding periods, and �i are offsets. In the
case of a corrugated surface these are fixed parameters,
while for stochastic roughness they are random parameters

distributed according to certain probability distributions. In
the following we will consider the latter case, with flat and
independent probability distributions in certain intervals
(which is the simplest noise model to describe stochastic
surfaces). A ground-state atom above such a surface is
affected by a CP potential Uðx; zÞ, where z is the atom-
surface distance (defined from a mean surface). The exact
computation of the CP potential for certain corrugated
profiles, such as 1D lamellar gratings [9,10], can be per-
formed via scattering theory. For stochastic roughness,
however, exact results do not exist. Previous works have
computed the CP potential Uðx; zÞ by means of the pair-
wise approximation [11]. Here we calculate it by using the
scattering approach that takes into account nonadditivity
effects. We expand the potential to second order in powers
of hi that we assume are the smallest length scales in the

FIG. 1 (color online). (a) Cigar-shaped BEC of width �
and axial size 2LTF above a rough surface. Here LTF is the
initial Thomas-Fermi length of the BEC. Dimensionless re-
sponse functions for a perfectly reflecting surface: (b) gð1ÞðZÞ
(Z ¼ kz) and (c) gð2ÞðZi;ZjÞ (Zi ¼ kiz and Zj ¼ kjz).

PRL 105, 210401 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

19 NOVEMBER 2010

0031-9007=10=105(21)=210401(4) 210401-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.105.210401


problem. In general,Uðx; zÞ has a part that depends only on
z (that for planar surfaces gives the usual CP force) and one
that depends on both x and z that gives a lateral component
to the CP force due to the lack of translational invariance.
We shall denote this latter component as ULðx; zÞ. The first
order was already computed in Ref. [6]:

Uð1Þ
L ðx; zÞ ¼ � 3@c�ð0Þ

8�2�0z
5

X1
i¼1

hig
ð1ÞðkizÞ cosðkixþ �iÞ; (1)

where gð1Þ is a response function that depends on the
optical properties of the surface. Here we need the
second-order correction [12]

Uð2Þ
L ðx; zÞ¼ � 15@c�ð0Þ

32�2�0z
6

P1
i;j¼1 hihj � fcos½ðki þ kjÞxþ �i

þ �j�gð2Þðkiz; kjzÞ þ cos½ðki � kjÞxþ �i

� �j�gð2Þðkiz;�kjzÞg; (2)

where the response function gð2Þ also depends on the mate-

rial properties. In Fig. 1, we showgð1Þ andgð2Þ for a perfectly
reflecting surface. The dimensionless kernel gð1ÞðkzÞ decays
exponentially for large kz [e.g., for a perfectly reflecting

surface it is gð1ÞðZÞ ¼ e�Zð1þZþ 16Z2=45þZ3=45Þ,
with Z ¼ kz]. The dimensionless kernel gð2Þðkiz; kjzÞ typi-
cally decreases for large z along generic directions in the
ki; kj plane, but it grows along the ki ¼ �kj direction.

However, since there is a maximum k admissible in the
perturbative expansion (roughly given by 2�=h, where h is
the typical order of magnitude of the height profile), this
imposes a maximum value to ki, kj given by 2�=h, and

therefore there exists an upper bound to the response func-

tion given by gð2Þð2�z=h;�2�z=hÞ. Taking this fact into
account, it follows that the second-order perturbative ex-
pansion is sufficient for the purpose of this work [12].

Localization due to Casimir-Polder interactions.—We
consider the expansion of a tightly confined cigar-shaped
BEC parallel to the rough uniaxial surface, so that its axis
is perpendicular to the corrugation lines (Fig. 1). The
effective 1D dynamics of the dilute BEC can be described
by a mean-field wave function ’ðx; tÞ, which evolves ac-
cording to the 1D Gross-Pitaevskii equation [13]:

i@@t’ðx;tÞ¼� @
2

2m
@2x’ðx;tÞþULðx;z0Þ�ðtÞ’ðx;tÞ

þm!2
xx

2

2
�ð�tÞ’ðx;tÞþgeffj’ðx;tÞj2’ðx;tÞ;

(3)

where geff ¼ g=2��2 is the effective coupling constant
for the 1D problem (� is the width of the radial Gaussian
profile). Although CP interactions are known to be
nonadditive, for dilute BECs additivity is a good approxi-
mation [14]. We assume that the harmonic potential

m!2
xx

2=2 confines the system for t < 0, so that ’ðx; tÞ ¼
e�i�t=@’0ðxÞ, with � the chemical potential. At t ¼ 0 the

axial trap is turned off, causing the BEC to expand in the
presence of the disordered potential ULðx; z0Þ. Note that
the distance to the surface, z0, in Eq. (3) is fixed during the
evolution (the tight confinement freezes the radial motion);
that is why all constant potential terms, including the
x-independent component of the CP potential, are absorbed
in a global phase shift of the Gross-Pitaevskii wave func-
tion. We intend to study the imprint left by CP forces on the
asymptotic density profile nðx; tÞ ¼ j’ðx; tÞj2 of the BEC
after the expansion through the disordered potential.
More specifically, we study the BEC density profile

averaged over many realizations of hðxÞ that we denote

as nðxÞ. One of the parameters characterizing the evolution
of the BEC is the root mean square VR of the disordered

potential, defined as V2
Rðz0Þ ¼ ½ULðx; z0Þ �ULðx; z0Þ�2

(x dependence disappears due to the random offsets �i).
When the strength of the disorder VRðz0Þ is much smaller
than the chemical potential, the evolution can be treated
analytically in perturbation theory [4]. The applicability of
such perturbative approach is valid in the CP context when
relatively large distances z0 are considered [note that
limz0!1VRðz0Þ ¼ 0]. However, when VRðz0Þ � � (small

values of z0), a full numerical approach is required.
Let us first consider the weak disorder case, VRðz0Þ � �,

where the first-order approximationUð1Þ
L is accurate enough.

When the trap is switched off, the first stage of the expansion
is driven by interaction term geffj’ðx; tÞj2’ðx; tÞ in (3) and
the disordered potential can be neglected. After the initial
expansion process, the density becomes low enough tomake
the disordered term dominant, and thus the system can be
considered as a collection of noninteracting particles expand-
ing in a weak disordered potential. In this situation the

averaged density nðxÞ of localized atoms is fully character-
ized by the two-point correlator of the disordered CP

potential [4]: Cðjx� x0j; z0Þ ¼ Uð1Þ
L ðx; z0ÞUð1Þ

L ðx0; z0Þ. In
the following, we will omit writing the explicit dependence
on the parameter z0. This quantity determines towhich extent
a noninteracting particle with momentum k localizes in the
random potential. The information about the localization
length is given by the inverse of the so-called Lyapunov
exponent [15], �ðkÞ ¼ ðm=4@2EkÞ

R1
�1 CðxÞ cosð2kxÞdx,

where Ek ¼ @
2k2=2m. The consistency of this perturbative

approach requires �ðkÞ � k to hold; that is, the typical
length scale of the exponential localization must be larger
than the typical wavelength of the unperturbed single-
particle state. Deviations from a pure exponential behavior
were calculated in Ref. [16] and used in Ref. [4] to find an
expression for the averaged density profile, namely,

nðxÞ ¼ 3N	

2

Z 1=	

0
ð1� k2	2Þj
kðxÞj2dk; (4)

where 	 ¼ @=
ffiffiffiffiffiffiffiffiffiffiffi
4m�

p
is the healing length of the BEC and

the averaged modulus squared of the single-particle wave
function 
k is
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j
kðxÞj2 ¼ �2�ðkÞ
2

Z 1

0
u sinhð�uÞ

�
�

1þ u2

1þ coshð�uÞ
�
2
e�2ð1þu2Þ�ðkÞjxjdu: (5)

By using these relations, nðxÞ can be calculated onceCðxÞ is
given. In general, two different asymptotic regimes for the
wings of the density profile can be identified, depending on
the healing length of the BEC, the spectral content of C, and
the maximum length scale Lmax that can be measured in the
system (e.g., the spatial observation window of the measure-

ment setup). When the above system is solved for nðxÞ
assuming that �ðkÞ � 0 8 k 2 ð0; 1=	Þ and Lmax ! 1, an
exponentially localized profile is always found. On the other

hand, when �ðkÞ vanishes in an interval ~k � k � 1=	 and
Lmax ! 1, there exists an effective sharp mobility edge at

k ¼ ~k, the modes with k > ~k continue to expand, and the

localizedmodeswith k < ~k give rise to an algebraic decay of

the form nðxÞ / 1=x�. This is typically the case of the
correlator of the laser speckle potential that has a sharp
cutoff. In contrast, the function �ðkÞ for the CP disordered
potential of the stochastic surface considered here reads:

�ðkÞ ¼ m�2F2ðz0Þ
2@2Ekð2kÞ2

hðxÞ2Pð�=kÞ½gð1Þð2kz0Þ�2; (6)

where hðxÞ2 is the mean of hðxÞ2 at any point x, Pð�Þ is the
probability density for each�i (in this case flat), andFðz0Þ ¼
3@c�ð0Þ=8�2�0z

5
0. Hence� is exponentially suppressed (see

Fig. 2). In the CP case exponential localization is also found
if Lmax ! 1. However, for a finite value of Lmax, the situ-
ation may change. In fact, in typical cases where the pertur-
bative approach is valid, in this context the Lyapunov
exponent satisfies �ð1=	ÞLmax � 1, making the modes
with k� * ��1ð1=LmaxÞ effectively delocalized; see the inset
in Fig. 2 (here ��1 denotes the inverse function of �). Thus,

in a restricted region of size 2Lmax, the function nðxÞ does not

decay exponentially but rather algebraically [this assertion is
approximate and becomes exact in the limit �ð1=	ÞLmax !
0], the fast decay of�ðkÞ results in an effectivemobility edge
at k�. However, the transition between the two limiting
regimes is not sharp in the CP context, and, in principle,
one can pass continuously between both varying Lmax.
Finally, note that this is an external parameter which does
not affect the systembut only has to dowith themeasurement
process.
We now compare this perturbative approach with a full

numerical simulation. We consider a BEC of N ¼ 102
87Rb atoms tightly confined in the radial direction. The
width of the ground state is assumed to be � ¼ 0:25 �m
(i.e., radial trapping frequency!r ¼ 2�� 286 Hz) and its
axial size 35 �m (i.e., !x ¼ 2�� 2:75 Hz). For these
values the healing length of the BEC is 	 ¼ 0:85 �m.
A perfectly conducting uniaxial rough surface is brought
to close proximity of the BEC, with typical distances of
z0 � 1 �m. The stochastic surfaces are generated by using
between 15 and 25 harmonics, and the parameters hi, �i,
and �i are taken as independent random variables with flat
probability distributions satisfying hi 2 ½0; 200� nm, �i 2
½0; 2��, �i 2 ½�min; �max�. Note that the approximation we
are using to evaluate the CP lateral potential assumes
�min > h; however, this is not an important restriction
because the exponential suppression of the modes with
the factor z0=�min makes the evolution insensitive to the
lower limit. In Fig. 3, we compare a direct numerical
simulation with the perturbative approach for the function
�ðkÞ shown in Fig. 2, which corresponds to a surface
with 25 harmonics and �i 2 ½1; 20� �m at a distance of
z0 ¼ 1:5 �m of the BEC (in this situation the mean square
root of the noisy potential is VR ¼ 0:089�). Even in this
perturbative regime, the integral in (5) must be calculated
numerically. In the preceding case we have taken into
account only the first-order correction to the lateral CP

FIG. 2. �ðkÞ vs k	 from Eq. (6). The atom-surface distance is
z0 ¼ 1:5 �m. Inset: The same data in log-lin scale, the maxi-
mum length scale to be measured Lmax ¼ 1 mm, and the value
k� ¼ ��1ð1=LmaxÞ separating localized (Loc.) from delocalized
(Deloc.) modes.

FIG. 3 (color online). BEC density (arbitrary units) vs posi-
tion. Both the perturbative theory described by Eqs. (4)–(6)
(solid line) and the full numerical simulation (dots) are com-
puted by using the first-order approximation for the CP potential
at z0 ¼ 1:5 �m. The surface profile is averaged over 40 realiza-
tions. Time corresponds to !xt ¼ 28.
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potential because it is a good approximation in such a
regime (this was verified in the numerical simulations).
Note that, while the BEC evolves, the averaged density

profile nðx; tÞ (here truncated after 40 realizations of the
surface profile) approaches the asymptotic t ! 1 solid

line nðxÞ predicted by the theory [4]. Because of the finite
value of the time variable used here, !xt ¼ 28, it can be
seen that the edge at the right is expanding, yet snapshots at
shorter times show a bigger elbow for smaller positions.
The space window chosen corresponds to Lmax ¼ 1 mm,
and, in that scale, a log-log graph makes the prediction of
the perturbative approach to be a straight line (slope con-
stant within 1% accuracy).

In the following we consider stronger perturbations, so
that VRðz0Þ is no longer much smaller than �. In such
circumstances the previous perturbative treatment breaks
down since the CP potential cannot be disregarded in the
first stage of the expansion. Therefore, a fully numerical
method is required to solve Eq. (3). For distances of about
z0 � 1 �m the second-order correction to the lateral CP
potential equation (2) also becomes important, so in the full
numerical simulation we solve exactly the evolution of the
BEC taking into account these second-order effects. The
results are shown in Fig. 4, where we plot a typical sta-
tionary density profile averaged over 40 realizations of the
surface at z0 ¼ 1 �m from a surface with 15 harmonics in
the range �i 2 ½1; 8� �m and hi 2 ½0; 200� nm (for these
parameters VR ¼ 0:5 �). Most of the atoms are trapped in
a high density core of typical size given by the initial size of
the BEC due to single barrier reflections (similar to the
strong disordered regime considered in [4]), the atoms
leaving the core develop a density profile with algebraic-
like wings. Again the exponential suppression of the CP
potential makes the evolution insensitive to modifications
in the lower limit of the range of wavelengths �min, the
spatial cutoff frequency being imposed by z0 (this was also
confirmed numerically pushing the surface spectrum to
shorter wavelengths). There is a high sensitivity with the
distance to the surface due to two effects: the strong power-
law decay in z0 of the CP potential and the exponential
suppression of the modes with kz0. Their combined effect
makes the system pass rapidly from the perturbative to the
nonperturbative regimes. In fact, it can also be seen that for
configurations such as the one presented here distances of
about z0 � 3 �m make VR so small compared with the
typical kinetic energy that the effect of the CP potential on
the expansion of the BEC is negligible. Finally, it is worth
mentioning that the localization phenomena found for the
parameters used in our work may break down for stronger
BEC nonlinearities geff in Eq. (3) [17].

We have shown how quantum fluctuating interactions in
nontrivial geometries affect transport properties of matter
waves. We have found that a quasi-1D Bose-Einstein con-
densate expanding close to a rough surface undergoes
algebraic localization. The perturbative prediction for the

density profile of the BEC localized via the disordered
Casimir-Polder interaction was shown to be in good agree-
ment with a fully numerical approach.
G.A.M. thanks E. Calzetta and J. J. Zárate for helpful
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1=x� with � ¼ 1:84 (solid line). Inset: Zoom of the numerical
data in log-lin scale.
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