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SUMMARY

A three-dimensional boundary element method (BEM) implementation of the interaction integral methodol-
ogy for the numerical analysis of mixed-mode three-dimensional thermoelastic crack problems is presented
in this paper. The interaction integral is evaluated from a domain representation naturally compatible with
the BEM, since stresses, strains, temperatures and derivatives of displacements and temperatures at internal
points can be evaluated using the appropriate boundary integral equations. Several examples are analysed
and the results compared with those available in the literature to demonstrate the efficiency and accuracy
of the implementation to solve straight and curved crack-front problems. Copyright © 2007 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Whenever the expansion or contraction that would normally result from the heating or cooling
of a body is prevented, stresses are developed, which are called thermal or temperature stresses.
The study of thermal stresses is stimulated by the need to assess the engineering integrity and life
expectancy of thermally stressed components, either under service conditions or during the design
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stage. In particular, the fracture mechanics analysis becomes an increasingly important factor in
the design of components of modern structures and devices that undergo heating, such as steam
pipes and vessels, nuclear reactors, combustion chambers, cutting tools and electronic devices.

Over the years, much work has been done to evaluate stress intensity factors for these problems,
resulting in collections of results published in handbook form [1,2]. However, most of these
solutions are restricted to regular cracks in infinite or semi-finite solids and two-dimensional simple
crack geometries. While two-dimensional analyses are usually sufficient to characterize through-
thickness cracks, part-through cracks, which are the most common type of crack defects found in
service conditions, have an inherently three-dimensional character. The solution of complicated
three-dimensional crack problems usually requires numerical techniques such as the finite element
method (FEM) and the boundary element method (BEM).

The attraction of the BEM can be largely attributed to the reduction in the dimensionality of the
problem; for three-dimensional problems only the surface of the domain needs to be discretized [3].
This means that, when compared with FEM domain-type analysis, a boundary analysis results in a
substantial reduction in data preparation. At the same time, and due to the inherent characteristics
of its formulation, BEM provides very accurate results for problems containing strong geometrical
discontinuities. This makes BEM a powerful numerical tool for modelling crack problems [4]. In
particular, thermoelastic BEM formulations have been presented, among others, by Raveendra and
Banerjee [5], Mukherjee et al. [6], Prassad et al. [7] and dell’Erba and Aliabadi [8, 9].

There exist a variety of methods for the evaluation of stress intensity factors using boundary
elements, such as the extrapolation of displacements or stress, special crack tip elements, the
subtraction of singularity technique, the strain energy release rate and J-integral methods [10].
Techniques based on the extrapolation of displacements and stresses are easy to implement, but
they require a very high level of mesh refinement in order to obtain accurate results. Alternating
and virtual crack extension methods are also computationally expensive, as they require multiple
computer runs to solve the problem. On the other hand, path-independent integrals, being an energy
approach, eliminate the need to solve local crack tip fields accurately, since if integration domains
are defined over a relatively large portion of the mesh an accurate modelling of the crack tip is
unnecessary because the contribution to J of the crack tip fields is not significant.

The J-integral introduced by Rice [11] characterizes the crack-driving force for two-dimensional
problems in the absence of body forces. Therefore, for general three-dimensional problems involv-
ing cracks of arbitrary shape subjected to thermal loadings an alternative form for J is needed.
Three basic schemes have evolved for the numerical computation of the J-integral in three dimen-
sions: virtual crack extension methods [12, 13], generalization of Rice’s contour integral [14] and
domain integral methods [15]. Generalizations of the J-integral concept to account for thermal
stresses have been proposed among others by Blackburn [16], Ainsworth et al. [17], Wilson and
Yu [18], Kishimoto et al. [19] and Auki et al. [20]. The generalization of the J-integral to account
for thermal stresses results in most cases in an expression containing two terms: a line integral
defined along a closed contour around the crack front and a surface integral defined over the area
enclosed by the line contour [18-20]. The J-integral due to Kishimoto et al. [19] was implemented
using BEM by Prasad et al. [7] for the analysis of two-dimensional thermoelastic problems. Its
extension to three dimensions was presented by dell’Erba and Aliabadi [8, 9]. Although the bulk
of fracture mechanics literature is concerned with the first mode of crack deformation, there are
practical engineering problems that involve mixed-mode conditions. Of the above cited papers,
dell’Erba and Aliabadi [8, 9] propose a method for decoupling the J-integral for three-dimensional
mixed-mode cracks in which the symmetric and antisymmetric parts of the displacement, strain
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and stress fields are separated. It is worth noting that the method due to dell’Erba and Aliabadi
[8,9] is based on the work by Rigby and Aliabadi [21], who gave the proper decomposition of
the crack stress field in their symmetric and antisymmetric parts, by showing that the expressions
used in previous papers were incorrect.

Among the available methods for calculating fracture parameters, the energy domain integral
(EDI) has shown to be well suited for three-dimensional BEM analysis. Applications of the EDI
to solve three-dimensional crack problems using the BEM have been reported by Cisilino et al.
for elasticity [22], elastoplasticity [23], fibre—matrix interfaces in composite materials [24] and
thermoelasticity [25]. The EDI is versatile and efficient and relatively simple to implement nu-
merically. To develop the domain integral the EDI incorporates an auxiliary function ¢, which can
be interpreted as a virtual crack-front advance. This makes the EDI similar to the virtual crack
extension technique [26,27], but has the advantage that only one computer run is necessary to
evaluate the point-wise energy release rate along the complete crack front.

Interaction integral methods are perhaps the most accurate approach to extract mixed-mode, stress
intensity factors [28]. These methods are based on the superposition of two equilibrium states, given
by the actual problem solution and a set of auxiliary known solutions. William’s solution [29] for
the two-dimensional asymptotic stress and displacement fields in the vicinity of a crack represents
a widely used auxiliary field. Numerical evaluation of this interaction integral fits conveniently into
existing domain-integral procedures for J-computation, thereby providing a readily implemented,
robust and accurate tool. Interaction integrals have been extensively implemented using FEM,
with applications in two and three dimensions for cracks in homogeneous bodies [28, 30—32]
and interface cracks [33, 34]. Nakamura and Parks [35] discuss the formulation of an interaction
integral for thermal and body-force loads. Interaction integrals have been implemented using BEM
by Miyazaki et al. [36] and by Cisilino and Ortiz [37] for two- and three-dimensional cracks in
isotropic materials, respectively, and by Ortiz and Cisilino [38] for three-dimensional interface
cracks.

This work presents a BEM domain formulation of the M-interaction integral of Knowles and
Sternberg [39] for the computation of mixed-mode stress intensity factors along three-dimensional
crack fronts in thermally stressed bodies. The domain representation of the interaction integral
is presented in a straightforward approach, followed by the basis of the BEM formulation and
the M;-integral implementation. Several examples are analysed to demonstrate the efficiency and
accuracy of the implementation.

2. THE ENERGY DOMAIN INTEGRAL

The formulation of the EDI is presented next, following the work by Shih et al. [15]. Consider
for this purpose a three-dimensional crack front with a continuously turning tangent as depicted in
Figure 1(a). Define a local coordinate system x* at position #, where the crack energy release rate
is evaluated, given by x}" normal to the crack front, x5 normal to the crack plane and x3 tangential
to the crack front.

The energy release rate G (1) due to crack extension in its own plane along a three-dimensional
crack front takes the form (see Figure 1)

Gp=tim &) [ (w-du — o5u’ ni dC (1)
C—0 Cc@)
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(b)

Figure 1. (a) Definition of the local orthogonal Cartesian coordinates at point # on the crack
front and (b) virtual crack-front advance.

where w is the strain energy density, a;.ki and uf « are Cartesian components of stress and displace-
ment derivatives expressed in the local system x*, & (i) is the unit outward normal to the crack
front in the local crack plane xT—x;‘, n; is the unit vector normal to the contour C(x) (which lies
in the x}—xJ plane) and dC is the differential of the arc length C. It is worth noting that, although
Equation (1) comes from a two-dimensional analysis, it applies to the three-dimensional case, as
in the limit as C — 0 plane strain conditions prevail so that three-dimensional fields approach the
plane problem.

Within the framework of uncoupled thermoelasticity, the strain is written as the sum of an elastic
part sfj and a thermal part

&j= Sfj + 06051'1‘ 2)

where o is the coefficient of linear expansion and 0 is the temperature. If we make the additional
restriction that thermal strains are bounded, a definition of w which can be used in Equation (1) is

w(s,-j,G): /(; Oij d&‘?} (3)

where &; =¢;; — a00;; are the mechanical strains.

In order to derive the equivalent domain representation of Equation (1), we consider a small
segment L. of the crack front that lies in the local x{—x plane as shown in Figure 1(b). Next,
we assume that the segment undergoes a virtual crack advance in the plane of the crack, and we
define the magnitude of the advance at each point # as Aa(#). Note that Aa(n) varies continuously
along L. and vanishes at each end of the segment. Now let

G(n) = /L G(mAa(n) dy 4)

where G () is the integral defined in Equation (1). Note that while G (17) belongs to the point-wise
energy release rate, G gives the total energy released when the finite segment L. undergoes the
virtual crack advance.
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crack front

Figure 2. Tubular domain surrounding a segment of the crack front.

The appropriate domain form of the point-wise crack-tip contour integral can be obtained from
Equation (2) by considering a tubular domain V surrounding the crack segment (see Figure 2).
As shown in the figure, the surface S; is formed by translating the contour C along the segment
L., and S, stands for the outer surface of V including the ends. Next an auxiliary function ¢ is
introduced, which is sufficiently smooth in V and is defined on the surfaces of V as follows:

{Aa(n) &) on S
Pr =

5
0 on Sy ®)

Finally, in the limit as the tubular surface S; is shrunk onto the crack segment L., and after applying
the divergence theorem, the domain integral is obtained:

G= / {loj;u’ p — w - Skiloy,; + 20};0 k) AV (6)
%

In the evaluation of the energy release rate, the integral given by Equation (6) reduces to the
domain representation of the familiar J-integral. A simple relationship between J (1) and G can
be obtained if it is assumed that G is constant along the segment L.. It follows directly from
Equation (4) that

J( @)

- G
W T Aa(p dy

Finally, it is worth mentioning that the above derivation of the EDI assumes the absence of
crack-face tractions. If present, an extra term needs to be included in Equation (6). For a more
comprehensive derivation of the EDI, the reader is referred to [15].

3. THE INTERACTION INTEGRAL
In this section, the interaction or M-integral methodology for decoupling three-dimensional mixed-
mode stress intensity factors is presented. The M-integral is based on the principle of superposition.

Let us consider two equilibrium states with field variables denoted by superscripts (1) and (2),
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respectively. Superposition of the two equilibrium states leads to another one, (1 4 2). Then the
stress intensity factors Kj(.1+2) can be written as

K}”z) - KE” + K§2) (j =1 11, III) )

The stress intensity factors can be related to the J-integral in a plane-strain condition as follows:
K2
— _ 2

J=h+Ju+Jm= (KI +Kp) + =1 2 )

where E is the Young’s modulus and p is the shear modulus. Using Equation (9), the J-integral
for the superimposed state (1 4+ 2) can be written as

142 142 (K t)?
J(1+2) [(K( + ))2 + (K< + )) ]+ R | | S
2u
g bk K K
Then, the M|-integral is defined as
(1) - (2)
2 K K
E(KI(I)KI(Z)+KI(II)K(2))+M=J(I+2) —Jm _J(z)le (11)
U
Using Equation (6), a domain representation of the Mj-integral can be obtained as follows:
M= / {(o—*(” *<2> g *<2> *(1) G*m *<2>5 BYSCS 9<1> v (12)

Note that Equation (12) accounts for the thermal effects of equilibrium state (1) only. For decoupling
the mixed-mode stress intensity factors, the problem under consideration is selected as equilibrium

state (1), so that the field variables O’E}), ”3111 and 95,1) will be obtained in this work from the results
of a boundary element analysis.

The well-known plane-strain solutions for the asymptotic crack-tip fields with prescribed stress
intensity factors Ky, K1 and Kyjy due to Williams [29] are selected as equilibrium state (2). Then

the field variables related to the equilibrium state (2), 0(2), (2) and b(z) are calculated from these
asymptotic solutions.

Sih [40] showed that the thermal flux and the stress field are both singular at crack tips. In cases
where the temperature is antisymmetric with respect to the crack, the flux singularity is similar
to the stress singularity. Moreover, thermal loads create a similar stress distribution as that of a
mechanical load. Thus, thermal loads produce a stress singularity at the crack tip, which leads to
stress intensity factors. Hence, the stress intensity factors due to mechanical and thermal loads
can be superimposed. On the other hand, it is important to point out that the above expression
for the Mi-integral is strictly valid for straight crack fronts only. For a curved crack front, the
two-dimensional asymptotic Williams solutions do not satisfy equilibrium or strain—displacement
compatibility when expressed in curvilinear coordinates, thereby leading to additional terms in
the interaction integral [28,31,34]. In a recent paper, Walters et al. [28] investigated the effect
of the curvature terms on the accuracy of stress intensity factor computations. They demonstrated
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that the omission of the curvature terms not only simplifies the computations, but it also allows
yielding stress intensity factor results with reasonable levels of mesh discretization. Based on
this antecedent, it was decided to exclude the curvature terms from the present implementation.
Furthermore, the significance of the neglected terms will be assessed in the Examples section by
verifying the path independence of the computed results.

Finally, the M-integral defined in Equation (12) can be calculated using the field variables
related to equilibrium states (1) and (2). By using three sets of asymptotic solutions:

kP =1, KP=0, K=0

@ @) ©)
K7 =0, K =1, Ky =0 (13)

2 _ (2) _ 2 _
K7 =0, K; =0, Ky=I

Thus, it is possible to obtain the stress intensity factor solutions for individual modes from Equa-
tion (11) as follows:

MAYE MPE
1 _ 1 1 _ 1 1 _
K= — Ky = R Ky =Mip (14)

where MY, M{’ and My are the values of the M;-integral calculated using the three sets of
asymptotic solutions.

4. THE DUAL BOUNDARY ELEMENT METHOD FOR THERMOELASTICITY

Although the conventional BEM is efficient in carrying out general stress analysis, it is not
possible to use it directly for general mixed-mode crack problems in single-region analysis. The
coincidence of the crack surfaces makes the collocation points on two surfaces identical, leading
to a mathematical degeneration [4]. Among the special techniques devised to overcome this
difficulty, the dual boundary element method (DBEM) is the more general and versatile. The
DBEM overcomes the problem of the coincident points on the crack surfaces by introducing
additional independent boundary integral equations: the flux and traction equations. The DBEM
for thermoelasticity used in this work follows that proposed by dell’Erba and Aliabadi [8].
Consider a linear-elastic, isotropic and homogeneous body occupying a domain Q(X) enclosed
by a boundary I'(x) as illustrated in Figure 3(a). The two governing equations for steady-state
thermoelasticity are the Laplace and the Navier equations which can be written as follows:

01 =0 (15)

2u(1
a _sz)”f"'f' B (li(—:vv))“e”:o (16)

pui jj +
where 0 is the temperature and u; are the displacement components, u is the shear modulus, v is
the Poisson ratio and o is the coefficient of linear thermal expansion. Equations (15) and (16) are
solved subject to boundary conditions in temperatures 0, fluxes ¢, displacements u and tractions ¢
(see Figure 3(a)).

The dual boundary integral equations on which the thermoelastic formulation of the DBEM is
based are the temperature and flux boundary integral equations for the solution of the Laplace
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Figure 3. (a) General cracked body with mechanical and thermal boundary conditions
and (b) crack discretization strategy.

equation, and the displacement and traction integral equations for the solution of the Navier
equation. The boundary integral temperature equation relating the boundary temperature 6(x) with
the boundary fluxes g (x) can be written as

c(x/)H(x’)—/q*(x’,x)@(x)df:—/ 0*(x, x)gq(x)dl (17)
I r

where c(x") depends on the local geometry of the boundary surface at the position of point x’; and
0*(x’, x) and g*(x’, x) are the temperature and flux fundamental solutions at a boundary point x
due to a unit source placed at location x’. Expressions for the fundamental solutions 6*(x’, x) and
g*(x’, x) are given in the Appendix.

Assuming continuity of both temperatures and fluxes at x’ on a smooth boundary, the boundary
flux integral equation is obtained by differentiating Equation (17):

c(x)g(x") + n; (x/)][r 07" (x', X)q(x)df=ni(x/)]£r gi* (', x)0(x)dI (18)

where n; (x") denotes the component of the outward unit normal to the boundary at x". Expressions
for the kernels 0;*(x’, x) and ¢;*(x’, x) are given in the Appendix. The symbols f and F stand
for the Cauchy and Hadammard principal value integrals.

If Equations (17) and (18) are used for collocation on coincident points on the crack surfaces
(points x. and x in Figure 3(b)), the temperature and flux boundary integral equations can be
written as

1 1
Ee(xé) + Eﬂ(xé/) + /Fq*(xé, x)0(x)dl = /FB*(xé, x)g(x)dl’ (19)
and
1 1
561()62) - EQ(XQ/) + ni(xé/)][r 07" (x, )q(x) dT = n; (xg)ﬁ g7 (x, x)0(x) dT (20)
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where the normal vectors n;(x") = —n; (x”) are assumed on the crack surface. At the same time,
it is also assumed that the crack surfaces at the position x.. and x are always smooth. The latter
assumption yields c(x") = % in Equations (17) and (18).

Similar to the boundary integral temperature equation, the displacement boundary integral
equation relates the displacements u;(x) with the boundary tractions ¢;(x), temperatures 0(x)
and fluxes g (x):

c,‘j(x’)uj(x’)+/FT,~j(x/,x)uj(x) dF—/rFi(x’,x)H(x)dF
= / Uij(x’,x)t.,-(x)dl“—/@i(x/,x)q(x)dl" 21)
r r

where Uj; (x',x) and T; i (x’, x) are the Kelvin traction and displacement fundamental solutions
for elasticity, and P;(x’, x) and Q;(x’, x) are the fundamental fields that account for the thermal
expansion (see Appendix).

Assuming continuity of both strains and tractions at x’ on a smooth boundary, the boundary
traction integral equation is obtained by differentiating Equation (21) and by applying the material
constitutive relationships

u(l+v)

=y 00

%tj(x/)—f—nj(x/)% Tk,-j(x/,x)uk(x)dr—nj(x/)/Fij(x/,x)e(x)dl"—i—
r r
=nj(x/)ﬁUkij(x/,x)tk(x)dr—nj(x/)fréij(x/,x)CI(x)dr (22)

where the kernels T;;(x!, x), Ukij(x/, x), P; j(x/,x) and 0; j(x/, x) contain derivatives of the
fundamental fields in Equation (21) together with elastic constants.

If as it has been done with their thermal counterparts Equations (21) and (22) are used for
collocation on coincident points on the crack surfaces, then, the displacement and traction boundary
integral equations can be written as

1uj(xé) + luj(xg) +/ Tij(x', x)uj(x)dl — / P;(x', x)0(x)dl’
2 2 r r

= [vseonodr - [ G xgear 23)
r r
and
1 1 1 / U 1" 1" D " 9
Etj(xc) - Etj(xc) +nj(x,;) d Tpij (xp, up(x)dl' — nj(x,) - Pij(x,, x)0(x)dl
u(l+v)
T (O
=n; (xé./) /1“ Ukij (xé.’, Xt (x)dll — nj(xé/) /l"aij (xé./, x)q(x)dDl’ (24)
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Following dell’Erba and Aliabadi [8], the general discretization strategy can be summarized as
follows (see Figure 3(b)):

e Crack surfaces are discretized using 8-node discontinuous quadrilateral elements in order to
ensure the continuity requirements of the field variables for the existence of the flux and
traction equations.

o Continuous elements are used over the remaining model boundary, except at the intersection
of the crack with the boundary surface. Edge discontinuous elements are employed in this
region in order to avoid common nodes at the intersection.

e The temperature integral equation (19) and the displacement integral equation (23) are applied
for collocation on one of the crack surfaces.

e The flux integral equation (20) and the traction integral equation (24) are applied for collo-
cation on the opposite crack surface.

e The temperature integral equation (17) and the displacement integral equation (21) are applied
for collocation on all other surfaces.

This simple strategy is robust and allows the DBEM to effectively model general crack problems.
Crack tips, crack edge corners and crack kinks do not require special treatment, since they are not
located at nodal points where the collocation is carried out.

5. STRESSES, STRAINS, AND DISPLACEMENT AND TEMPERATURE DERIVATIVES

5.1. Internal points

As it has been stated in Sections 2 and 3, the computation of the M-integral requires the displace-
ment and temperature derivatives, u; ; and 0y, and the stress and strain fields, o;; and ¢;;, to be
known within the integration volume V. Although these quantities must be expressed in the local
crack-front coordinate system, in this work, and for the sake of simplicity, they are first computed
in the global system and then transformed to the local crack-front coordinate system. Bearing this
in mind, and in order to integrate the computation of the J-integral into the DBEM formulation,
derivatives of the displacements at internal points X’ are obtained from their boundary integral
representations. Thus, the integral equation for the displacement and temperature derivatives results
from the analytical differentiation of the internal counterparts of Equations (17) and (21):

01 (X)= /rqj(*(X’,x)H(x)dF—/;ﬁ@j“,:‘(X/,x)q(x)dF (25)

and
u,-’k(X’)z—/ T,-j,k(X/,x)uj(x)dF—l—/m(X’,x)H(x)dF
r r
+ /FU,-j,k(X’,x)tj(x)dr—/FQ—,-,,{(X’,x)q(x)dr (26)

where the kernels ¢ (X', x), 0% (X', x), Tij x (X', x), Uijk (X', x), Pi (X', x) and Q; (X', x) are
the derivatives of the fundamental solutions.
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Once the displacement derivatives u; are known, stresses o;; and strains ¢;; are computed
using basic continuum mechanics relationships:
1
gij =7 (ui j +uji)+ obd;; 27

E v E
gij = T |:8ij + T 2v8kk5iji| 1= 2v0€05,‘j (28)

5.2. Boundary points

Temperature and displacement derivatives 0  and u; ; at boundary nodes could be obtained from
Equations (25) and (26) in a similar way as their internal counterparts, by taking the limit of
Equations (25) and (26) as point X’ moves to the boundary, i.e. X’ — x’. However, this procedure
is computationally expensive because of the occurrence of hypersingular integrands. To avoid this
difficulty, stresses and strains, as well as the displacements and temperatures on the model surface
are evaluated in this work from the boundary displacements, tractions, temperatures and fluxes
following a procedure similar to that used in FEM computations. Consider for this purpose a
local Cartesian system (x?, xg , x? ) such that xg) is the unit vector in the normal direction to the
boundary element (see Figure 4). If 0'?. and t;.) are stresses and tractions in the local system, stress
components in the normal direction can be written as

0-.03 =0 (29)

The remaining stress tensor components, 0(1)1, 0(1)2 and ‘782 can be expressed in terms of tg and the

tangential strain tensor components 8(1)1, 8(1)2 and 8(2)2, by eliminating 323 from the general expression
of Hooke’s law. Thus,

1
o = ; v[vtg + 2u(E)| + vedy) — (14 v)ab]

Figure 4. Orthogonal coordinate system at the surface.
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1
09 = 713 + 2u(e3, + vel) — (14 v)af)] 30)

0 _n,,0
Tip = 2Me),

Strain components 8?. can be obtained using Equation (27), now applied in the local coordinate
system. It is worth noting that displacement derivatives in Equation (27) are initially evaluated
in the intrinsic element directions (&;, &) and then converted to the local coordinate system x9,
since, as is usual in BEM, boundary displacements are approximated in terms of the piecewise

parametric representation (shape functions) of intrinsic coordinates:

8
ui(&y, &)= " (&, Euy 3D

n=1

where @" are the shape functions and u!' are the nodal values of the displacements. From (31) it
follows that
Ou; 8 0"

= u” (32)
08, ~ o 0

Finally, the derivatives of the displacements in the global system are computed. Using chain
differentiation, derivatives of the displacements in the global system, u; ,,, can be related to the
derivatives of the displacements in the intrinsic boundary element directions, du;/d¢ j» as follows:

Ou; _ Ou; Oxpy,

0F;  Oxm 0¢; (33)

where 0x;,/0¢j is the Jacobian matrix of the transformation. The nine components of the displace-
ment derivatives u; ,, can be retrieved by solving for each case a system of equations constructed
using expressions (33). For further details the reader is referred to the works by Cisilino et al.
[22-25].

A similar procedure can be employed for the computation of the temperature derivatives on the
model boundary. Following the same approach used for the displacements, temperature derivatives
in the intrinsic element directions, 00/0¢ j» are

00 8 0"
—= 0" (34)
0l a1 0
which can relate to the temperature derivatives with respect to the global system, 0 ¢, as follows:
00 00 00
—_— = (3%5)

6. BOUNDARY ELEMENT IMPLEMENTATION

Computation of the M;-integral was included in the DBEM code as a post-processing procedure,
and so it could be applied to the results from a particular model at a later stage. As it has been
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Virtual crack
extension ¢

crack front

Figure 5. Schematic of the crack-front region illustrating the virtual crack extensions for a corner node,
a mid-node and a surface node.

- integration
domains
I

crack face
crack front

Figure 6. Boundary element discretization and integration cells.

stated in Sections 2 and 3, Equation (12) allows computation of the Mj-integral at any position 7
on the crack front. This requires the evaluation of a volume integral within domains that enclose
a segment of the crack front L.. A natural choice here is to make # coincident with the element
nodes on the crack front, while L. is taken as the element or element sides at which points # lies
(see Figure 5).

The portion of the model domain in which the volume integrals are evaluated is discretized
using 20-noded isoparametric (brick) cells, over which stresses, strains and displacements and
temperature derivatives are approximated by products of the cell interpolation functions, V", and
the nodal values of ¢;;, &, u;; and 0 ;. Nodal values of these variables are computed following
the procedures introduced in Sections 5.1 and 5.2 depending on whether the node is internal or lies
on the model boundary. Volume discretization is designed to have a web-style geometry around
the crack front, while the integration volumes are taken to coincide with different rings of cells.
This is illustrated for an example in Figure 6, where one of the model faces has been removed to
show the crack and the integration domains.
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As depicted in Figure 5, three different cases need to be considered, depending on whether
the node of interest M is in the middle of an element side (mid-node) is shared by two elements
(corner node) or is located coincident with the external surface (surface node). If the node M
is a mid-node or surface node, L. (the segment of the crack front over which the J-integral is
computed) spans over one element, connecting nodes M — 1, M and M + 1 and nodes M — 2,
M —1 and M, respectively. On the other hand, if M is a corner node, L. spans over two elements,
connecting nodes from M — 2 to M + 2.

Function ¢ is specified at all nodes within the integration volumes. Consistent with the isopara-
metric formulation, ¢ is given by

20
o= Yo (36)
i=1
where W' are the shape functions defined within each volume cell and q)}; are the nodal values for
the ith node. From the definition of ¢ (see Equation (5)), (pf( =0 if the ith node is on S;, while

for nodes inside V (p}'{ are given by interpolating between the nodal values on L. and Sj.
Following standard manipulations,

20 3 0¥ A,
=2 X C” P (37)
i=ln=1 Cn
where {; are the coordinates in the cell isoparametric space.
If Gaussian integration is used, the discretized form of Equation (12) is given by
& 2 2 2
M= Y X {[ v *( ' to *( ) *(l) 0?}”8?} )5ki)(Pk,i
cellsinV p=1
Ox:
+ aflflz)ocH(,?(pk] det [ =2 wp (38)
’ aék P

where m is the number of Gaussian points per cell, and w, are the weighting factors.

The auxiliary function ¢ was introduced in the derivation of EDI in order to model the virtual
crack-front advance. Since the virtual crack advance can adopt any arbitrary shape, the only
requirement for the function ¢ is to be sufficiently smooth within the integration volume V as
the evaluation of the EDI requires its differentiation. Although Shih et al. [15] have shown that
the J values computed using the EDI are insensitive to the assumed shape of the ¢ function, the
authors’ experience shows that the shape of the function ¢ could be relevant for the performance
of the computations.

Figure 7 illustrates a number of usual definitions for the function ¢, namely linear, quadratic
and plateau-type functions. The quadratic definition of ¢ has been employed with excellent results
in previous works by Cisilino and co-workers [22—24] when dealing with problems without body
forces. The excellent performance of this definition of ¢ could be explained by its behaviour in
the region close to the crack tip. Note that the gradient ¢ ; of the quadratic function is very low
in the vicinity of the crack front (region close to the coordinate r/rg=0 in Figure 7), which
results in marginal contribution of the crack-front fields to the overall result (see the first term
of the integral in Equation (12)). In this way, the zone of the integration domain with the lowest
accuracy for the actual field has a minimum contribution to the computed result. As it is easy to
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Figure 7. Alternatives for the selection of the ¢ function.

see, the linear definition of ¢ does not possess this benefit. Besides, it could be argued that the
plateau-type function should maximize the previous mentioned benefit; however, it was found that
the discontinuous definition of the function attempts to the accuracy of the computations.

Within this approach, ¢ is defined to vary quadratically in the directions tangential and normal to
the crack front. Considering that the evaluation point # is at the middle of the crack-front segment
L., and rg is the radius of the integration domain, the function ¢ is written as

2 2
(=2 Jio (L
wo=|-(z5) |- () ®

where r is the distance from the crack front in the x; — x; plane as depicted in Figure 1.
Finally, it is important to mention that the above discussion about the selection of ¢ rests on
the application of the M|-integral to the solution of problems without body loads. Under these
circumstances the second term of the integral in Equation (12), the term that accounts for body
loads (thermal loads in our case), vanishes. On the other hand, when dealing with body loads,
the second term in the integrand of Equation (12) has to be considered. Note that this term is
multiplied by the function ¢ itself and not its gradient ¢ ;, so that the justification given in the
previous paragraph for the performance of the quadratic definition of the function is in this case
not complete. However, excellent results were obtained by the authors when using the bi-quadratic
definition of ¢ in the computation of the J-integral in thermoelastic problems using the EDI [25].

7. EXAMPLES

Results for three examples are presented in this section in order to demonstrate the efficiency and
accuracy of the proposed implementation. In every case material properties are Young’s modulus
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E =100000N/mm?, Poisson ratio v=0.3, coefficient of thermal expansion «=107>/°C and
thermal conductivity A=1W/°Cmm.

7.1. Thick panel with a centre slant crack subjected to a linear thermal field

This example consists in a thick panel with a centre slant crack of length 2a inclined 30° with
respect to the horizontal. The panel dimensions are length 2L = 8a, width 2W =4a and thickness
t =3a (see Figure 8). The specimen is subjected to a linear temperature variation throughout the
width 2W, with temperature 6y = —100°C specified over the specimen’s left lateral face (x =0)
and 0; =0°C over the right lateral face (x = W). All other surfaces of the specimen (including the
crack faces) are isolated. Displacements at the bottom and top surfaces of the bar are restricted in
the y direction; all other surfaces are allowed to move freely.

The symmetry of the problem with respect to the plane z =0 (see Figure 8) allowed discretizing
half of the specimen only. Symmetry boundary conditions were imposed by restricting the displace-
ments of the specimen’s back surface in the z direction. The model discretization was constructed
using 1989 nodes and 401 elements. Crack-front element dimensions were graded towards the free
surface, the smallest one being equal to #/32. Four rings or cells with radii »/a = 0.2, 0.35, 0.5 and
0.75 were accommodated around the crack fronts for K-computations. With this purpose 432 cells
and 2556 were employed. Figure 9 depicts the deformed specimen together with the temperature
contour plots.

Computed K results for the two crack fronts are plotted in Figure 10, while in Tables I and II
the results are presented in tabular form for the crack front 2 only. The columns labelled ‘Dispersion’
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Figure 8. Geometry, dimensions and boundary conditions for the centre slant crack in a thick panel.
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Figure 9. Deformed specimen and temperature plots for the slant crack in the thick panel.

in the tables serve to assess the path independence of the K computations, as they indicate the
dispersion of the results obtained using the four integration paths. Also included as reference in
Figure 10 is a set of results computed using a two-dimensional plane-stress FEM model. The FEM
model was solved using Abaqus [41]. In every case, K results are normalized with respect to
F=(E/(1—=v)ab/n/a.

Figure 10 shows that, with the only exception of the region close to the free surface, K results
are almost constant along the crack fronts. These constant K values in the interior of the specimen
are in close agreement with those computed using the two-dimensional FEM model. On the other
hand, the K values fall at the free surface while Ky values rise. This behaviour is also observed
when solving a specimen of similar characteristics subjected to mechanical tractions [37, 42]. The
results in Table I show that the computed K7 results are almost independent of the integration path,
with dispersion less than 1% for all positions of the crack front, with the only exception of the point
located at the intersection of the crack front with the free surface which exhibits a dispersion of
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Figure 10. Normalized stress intensity factor results along the two crack fronts
of the slant crack in the thick panel.

Table 1. Normalized K7y results for crack front #2 of the slant crack in the thick panel.

r/a
z/t 0.20 0.35 0.50 0.75 Average Dispersion (%)
0.0000 0.3332 0.3379 0.3375 0.3348 0.3358 0.67
0.0625 0.3419 0.3417 0.3401 0.3367 0.3401 0.71
0.1250 0.3369 0.3390 0.3384 0.3364 0.3377 0.37
0.1875 0.3394 0.3395 0.3387 0.3377 0.3388 0.25
0.2500 0.3373 0.3406 0.3408 0.3403 0.3398 0.48
0.3125 0.3448 0.3453 0.3449 0.3444 0.3449 0.12
0.3750 0.3426 0.3463 0.3467 0.3469 0.3456 0.59
0.4063 0.3508 0.3514 0.3509 0.3507 0.3510 0.09
0.4375 0.3474 0.3513 0.3519 0.3525 0.3508 0.66
0.4531 0.3538 0.3544 0.3540 0.3539 0.3540 0.07
0.4688 0.3425 0.3453 0.3451 0.3442 0.3443 0.37
0.4844 0.3301 0.3278 0.3251 0.3214 0.3261 1.15
0.5000 0.2254 0.1241 0.0073 0.2054 0.1406 70.45

around 70%. In this sense it is worth noting that the formulation of M|-integral methodology used
in this work is based on the assumption that the near-crack tip fields asymptote to the plane strain
fields along the complete crack front. But it turns out that at the intersection of the crack front and
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Table II. Normalized Ky results for crack front #2 of the slant crack in the thick panel.

r/a
z/t 0.20 0.35 0.50 0.75 Average Dispersion (%)
0.0000 0.1641 0.1733 0.1780 0.1840 0.1749 4.80
0.0625 0.1645 0.1778 0.1839 0.1907 0.1792 6.21
0.1250 0.1779 0.1834 0.1865 0.1902 0.1845 2.82
0.1875 0.1790 0.1839 0.1860 0.1878 0.1842 2.06
0.2500 0.1883 0.1890 0.1894 0.1894 0.1890 0.28
0.3125 0.1871 0.1904 0.1907 0.1899 0.1895 0.86
0.3750 0.1938 0.1930 0.1921 0.1901 0.1922 0.83
0.4063 0.1901 0.1921 0.1912 0.1885 0.1905 0.82
0.4375 0.1961 0.1941 0.1920 0.1882 0.1926 1.75
0.4531 0.1915 0.1924 0.1904 0.1862 0.1901 1.45
0.4688 0.1980 0.1984 0.1956 0.1902 0.1955 1.92
0.4844 0.1997 0.2096 0.2090 0.2054 0.2059 2.20
0.5000 0.2281 0.2408 0.2425 0.2364 0.2370 2.72

the free surface the stress singularity is more severe than the usual 1/,/r, which invalidates the
implemented methodology. Similar results are reported in References [28, 31]. Kjy results reported
in Table II present similar levels of dispersion along the complete crack front, including the point
at the intersection with the free surface. Although still reasonably low, the dispersion for the Ky
results is higher than that for Kj. The results for crack front #1 present a behaviour identical to
that reported for crack front #2.

7.2. Penny-shaped crack in a circular bar

This example consists in a cylindrical bar containing a penny-shaped crack, as illustrated in Figure
11(a). Model dimensions are crack radius a =10mm, cylinder radius R/a =10 and cylinder
height #/R = 6. The relatively large dimensions of the bar with respect to the dimensions of the
crack allow assimilating this example to that of a circular crack in an infinite solid. Two loading
configurations were considered with the crack oriented parallel to the bar ends (o« = 0), and rotated
o =30° and 45°. The model was discretized using 1434 nodes and 224 elements, 152 of which
are used for the crack faces (see Figure 11(b)). Three rings of cells constructed using 4352 nodes
and 832 cells with radii r/a =0.2, 0.35 and 0.50 were used for the K computations.

The first loading case consists in a penny-shaped crack with crack-surface temperature
0o =100°C embedded in an infinite solid with temperature 0; =0°C. This problem results in
a pure mode-I solicitation for the crack, irrespective of the crack orientation. The analytical solu-
tion for this problem is due to Olesiak and Sneddon [43]:

Eo

Ko=—————0
P TEIT I

Ja (40)
To model this problem the crack-surface temperature in the BEM model was set to 0y = 100°C,
while the temperatures for all the other external surfaces of the cylinder were set to 0; =0°C.
Displacement boundary conditions at infinity were idealized using two approaches: (i) no displace-
ment boundary conditions were imposed on the cylinder external surfaces (with the only exception
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Figure 11. Circular crack in a cylindrical bar: (a) geometry, dimensions and boundary conditions (not to
scale) and (b) crack discretization.

of those necessary to restrict the rigid body motions and rotations) and (ii) the displacements of
the external surfaces were fully constrained. The normalized stress intensity factor computed for
the first approach was Kj/Ko=0.952 (4.8% error with respect to the reference value), while
for the second approach Ki1/Ko=0.992 (0.8% error). In every case, the dispersion of the results
for the different integration paths was less than 2%. These results allow concluding that, despite
the relative large dimensions of the bar with respect to the size of the crack, the problem cannot
be strictly assimilated with that of a crack in an infinite solid. Anyway, the performance of the
implemented algorithm is validated.

For the second analysis a constant temperature field was imposed on the entire bar (0p = 0; =
—100°C), and the displacements of both ends of the bar were restricted to the longitudinal direction
(see Figure 11(a)). Stress intensity factors were solved for the three crack orientations, o =0, 30
and 45°. The above-mentioned boundary conditions allow assimilating the problem to that of a
crack under remote uniform tension for which analytical solutions of stress intensity factors exist.

Results computed for the second analysis are reported in Figure 12. All results are given in terms
of the angle ¢ which indicates the position along the crack front (see Figure 11(a)), and they are
normalized with respect to the exact solution due to Sneddon [44] for the case of a penny-shaped

crack under uniform tension
la
i

taking ¢ = Ea0p, the magnitude of the constant stress field in the longitudinal direction for the case
of the bar without a crack. Also included as a reference in Figure 12 are the analytical solutions
due to Sneddon [44] and Kassir and Sih [45]. Computed results are in excellent agreement with
those of the reference, exhibiting an error around 1%. Similar to the previous loading case, the
dispersion of the results for the different integration paths was less than 2%.

7.3. Semicircular crack in a square bar
A prismatic bar with square section and dimensions W =2a and L =2W containing a semicir-

cular crack of radius @ =10mm is considered in this example. As illustrated in Figure 13, two
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Figure 12. Circular crack in a cylindrical bar: normalized stress intensity factor results as a function of
the position on the crack front position.

configurations for the crack are considered. In case (a) the crack is horizontal, parallel to the bar
ends, while in case (b) it is rotated 45° with respect to the horizontal plane. The boundary element
discretization consists of 1249 nodes and 260 elements, 76 of which are used for the crack faces.
Internal cell discretization for K computations consists of 2374 nodes and 416 cells, which were
used to construct three rings of cells with radii r/a =0.2, 0.50 and 0.75, respectively.

Boundary conditions consist in a linear temperature variation in direction z with temperatures
0p=—100°C and 0; = 100°C specified for the front (z = W) and back faces (z =0) of the spec-
imens, respectively. All other surfaces of the specimen (including the crack faces) are isolated.
Displacements at the bottom and top surfaces of the bar are restricted in the longitudinal (z) direc-
tion, while the lateral surfaces are allowed to move freely. This loading configuration results in a
uniform bending moment in the x-direction. Figure 14 illustrates the deformed specimen together
with the temperature contour plots for the two crack configurations.

Normalized stress intensity factor results are given in Figure 15 for both crack configurations.
As expected, the horizontal crack is subjected to mode-I stress intensity factor only, while for the
inclined crack the three K-modes are present. Path independence of the computed K -results was
found to be very good. The major dispersion of the results occurred for the points located at the
intersection of the crack front with the free surface (positions ¢/ =0 and ¢/2n=1 in Figure
15), where dispersions up to 7% for the K7 results can be found. As for the first example, the loss
of dominance of the 1/4/r singularity for the stress field at the free surface is the justification for
this behaviour. On the other hand, the dispersion of the K7 results at interior points for both crack
configurations, and the dispersions of the Ky and Kjy results along the complete crack fronts
(including at the free surfaces) for the inclined crack do not exceed 2% in any case.
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Figure 13. Geometry, dimensions and boundary conditions for the semicircular crack in a square bar:

(a) horizontal crack and (b) inclined crack.
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Figure 14. Semicircular crack in a square bar: deformed specimen and

temperature plots for the crack geometries.
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Figure 15. Semicircular crack in a square bar: normalized stress intensity factors results along the crack
fronts for the two crack geometries.

Also included in Figure 15 is a set of results calculated using the empirical equations due
to Newman and Raju [46] for a semi-elliptical crack under pure bending. This set of results is
compared with the K7 computations for the horizontal crack. The maximum difference between
the two sets of results is 5.5%, and it occurs at the deepest point of the crack front (¢/7n=0.5).
Reported accuracy for the reference values is 5% of the finite element results used for the derivation
of the empirical equations.

8. CONCLUSIONS

A dual boundary element method formulation of the M|-integral methodology for the numerical
computation of mixed-mode stress intensity factors of three-dimensional thermoelastic fracture
problems has been presented in this paper. The implementation takes advantage of the efficiency
of the boundary integral equations to directly obtain the required displacement and temperature
derivatives, stress, strain and temperature fields. A number of examples have been solved to
demonstrate the efficiency and accuracy of the proposed formulation.

Computed K results show a very good agreement with other results reported in the literature,
with deviations of only a few percents. The same level of accuracy was obtained when using
the energy domain integral for solving elastic, elastoplastic, thermoelastic and interface crack
problems [22-25] using similar levels of mesh refinement. These results show the efficiency of
the BEM implementation of the domain integral approaches to tackle general three-dimensional
crack problems.
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Maximum errors and dependence of the results with the integration paths occur at the points
located at the intersection of the crack front with the free surface. It turns out that, at the intersection
of the crack front and the free surface, the stress singularity is more severe than the usual 1//7,
and thus the interaction integral methodology is not applicable. This problem remains unsolved in
this work. Following previous work [37], alternative approaches for the selection of the auxiliary
function ¢ could be explored to solve this problem.

Following Walters et al. [28], the interaction integral implemented in this work omits the terms
arising due to the crack-front curvature, resulting in a simpler algorithm. The accuracy and path
independence of the reported results provide further evidence in support of the capability of
the simplified algorithm to yield accurate stress intensity factors with reasonable levels of mesh
refinement.

APPENDIX

In this appendix, the fundamental solutions for the implementation of the thermoelastic formulation
of the DBEM are provided. In what follows, the symbol r stands for the distance from the field
point x to the source point x’:

r(x/,x)=|x —x/| (A1)

The notation r 4 indicates derivative at the source point, i.e.

or

=1k (A2)

Oxy
The fundamental solutions in the temperature equation (10) are

0" (x',x)=— (A3)
dnr

*(x', x) = A KK A4

g" (0 = 12 (A4)

The fundamental solutions for the flux equation (11) can be found after the differentiation of
solutions (A3) and (A4) to yield

A
ko / — .
Hi (x ,x)—mr!, (AS)
k3k / A’
q; (x', x) = ——=Qrirgnk — n;) (A6)
47r
The fundamental solutions in the displacement equation (14) are given by
, -1 or
T,-j(x . x) = m %[(1 — 2v)5,'j + 3r,,-r,j] — (1 — ZV)(ner' — n,‘r’j) (A7)
U,-j(x/,x)zm{(3—4v)5,-j —i—r,,-r,j} (AB)
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= o ad+w oo

Pi(x’, x) = P p— (n, n r,l> (A9)
— . a(l +v) .

Qi(x, x)= P (A10)

The fundamental solutions in the traction equation (15) are obtained by differentiating expressions
(AT)-(A10) and by applying the material constitutive relationships. This procedure gives

/ u or
Tk,-j(x ,X) = m 3$[(1 — 2v)5,-jr,k + V((S,‘jr,k + (3jkr,,- — 5r,,-r,jr,k)]
+3v(nir jri +njrirg) + (1 =2v)Bngrir,j + nidij + nidji)
- (1= 4v)nk5,-,~} (A11)
Utij ()C/7 x) = m[(l — 2v)((3l-kr,j + 5jkr,,- — (3,-jr,k) + 3r,,-r,jr,k] (A12)
- ap(l +v) 0ij
Pij(x/,x)=4m {nkr’k [1 _ljzv —3}’,1‘7"]' +nir’j +njr’l‘ (A13)
= ap(l +v) 0ij
O x)=4——(rir;— Al4
Qi 1) =4 T (r’lr” 1—2v (Al4)
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