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a b s t r a c t

In this paper, we define a
√
n-consistent nonparametric estimator for the marginal den-

sity function of an order one stationary process built up from a sample of i.i.d continuous
time trajectories. Undermild conditionsweobtain strong consistency, strong orders of con-
vergence and derive the asymptotic distribution of the estimator. We extend some of the
results to the non-stationary case. We propose a nonparametric classification rule based
on local times (occupation measure) and include some simulations studies.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

In the past few years, advances in technology and modern computing environments allowed us to collect and analyze
high-dimensional data coming from different fields such as health sciences, engineering, physical sciences, genetics,
geophysics, chemometrics, finance and social sciences. When the data are recorded densely over a period of time, often
by machine, they are thought of as curves and, in this context, each observed curve corresponds to a different individual in
the sample. Since the data come in a discretizedway, we could treat them as vectors inRd; however, we choose to treat them
as curves in order to gain more information and, in that way, obtain better estimators. The set of tools used for analyzing
this kind of data is called functional data analysis (or FDA, an acronym coined by Ramsay and Dalzell [34]).

FDA is a very popular topic in the modern statistics (see [15]) and a great effort has been (and still is) made to provide
statistical tools for its analysis. This popularity is due to its elegant theory and its practical applications (see [20]). For
instance, the recent books by Ramsay and Silverman [35,36] and Ferraty and Vieu [17], present important theoretical results
as well as efficient statistical packages which make them the most useful monographs existing in this area.

The most common approaches to treat the discretized data in functional data are those that start by a regularization
procedure [21] or a filtering method (which leads to replacement of every function by its coefficients with respect to the basis
of a suitable finite-dimensional subspace) and then continuewith the theoretical analysis using those smoothed curves. The
principal feature of those approaches is that both tend to exclude from consideration the functions that are too wiggly.
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We, however, do not want to exclude wiggly curves since they allow us to obtain parametric rates of convergence. In
practice, in our setting, when the data come in a discretized way, we just deal with the data vectors without any further
pre-processing.

The irregular curve setting was exploited by Castellana and Leadbetter [8] who pointed, for Gaussian processes, that
irregularity of trajectories corresponds to less correlation among X(t) and X(t + s) and therefore the trajectories contain
more information that allows obtaining better rates of convergence of the variance to zero.

The problem we address is the nonparametric density estimation using k-nearest neighbors estimators, k-NN from now
on, in the context of functional data. Given n-independent trajectories of a continuous time stochastic process verifying

X(t) = µ(t)+ e(t), t ∈ T , (1)

we will estimate the (marginal) density of X(t). Here µ(t) stands for the mean function, and e(t) is a zero mean, first-order
stationary stochastic process with unknown marginal density function fe.

The problem of estimating the density function using k-NN in Rd has been considered by several authors in different
setups. In the independent case, Loftsgaarden and Quesenberry [29] were the first to prove its consistency. Since then,
several results have been obtained. For instance, Moore and Henrichon [31] showed the uniform convergence, Wagner [41]
proved the almost sure pointwise convergence and Boente and Fraiman [6] showed uniform consistency in the dependent
case.

In the context of functional data (more precisely, when in the model (1) µ(t) = µ is a constant independent of t), the
problem of estimating the marginal density function when a single sample path is observed continuously over [0, T ] has
been studied first by Castellana and Leadbetter [8] who showed that for irregular continuous time processes a parametric
speed of convergence

√
T is attained by δ-sequence-type density estimators. Some years later, Rosenblatt [37] showed

the consistency of a kernel estimator for stationary Markov sequences and then, Nguyen [32] studied the almost sure
convergence of a general class of recursive estimates of the density function in a continuous-time stationaryMarkov process.
More recently, Blanke and Bosk [5] specified necessary conditions for getting parametric rates of convergence for δ-sequence
estimators (although they make use of the kernel estimator in order to give explicit convergence rates), Blanke [4] obtained
rates of pointwise and uniform almost sure convergence for adaptive estimators and Kutoyants [25] presented a review of
several results concerning invariant density estimation for the ergodic diffusion process.

Labrador [26,27] defined and studied the k-NN estimator defined via local time in the same setting described above,
i.e. when a single sample path is observed continuously over [0, T ] and proved convergence rates of order


T

log T .
In this paper we consider that we have n-independent trajectories of continuous time stochastic processes verifying (1)

with µ(t) not necessary a constant. Using the k-NN estimator given by Labrador for n-independent curves, we prove
√
n

consistency forµ constant sincewe get
√
n asymptotic normalitywhen the curves are irregular (see Section 2). Furthermore,

we get strong rates of convergence when µ(t) is no longer a constant function (see Section 3). In Section 4 we apply our
results to obtain a new classification rule for FDA. Moreover, some small simulations studies are presented. All proofs are
given in the Appendix.

2. Estimating the density function of stationary processes

In this section, we estimate the marginal density function of the zero mean stationary stochastic process e(t).

2.1. Preliminaries

Let T ⊂ R a finite interval, and {e(t) : t ∈ T } a zero mean real-valued measurable continuous time stationary process
with continuous trajectories defined on a rich enough probability space (Ω,A, P). Let us suppose that e(t) is a first-order
stationary stochastic process with unknown marginal density function fe which admits a local time. More precisely, we
define the occupation measure associated with the process e(t) as

λ(A, e) .= λ(A, e(t, ω)) =

∫
T

IA(e(t, ω))dt, A ∈ B(R), ω ∈ Ω.

Here, B(R) stands for the Borel sigma-algebra on R. If λ is absolutely continuous with respect to the Lebesgue measure,
then the local time is defined as a regular version of the Radon–Nikodym derivative lT (·, e)

.
= lT (·, e(t, ω)) for almost all ω

and therefore

λ(A, e) =

∫
A
lT (u, e)du.

Let {e1(t), . . . , en(t)} a random sample of e(t) and I(x,r) = [x−r, x+r]. For {kn}, kn/n < |T | a positive real numbers sequence
converging to infinity, we define the random variable He

n
.
= He

n(x) such that {e1(t), . . . , en(t)} spend time kn at I(x,He
n(x)).

That is,

kn =

n−
i=1

λ(I(x,He
n(x)), ei) =

n−
i=1

m

{t ∈ T : |ei(t)− x| ≤ He

n(x)}

, (2)
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where m stands for the Lebesgue measure in R. We define the estimator for the density fe as

f̂e(x)
.
=

kn
2n|T |He

n(x)
, (3)

where |T | is the length of the interval T .

Remark 1. Observe that if the process e(t) admits a local time, then f̂e is well defined sinceHe
n exists and it is unique. Indeed,

if we define the function

G(r) .=
1
n

n−
i=1

∫
I(x,r)

lT (u, ei)du,

for n and x fixed, we have thatG(r) is a strictly increasing function of r withG(0) = 0. On the other hand, due to the existence
of local time we can write

G(r) =
1
n

n−
i=1

λ(I(x,r), ei),

then, G(r) → |T | when r → ∞ and therefore, the existence and uniqueness of He
n(x) is ensured. For a further reading on

local times see [18].

2.2. General assumptions

We will consider the following assumptions:
H1 The sequence {ei(t), 1 ≤ i ≤ n, t ∈ T } are i.i.d. random elements with the same distribution as the stochastic process

{e(t) : t ∈ T } which admits a local time.
H2 e(t) is a first-order stationary stochastic process with unknown density function fe.
H3 {kn} is a positive real numbers sequence converging to infinity such that kn/n = o(1) and

∑
∞

n=1 exp(−ckn) < ∞ for
each c > 0.

H4 The density fe is a Lipschitz function.
H5 For each c > 0,

c−2c−2
n

∫
T

∫
T

∫
{x:|u−x|≤ccn}

∫
{x:|v−x|≤ccn}

(fst(u, v)− fe(u)fe(v))dudvdsdt

→

∫
T×T
(fst(x, x)− f 2e (x))dsdt

.
= c20 (x) > 0,

where cn =
kn
n , and fst is the joint density of (e(s), e(t)).

Remark 2. A sufficient condition for H5 to hold is that there exist an integrable function ψ(·) such that

|fst(u, v)− fe(u)fe(v)| ≤ ψ(t − s). (4)

This follows from the Lebesgue-dominated convergence theorem together with the Lebesgue differentiation theorem.

Remark 3 (Some comments on the assumptions). In assumption H1, the existence of the local time is required in order that
the estimator f̂e be well defined (see Remark 1). For conditions for the existence of local time we refer to Geman and
Horowitz [18] and Karatzas and Shreve [24]. The conditions in H3 are exactly the same ones required to the smoothing
parameter kn in the classical finite dimensional setting for k-NN density estimates. H4 is also an standard condition to deal
with the bias term in the finite dimensional case, and it is fulfilled for a large class of stochastic processes. Finally, H5 together
with H1 are related to the irregularity of the trajectories. Indeed, as pointed in [8], condition (4) ‘‘is a strong dependence
limitation between e(s) and e(t), when t − s → 0, a feature that does not have a discrete time analog’’. In particular, they
showed that for zero mean stationary Gaussian process with covariance function

cov(e(s), e(t)) = 1 − C |t − s|α + o(|t − s|α), C > 0,

when 0 < α < 2 condition (4) is fulfilled with ψ(t − s) = 1 + K |t − s|−α/2 in a neighborhood of t − s = 0 and
ψ(t − s) = K ′ |t − s| outside a neighborhood of t − s = 0 if the covariance is bounded away from 1 and integrable.
Here, K and K ′ are constants. It is well known that Gaussian processes with α < 2 have irregular trajectories in contrast to
the more regular case α = 2. Indeed, if a centered stationary Gaussian process have a covariance function given by

cov(e(s), e(t)) = 1 −
1
2
C |t − s|2 + O


(t − s)2

| log |t − s||a


, C > 0, a > 3,

then, there exist a version of the process with a path of class C1. See for instance, Example 1.2 and Proposition 1.11 in [1].
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2.3. Consistency, strong convergence rates and asymptotic distribution

In Theorem 1 we prove, under mild conditions, the complete convergence of the estimator of the density fe. Under some
additional assumptions we obtain in Theorem 2 sharp bounds for strong rates of convergence and asymptotic normality
with parametric rates of convergence in Theorem 3. The assumptions in these last theorems are closely related to those
given in [8] where it is shown that for irregular continuous time processes a parametric speed of convergence is attained by
kernel-type density estimators.

Theorem 1 (Strong consistency). Under H1–H3, for almost all x ∈ R,

lim
n→∞

f̂e(x) = fe(x) a.co.

Here ‘‘a.co.’’ stands for the (almost) complete convergence.

Remark 4. If fe is Lipschitz, the convergence is for all x ∈ R.

Theorem 2 (Strong rates of convergence). Let us suppose that H1, H2 and H4 holds. Choose two sequences {kn} and {vn} of
positive real numbers converging to infinity such that (kn/n) vn = o(1) and

∑
∞

n=1 exp (−c (kn/vn)) < ∞ for each c > 0. For
that kn let us also suppose that H5 holds. Then, for all x ∈ R,

lim
n→∞

vn(f̂e(x)− fe(x)) = 0 a.co.

Remark 5. Our assumptions imply that we can choose kn such that vn = nγ for any γ < 1
2 , that is the type of result one

gets for a parametric problem. Indeed, if kn = nβ and vn = nγ , in order that conditions kn/n = o(1) and (kn/n) vn = o(1)
hold, it suffices that β < 1 and β − 1 + γ < 0. Then, for any γ < 1/2, that is, γ = 1/2 − ϵ for some 0 < ϵ < 1/2, we can
choose β = 1/2 + ϵ/2 < 1 so that β − 1 + γ < 0.

Theorem 3 (Asymptotic normality). Let us assume that H1 and H2 holds and that the density fe has two bounded derivatives.
Choose a sequence kn of positive real numbers such that

√
n/kn = o(1) and kn/n3/4

= o(1). For that kn, let us also suppose
that H5 holds. Then, for all x ∈ R,

√
n(f̂e(x)− fe(x)) → N


0,

2|T |

c0(x)


.

Remark 6. Let us observe that if in model (1) µ(t) is a constant independent of t, X(t) inherits all the properties of e(t).
This means that X(t)will be a order one stationary process which admits a local time, so its density estimator, f̂X from now
on, will be computed in the sameway as f̂e and the results given in this section will be still true. However, it is clear that this
is not the case if µ(t) is not constant. We consider this problem in the next section.

3. Estimating the density function of non-stationary processes

In this section, we extend the estimator given in Section 2 to a particular family of non-stationary stochastic processes.
Suppose that in model (1) the deterministic mean function µ(t) is not constant with respect to the time, that is, suppose
X(t) is given by

X(t) = µ(t)+ e(t),

whereµ(t) is a continuous function and e(t) is a zero mean, first-order stationary stochastic process with unknown density
function fe. The density function of X(t)will be denoted as fX(t)

.
= fXt .

Let {X1(t), . . . , Xn(t)} be independent trajectories with the same distribution as X(t). We define the estimator of the
density function fXt as

f̂Xt (x) = f̂u(x − X̄n(t)), (5)

where

f̂u(x)
.
=

kn
2n|T |Hu

n (x)
with u = {Un1, . . . ,Unn} given by

Uni(t) = Xi(t)− X̄n(t) = ei(t)− ēn(t). (6)

Here {e1(t), . . . , en(t)} is a random sample of e(t), ēn(t) =
1
n

∑n
i=1 ei(t) and Hu

n is defined as in (2) by replacing
{e1(t), . . . , en(t)} by u.
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For any fixed t , the random variables {Un1(t), . . . ,Unn(t)} are identically distributed but not necessarily independent.
Therefore, we cannot use directly the results proved in Section 2.3. However we can still prove the complete convergence
of the estimator of fXt and obtain strong rates of convergence.

Theorem 4. For fixed t, let us suppose that H1, H2 and H4 holds. Choose two sequences {kn} and {vn} of positive real numbers
converging to infinity such that (kn/n) vn = o(1),

∑
∞

n=1 exp (−c (kn/vn)) < ∞ for each c > 0 and vn(n/kn)|ēn(t)| → 0 a.co.
Let us also suppose that the sequence kn fulfils H5. Then, for all x ∈ R,

lim
n→∞

vn


f̂Xt (x)− fXt (x)


= 0 a.co.

Remark 7. In this case our assumptions imply that we can choose kn such that vn = nγ for any γ < 1
4 . Indeed, let kn = nβ

and vn = nγ . By Billingsley [3] we know that ēn(t) = o(n−α) with α < 1/2. In order that the conditions vn kn
n → 0 and

vn
n
kn

|ēn(t)| → 0 hold it suffices that 0 < γ < 1 − β and 0 < γ < β −
1
2 , and γ is maximized under these two restrictions

at γ =
1
4 .

Remark 8. In both cases, we compute the number of ‘‘nearest-neighbors’’ kn by the standard leave-one-out cross-validation
method.

4. A new classification rule for functional data

In this section, we apply our estimation results to obtain a new classification rule for functional data. The main aim
in pattern recognition or supervised classification problems is to classify individuals into groups. Information about these
groups is provided by a training sample {(Xi, Yi) : 1 ≤ i ≤ n}, where each curve Xi has a label Yi attached, indicating which
group it belongs to. A new observation X is given without its label and we want to predict the unknown label.

The classical books by Devroye et al. [13], Duda and Stork [14] and Hastie et al. [22] provide a broad coverage of these
topics, for the standard multivariate case where the variable X takes values in Rd.

However, the definitions are mainly the same for an arbitrary metric space E. Given a finite set {1, . . . ,m} and a metric
space E, an observation is a pair (x, y) ∈ E×{1, . . . ,m}, where x is known and y is a class or label that denotes the unknown
nature of the observation. A mapping g : E → {1, . . . ,m} is called a classifier and represents our guess of the class y given
its associated element x ∈ E. The classification is wrong if given an observation (x, y), g(x) ≠ y.

Let (X, Y ) ∈ E × {1, . . . ,m} be a random pair. Since an error occurs if g(X) ≠ Y , the probability of misclassification for
g is

L(g) = P(g(X) ≠ Y ). (7)

The best possible classifier is the function g∗ that minimizes (7). Theminimum error probability (the Bayes error) is denoted
by L∗

= L(g∗).
To obtain g∗, the distribution of (X, Y ) should be known, but this is not typically the case. One must build up a classifier

based on a training sample of independent pairs {(Xi, Yi); 1 ≤ i ≤ n}, with the same distribution as the pair (X, Y ) and
known Y1, . . . , Yn values. Then a classifier is a function

gn(·; X1, Y1, . . . , Xn, Yn) : E × (E × {1, . . . ,m})n → {1, . . . ,m},

with probability of misclassification given by the conditional error probability

Ln(gn) = P(gn(X; X1, Y1, . . . , Xn, Yn) ≠ Y |X1, Y1, . . . , Xn, Yn).

A sequence of classifiers {gn; n ≥ 1} is called a rule.
In the finite dimensional case, there are several universally consistent classification rules. An important difference

between the finite and the infinite-dimensional situations arises, however, with regard to consistency. Stone [40] provide
general results for the universal consistency of a wide class of nonparametric classification rules, which in particular imply
the consistency ofmost classical nonparametric rules. In particular, themost popular k-NN classifiers are universally (weakly)
consistent, provided that k = kn → ∞ and k/n → 0, as n → ∞. This means that, for these k-NN classifiers, Ln → L∗, in
probability, as n → ∞ (or equivalently E(Ln) → L∗), with no restriction at all on the underlying distribution of (X, Y ). In the
infinite-dimensional case, this result is no longer true. This has been pointed out by Cèrou and Guyader [9] who have studied
the consistency of the k-NN classifier when E is a metric space. Some recent results regarding supervised classification
methods for functional data can be found in [11,12,9,13,14,19,23,28,30,33,38,7,10].

4.1. The rule

Let E = C(T , ‖·‖) be the space of continuous functions on T , and ‖·‖ a normon E.Wewant to classify a newdata X(t) ∈ E
into one of the m classes F j, j ∈ J = {1, . . . ,m} using a training sample {(Xi(t), Yi); 1 ≤ i ≤ n} of i.i.d. random elements
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with the same distribution as the pair (X(t), Y ) and known Y1, . . . , Yn labels. We will assume that for each population F j

the model (1) holds; that is
X j(t) = µj(t)+ ej(t),

where µj(t) stands for the mean function of the population F j, j ∈ J and ej(t) is a zero mean, first-order stationary
stochastic process with density unknown function f je .

For each t fixed, the Bayes rule chooses the class F j if and only if
f je(X(t)− µj(t)) > f ke (X(t)− µk(t)), ∀k ≠ j.

This motivates defining our classification rule in the following way: we will classify X(t) into the class F j, j ∈ J (and defineY = j) if and only if

m


t : f̂ jXt (X(t)) > f̂ kXt (X(t))

> m


t : f̂ jXt (X(t)) ≤ f̂ kXt (X(t))


, ∀k ≠ j, (8)

where f̂ jXt is the estimator of f jXt .

5. Some simulation studies

In order to illustrate the use of our estimation method, in this section, we perform some simulation studies of nonpara-
metric functional density estimation and functional discrimination.

We built two samples from the original data set, the learning sample (Xi(t), Yi)i∈L and the testing sample (Xj(t), Yj)j∈T .
With the learning sample, we compute the density estimator for each group (f̂ 1, . . . , f̂ m) using the cross-validated value
k̂jn, j = 1, . . . ,m. In order to measure the discriminant power of our method, we evaluate the estimators obtained with
the learning samples at the testing sample and we classify it according to the rule given by (8). Finally, we compute the
misclassification rate as

Misclas =
1
♯T

−
j∈T

I{Yj≠Yj}.

Example 1. We start testing ourmethodwith a very simplemodel that fulfills all the assumptions.We consider a stochastic
process X(t) defined by

X(t) = µ+ σ e(t), t ∈ T = (0, 1), (9)

where

e(t) =
w(t)
√
t
, withw(t) the standard Wiener process.

Remark 9. Since µ is constant, X(t) as the same properties as e(t) and therefore f̂X will be computed with the tools given
in Section 2 for computing f̂e (see Remark 6).

In the first stage, we consider µ = 0 and σ = 1 so that X(t) is stationary and, for each t, X(t) ∼ N (0, 1). Fig. 1 shows
the theoretical density function of X(t) and its estimator computed from a sample of size 200 measured at 100 equally
spaced points on [0, 1]. As we can see in Fig. 1, the estimator fits very well the true density except in the tails where, due
to the nature of the processes, we have not enough data to perform a good estimation. To assess the performance of our
classification method, in the second stage we considered two classes under the model (9), both with σ = 1 but one of them
with µ constant and equal to 0, and the another one with mean µ ≠ 0. In particular, we will consider the cases where
µ = 0.5, 1.5, 2.5, 3.5. We generate a learning sample of size 200 (100 of each class) measured at 150 instants of time in
the interval [0, 1] and a testing sample of the same size. With the learning sample we compute the estimators for each class
and then, in order to obtain the misclassification error, we evaluate them in the testing sample.

We repeat this procedure 50 times in order to obtain 50 misclassification rates for each case which are shown in Fig. 2.
Let us note how the Bayes errors get smaller as the means goes far apart; this is due to the fact that when we classify two
populations which are very close in mean their densities present a considerable amount of overlap, making it difficult to
distinguish between groups (see Fig. 3).

Example 2. Recently, Shin [39] proposed an extension of Fisher discriminant analysis for stochastic processes, refer to
InfFLD, which uses a bijective mapping that connects a second-order stationary process with the reproducing kernel Hilbert
space generated by its within class covariance kernel. In particular, he provides the results of a simulation study comparing
the InfFLD method with the classical multivariate Fisher’s (FLD), penalized discriminant analysis (PDA) using both the
ridge penalty (PDA/Ridge) and a penalty matrix for cubic spline smoothing (PDA/Spline) principal components analysis
(NPCD/PCA) andmultivariate partial least-squares regression (NPCD/MPLSR) (nonparametric curve discriminationmethods
proposed by Ferraty and Vieu [16]).
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Fig. 1. Estimated (dashed curve) and theoretical (solid curve) density functions of X(t) for kn = 43.196.

Fig. 2. Boxplot of the misclassification error from 50 runs.

Fig. 3. (a) Density estimator for a N (0, 1) (dashed curve) and for a N (0.5, 1) (solid curve). (b) Density estimator for a N (0, 1) (dashed curve) and for a
N (3.5, 1) (solid curve).

In those simulations, the populations were generated following the stochastic processes

X1(t) = 3
√
2 cos(π t)+

√
2 cos(2π t)+ e(t) and X2(t) =

√
2 cos(2π t)+ e(t),
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Fig. 4. Estimated (dashed curve) and theoretical (solid curve) density functions of X1(t) for t = 0.013, 0.180, 0.347, 0.513, 0.680, 0.847.

with

e(t) =

30−
i=1

i−1/2Ui
√
2 cos(iπ t),

where Ui are i.i.d. standard normal random variables. Let us observe that for each t ,

X1(t) ∼ N


3
√
2 cos(π t)+

√
2 cos(2π t), 2

30−
i=1

cos2(π ti)/i


and

X2(t) ∼ N


√
2 cos(2π t), 2

30−
i=1

cos2(π ti)/i


.

For each class, he generates a learning sample of size 100 (50 of each class) measured at 100 instants of time in the interval
[0, 1] and a testing sample of size 500. For our proposal, we run the same experiment with the same size of learning and
testing samples. Figs. 4 and 5 show, respectively, the density estimator and the theoretical density function of X1(t) and
X2(t) for some instants of time, the dashed curves correspond to the density estimators and the solid curves correspond to
the theoretical density function. As in the stationary case (Example 1), the density estimator fits very well the true density
except in the tails wherewe do not have enough information. Next, we evaluate this estimator in the testing sample in order
to obtain themisclassification error. This procedure was replicated an additional 49 times by randomly building 49 learning
samples and 49 testing samples. Finally, we get 50 misclassification rates.

In Table 1 we reproduce the results given in [39] and add the result obtained with our method, referred to as NPDE. As
we can see, the NPDE method behaves slightly worse than InfFLD but better than the other methods.

Let us observe that e(t) is a non-stationary process since its variance (and consequently their distribution) depends on
the time. This shows that our classification method is robust with respect to non-stationarity.

6. Conclusions

In this paper we have proposed a nonparametric density estimation method for functional data following the model

X(t) = µ(t)+ e(t), t ∈ T ,

where µ(t) stands for the deterministic mean function, and e(t) is a zero mean, first-order stationary stochastic process
which admits a local time with unknown density function fe.
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Fig. 5. Estimated (dashed curve) and theoretical (solid curve) density functions of X2(t) for t = 0.013, 0.180, 0.347, 0.513, 0.680, 0.847.

Table 1
Mean, median and standard deviation of the miss-classification errors for the RKHS-based algorithm (InfFLD), classical Fisher’s method (FLD), penalized
discriminant method (PDA), nonparametric curve discrimination method (MPLSR) and nonparametric density estimation (NPDE).

Method Mean Median Standard error

InfFLD 0.0832 0.082 0.0109
FLD 0.2086 0.2 0.0418
PDA/Ridge 0.0889 0.086 0.0181
PDA/Spline 0.0891 0.087 0.0163
NPCD/PCA 0.0906 0.086 0.0152
NPCD/MPLSR 0.0992 0.089 0.0323
NPDE 0.0889 0.0890 0.0096

First, we obtained an estimator for the marginal density function of e(t), which is the same for all t . We show that it is
strongly consistent with rate of convergence nα , for any α < 1/2 and that it has asymptotic normal distribution with rate√
n. Ifµ(t) = µ is constant, X(t) inherits the properties of e(t) so, in the sameway as for e(t), we can compute the estimator

of fX . Though this is not new in nonparametric setting (see [8]), it is a surprising and desired property.
When µ(t) is nonconstant, X(t) does not inherit the stationarity of e(t) and therefore it has a different marginal density

function for each t . In this context, the estimator has shown to be strongly consistent for each t with a smaller convergence
rate than that in the stationary case.

In simulations studies, we computed the density estimator and we applied the estimation results to obtain a new
classification rule for functional data.

Appendix

Proof of Theorem 1. Let

Cn =

f̂e(x)− fe(x)
 > ϵ


.

By definition of complete convergence we need to show that
∑

∞

n=1 P(Cn) < ∞ for all ϵ > 0. Let x be fixed so that the
Lebesgue differentiation theorem holds for fe in x. For this x, using the decomposition introduced by Wagner [41], we can
write

Cn = An ∪ Bn,

with

An =


Hn(x) <

kn
2n|T |(fe(x)+ ϵ)
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and

Bn =



Hn(x) >

kn
2n|T |(fe(x)− ϵ)


if fe(x) > ϵ

∅ if fe(x) ≤ ϵ.

It will be sufficient to show that

∞−
n=1

P(An) < ∞ and
∞−
n=1

P(Bn) < ∞. (A.1)

The proof of the right-side inequality of (A.1) is similar to the one of the left-side inequality and therefore it will be omitted.
In order to prove the left-side inequality of (A.1), let us define an =

kn
2n|T |(fe(x)+ϵ)

. Then, we have

Hn < an ⇔

n−
i=1

∫
T

II(x,an)(ei(t))dt  
.
=Yni

> kn,

where Yni are independent random variables and

P(An) = P


n−

i=1

Yni > kn


.

Let pn =

{u:|u−x|≤an}

fe(u)du. Since the marginal distributions of e are the same for each t , we obtain

E (Yni) = E
∫

T
II(x,an)(ei(t))dt


=

∫
T
P(ei(t) ∈ I(x,an))dt = |T |pn (A.2)

and using Cauchy–Schwartz inequality

E

Y 2
ni


= E

∫
T

II(x,an)(ei(t))dt
2


≤ |T |E
∫

T


II(x,an)(ei(t))

2 dt = |T |
2pn.

Let us defineYni
.
= Yni − E (Yni). Then, using (A.2), we obtain

∞−
n=1

P(An) =

∞−
n=1

P


n−

i=1

Yni > kn − n|T |pn



=

∞−
n=1

P


n−

i=1

Yni > kn


1 −

pn
2an(fe(x)+ ϵ)


; (A.3)

where in the last equality we have used the relation between an and kn. Since an → 0, by the Lebesgue differentiation
theorem we have that pn/2an → fe(x). Therefore, there exists N1 = N1(x), such that if n ≥ N1(x) pn2an

− fe(x)
 < ϵ/2 ⇒ 1 −

pn
2an(fe(x)+ ϵ)

>
ϵ

2(fe(x)+ ϵ)
= C(x, ϵ) .= C . (A.4)

With (A.4) in (A.3), using that
Yni

 ≤ 2|T | and var
Yni


≤ |T |

2pn, we apply the Bernstein inequality [2] and conclude that,
for n ≥ N1(x),

P


n−

i=1

Yni > kn


1 −

pn
2an(fe(x)+ ϵ)


≤ P


n−

i=1

Yni > knC



≤ 2 exp


−
k2nC

2

2n|T |2pn + 4|T |knC


. (A.5)

In order to bound the exponent we use that (A.4) implies pn < (fe(x)+ ϵ)2an = kn/n|T | and as a consequence

k2nC
2

2n|T |2pn + 4|T |knC
>

k2nC
2

2|T |kn + 4|T |knC
= kn

C2

2|T |(1 + 2C)
.



P. Llop et al. / Journal of Multivariate Analysis 102 (2011) 73–86 83

Replacing this bound into (A.5) we get, for n ≥ N1(x), that

P


n−

i=1

Yni > kn


1 −

pn
2an(fe(x)+ ϵ)


≤ 2 exp (−ckn) ,

with c =
C2

2|T |(1+2C) . Finally hypothesis H3 implies
∑

∞

n=N1(x)
exp (−knc) < ∞ and the theorem follows. �

Proof of Theorem 2. Let

Cn =


vn

f̂e(x)− fe(x)
 > ϵ


,

we need to prove that
∑

∞

n=1 P(Cn) < ∞ for all ϵ > 0. We do the analysis analogous that in Theorem 1, replacing ϵ by
ϵn =

ϵ
vn

and we get (A.3) for ϵn. That is,

∞−
n=1

P(An) =

∞−
n=1

P


n−

i=1

Yni > kn


1 −

pn
2an(fe(x)+ ϵn)


. (A.6)

The mean value theorem and the Lipschitz condition for fe ensure the existence of xn ∈ I(x, an) for which pn/2an = fe(xn).
Using this and the Lipschitz condition again we obtain pn2an

− fe(x)
 = |fe(xn)− fe(x)| ≤ K |xn − x| ≤ Kan. (A.7)

Now, by the definition of an, the fact that ϵn → 0 and the hypothesis (kn/n)vn = o(1), for all ϵ > 0 there exists N1 such
that, for n ≥ N1(x),

Kan ≤ C1(x)
kn
n

≤
1
2
ϵ

vn
=
ϵn

2
. (A.8)

Therefore from (A.7) and (A.8) we have

1 −
1

fe(x)+ ϵn

pn
2an

≥
ϵn − Kan
fe(x)+ ϵn

≥
C2

vn
.

With this in (A.6),
∞−
n=1

P(An) ≤

∞−
n=1

P


n−

i=1

Yni > C2
kn
vn


.

Now, since an ∼ kn/n, from H5 we obtain

1
a2n

var
Yni


=

1
a2n

∫
T

∫
T

∫
{u:|u−x|≤an}

∫
{v:|v−x|≤an}

(fst(u, v)− fe(u)fe(v)) dudvdtds → c20 > 0, (A.9)

then for n ≥ N2(x), var
Yni


≤ C3a2n. Applying Bernstein inequality with

Yni
 ≤ 2|T |, var

Yni


≤ C3a2n, we obtain for
n ≥ N3(x) = max{N1(x),N2(x)}

∞−
n=1

P(An) ≤

∞−
n=1

P


n−

i=1

Yni > C2
kn
vn



≤ 2 exp


−


C3

C4
kn
n + C5


kn
vn


.

In order to bound the exponent we use the fact that kn/n → 0 and then we obtain
∞−
n=1

P(An) ≤ 2
∞−
n=1

exp

−C6

kn
vn


< ∞.

Finally using that
∑

∞

n=1 exp (−c (kn/vn)) < ∞, for each c > 0 we get the theorem. �

Proof of Theorem 3. We do the analysis analogous to Theorem 1 where we replace ϵ by ϵn =
t

√
n and we get calling

Sn =
∑n

i=1 Yni and s2n = var(Sn)

P
√

n

f̂e(x)− fe(x)


≤ t


≤ P


Sn − E(Sn)

sn
≤

kn − n|T |pn
sn


. (A.10)
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Now, since by (A.9) s2n = O(na2n), by Lindenberg theorem

Sn − E(Sn)
sn

→ N(0, 1), (A.11)

where the convergence is in distribution. On the other hand,

kn − n|T |pn
sn

=
2nan|T |(fe(x)+ t/

√
n)− n|T |

 x+an
x−an

fe(u)du

sn

= s−1
n n|T |

∫ x+an

x−an
(fe(x)− fe(u))du +

2nan|T |t
sn

√
n
. (A.12)

By Taylor theorem, there exists a number x∗ between x and u such that∫ x+an

x−an
(fe(x)− fe(u))du = −

1
2

∫ x+an

x−an
f ′′

e (x
∗)(u − x)2du.

Since f has two derivatives boundeds−1
n n|T |

∫ x+an

x−an
(fe(x)− fe(u))du

 ≤ Cs−1
n na3n.

Therefore, in (A.12) we have

kn − n|T |pn
sn

= O(s−1
n na3n)+

2nan|T |t
sn

√
n
.

Since s−1
n na3n → 0 and by (A.9) s2n/(na

2
n) → c2o ,

lim
n→∞

kn − E(Sn)
sn

=
2|T |

c0
t.

Finally from this, (A.11) and (A.10) we get the result. �

Lemma 5. Let suppose that H1–H3 holds and that for fixed t, vn(n/kn)|ēn(t)| = o(1) a.co. Then, for all x ∈ R, we have that

lim
n→∞

vn


f̂u(x − X̄n(t))− f̂e(x − µ(t))


= 0, a.co.

In order to prove this lemma we need an auxiliary result.

Lemma 6. For fixed t, let Hu
n and ēn(t) as defined in (6) where u = {Un1, . . . ,Unn} with Uni(t) = ei(t)− X̄n(t) = ei(t)− ēn(t)

and He
n as defined in (2). Then, for each n, x,Hu

n (x − X̄n(t))− He
n(x − µ(t))

 ≤ 2|ēn(t)|.

Proof of Lemma 6. It is an immediate consequence of

(i)
Hu

n (x − X̄n(t))− Hu
n (x − µ(t))

 ≤ |ēn(t)|;
(ii)

Hu
n (x − µ(t))− He

n(x − µ(t))
 ≤ |ēn(t)|.

We will prove only (i) since the proof of (ii) is analogous. Let x fixed, using that X̄n(t) = µ(t)+ ēn(t)we obtain
t :
Uni(t)− (x − X̄n(t))

 ≤ Hu
n (x − X̄n(t))


⊂

t : |Uni(t)− (x − µ(t))| ≤ Hu

n (x − X̄n(t))+ |ēn(t)|

;

therefore,

kn =

n−
i=1

∫
T

I{|Uni(t)−(x−X̄n(t))|≤Hu
n (x−X̄n(t))}(t)dt ≤

n−
i=1

∫
T

I{|Uni(t)−(x−µ(t))|≤Hu
n (x−X̄n(t))+|ēn(t)|}(t)dt,

and for the definition of kn we obtain

Hu
n (x − µ(t)) ≤ Hu

n (x − X̄n(t))+ |ēn(t)|. (A.13)

Similarly, we can prove that

Hu
n (x − X̄n(t)) ≤ Hu

n (x − µ(t))+ |ēn(t)|. (A.14)
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Finally, from (A.13) and (A.14) we haveHu
n (x − X̄n(t))− Hu

n (x − µ(t))
 ≤ |ēn(t)|. �

Proof of Lemma 5. Let ϵ > 0, x, t fixed, f̂e as defined in (3), then

vn

f̂u(x − X̄n(t))− f̂e(x − µ(t))
 =

knvn
2n|T |

He
n(x − µ(t))− Hu

n (x − X̄n(t))


Hu
n (x − X̄n(t))He

n(x − µ(t))

≤
knvn
2n|T |

2|ēn(t)|
Hu

n (x − X̄n(t))He
n(x − µ(t))

where in the last inequality we have used Lemma 6. By Theorem 1, f̂e(x − µ(t)) < fe(x − µ(t)) + ϵ for all n ≥ N1(x, ϵ, t)
which implies that

He
n(x − µ(t)) > C1(x, t, ϵ)

kn
n

= C1
kn
n
. (A.15)

By Lemma 6 and (A.15)

Hu
n (x − X̄n(t))+ 2|ēn(t)| ≥ C1

kn
n
. (A.16)

Since by hypothesis vn n
kn

|ēn(t)| → 0, for all n ≥ N2(x, ϵ, t)we have that

n
kn

|ēn(t)| ≤
1
4
C1 and therefore C1

kn
n

− 2|ēn(t)| ≥
1
2
C1

kn
n
.

Replacing in (A.16) we obtain

Hu
n (x − X̄n(t)) ≥ C1

kn
n

− 2|ēn(t)| ≥
C1

2
kn
n
. (A.17)

So from (A.15) and (A.17), for all n ≥ max{N1,N2} we obtain

vn

f̂u(x − X̄n(t))− f̂e(x − µ(t))
 < 1

|T |

knvn
n

|ēn(t)|
C1
2

kn
n C1

kn
n

= C3vn
n
kn

|ēn(t)|.

Finally,
∞−
n=1

P

vn

f̂u(x − X̄n(t))− f̂e(x − µ(t))
 ≥ ϵ


≤

∞−
n=1

P

C3vn

n
kn

|ēn(t)| ≥ ϵ


=

∞−
n=1

P

vn

n
kn

|ēn(t)| ≥
ϵ

C3


=

∞−
n=1

P

vn

n
kn

|ēn(t)| ≥ ϵ0


< ∞,

which concludes the proof. �

Proof of Theorem 4. By definition (5) and since X(t) satisfies the model (1) we need to prove

lim
n→∞

vn


f̂u(x − X̄n(t))− fe(x − µ(t))


= 0, a.co.

Let ϵ > 0 and x, t fixed. Let observe that

P

vn

f̂u(x − X̄n(t))− fe(x − µ(t))
 ≥ ϵ


≤ P


vn

f̂u(x − X̄n(t))− f̂e(x − µ(t))
 ≥ ϵ/2


+ P


vn

f̂e(x − µ(t))− fe(x − µ(t))
 ≥ ϵ/2


.

The result follows from Lemma 5 and Theorem 2. �
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