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1. Introduction

Consider the following classical problems in the upper half plane,

(A)


∂u
∂t (x, t) = −∆xu(x, t)

u(x, 0) = f(x)
(B)


∂2w
∂t2

(x, t) = −∆xw(x, t)

w(x, 0) = g(x),

x ∈ Rn, t > 0.

It is well known that under mild size conditions of the initial data f and g, for example
f, g ∈ Lp(Rn, dx), 1 ≤ p <∞, the following limits hold

(1.1) lim
t→0

u(x, t) = f(x) lim
t→0

w(x, t) = g(x) for almost all x.

The aim of this paper is to obtain optimal weighted Lebesgue spaces Lp(Rn, v(x)dx),
1 < p <∞, for which the limits in (1.1) still hold.

We find two classes DW
p and DP

p (see Definition 2.2) of weights v (strictly positive and
finite functions for almost all x) such that

(1.2) lim
t→0

u(x, t) = f(x) a.a.x for all f ∈ Lp(Rn, v(x)dx) if and only if v ∈ DW
p ,

and

(1.3) lim
t→0

w(x, t) = g(x) a.a.x for all g ∈ Lp(Rn, v(x)dx) if and only if v ∈ DP
p .

These two statements are included in Theorem 2.3, which states the existence of optimal
spaces Lp(Rn, v(x)dx) adapted, either to statements (1.2) or (1.3).
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Along this note the wording “weighted inequality” for an operator T means to find
conditions in a given weight v in order to assure the existence of a weight u for which T
maps Lp(Rn, v(x)dx) into Lp(Rn, u(x)dx).

Theorem 2.3 involves some weighted inequalities for local maximal operators associ-
ated to Problems (A) and (B), namely, supt<R |u(x, t)| and supt<R |w(x, t)|, respectively.
Even more, the finitude almost everywhere of each of these maximal operators is equiv-
alent to the almost everywhere convergence stated either in (1.2) or (1.3).

These weighted inequalities are proved in this work by using a non constructive method
due to J.L. Rubio de Francia, see [RdF]. In proving them we shall need some weighted
inequalities for the local Hardy-Littlewood maximal operator that we believe are of inde-
pendent interest (see Lemma 3.4). For the (global) Hardy-Littlewood maximal function,
some classes of weights for the weighted inequalities were obtained by L. Carleson and
P. Jones, [C-J], and Rubio de Francia, [RdF] indepedently. These results are shown in
Theorem 3.2.

Finally in Theorem 2.5 we compare all the classes of weights that appear along this
note.

It is worth mentioning that the characterization of the weights v such that the Hardy-
Littlewood maximal function maps Lp(Rn, v(x)dx), 1 < p < ∞, into itself was done by
B. Muckenhoupt in the celebrated paper [M]. A dual weighted inequality for the same
maximal operator was also proved by C. Gutiérrez and E. Gatto in [G-G], while the
problem of characterization of the pairs (u, v) for which the Hardy-Littlewood function
maps Lp(Rn, v(x)dx) into Lp(Rn, u(x)dx) was solved by E. Sawyer in [S].

2. Preliminaries and main results

The solutions to problems (A) and (B) can be described via the Heat and Poisson
semigroups. In fact, if the functions f and g belong to the Lebesgue space Lp(Rn, dx) it
is well known that the solutions of those problemas are

(2.4) u(x, t) =
1

(4πt)
n
2

∫
Rn

e−
|x−y|2

4t f(y)dy = Wt ∗ f(x), t > 0,

and

(2.5) w(x, t) =
Γ(n+1

2 )

π
n+1

2

∫
Rn

t

(t2 + |x− y|2)
n+1

2

g(y)dy = Pt ∗ f(x), t > 0,

where W (x) = (4π)−
n
2 e−

|x|2
4 , Wt(x) = t−

n
2W (t−

1
2x), P (x) = Γ( n+1

2
)

π
n+1

2
(1 + |x|2)−

n+1
2 and

Pt(x) = t−nP (t−1x).
Moreover, the maximal operators

f → sup
t>0

u(·, t) and g → sup
t>0

w(·, t)

are bounded on Lp(Rn, dx).
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A first reflection shows that any weight v for which the maximal operators supt>0 |u(x, t)|
or supt>0 |w(x, t)| have good boundedness properties would be a good weight for our
problem. A further analysis reveals that in order to have the limits in (1.1) it is not
necessary to consider the global maximal operators supt>0 |u(x, t)| or supt>0 |w(x, t)| but
only local versions of them. Namely

W ∗Rf(x) := sup
t<R
|u(x, t)| = sup

t<R
|Wt ∗ f(x)|

and
P ∗Rg(x) := sup

t<R
|w(x, t)| = sup

t<R
|Pt ∗ g(x)|,

for some R > 0.
The first arising question is about boundedness properties of the operators Wt ∗ f(x)

and Pt ∗ f(x). The following Proposition gives the answer

Proposition 2.1. Let v be a weight in Rn, 1 < p <∞ and let {φt}t be either the Heat,
{Wt}t, or the Poisson, {Pt}t, semigroup (see (2.4) and (2.5)).

The following statements are equivalent:
(a) There exists t0 > 0 and a weight u such that the operator f → φt0 ∗ f

maps Lp(Rn, v(x)dx) into Lp(Rn, u(x)dx).

(b) There exists t0 > 0 and a weight u such that the operator f → φt0 ∗ f
maps Lp(Rn, v(x)dx) into weak-Lp(Rn, u(x)dx).

(c) There exists t0 > 0 such that φt0 ∗ f(x) <∞ a.a. x for all f ∈ Lp(Rn, v(x)dx).

(d) There exists t0 > 0 such that

0 <
∫

Rn

φp
′

t0
(y)v−

p′
p (y)dy <∞.

Motivated by the above Proposition we give the following definition

Definition 2.2. Let 1 < p <∞ and {φt}t>0 be the Heat, {Wt}t>0, (respectively Poisson,
{Pt}t>0) semigroup.
We say that the weight v belongs to the class DW

p (respectively DP
p ) if there exists t0 > 0

such that ∫
Rn

φp
′

t0
(y)v−

p′
p (y)dy <∞.

The result dealing directly with the aim of this note is the following.

Theorem 2.3. Let v be a weight in Rn, 1 < p <∞, and {φt}t be either the Heat, {Wt}t,
or the Poisson, {Pt}t, semigroup. Let denote

Φ∗Rf(x) = sup
t<R
|φt ∗ f(x)|,
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for some R, 0 < R <∞.
The following statements are equivalent:
(1) There exist 0 < R <∞ and a weight u such that the operator

f → Φ∗Rf

maps Lp(Rn, v(x)dx) into Lp(Rn, u(x)dx).
(2) There exist 0 < R <∞ and a weight u such that the operator

f → Φ∗Rf

maps Lp(Rn, v(x)dx) into weak-Lp(Rn, u(x)dx).
(3) The limit

lim
t→0

φt ∗ f(x)

exists a.a. x for all f ∈ Lp(Rn, v(x)dx).
(4) There exist 0 < R <∞ such that

Φ∗Rf(x) <∞,
a.e. x, for all f ∈ Lp(Rn, v(x)dx).

(5) The weight
v ∈ Dφ

p

(see Definition 2.2).

Along this paper more classes of weights will appear motivating the following defini-
tions.

Definition 2.4. Let 1 < p <∞. We say that the weight
• v belongs to the class D∗p if v satisfies (II) in Theorem 3.2.

• v belongs to the class Dloc
p if v

− p′
p ∈ L1

loc(Rn, dx).

The relationship among the classes of weights in Definitions 2.2 and 2.4 is given by
the next Theorem.

Theorem 2.5. The chain of inclusions

D∗p ( DP
p ( DW

p ( Dloc
p ,

holds for 1 < p <∞.

3. Proofs

We need the following Lemma to prove Proposition 2.1.

Lemma 3.1. Let v be a weight in Rn, 1 < p < ∞, and {φt}t be either the Heat or the
Poisson semigroup.
The following statements are equivalent:

(i) The weight
v ∈ Dφ

p



A NOTE ON THE CONVERGENCE TO INITIAL DATA OF HEAT AND POISSON EQUATIONS 5

(ii) There exists t1 > 0 such that

0 <
∫

Rn

φp
′

t1
(x− y)v−

p′
p (y)dy <∞

for all x ∈ Rn.

Proof of Lemma 3.1
Assume that {φt} is the Heat semigroup and v ∈ Dφ

p . Hence there exist t0 > 0 and a

positive constant C0 such that C0 =
∫

Rn

φp
′

t0
(y)v−

p′
p (y)dy <∞ and v

− p′
p ∈ L1

loc.

Given x we consider the ball Bx = {y : |x− y| < |x|}, hence for t > 0 we have∫
Rn

φp
′

t (x− y)v−
p′
p (y)dy

≤
∫
Bx

φp
′

t (x− y)v−
p′
p (y)dy +

∫
{y:|x−y|>|x|

φp
′

t (x− y)v−
p′
p (y)dy.

If |x− y| < |x| then |y| < |x− y|+ |x| ≤ 2|x|, hence

e−
1
4t
|x−y|2 ≤ 1 ≤ e

1
4t
|x|2e−

1
4t
|x|2 ≤ e

1
4t
|x|2e−

1
4t

(
|y|
2

)2 .

If, on the other hand, |x− y| > |x| then |y| < |x− y|+ |x| ≤ 2|x− y|, thus

e−
1
4t
|x−y|2 ≤ e−

1
4t

(
|y|
2

)2 .

Choosing t = t0/4, we get the result.
The proof in the case of the Poisson semigroup is analogous.�

Proof of Proposition 2.1 Clearly (a) implies (b) and this implies (c).
Let assume now that (c) holds. Hence, given a positive function f ∈ Lp(Rn, v(x)dx),

there exists a set N (which depends on f) of measure zero such that φt0 ∗ f(x) <∞ for
x ∈ Rn \N .

Let x0 = (x1
0, . . . , x

n
0 ) ∈ N such that φt0 ∗ f(x0) = ∞. Without lost of generality we

can assume that the support of f is included in the set

A1 = {y = (y1, . . . , yn) : y1 − x1
0 ≥ 0, . . . , yn − xn0 ≥ 0.

Also consider the set Q0 = {x : |x− x0| < t0}. If x ∈ Q0 ∩A1 then for all y ∈ A1 is

|x− y|2 = |x−x0|2 + |x0− y|2 + 2(x−x0)(x0− y) ≤ |x−x0|2 + |x0− y|2 ≤ t20 + |x0− y|2.
Thus, φt0(x−y) ≥ C0 φt0(x0−y) for some positive constant C0 and all y ∈ A1, therefore,

φt0 ∗ f(x) ≥ C0 φt0 ∗ f(x0) =∞, for all x ∈ Q0 ∩A1,

contradicting the fact that N is of null measure. Hence the statement in (c) is valid for
every point x ∈ Rn and the functional

f →
∫

Rn

φt0(x− y)f(y)dy

is well defined for all f ∈ Lp(Rn, v(x)dx) and for every x ∈ Rn.
By Landau’s Principle of Resonance the mapping

y → φt0(x− y)
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belongs to Lp
′
(Rn, v

− p′
p (x)dx) for every x ∈ Rn thus obtaining (d).

Finally if (d) holds then by Hölder’s inequality we get that∫
|φt ∗ f(x)|pu(x)dx ≤∫

|f(y)|pv(y) dy
∫ (∫

φt
p′(|x− y|)v−

p′
p (y)dy

) p
p′
u(x)dx.

Applying Lemma 3.1 there exists t > 0 such that

ψ(x) =
(∫

φt0
p′(|x− y|)v−

p′
p (y)dy

) p
p′

is finite for all x, then it is enough to choose u ∈ L1
loc such that ψ u ∈ L1 to obtain (a).

This ends the proof of Proposition 2.1.�

Since φ is a radial and integrable function, the maximal operator Φ∗f(x) = supt φt ∗
f(x) is bounded by a constant times the Hardy-Littlewood maximal operator

Mf(x) = sup
r>0

1
rn

∫
B(x,r)

|f(y)|dy.

Since W and P are radial and integrable functions, any good weight for the operator M
would be good for our purposes.
Seeking good weights for the operator M we recall some results going back to the 80’s,
due independently to J.L. Rubio de Francia [RdF] and to L. Carleson and P. Jones [C-J].

Theorem 3.2. Let v be a weight in Rn and 1 < p <∞.
The following statements are equivalent:

(I) There exists a weight u such that the Hardy-Littlewood maximal operator M is
bounded from Lp(Rn, v(x)dx) to Lp(Rn, u(x)dx).

(II) There exists a constant C such that

sup
R>1

1
Rn p′

∫
B(0,R)

v
− p′

p (y)dy ≤ C,

i.e. v ∈ D∗p, (see Definition 2.4).

Remark 3.3. Statement (II) in Theorem 3.2 can be replaced by
(II ′) For any a > 0, there exists a constant Ca such that

sup
R>a

1
Rn p′

∫
B(0,R)

v
− p′

p (y)dy ≤ Ca.

To see this claim, we observe that if a < 1 and a < S < 1 then
1

Sn p′

∫
B(0,S)

v
− p′

p (y)dy ≤ 1
an p′

∫
B(0,1)

v
− p′

p (y)dy

≤ 1
an p′

sup
R>1

1
Rn p′

∫
B(0,R)

v
− p′

p (y)dy.

Even more, statement (II) can be replaced by
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(II ′′) For any x ∈ Rn, and any a > 0, there exists a constant Ca,x such that

sup
R>a

1
Rn p′

∫
B(x,R)

v
− p′

p (y)dy ≤ Cx,a.

In order to prove this claim, we observe that

1
Rn p′

∫
B(x,R)

v
− p′

p (y)dy ≤ 1
Rn p′

∫
B(0,|x|+R)

v
− p′

p (y)dy

≤ (|x|+R)n p
′

Rn p′
(|x|+R)n p

′−1
∫
B(0,|x|+R)

v
− p′

p (y)dy,

then, we use (II ′). �

Proof of Theorem 2.5
Given t > 0,

Pt(x− y) = Cn
1

tn
(

1 + |x−y|2
t2

)n+1
2

≤ Cn

( 1
tn
χ{|x−y|<t}(y) +

∞∑
j=0

1
tn(2j)n+1

χ{2j t<|x−y|<2j+1 t}(y)
)

≤ Cn

( 1
tn
χ{|x−y|<t}(y) +

∞∑
j=0

2−j
1

(2j+1 t)n
χ{|x−y|<2j+1 t}(y)

)
.

Thus, ∫
Pt(x− y)p

′
v
− p′

p (y)dy ≤ C sup
R≥t

1
Rn p′

∫
B(x,R)

vp
′/p(y)dy.

From Remark 3.3 it follows that D∗p ⊂ DP
p .

Since Wt2(x) ≤ CPt(x) then DP
p ⊂ DW

p .

The following chain of inequalities proves DW
p ⊂ Dloc

p :∫
{|x−y|<R1/2}

v
− p′

p (y) dy ≤ ep′
∫
{|x−y|<R1/2}

e−
|x−y|2

R
p′v
− p′

p (y)dy

≤ ep′
∫

Rn

e−
|x−y|2

R
p′v
− p′

p (y)dy.

To finish the proof of Theorem 2.5 it remains to show that each class is strictly included
in the bigger class. We leave to the reader to check the following assertions:

(a) The weight v1(y) = e−|x|
3p belongs to Dloc

p but v1 /∈ DW
p .

(b) The weight v2(y) = |x|−(n+1) p belongs to DW
p but v2 /∈ DP

p .

(c) The weight v3(y) = |x|−np−εp with n
p′ + 1 > 1− ε > n

p′ , belongs to DP
p but v3 /∈ D∗p.
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This ends the proof of Theorem 2.5.�

In order to prove Theorem 2.3 we need a technical result about the local Hardy-
Littlewood maximal function. Given R > 0 the local Hardy-Littlewood maximal function
MRf is defined by

MRf(x) = sup
0<s≤R

Asf(x),

where Asf(x) = 1
sn

∫
|x−y|<s f(y)dy.

Lemma 3.4. Let v be a weight in Rn. Let 1 < p <∞ and R > 0 fix..
The following statements are equivalent:

(i) There exists a weight u such that MR is bounded from Lp(Rn, v(x)dx)
to Lp(Rn, u(x)dx).

(ii) There exists a weight u such that MR is bounded from Lp(Rn, v(x)dx) to weak-
Lp(Rn, u(x)dx).

(iii) There exists a weight u such that AR is bounded from Lp(Rn, v(x)dx) to weak-
Lp(Rn, u(x)dx).

(iv) The weight

v
− p′

p ∈ L1
loc,

i.e. v ∈ Dloc
p . (see Definition 2.4).

To prove the above Lemma we need the following technical Lemma due to J.L. Rubio
de Francia in [RdF]. It can be found in the form we need in [F-T].

Lemma 3.5. Let (X,µ) a measurable space, B a Banach space and T a sublinear operator
from T : B → Ls(X), for some s < p, satisfying

‖(
∑
j∈Z
|Tfj |p)1/p‖Ls(X) ≤ Cp,s(

∑
j∈Z
‖fj‖pB)1/p,

where Cp,s is a constant depending on p and s.
Then there exists a function u such that u−1 ∈ Ls/p(X), ‖u−1‖s/p ≤ 1 and∫

Rn

|Tf(x)|pu(x)dµ(x) ≤ C‖f‖B

for some constant C.

Proof of Lemma 3.4
We shall prove (iii) ⇒ (iv) ⇒ (i), the rest of the implications are obvious. Assume

that (iii) holds.
Let x0 ∈ Rn and R > 0 fix. We consider the sets Sj = {y : v(y) > j−1}.
Since B(x0, R/2) ⊂ B(x,R) for x ∈ B(x0, R/2) then, for any nonnegative f , we have

ARf(x) =
1
Rn

∫
B(x,R)

f(y)dy ≥ 1
Rn

∫
B(x0,R/2)

f(y)dy
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Therefore

u(B(x0, R/2)) ≤
∫
{x:ARf(x)> 1

Rn

∫
B(x0,R/2) f(y)dy}

u(x)dx

≤ Rnp( ∫
B(x0,R/2) f(y)dy

)p ∫ fp(y)v(y)dy.

In the last inequality we choose f(x) = v
− p′

p (x)χB(x0,R/2)(x)χSj (x) and conclude that∫
Sj∩B(x0,R/2)

v
− p′

p (y)dy ≤ CR

u(B(x0, R/2))
p′
p

≤ CR,x0 ,

with the constant CR,x0 independent of j. Hence∫
B(x0,R/2)

v
− p′

p (y)dy ≤ CR,x0 .

Finally since B(x0, R) can be covered by a finite number of balls of radius R/2 we get
(iv).

Let now assume that (iv) holds. To prove (i) we define the sets E0 = B(0, R), Ek =
{x : 2k−1R ≤ |x| < 2kR}.
For each k fixed we split f = f ′ + f

′′
, where f ′(x) = f(x)χB(0,R2k+1)(x).

Using Kolmogorov’s inequality and the continuity of the maximal operator in the vector
valued setting, see [RdFRT], given 0 < s < 1 < p for each k is∥∥∥(∑

j

|MR f
′
j |p
)1/p∥∥∥

Ls(Ek)
≤ |Ek|1/s−1

∥∥∥(∑
j

|MR f
′
j |p
)1/p∥∥∥

L1
∗(Ek)

≤ C|Ek|1/s−1
∥∥∥(∑

j

|f ′j |p
)1/p∥∥∥

L1

≤ C|Ek|1/s−1

∫
B(0,R2k+1)

(∑
j

|fj(x)|p
)1/p

dx

≤ C|Ek|1/s−1
(∫

B(0,R2k+1)

∑
j

|fj(x)|pv(x) dx
)1/p(∫

B(0,R2k+1)
v
− p′

p (x)dx
)1/p′

≤ Ck,v|Ek|1/s−1
(∫ ∑

j

|fj(x)|pv(x)dx
)1/p

.(3.6)

On the other hand, if x ∈ Ek and y /∈ B(0, R 2k+1) then,

R2k+1 < |y| ≤ |y − x|+ |x| ≤ |y − x|+R2k

and, thus, |y − x| > R2k. Hence

(3.7) MRf
′′
j (x) = 0, for all j ∈ N, x ∈ Ek.

Pasting together (3.6) and (3.7), we see that the operator satisfies Lemma 3.5 in
each set Ek. Hence a family of weights Uk, eack one with support in Ek, can be found
satisfying the statements in that Lemma.
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The weight u(x) =
∑

k
1
2kUk(x)χEk

(x) satisfies (i). We ended the proof of Lemma
3.4.�

Proof of Theorem 2.3
The density of continuous functions with compact support on Lp(Rn, v(x)dx) gives

(2) ⇒ (3). On the other hand Proposition 2.1 together with the arguments in its proof
give (4) ⇒ (5). Hence the implication to be proved is (5)⇒ (1). We shall give the proof
in the case φ = W , see 2.4. Given R > 0 and 0 < t < R we split

Wt = W 1
t +W 2

t

where W 1
t = Wtχ{|x|≤(2nR)1/2}.

If j0 ∈ Z is such that 2j0t < R < 2j0+1t then

W 1
t (x) ≤ Wt(x)

(
χ{|x|≤(2nt)1/2}(x) +

j0∑
j=0

χ{(2n2jt)1/2≤|x|≤(2n2j+1t)1/2}(x)
)

≤ C
( 1
t

n
2

χ{|x|≤(2nt)1/2}(x) +
j0∑
j=0

(2n2j)
n
2 e−

n
2

2j 1
(2n2jt)

n
2

χ{|x|≤(2n2j+1t)1/2}(x)
)
.

Thus for f ≥ 0

sup
t<R

W 1
t ∗ f(x) ≤ CnM(2nR)1/2f(x)(3.8)

with Cn = C
(

(2n)
n
2 +

∑∞
j=0(2n2j)

n
2 e−

n
2

2j
)
<∞.

On the other hand, since W 2
t (x) is increasing in the time interval (0, R) we also have

(3.9) sup
0<t<R

W 2
t ∗ f(x) = W 2

R ∗ f(x) ≤WR ∗ f(x)

Thus, by (3.8) and (3.9)

(3.10) W ∗Rf(x) ≤ C
(
M(2nR)1/2f(x) +WR ∗ f(x)

)
then the result follows by using Proposition 2.1, Theorem 2.5 and Lemma 3.4.

The proof in the case φ = P follows choosing P 1
t = Ptχ{|x|≤(n)1/2R} and repeating the

above argument.
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Aplicada del Litoral, Conicet, Santa Fe, Argentina

E-mail address: shartzstein@gmail.com

Departamento de Matemáticas, Universidad Autónoma de Madrid, and ICMAT CSIC-
UAM-UCM-UC3M, Ciudad Universitaria de Canto Blanco, 28049 Madrid, Spain

E-mail address: joseluis.torrea@uam.es
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