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The dynamic stability of functionally graded thin-walled beams allowing for shear deformability is

investigated in this article. The analysis is based on a model that has small strains and moderate rotations

which are formulated through the adoption of a second-order non-linear displacement field. The beam is

subjected to axial external dynamic loading. The model takes into account thermoelastic effects. The heat

conduction equation is solved in order to characterize the temperature in the cross-sectional domain.

Galerkin’s and Bolotin’s methods are employed with the scope to discretize the governing equations and

to determine the regions of dynamic stability, respectively. Regions of stability are evaluated and

expressed in non-dimensional form. The influence of the longitudinal vibration on the unstable regions is

investigated. The numerical results show the importance of this effect when the forcing frequency

approaches to the natural longitudinal frequency, obtaining substantially wider parametric stability

regions. The effects of temperature gradients, shear flexibility and axial inertia, in beams with different

cross-sections and different types of graded material are analyzed as well.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Strategic and high technology industries, such as defense,
aerospace or automotive industries are demanding new and
advanced materials in order to increase the leadership in the
development of high competitive goods. A few decades ago,
designers claimed for new materials combining in a single sample,
the best properties of different kind of materials. That is, for
example, the stiffness, electrical conductivity and machinability
of metals and the high strength, low density and high temperature
resistance of ceramics. During the past 10–12 years these advanced
materials are becoming no longer experimental sample of labora-
tories but a consistent reality. Functionally graded materials (FGM)
are just an example of such advanced materials. In this type of
materials the variation in percentage of phase constituents
(normally ceramic and metal) can be arranged in such a way to
create a new material with graded properties in spatial directions.

Many papers have been devoted to study shells and solids
constructed with FGM such as the works carried out by a number of
researchers [1–5]. There are many interesting approaches to
analyze the mechanics of slender structures. Each approach offers
different perspectives and useful modeling alternatives.
ll rights reserved.

ovan).
The recent works of Chakraborty et al. [6], Goupee and Vel [7],
Ding et al. [8], Xiang and Yang [9] and Yang and Chen [10], among
others, can be considered the most relevant for functionally graded
straight beams. In these papers different laws defining the graded
properties of the beams have been introduced. In this sense, the
gradation laws can be defined in an exponential form or in a
power law form or any other with ‘‘ad hoc’’ purposes. Many of
the aforementioned papers introduce a three-dimensional or a
two-dimensional complex model. On the other hand, there are
quite a few papers devoted to study functionally graded thin-
walled beams.

The works of Oh et al. [11,12] and Fazelzadeh and coworkers
[13,14] are among the few papers devoted to the mechanics of thin-
walled beams constructed with functionally graded materials. The
scope of these papers has been mainly directed towards the
analysis of rotating beams and secondarily to the analysis of
thermo-elastic coupling effects associated with graded properties.
Oh et al. [11,12] also focused their attention to the study of dynamic
stability of cylindrical spinning beams.

The dynamic stability of elastic slender structures like beams, rods
and columns, induced by parametric excitation has been investigated
by many researchers. In the work of Nayfeh and Mook [15] extensive
sources and literature on these topics can be found. The problems of
dynamic stability have been thoroughly introduced and analyzed by
Bolotin [16] for various classical structural elements, i.e. Bernoulli–
Euler and Vlasov beam model among others. This last treatise
provides useful tools for further studies and analysis on dynamic
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Fig. 1. Beam configuration.

Nomenclature

A ij,Bij,D ij modified elastic shell coefficients
B, Bw bi-moment and Wagner-effect related general force
ci coefficient for temperature-dependent properties
e, b, h thickness, width and height of a cross section
Ei, Eo Young’s modulii at inner and outer surfaces
f sub-index for properties of functionally graded

material
Jij,J

r
ij stiffness and inertia beam coefficients

K exponent characterizing gradation of properties
My, Mz bending moments
Nij, Mij shell forces and moments
Qx, Qy, Qz axial and shearing beam forces
Qij elastic constants
s, n co-ordinates of the reference system in the wall
T absolute temperature in Kelvin degrees
T ij modified thermal shell coefficients

Tw, Tsv flexo-torsional and pure torsion moments
uo, vo, wo displacements of the cross-sectional reference system
x, y, z co-ordinates of the main reference system
yo, zo Location of the shear center
M, K, S matrices of mass, elastic stiffness and geometric

stiffness
ai,ao thermal expansion coefficient at inner and outer

surfaces
eDi generalized beam strains
ki,ko thermal conductivity coefficient at inner and outer

surfaces
ni,no Poisson coefficients at inner and outer surfaces
ri,ro material density at inner and outer surfaces
sij,eij stresses and strain components
yy,yz bending rotation parameters
fx,yx twisting angle and warping parameter
O,$ natural and forcing frequencies
Mi inertia forces on the beam
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stability of slender structures. Some of these tools were employed by
Machado and coworkers [17–19] to study different features in
dynamic stability of thin-walled composite beams.

In spite of the practical interest and future potential of the thin-
walled functionally graded beam structures, particularly in the
context of aerospace and mechanical applications, the most of
the contemporary available research is focused to characterize the
dynamic behavior of beams with solid sections or, at least, beams
modeled as long conical or cylindrical shells [20]. Under these
circumstances, it appears that, to the best of authors’ knowledge,
there is a lack of research concerning to the problem of dynamic
stability of thin-walled beams with graded properties and subjected
to axial dynamic excitation. Then, considering this context, the
present paper is devoted to analyze the patterns of dynamic stability
for a given model of thin-walled beam considering full-shear
deformability. The concept of full shear deformability is adopted
[19,21,22] to mean the inclusion in a unified fashion shear stress/
strain effects due to bending (the most common) and warping due to
non-uniform torsion. Constitutive equations for functionally graded
properties of beams subjected to thermal environment are developed
and appropriately included in the model. The purpose of the present
investigation is the characterization of the regions of dynamic
stability of thin-walled functionally graded beams subjected to axial
dynamic excitation and thermoelastic loadings as well.

The study of this paper is carried out employing a model that has
small strains and moderate rotations which are formulated through the
adoption of a second-order non-linear displacement field (see [17–19]).
As a distinguish feature in comparison to other approaches (Oh et al.
[11,12] for example), the model of the present paper has many non-
linear effects (normally neglected by other authors) and takes into
account the effect of longitudinal vibratory patterns and the interaction
of the forced frequencies and the parametrically excited frequencies.
Thus, as suggested in Bolotin [16] the differential equation of the
longitudinal motion is solved in order to characterize the axial force in
terms of forcing frequency and the static and dynamic parts of the
forcing load; consequently this axial force is injected in the remaining
equations. This leads to a reduced differential system. The boundaries
of stability regions can be found by imposing in the reduced differential
system periodic solutions that are parameterized with respect to the
load forcing frequency.

The influence of different modeling features, such as thermo-
elastic effects, shear deformation, longitudinal vibration coupling
and different constitutive laws, on the shape of the unstable regions
is extensively analyzed by means of parametric studies.
2. Model description

2.1. Basic assumptions and material featuring

In Fig. 1 one can see the structural model of a thin-walled beam.
The points of the structural member are referred to a Cartesian
co-ordinate system fO : x,y,zg located at the centroid where the
x-axis is parallel to the longitudinal axis of the beam while y and z

correspond to the principal axes of the cross section. The y- and
z-axes are parallel to the principal ones but having their origin at
the shear center, i.e. the point C. Besides a circumferential
co-ordinate system {A:x,s,n} is defined in the middle contour of
the cross-section. On the other hand, y0 and z0 are the centroidal
co-ordinates measured with respect to the shear center.

The mathematical model for the structure is based on the
following hypotheses [19,21]:
(a)
 The cross-section contour is rigid in its own plane.

(b)
 Shell force and shell moment corresponding to the circumfer-

ential stress sss and shell shear forces corresponding to the
in-thickness stresses sns and sxn are neglected.
(c)
 The radius of curvature at any point of the shell is neglected.

(d)
 Twisting curvature of the shell is expressed according to the

classical plate theory, but bending curvature is expressed
according to the first order shear deformation theory; in fact,
bending shear strain of the wall is incorporated.
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(e)
 The strains are considered small and the rotations are con-
sidered moderate.
K = 5

K = 2

K = 1 K = 0.50.1

0.3

In order to construct the model for thin-walled beams with

functionally graded properties the following hypothesis are
incorporated:
100 150 200 250 300
e

(f)

En

–0.1

The properties are graded along the wall-thickness e according
to a prescribed law that is uniform around the contour domain
S and depends only on the thickness variable n.
–0.3
(g)
 Shear effects across the wall-thickness e are neglected.

(h)
–0.5
The temperature of the beam is defined in a prescribed steady
state and it is assumed to vary only along the thickness of the
cross-section.
Fig. 2. Example of properties varying across the thickness.
The variation laws of the material properties along the wall
thickness can be prescribed in order to bear in mind with different
types of material gradation such as metal to ceramic or metal to
metal (e.g. steel and aluminium). Functionally graded shells are
usually considered to be composed of many isotropic homogeneous
layers [23]. Thus, the stress–strain relations for a generally isotropic
material including thermal effects are expressed as [12,24]
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The elements Qij are defined in terms of the following effective
elastic properties:

Q11 ¼
Ef

1�n2
f

, Q12 ¼
Ef nf

1�n2
f

, Q 11 ¼
Ef

1�nf
,

Q44 ¼Q55 ¼Q66 ¼
Ef

2ð1þnf Þ
: ð2Þ

The material properties can vary according to the following power
law:

Ef ðnÞ ¼ ðEo�EiÞ
n
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n

e
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2
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in which Ef, nf , af , rf and kf are the graded modulus of elasticity,
Poisson’s coefficient, thermal expansion coefficient, mass density
and thermal conductivity coefficient, respectively. These properties
are defined in nA ½�e=2,e=2�, where e is the thickness. The sub-
indexes ‘o’ and ‘i’ stand for outer and inner surfaces, respectively.
Kð0rKr1Þ is the power law exponent. It becomes evident that if
K¼0 the beam is entirely made of the outer material, normally
ceramic. Fig. 2 shows an example of properties variation across the
thickness for different values of the exponent K. In addition to the
power laws of variation in the radial direction, the properties may be
subjected to variation with the temperature that can be represented
by the following expression [1,11]:

mp ¼mp0ðc0T�1þ1þc1Tþc2T2þc3T3Þ, ð8Þ

in which mp means a temperature-varying material property in
general (i.e. modulus of elasticity Ef, or Poisson’s coefficient nf , etc.), T

is the absolute temperature ð3CÞ and the coefficients ci and mp0 are
unique for a particular material. These coefficients can be calculated
by means of curve fitting procedures of the experimental data. Thus
the material properties can be represented as a function of the
thickness and the temperature. It is clear that mp0 is the typical
material property free of thermal effects.

The temperature distribution along the thickness can be calcu-
lated through the following heat-conduction differential equation:

dk
dn

dT

dn
þkd2T

dn2
¼ 0, Tjn ¼ �e=2 ¼ Ti, Tjn ¼ e=2 ¼ To ð9Þ

whose solution can be deduced [25] in terms of the following
series:

TðnÞ ¼ Ti�
ðTo�TiÞ

D
XZ
j ¼ 0

ð�1Þjðko�kiÞ
j

ð1þ jKÞkj
i

n

e
þ

1

2

� �ð1þ jKÞ

,

with D¼
XZ
j ¼ 0

ð�1Þjðko�kiÞ
j

ð1þ jKÞkj
i ,

ð10Þ

where, the upper limit of the summation is such that Z-1,
however by means of an elemental numerical study it can be
proved that Eq. (10) may be finely approximated by taking just a
few terms, or more practically, ZZ5 as it was done by many
researchers [25,26].

2.2. Motion equations and constitutive equations

The non-linear motion equations of thin-walled beams allowing
for full shear deformability can be written in the following form
[18]:

Q uxþM1ðxÞ ¼ 0,

�Q uy�ðQxvuÞu þM2ðxÞ ¼ 0,

Muz�Qy�Qxz0fuxþM3ðxÞ ¼ 0,

�Q uz�ðQxwuÞ
u
þM4ðxÞ ¼ 0,

Muy�QzþQxy0fuxþM5ðxÞ ¼ 0,

�ðT uwþT usvÞ�ðBwfuxÞuþQxðz0yuz�y0yuyÞþM6ðxÞ ¼ 0,

�BuþTwþM7ðxÞ ¼ 0, ð11Þ
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and subjected to the following boundary conditions (at x¼0, and
x¼L):

Qx�Q x ¼ 0 or du¼ 0,

QyþQxvu¼ 0 or dv¼ 0,

�MzþðQx�Q xÞz0fx ¼ 0 or dyz ¼ 0,

QzþQxwu¼ 0 or dw¼ 0,

�My�ðQx�Q xÞy0fx ¼ 0 or dyy ¼ 0,

TwþTsvþBwfux�Q xðz0yz�y0yyÞ ¼ 0 or dfx ¼ 0,

B¼ 0 or dyx ¼ 0: ð12Þ

In Eqs. (11) and (12) primes mean derivation with respect to the
space variable x. The underlined terms correspond to non-linear
coupling between the axial dynamic forces and the lateral and
twisting motions. Depending on the hypotheses invoked some of
those underlined terms can be neglected, as it will shown further in
the present work for illustrative purposes. The variable u is the axial
displacement of the cross-section, v and w are the lateral displace-
ments of the shear center, yy and yz are bending rotation para-
meters,fx is the twisting angle measured from the shear center and
yx is a measure of the warping intensity. On the other hand, Qx is the
axial force, Qy and Qz are shear forces, My and Mz are bending
moments, B is the bimoment, Tsv is the twisting moment due to
pure torsion and Tw is the flexural-torsional moment due to
warping torsion. Bw is a higher-order stress-resultant related
to warping torsion. Q x is the prescribed axial force acting at the
boundaries. Finally, MjðxÞ, j¼1,y,7 are the inertia forces. These
inertia forces can be expressed in terms of the accelerations as
follows:
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The dots over the variables intend for derivation with respect to the
time, that is ð _�Þ ¼ dð�Þ=dt. The inertia coefficients Jrij are such that:

Jrij ¼

Z
A
rðnÞgig j ds dn, with g ¼ 1,Y�n

dZ

ds
,Zþn

dY

ds
,opðsÞ�nlðsÞ

� �
,

Jr00 ¼

Z
A
rðnÞðY2þZ2Þ ds dn: ð14Þ

The beam forces involved in Eq. (11) can be defined in terms of the
shell stress-resultants according to

Qx ¼

Z
S

Nxx ds, B¼

Z
S
½Nxxop�MxxlðsÞ� ds,

Qy ¼

Z
S

Nxs
dY

ds

� �
ds, Qz ¼

Z
S

Nxs
dZ

ds

� �
ds,

My ¼

Z
S

NxxZþMxx
dY

ds

� �
ds, Mz ¼

Z
S

NxxY�Mxx
dZ

ds

� �
ds,

Tw ¼

Z
S
½NxsðrðsÞ�cÞ� ds, Tsv ¼

Z
S
ðNxsc�2MxsÞ ds,

Bw ¼

Z
S
½NxxðY

2þZ2Þ�2MxxrðsÞ� ds, ð15Þ
where op is the contour warping function, c is the shear strain at
the middle line, obtained by means of the Saint-Venant theory of
pure torsion for isotropic beams, and normalized with respect to
twisting angle gradient [19,21,27]. fY ,Zg and fY ,Zg are the
co-ordinates corresponding to points lying on the middle line of
the cross-sectional wall, measured from the shear center and the
centroid, respectively. The functions r(s) and l(s) are defined as
follows:

rðsÞ ¼�ZðsÞ
dY

ds
þYðsÞ

dZ

ds
, lðsÞ ¼ YðsÞ

dY

ds
þZðsÞ

dZ

ds
: ð16Þ

From the conventional definitions of shell stress-resultants given
by

Nxx ¼

Z e=2

�e=2
sxx dn, Nss ¼

Z e=2

�e=2
sss dn, Nxs ¼

Z e=2

�e=2
sxs dn,

Mxx ¼

Z e=2

�e=2
sxxn dn, Mss ¼

Z e=2

�e=2
sssn dn, Mxs ¼

Z e=2

�e=2
sxsn dn,

ð17Þ

substituting Eq. (1) into Eq. (17), taking into account hypotheses
(b), (e), and (g), and assuming that Nss¼Mss¼0, after an algebraic
rearrangement it is possible to derive [22] the following constitu-
tive equation of shell-forces accounting for thermal effects:

Nxx

Nxs

Mxx

Mxs
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where mxx and mxs are longitudinal and tangential shell strains,
respectively, wxx and wxs are the corresponding curvatures, whereas
QN

(T) and QM
(T) are defined according to

Q ðTÞN

Q ðTÞM

8<
:

9=
;¼

Z e=2

�e=2
Q 11afDT

1

n

� �
dn: ð19Þ

Definitions of elastic coefficients A ij, B ij, D ij and thermal expansion
coefficients employed in Eq. (18) may be followed in Appendix A.

The shell strains mxx, mxs, wxx and wxs can be expressed in the
following form [18]:

mxx ¼ eD1þZeD2þY eD3þopeD4þðY
2þZ2ÞeD9,

mxs ¼
dY

ds
eD5þ

dZ

ds
eD6þðrðsÞ�cÞeD7þceD8,

wxx ¼
dY

ds
eD2�

dZ

ds
eD3�lðsÞeD4�2rðsÞeD9,

wxs ¼�2eD8, ð20Þ

where the generalized strains eDj, j¼1,y,9 are given as follows
[18]:

eD1 ¼ uuþ1
2ðvu

2þwu
2Þþfxðz0yuz�y0yuyÞ,

eD2 ¼�yuyþyuzfx, eD3 ¼�yuz�yuyfx,

eD4 ¼ yux�
1

2
ðyzy00y�yyy00zÞ, eD5 ¼ ðvu�yzÞ�

z0

2
ðyzyuy�yyyuzÞ,

eD6 ¼ ðwu�yzÞþ
y0

2
ðyzyuy�yyyuzÞ, eD7 ¼fux�yx,

eD8 ¼fux�
1

2
ðyzyuy�yyyuzÞ, eD9 ¼

fu2x

2
: ð21Þ

Now taking into account the definition of the beam forces given in
Eq. (15) and employing the definitions of shell forces and strains
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given in Eqs. (18) and (20) one gets the following expression of the
generalized beam forces as

F¼ JED�JT Q T , ð22Þ

where F, D and QT are defined as

F¼ fQx My Mz B Qy Qz Tw Tsv Bwg
T ,

D¼ feD1 eD2 eD3 eD4 eD5 eD6 eD7 eD8 eD9g
T ,

Q T ¼ fQ
ðTÞ
N 0 Q ðTÞM 0gT : ð23Þ

The matrix JE of stiffness coefficients and the matrix JT of thermal-
coupled rigidity coefficients are given by

JE ¼

Z
S

MT
DNEMD ds, JT ¼

Z
S

MT
DNT ds, ð24Þ

where NE, NT and MD are defined as follows:

NE ¼

A11 0 B11 0

0 A66 0 B66

B11 0 D11 0

0 B66 0 D66

2
66664

3
77775, NT ¼

T NN 0 T NM 0

0 0 0 0

T MN 0 T MM 0

0 0 0 0

2
66664

3
77775, ð25Þ

MD ¼

1 Z Y op 0 0 0 0 Y2þZ2

0 0 0 0 dY=ds dZ=ds rðsÞ�c c 0

0 dY=ds �dZ=ds �lðsÞ 0 0 0 0 �2rðsÞ

0 0 0 0 0 0 0 �2 0

2
66664

3
77775:

ð26Þ

Final remarks should be mentioned in order to clarify some features
of the present model. As it was mentioned before Eq. (11) has
been derived invoking a set of hypotheses. However, as a
consequence of the hypotheses formulated in the displacement
field, such as incorporation or not of second order rotational terms
(see [18,21]), some important terms may disappear in the algebraic
process. This aspect is important because it may lead to inap-
propriate motion equations and consequently to inaccurate
predictions of the dynamic behavior of thin-walled beams in general.
Thus, in a formulation incorporating only first order rotational terms,
all simply underlined terms of Eq. (11) are eliminated.
3. Dynamic stability

3.1. Basic description

In this section the dynamic stability of a simply supported thin-
walled FGM beam is analyzed considering an axial excitation given
by the following expression:

PðtÞ ¼ PoþPdcos½$t�, ð27Þ

where $ is the excitation frequency, Po ¼ aPcr , Pd ¼ bPcr , a is the
static load factor, b is the dynamic load factor and Pcr is the critical
load of the beam. When the beam is excited in the axial (long-
itudinal) direction, and the interaction of this movement on the
other motions has to be studied, the coupling of these various
motions depends on the symmetry of the cross-section analyzed.
The first differential equation shown in Eq. (11), corresponding to
the longitudinal movement can be easily solved, disregarding
longitudinal inertia forces, in the following form:

Qx ¼�Po�Pdcos½$t�: ð28Þ

Longitudinal inertia forces can substantially affect the dynamic
stability of a beam when the excitation frequency of Qx is near the
longitudinal natural frequencies of the beam, i.e., when the long-
itudinal vibrations have a resonant character. However, in this
section and only for comparative purposes, the solution procedure
is developed disregarding longitudinal inertia forces. The effect of
longitudinal inertia forces is afterwards accounted for once the
expressions of the previous solution are attained. The remaining
differential equations can be discretized by means of the following
wave functions:

v¼ voðtÞsin½lkx�, w¼woðtÞsin½lkx�, fx ¼fxoðtÞsin½lkx�,

yz ¼ yzoðtÞcos½lkx�, yy ¼ yyoðtÞcos½lkx�, yx ¼ yxoðtÞcos½lkx�, ð29Þ

where vo(t), wo(t), fxoðtÞ, yyoðtÞ, yzoðtÞ and yxoðtÞ are the associated
displacement amplitudes which are time dependent. On the other
hand, the wave number is defined as

lk ¼
kp
L

, k¼ 1,2,3, . . . ð30Þ

The substitution of Eqs. (28) and (29) into the last six equations of
Eq. (11) leads to a system of ordinary differential equations, which
can be expressed in a compact form, by using matrix notations, as

M €UþðK�PðtÞSÞU¼O, ð31Þ

where

U¼ fvo,yzo,wo,yyo,fxo,yxog
T , ð32Þ

M¼

Jr11 0 0 0 �zoJr11 0

Jr22 0 0 0 0

Jr11 0 yoJr11 0

Jr33 0 0

sym Jr00 0

Jr11

2
66666666664

3
77777777775

, ð33Þ

S¼

l2
k 0 0 0 �zolk 0

0 0 0 0 0

l2
k 0 yolk 0

0 0 0

sym l2
k JE

19=JE
11 0

0

2
6666666664

3
7777777775

, ð34Þ

K¼

J55l
2
k �J55lk J56l

2
k �J56lk J57l

2
k �J57lk

J33l
2
kþ J55 �J56lk J56 �J57lk J57

J66l
2
k �J66lk J67l

2
k �J67lk

J22l
2
kþ J66 �J67lk J67

sym ðJ88þ J77Þl
2
k �J77l

2
k

J44l
2
k�J77

2
666666666664

3
777777777775

,

ð35Þ

M, S and K are the mass matrix, geometric stiffness matrix and
elastic stiffness matrix, respectively. The stiffness coefficients Jij are
calculated with Eq. (24).

Now, from Eq. (31) one can obtain the solution to different
problems. Then, the problem concerning determination of free
vibration frequencies of a beam loaded by a constant longitudinal
force can be expressed as

jK�PoS�O2Mj ¼ 0: ð36Þ

The problem of determination of free vibration frequencies of an
unloaded beam leads to the following equation:

jK�O2Mj ¼ 0: ð37Þ



Table 1
Properties of Steel, Alumina (Al2O3), Aluminium (Al) and Silicon Carbide (SiC) at

T¼300 1C.

Properties Steel Al2O3 Al SiC

E (Pa) 206�109 393�109 67�109 302�109

n 0.30 0.25 0.33 0.17

r (kg m�3) 7800 3960 2700 3200

Fig. 3. Cross-sectional cases and their dimensions.
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Finally, the buckling problem can be analyzed from the following
equation:

jK�PoSj ¼ 0: ð38Þ

3.2. Principal parametric resonance

The regions of parametric resonance of thin-walled beams
subjected to an axial periodic load are studied in this section. In
the classification of parametric resonance, if $ is the excitation
frequency andOi the natural frequency of the ith mode, parametric
resonance of ‘‘first kind’’ is said to occur when $=ð2OÞ � 1=r,
r¼1,2,y, while parametric resonance of the ‘‘second kind’’ is said
to occur when $=ðOkþOjÞ � 1=r, r¼ 1,2, . . . ,ðka jÞ. In both cases
the situation where r¼1 is of the most practical importance.
Usually the parametric resonance of the first kind is termed
‘‘parametric resonance’’, whereas the second kind is referred as
‘‘combination resonance’’, because it involves two different
frequencies. In this paper the study is only focused on the case
of parametric resonance.

The problem of finding the boundaries of the stability regions,
simply leads to the determination of the conditions under which
Eq. (31) has periodic solutions with period 2p=$ and 4p=$ [16]. In
the case of the principal region, which is half sub-harmonic,
a solution is looked for with a periodical function whose period
is twice the excitation frequency: i.e., 4p=$. The condition for the
existence of solutions can be expressed in the following infinite
determinant form [16]:

K�S Po7 1
2 Pd

� �
� 1

4$
2M � 1

2 PdS 0 . . .

K�PoS� 9
4$

2M � 1
2 PdS . . .

sym K�PoS�254
$

2
M . . .

. . . . . . . . . . . .

����������

����������
¼ 0:

ð39Þ

The boundaries of the stability regions lying near the frequency
$¼ 2O can be determined with sufficient accuracy considering
only the first leading diagonal term, i.e.

jK�SðPo71
2 PdÞ�

1
4$

2Mj ¼ 0: ð40Þ

3.3. Influence of forced and parametrically excited vibrations

In the previous sections the longitudinal internal force acting
along the beam is assumed equal to the external force acting at the
ends of the beam, then longitudinal vibrations are neglected. Such
an assumption is acceptable for certain bounds where the excita-
tion frequency is small in comparison with the frequencyoL, i.e. the
one corresponding to free longitudinal vibrations. However, for
beams with small slenderness ratio or particular distribution of
material properties, the frequency at which a parametric resonance
occurs, can be of the same order of the natural frequency of the
longitudinal vibrations. In this context, with the objective to
include this effect in the analysis, it is necessary to substitute
the constitutive expression of the axial force Qx into the first
differential equation in Eq. (11) and integrating it in terms of the
displacement u, that is

�J11
@2u

@x2
þ Jr11

@2u

@t2
¼ 0: ð41Þ

Adopting the appropriate boundary condition, i.e. the first of
Eq. (12), the solution to the Eq. (41) can be represented as

uðx,tÞ ¼
Pox

J11
þ

Pdsin½Zx�

ZJ11cos½ZL�
cos½$t�, ð42Þ
where

Z¼$

ffiffiffiffiffiffi
Jr11

J11

s
ð43Þ

Substituting Eq. (42) into the remaining six differential equations
given in Eq. (11) and applying the same methodology previously
explained, Eq. (40) can be expressed in the following compact form:

K�S Po7
1

2
Pd

tan½ZL�

ZL

� �
�

1

4
$2M

����
����¼ 0: ð44Þ

Now, solving Eq. (44) leads to the main regions of stability
considering the influence of the longitudinal vibration.
4. Applications and numerical results

In this section, the aforementioned model is employed in order
to study the dynamic stability of simply supported thin-walled
beams with graded properties. The influence of longitudinal
vibrations and the effect of shear deformation on the regions of
stability is analyzed. When the beam is excited in the axial
(longitudinal) direction, the interaction of this movement will
depend on the symmetry of the cross-section analyzed. Different
bisymmetrical cross-sectional shapes and beam lengths are con-
sidered to perform the numerical analysis. The effect of variation of
the volume fraction of ceramic/metallic components is evaluated.
This may be done by means of the exponent K. The first set of
examples is carried out disregarding temperature effects. The
elastic and mass properties of the material constituents (Steel,
Alumina, Aluminium and Silicon Carbide) are summarized in
Table 1.

In the following examples (associated with the cross-sections
shown in Fig. 3), because of the by-symmetry (y0¼z0¼0), the
motion equations are uncoupled. Therefore, there are three main
modes of vibration corresponding either to bending, in y-direction
and z-direction, or to torsion. In these cases, the lowest frequency
corresponds to the lateral bending mode (y-direction), while the
highest vibration frequency corresponds to the twist mode. In all of
the following cases, the value of the static load parameter was
a¼ 0:5, and the excitation frequency$was scaled with the lowest
value of parametric resonance frequency (i.e. the case when the
frequency related to the first mode is doubled, or formally
$¼ 2O1).
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4.1. Instability regions for different gradation intensity

The first example consists of a box-beam with the following
geometrical properties: L¼0.2 m, h/L¼0.05, b/h¼0.5 and
e/h¼0.15. The material properties are graded from an inner surface
of aluminium to an outer surface of Silicon Carbide. The first two
stability regions associated with bending vibration modes are
shown in Fig. 4. In this figure different cases of gradation properties
(i.e. changing the exponent K) are depicted. The excitation
frequency $ is scaled with the lowest frequency value of para-
metric resonance corresponding to K¼10. The natural frequencies
(measured in (Hz)) are shown in Table 2, considering the dynamic
load parameter b¼ 0. The frequency referred to the unloaded beam
ða¼ 0Þ is denoted by o and, on the other hand O is the natural
frequency of the beam when it is subjected to a static load ða¼ 0:5Þ.
It may be observed that the widest unstable region corresponds to
the first mode (or to the main frequency of parametric resonance),
while the smallest region is associated with the second mode
(or second frequency of parametric resonance). The width of the
unstable regions grows with decreasing values of the exponent K.
The parametric regions associated to torsional modes are quite
narrow and located far away from the main unstable region.
Moreover, the influence of the longitudinal inertia is negligible
in all the cases analyzed, because the excitation frequency is small
in comparison to the free longitudinal vibration frequency oL. This
behavior can be observed from the frequencies shown in Table 2. It
can be noted that the vibration frequencies ðoÞ are decreasing for a
given static load parameter. This decrease is about 30% for the first
bending (lateral) mode, 10% for the first bending (vertical) mode
and 0.5% for the torsional mode. This effect keeps constant for the
three cases of exponent K analyzed.
Table 2
Natural frequencies for a box beam (Hz), L¼0.2 m.

K Modes oi Oi oL

10 1 521.14 368.5 7095.21

2 840.89 756.04

3 7632.03 7622.76

1 1 725.46 512.97 9885.46

2 1172.20 1054.26

3 10860.40 10847.80

1/3 1 795.38 562.42 11118.83

2 1306.18 1179.18

3 11843.10 11829.60

0.5 1 1.5 2 2.5 3 3.5

0.1

0.2

0.3

0.4

0.5

2 1

K=10

K=1/3
K=1

Fig. 4. Comparison of unstable regions for different values of K.
In Fig. 5 the variation of the vibration frequency values in
function on the static load is shown for different values of the
exponent K. The case corresponds to the first bending mode. The
higher value of static load, when the frequency value is O¼ 0, is
associated with the buckling load. In this case, the critical load of
the beam corresponding to the bending mode can be easily
obtained by means of the following expression (as explained in
Ref. [19]):

PCR ¼
p2

L2

J33J55

J55þ J33
p2

L2

: ð45Þ
4.2. Instability regions: influence of longitudinal vibration

The second example corresponds to a box section with the
following geometrical properties L¼0.5 m, h/L¼0.1, b/h¼0.5 and
e/h¼0.1. The properties are graded from a metallic inner surface of
aluminium to a ceramic outer surface of Silicon Carbide. The
regions of dynamic stability for the first two frequencies of
vibration excited parametrically (O1 and O2) are shown in Fig. 6.
The first region corresponds to the bending mode in the lateral
direction, while the second bending mode is in vertical direction.
The third region that appears in the figure represents the influence
of the longitudinal vibration, which in this case is near to the
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Fig. 5. Variation of frequency values versus the static load for different values of K.
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Fig. 6. Instability regions, (—) considering and (- -) neglecting longitudinal inertia,

for K¼1.
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parametric unstable boundaries. Also Fig. 6 shows the unstable
regions obtained by disregarding and considering the influence of
the longitudinal vibration. One can observe that the size of the
unstable region is nearly the same for both approaches. In this
example, the influence of the volume fraction index K was
considered as in the previous example. However, the dynamical
behavior observed for the three cases studied (K¼10, 1 and 1/3)
was very similar, as in the previous case. Therefore, the unstable
regions presented in Fig. 6 correspond to a volume fraction power
index K¼1.

The relation between the natural and the parametric excited
frequency values can be observed from Table 3, considering the
dynamic load parameter b¼ 0. The variation of the frequency
values in function of the static load is the same as the previous first
example, where the first bending mode presents the higher
decrease (about 30%).
0.2

0.3

0.4

0.5
4.3. Instability regions: influence of longitudinal vibration, more

parametric analysis

In this example the influence of the longitudinal inertia is
analyzed for a box section with the geometrical properties L¼0.5
m, h/L¼0.15, considering two different relations of b/h¼0.5, 0.75
and e/h¼0.15, 0.05. The material properties are graded from a
metallic inner surface of aluminium to a ceramic outer surface of
Silicon Carbide, and the volume fraction considered is such that
K¼1. The regions of dynamic stability for the first two frequencies
of vibration excited parametrically (O1 andO2) are shown in Figs. 7
and 8, for b/h¼0.5, e/h¼0.15 and b/h¼0.75, e/h¼0.05, respectively.
These figures show comparative results between the unstable
Table 3
Natural frequencies for a box beam (Hz), L¼0.5 m.

K Modes oi Oi oL

10 1 400.48 283.18 2838.08

2 651.72 587.51

3 2924.39 2910.19

1 1 558.49 394.92 3954.19

2 909.42 819.94

3 4175.46 4156.13

1/3 1 617.69 436.78 4447.23

2 1017.09 919.35

3 4609.14 4588.08

0.5 1 1.5 2 2.5 3 3.5

0.1
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0.3
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Fig. 7. Instability regions, (—) considering and (- -) neglecting longitudinal inertia,

for b/h¼0.50, e/h¼0.15.
regions obtained by considering (solid line) and disregarding
(dashed line) the influence of the longitudinal vibration. It can
be observed that the larger size corresponds to the main unstable
region ð2O1Þ in comparison with the second ð2O2Þ and third
unstable region ðoLÞ. The influence of the longitudinal inertia
enlarges the unstable parametric regions. Therefore, its removal
leads, inadvertently, in a less critical behavior than in the case of its
incorporation. The interaction of forced and parametrically excited
vibrations is more noticeable for the second cross-section analyzed
(Fig. 8). This is due to the nearness of the longitudinal frequency
with the parametrically excited frequency. The natural frequencies
(measured in (Hz)) are shown in Table 4, for the unloaded beam
a¼ 0 and for a¼ 0:5, considering the dynamic load parameter
b¼ 0.

4.4. Instability regions: influence of shear flexibility

The influence of shear deformation on the dynamic behavior is
analyzed in this example. The geometrical properties corresponding
to a box beam are L¼0.5 m, h/L¼ 0.15, b/h¼0.5 and e/h¼0.1.
0.5 1 1.5 2 2.5 3

0.1

2 1 2 2 L

Fig. 8. Instability regions, (—) considering and (- -) neglecting longitudinal inertia,

for b/h¼0.75, e/h¼0.05.

Table 4
Vibration frequencies for a box beam (Hz), L¼0.5 m and h/L¼0.15.

Ratios Modes oi Oi oL

b/h¼0.5 1 834.38 590.00 3954.19

e/h¼0.15 2 1324.43 1187.98

3 4346.94 4304.79

b/h¼0.75 1 1113.94 787.69 3954.19

e/h¼0.05 2 1359.66 1110.63

3 4391.99 4318.46

Table 5
Shear deformation effect on natural frequencies (Hz).

K Modes oi Oi

Model I Model II Model I Model II

1 1 817.06 850.96 577.75 625.20

2 1315.75 1386.52 1184.26 1263.20

3 4177.29 4177.34 4135.66 4135.70

1/3 1 904.75 940.19 639.75 689.43

2 1472.88 1549.39 1329.05 1414.18

3 4611.46 4611.53 4565.99 4566.06



Table 6
Natural frequencies for a circular beam (Hz).

K Modes oi Oi oL

10 1 5693.40 4028.07 10951.4

2 5693.40 4028.07

3 13656.30 13020.0

1 1 6138.16 4342.76 11766.6

2 6138.16 4342.76

3 14817.61 14135.30

1/3 1 6337.92 4484.09 12141.45
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The material properties are the same as the previous examples. In
Table 5, natural frequencies are given considering two models: the
present theory (Model I) and neglecting shear flexibility (Model II).
The shear deformation in the structural model has the effect to
diminish the values of the vibration frequency. The same behavior is
observed for the two cases analyzed (K¼1 and 1/3). The effect of
shear flexibility on the unstable regions is shown in Fig. 9, for K¼1. It
is observed that the width of the regions does not change for both
models. However, when shear deformation is neglected the unstable
region moves toward the right. This is due to the increase in the
parametric frequency values.
2 6337.92 4484.09

3 15327.10 14624.50
4.5. Instability regions: circular closed beam

The example considered is a circular section with the geome-
trical properties L¼0.2 m, R/L¼0.15 and e/R¼0.05. The material
properties are graded from an inner surface of steel to an outer
surface of Alumina. Instability regions are shown in Fig. 10,
considering a FGM such that K¼1. The influence of the interaction
between the forced vibration and the parametrically excited
vibrations on the unstable regions is analyzed in such figure. The
unstable boundaries obtained by disregarding the aforementioned
interaction are marked in dashed lines. It is possible to observe that
the widest unstable region is associated with the first and second
bending modes (or in other words to the first and second
2 1 2 2 L
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Fig. 9. Instability regions, (—) considering and (- -) neglecting shear deformation,

for K¼1.

Fig. 10. Instability regions, (—) considering and (- -) neglecting longitudinal inertia,

for K¼1.
frequencies of parametric resonance), while the smallest region
corresponds to the torsional mode (or to the third frequency
excited parametrically). In this case, the natural frequency corre-
sponding to the longitudinal modeoL is next to the first parametric
resonance frequency (2O1).

The influence of the longitudinal inertia enlarges the first region
to the right, which seems to be composed of two regions. The first
unstable region (2O1 and 2O2) is smaller when the interaction of
the forced vibration is omitted, thus predicting a less critical
behavior. However, the third unstable region ð2O3Þ is larger when
the interaction of the forced vibration is omitted, predicting a more
conservative behavior. The interaction of forced and parametrically
excited vibrations is actually the same for the three material
configurations analyzed (i.e. K¼1/3, 1 and 10). This behavior
may be observed in Table 6, where natural frequencies are shown
for the case of the dynamic load parameter b¼ 0. The frequencies
referred to the unloaded beam ða¼ 0Þ are denoted byo and, on the
other hand, by O when the beam is subjected to a static load
ða¼ 0:5Þ.
4.6. Instability regions: analysis of thermal effects

This example shows the influence of the thermal effects on the
dynamic stability of a closed box beam constructed with a metallic
alloy (Ti6Al4V) and a ceramic (ZrO2), whose properties are given in
Table 7. The geometrical properties of the box beam are L¼0.5 m,
h/L¼0.15, b/h¼0.5 and e/h¼0.1. The effect of transverse tempera-
ture gradient on the unstable regions of a simply supported beam
with a volume fraction exponent K¼10 is shown in Fig. 11. In this
case, the temperature of the inner metallic surface is held at a
constant value of Tm¼300 1C. The excitation frequency$ is scaled
with the lowest frequency value of parametric resonance calcu-
lated with DT ¼ 0 (or Tc¼300 1C). It can be seen that the unstable
region moves to the left as increase the ceramic surface tempera-
ture (Tc). As it may be expected, the parametric excited frequencies
are reduced as the temperature is increases. However, in this
problem type, the frequencies are not the only ones that diminish
their values; the value of critical load is also affected by the gradient
of temperature. The variation of frequencies and buckling load with
the temperature is shown in Table 8. The natural frequency values
for the beam subjected to a thermal load without mechanical static
load ða¼ 0Þ are denoted by o and for the loaded case ða¼ 0:5Þ is
denoted byO. The influence of the temperature effect is the same in
both frequencies (o and O), and in this example the larger
reduction is about the 15%. While in the buckling load the decrease
is about 28%. The size of the unstable regions is reduced with the
temperature rise and this behavior is due to the relation between
the longitudinal oL and the parametric excited frequency O, see
Fig. 11. The interaction of forced and parametrically excited
vibrations is affected by the temperature gradient. It is observed
that for large excitation load parameter b, the regions of stability



Table 7
Temperature depend coefficients of material properties for ZrO2 and Ti6Al4V.

Properties Material mp0 c0 c1 c2 c3

E (Pa) Ti6Al4V 122.7�109 0 �4.605�10�4 0 0

ZrO2 132.2�109 0 �3.805�10�4
�6.127�10�8 0

n Ti6Al4V 0.2888 0 1.108�10�4 0 0

ZrO2 0.3330 0 0 0 0

r (kg m�3) Ti6Al4V 4420 0 0 0 0

ZrO2 3657 0 0 0 0

a ð3C�1
Þ Ti6Al4V 7.43�10�6 0 7.483�10�4

�3.621�10�7 0

ZrO2 13.6�10�6 0 �1.421�10�3 9.549�10�7 0

k ðW m�1 3CÞ Ti6Al4V 6.10 0 0 0 0

ZrO2 1.78 0 0 0 0

Stable
region

Increase
Temperature

Fig. 11. Instability regions for different temperature values, with K¼10.

Table 8
Influence of temperature on the frequency values (Hz) and buckling loads, for

Tm¼300 1C and K¼10.

T (1C) o O oL Pcr 106 (N)

300 3215.91 2275.25 6190.93 2.13

600 2984.39 2111.54 5961.37 1.83

900 2743.07 1940.90 5719.45 1.54

3 4 5 6 7

0.1

0.2

0.3

0.4

0.5

3

K=1/3
K=1/2

Stable
region

Fig. 12. Unstable boundaries for different values of volume fraction index K and

Tc¼900 1C.

Table 9
Frequency values (Hz) and buckling loads for Tm¼300 1C and Tc¼900 1C.

K o O oL Pcr 106 (N)

1/3 3064.03 2167.95 6326.02 1.71

1/2 3030.62 2144.32 6260.50 1.69

1 2959.81 2094.22 6122.38 1.67

2 2881.59 2038.88 5973.29 1.63

5 2790.75 1974.63 5805.75 1.68
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merge into one. This takes place when [16]:

b¼
ðo2

L�4O2
Þ
2

16O2o2
L

, )

bðTc ¼ 300Þ ¼ 0:098,

bðTc ¼ 600Þ ¼ 0:120,

bðTc ¼ 900Þ ¼ 0:160:

8><
>: ð46Þ

Fig. 12 shows the variation of the main stability regions with
volume fraction exponent for a temperature gradient DT ¼ 600 3C
(i.e. temperature in the metal surface of Tm¼300 1C and in the
ceramic surface of Tc¼900 1C). It can be seen from Table 9 that the
frequency values decrease as the proportion of the ceramic volume
decreases. The interaction of forced and parametrically excited
vibrations is the same for the five material configurations analyzed
(K). The unstable dynamic regions merge into one for the same
dynamic load parameter b¼ 0:15.
5. Conclusions

The dynamic stability behavior of functionally graded thin-
walled beams subjected to axial external force has been investigated
considering the influence of non-conventional effects. The material
properties of the functionally graded beam have been assumed to
vary continuously through the thickness, according to a simple
power law distribution of the volume fraction of the constituents.
The formulation has been based on the context of small strains and
moderate rotations theory of thin-walled beams. The dynamic
stability analysis of a simply supported beam subjected to an axial
periodic force system has been performed by means of Hill’s
method of infinite determinants developed by Bolotin. The effects
of shear deformation, volume fraction index and the interaction
between forced and parametrically excited vibrations on the
boundaries of the unstable regions have been investigated.

From the numerical calculation carried out, it was found that
regions of dynamic stability are generally wider for the first
frequency of parametric resonance. Moreover, the size of the
unstable regions can vary depending on the parameter K, observing
that it enlarges for decreasing values of K. The effect of the
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interaction between forced vibrations and the parametrically
excited vibrations on the unstable regions has been observed to
be considerable, when the excitation frequency is of the same order
than the frequency value of the free longitudinal vibration.
Moreover, the influence of the longitudinal inertia enlarges the
main parametric regions. This effect keeps constant for the three
material configurations analyzed. On the other hand, the shear
deformation effect reduces the frequency values and this effect
remains constant while the dynamical load parameter is increased.
If the transverse shear is neglected an over prediction of the
resonance behavior may be observed, in the sense of shifting the
domain of stability toward higher excitation frequencies. On
the other hand as the temperature gradient grows, the unstable
region of the first parametric resonance moves to the left as a
consequence of the influence of temperature in the diminution of
effective material properties and the buckling loads.
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Appendix A. Definition of shell coefficients

The elastic and thermoelastic coefficients introduced in Eq. (18)
can be calculated with the following expressions:

A11 ¼ A11þð2A12B11B12�A11B2
12�A2

12D11Þ=D,

B11 ¼ B11þðB11B2
12þA12B11D12�A11B12D12�A12B12D11Þ=D,

D11 ¼D11þð2D12B11B12�A11D2
12�B2

12D11Þ=D,

A66 ¼ A66, B66 ¼ B66, D66 ¼D66, ðA:1Þ

T NN ¼ 1þðA12D11�B11B12Þ=D,

T NM ¼ ðA11B12�A12B11Þ=D,

T MN ¼ ðB12D11�B11D12Þ=D,

T MM ¼ 1þðA11D12�B11B12Þ=D,

D¼D11A11�B2
11, ðA:2Þ

where

Aij ¼

Z e=2

�e=2
Qij dn, Bij ¼

Z e=2

�e=2
Qijn dn, Dij ¼

Z e=2

�e=2
Qijn

2 dn: ðA:3Þ
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