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Abstract. A unital `-group .G; u/ is an abelian group G equipped with a translation-
invariant lattice-order and a distinguished element u, called order-unit, whose positive
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1 Introduction

This paper deals with an abelian group G equipped with a translation-invariant
lattice-order and a distinguished order-unit u, i.e., an element whose positive in-
teger multiples eventually dominate each element of G. For brevity, .G; u/ will
be called a unital `-group. We refer to [5, 15] for background. Morphisms in the
category of unital `-groups are known as unital `-homomorphisms: they preserve
the lattice, the group structure and map order-units into order-units. Whenever the
context is clear, we will write for short “isomorphism” instead of “unital `-isomor-
phism”.

Since a categorical equivalence � exists between unital `-groups and the equa-
tional class of MV-algebras (see [20]) one can naturally define free unital `-groups
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(Theorem 2.1), as well as finitely presented unital `-groups. The latter are defined
as usual as the quotients of free finitely generated unital `-groups modulo a finitely
generated congruence. Then every finitely generated unital `-group is the direct
limit (D filtered colimit, in categorical language) of a countable direct system of
finitely presented unital `-groups with surjective connecting unital `-homomor-
phisms. And conversely, the direct limit of any such sequence is a finitely gener-
ated unital `-group.

Two sequences of unital `-groups

.G0; u0/ � .G1; u1/ � � � � and .H0; v0/ � .H1; v1/ � � � � (1.1)

are said to be confluent if there are indices i.1/ < j.1/ < i.2/ < j.2/ < � � � and
surjective unital `-homomorphisms

fi.k/W .Gi.k/; ui.k// � .Hj.k/; vj.k//;

gj.k/W .Hj.k/; vj.k// � .Gi.kC1/; ui.kC1//

such that the composite map gj.k/ıfi.k/ coincides with the map .Gi.k/; ui.k// �
.Gi.kC1/; ui.kC1// and conversely,fi.kC1/ıgj.k/ coincides with .Hj.k/; vj.k//�
.Hj.kC1/; vj.kC1// in (1.1). Then by a standard argument [12, 2, VIII, 4.13–4.15],
the confluence of the two sequences above is sufficient for their direct limits to be
isomorphic. While in general categories confluence is not a necessary condition
for direct limits to be isomorphic, in Theorems 3.1 and 3.3 it is proved that direct
systems of unital `-groups and unital `-homomorphisms with isomorphic limits
are necessarily confluent.

We next deal with finitely generated unital `-groups. In Section 4 we recall the
definition of a weighted abstract simplicial complex, i.e., an (always finite) abstract
simplicial complex K enriched with a weight function from the set of vertices
of K into ¹1; 2; 3; : : :º. Using Alexander stellar operations we introduce suitable
sequences of weighted abstract simplicial complexes, called stellar sequences. In
Section 5 we construct a map assigning to each stellar sequence a unital `-group,
and in Theorem 5.1 we prove that, up to isomorphism, every finitely generated
unital `-group arises from some stellar sequence. In Corollary 5.4 a necessary
and sufficient condition is given to recognize when two stellar sequences yield
isomorphic unital `-groups.

2 Unital `-groups, polyhedra and regular complexes

Lattice-ordered abelian groups with order-unit

A lattice-ordered abelian group (`-group) is a structure .G;C;�; 0;_;^/ such
that .G;C;�; 0/ is an abelian group, .G;_;^/ is a lattice, and x C .y _ z/ D
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.x C y/ _ .x C z/ for all x; y; z 2 G. An order-unit in G (“unité forte” in [5]) is
an element u 2 G having the property that for every g 2 G there is 0 � n 2 Z
such that g � nu. A unital `-group .G; u/ is an `-group G with a distinguished
order-unit u.

By an `-ideal I of .G; u/we mean the kernel of a unital `-homomorphism. Any
such I determines the (quotient) unital `-homomorphism .G; u/ ! .G; u/=I in
the usual way [5, 15].

We let M.Œ0; 1�n/ denote the unital `-group of piecewise linear continuous func-
tions f W Œ0; 1�n ! R such that each piece of f has integer coefficients, with the
constant function 1 as a distinguished order-unit. The number of pieces is always
finite; “linear” is to be understood in the affine sense.

More generally, for any nonempty subset X � Œ0; 1�n we denote by M.X/ the
unital `-group of restrictions to X of the functions in M.Œ0; 1�n/, with the constant
function 1 as the order-unit. For every f 2 M.X/ we let Z.f / D f �1.0/. For
every `-ideal I of M.X/ we let Z.I / D ¹Y � X j 9g 2 I with Y D Z.g/º.

The coordinate functions �i W Œ0; 1�n ! R (i D 1; : : : ; n), together with the
unit 1, generate the unital `-group M.Œ0; 1�n/. They are said to be a free generating
set of M.Œ0; 1�n/ because they have the following universal property:

Theorem 2.1 ([20, 4.16]). Let ¹g1; : : : ; gnº � Œ0; u� be a set of generators of a
unital `-group .G; u/. Then the map �i 7! gi can be uniquely extended to a unital
`-homomorphism of M.Œ0; 1�n/ onto .G; u/.

Corollary 2.2. Up to isomorphism, every finitely generated unital `-group has the
form M.Œ0; 1�n/ =I for some n D 1; 2; : : : and `-ideal I of M.Œ0; 1�n/.

Rational polyhedra, complexes and regularity

Following [25, p. 4], by a polyhedron P � Rn we mean a finite union of convex
hulls of finite sets of points in Rn. A rational polyhedron is a finite union of convex
hulls of finite sets of rational points in Rn, n D 1; 2; : : : . An example of a rational
polyhedron P � Œ0; 1�n is given by the zeroset Z.f / of any f 2 M.Œ0; 1�n/.
In Propositions 2.4 and 2.6 below we will see that this is the most general possible
example.

As an immediate consequence of the definitions we have

Lemma 2.3. If P D P1 � P2 � P3 � � � � is a sequence of nonempty rational
polyhedra in the n-cube, then the set

hP i D ¹f 2M.Œ0; 1�n/ j Z.f / � Pi for some i D 1; 2; : : :º

is an `-ideal of M.Œ0; 1�n/.



4 M. Busaniche, L. Cabrer and D. Mundici

For any rational point y 2 Rn we denote by den.y/ the least common denom-
inator of the coordinates of y. The integer vector Qy D den.y/.y; 1/ 2 ZnC1

is called the homogeneous correspondent of y. For every rational m-simplex
T D conv.v0; : : : ; vm/ � Rn, we will use the notation

T " D R�0 Qv0 C � � � CR�0 Qvm

for the positive span of Qv0; : : : ; Qvm in RnC1.

We refer to [14] for background on simplicial complexes. Unless otherwise
specified, every complex K in this paper will be simplicial, and the adjective
“simplicial” will be omitted. For every complex K , its support jKj is the pointset
union of all simplexes of K . We say that the complex K is rational if all simplexes
of K are rational: in this case, the set

K" D ¹T " j T 2Kº

is known as a simplicial fan [14].
A rational m-simplex T D conv.v0; : : : ; vm/ � Rn is regular if ¹ Qv0; : : : ; Qvmº

is part of a basis in the free abelian group ZnC1. A rational complex � is said to
be regular if every simplex T 2 � is regular. In other words, the fan�" is regular
[14, V, §4].

For later use we recall here some results about regular complexes and rational
polyhedra. For the proofs we refer to [18] and [22], where regular complexes are
called “unimodular triangulations”.

Proposition 2.4 ([18, 5.1]). A set X � Œ0; 1�n coincides with the support of some
regular complex � iff X D Z.f / for some f 2M.Œ0; 1�n/.

Proposition 2.5 ([18, 5.2]). A unital `-group .G; u/ is finitely presented iff there
exists a rational polyhedron P 2 Œ0; 1�n such that .G; u/ Š M.P / for some
n 2 ¹1; 2; : : :º.

Proposition 2.6 ([22, p. 539]). Any rational polyhedron P � Œ0; 1�n is the support
of some regular complex �.

Subdivision, blow-up, Farey mediant

Given complexes K and H with jKj D jH j we say that H is a subdivision
of K if every simplex of H is contained in a simplex of K . For any point p 2
jKj � Rn, the blow-up K.p/ of K at p is the subdivision of K given by replacing
every simplex T 2 K that contains p by the set of all simplexes of the form
conv.F [¹pº/, where F is any face of T that does not contain p (see [14, III, 2.1]
or [26, p. 376]).
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For any regular 1-simplex E D conv.v0; v1/ � Rn, the Farey mediant of E
is the rational point v of E whose homogeneous correspondent Qv coincides with
Qv0 C Qv1. If E belongs to a regular complex � and v is the Farey mediant of E,
then the blow-up �.v/, called binary Farey blow-up, is a regular complex.

Proposition 2.7. Suppose we are given rational polyhedraQ � P � Œ0; 1�n and a
regular complex � with support P . Then there is a subdivision �\ of � obtained
by binary Farey blow-ups such that Q D

S
¹T 2 �\ j T � Qº.

Proof. We closely follow the argument of the proof in [22, p. 539]. Let us write
Q D T1 [ � � � [ Tt for suitable rational simplexes. Let H D ¹H1; : : : ;Hhº be
a set of rational half-spaces in Rn such that every Tj is the intersection of half-
spaces of H . Using the De Concini–Procesi theorem [14, p. 252], we obtain a
sequence of regular complexes � D �0; �1; : : : ; �r where each �kC1 is ob-
tained by blowing-up �k at the Farey mediant of some 1-simplex of �k , and for
each i D 1; : : : ; h, the convex polyhedron Hi \ Œ0; 1�n is a union of simplexes
of �r . It follows that each simplex T1; : : : ; Tt is a union of simplexes of �r .
Now �\ D �r yields the desired subdivision of �.

The following proposition states that every `-ideal I of M.P / is uniquely de-
termined by the zerosets of all functions in I :

Proposition 2.8. Suppose that P � Œ0; 1�n is a rational polyhedron and I is an
`-ideal of M.P /. Then for every f 2M.P / we have f 2 I iff Z.f / � Z.g/ for
some g 2 I .

Proof. For the nontrivial direction, suppose Z.f / � Z.g/ and without loss of
generality, g � 0, and f � 0. We must find 0 � m 2 Z such that mg � f .
By Proposition 2.6, P is the support of some regular complex ƒ. By suitably
subdividing ƒ, we obtain a rational (simplicial but not necessarily regular) com-
plex � with j�j D P such that over every T 2 � both f and g are linear. Let
¹v1; : : : ; vsº be the vertices of �. For each i D 1; : : : ; s, since f .vi / ¤ 0 implies
g.vi / ¤ 0, there exists an integer mi > 0 such that mig.vi / � f .vi /. Letting
m D max.m1; : : : ; ms/, the desired result follows from the linearity of f and g
over each simplex of �.

Proposition 2.9. Let I be an `-ideal of M.Œ0; 1�m/ and P 2 Z.I /. Let further

(i) I jJP D ¹f jJP j f 2 I º,

(ii) Z.I /\P D ¹X \ P j X 2 Z.I /º,

(iii) Z.I /�P D ¹X 2 Z.I / j X � P º.

Then Z.I jJP / D Z.I /\P D Z.I /�P .
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Proof. ŒZ.I /\P � Z.I /�P �: Let X 2 Z.I /\P . By definition of Z.I /\P , there
exists f 2 I such that X D Z.f / \ P . Combining Propositions 2.4 and 2.6
there exists g 2 M.Œ0; 1�m/ such that P D Z.g/. Since P 2 Z.I /, g 2 I by
Proposition 2.8. Therefore, jf j C jgj 2 I and X D Z.f / \ P D Z.jf j/ \

Z.jgj/ D Z.jf j C jgj/ 2 Z.I /�P .
The inclusions ŒZ.I /�P � Z.I /\P �, ŒZ.I jJP / � Z.I /\P �, and ŒZ.I /\P �

Z.I jJP /� immediately follow by definition.

3 Z-homeomorphism of rational polyhedra

Given rational polyhedra P � Rm and Q � Rn, a piecewise linear homeomor-
phism � of P onto Q is said to be a Z-homeomorphism, in symbols, �WP ŠZ Q,
if all linear pieces of � and ��1 have integer coefficients.

The following first main result of this paper highlights the mutual relations be-
tween Z-homeomorphisms of polyhedra and isomorphisms of finitely generated
unital `-groups, as represented by Corollary 2.2:

Theorem 3.1. For any `-ideals I of M.Œ0; 1�m/ and J of M.Œ0; 1�n/ the following
conditions are equivalent:

(i) M.Œ0; 1�m/ =I ŠM.Œ0; 1�n/ =J .

(ii) For some P 2 Z.I /, Q 2 Z.J / and Z-homeomorphism � of P onto Q, the
map X 7! �.X/ sends Z.I /\P one-one onto Z.J /\Q.

Proof. (i) ) (ii) Let �WM.Œ0; 1�m/ =I Š M.Œ0; 1�n/ =J , and � D ��1. Let idm
denote the identity .�1; : : : ; �m/ over the m-cube, and idn the identity over the
n-cube. Each element �i=I 2 M.Œ0; 1�m/ =I is sent by � to some element ai=J
of M.Œ0; 1�n/ =J . Writing Œ0; 1� 3 ..ai=J / _ 0/ ^ 1 D ..ai _ 0/ ^ 1/=J; and
replacing, if necessary, ai by .ai _ 0/^ 1, it is no loss of generality to assume that
ai belongs to the unit interval of M.Œ0; 1�n/, i.e., the range of ai is contained in
the unit interval Œ0; 1�. Thus for a suitable m-tuple a D .a1; : : : ; am/ of functions
ai 2 M.Œ0; 1�n/ we have aW Œ0; 1�n ! Œ0; 1�m. Symmetrically, for some b D
.b1; : : : ; bn/W Œ0; 1�

m ! Œ0; 1�n, bj 2M.Œ0; 1�m/, we can write

�W idm =I 7! a=J and �W idn =J 7! b=I: (3.1)

For any f 2 M.Œ0; 1�m/ and g 2 M.Œ0; 1�n/, arguing by induction on the num-
ber of operations in f and g in the light of Theorem 2.1, we get the following
generalization of (3.1):

�Wf=I 7! .f ı a/=J and �Wg=J 7! .g ı b/=I: (3.2)
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It follows that
f

I
D .� ı �/

f

I
D �

�
�

�
f

I

��
D �

�
f ı a

J

�
D
f ı a ı b

I
:

By definition of the congruence induced by I , for each i D 1; : : : ; m the function
j�i � ai ı bj D j�i � �i ı a ı bj belongs to I . Here, as usual, j � j denotes
absolute value. It follows that the function e D

Pm
iD1 j�i � ai ı bj belongs to

I , and its zeroset Z.e/ belongs to Z.I /. The set P D Z.e/ satisfies the identity
P D ¹x 2 Œ0; 1�m j .a ı b/.x/ D xº. One similarly notes that the set Q D ¹y 2
Œ0; 1�n j .b ı a/.y/ D yº belongs to Z.J /. By construction, the restriction of b to
P provides a Z-homeomorphism � of P ontoQ, whose inverse � is the restriction
of a to Q. In symbols,

b jJP D �WP ŠZ Q; a jJQ D � WQ ŠZ P: (3.3)

Suppose X 2 Z.I /\P , with the intent of proving �.X/ 2 Z.J /\Q. By Propo-
sition 2.9, we can write X D Z.k jJP / for some k 2 I . By (3.2), the composite
function k ı a belongs to J . Thus �.X/ D �.Z.k jJP // D Z..k jJP / ı �/ D

Z.k ı a jJQ/ D Q\Z.k ı a/ 2 Z.J /\Q. Reversing the roles of � and � we have
the required one-one correspondence X 7! �.X/ between Z.I /\P and Z.J /\Q.

(ii)) (i) Let IP (resp., letJQ) be the `-ideal of M.Œ0; 1�m/ (resp., of M.Œ0; 1�n/)
given by all functions identically vanishing over P (resp., over Q). By [18, 5.2],
we have isomorphisms

˛WM.P / ŠM.Œ0; 1�m/ =IP with ˛.I jJP / D I=IP (3.4)

and

ˇWM.Q/ ŠM.Œ0; 1�n/ =JQ with ˇ.J jJQ/ D J=JQ: (3.5)

As a particular case of a general algebraic result (sometimes called “the second
isomorphism theorem”), the map f=IP

I=IP
7!

f
I

is an isomorphism of M.Œ0;1�m/ =IP

I=IP

onto M.Œ0;1�m/
I

. From (3.4)–(3.5) we have isomorphisms

M.Œ0; 1�m/
I

Š
M.Œ0; 1�m/ =IP

I=IP
Š

M.P /

I jJP
(3.6)

and
M.Œ0; 1�n/

J
Š

M.Œ0; 1�n/ =JQ
J=JQ

Š
M.Q/

J jJQ
: (3.7)

Letting � D ��1, we have � WQ ŠZ P and the map �W k 7! k ı � is an iso-
morphism of M.P / onto M.Q/. Further, the map Y 7! �.Y / sends Z.J /\Q D

Z.J jJQ/ one-one onto Z.I /\P D Z.I jJP /.
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Claim. The restriction of � to the `-ideal I jJP of M.P / maps I jJP one-one onto
J jJQ. Thus the map

k

I jJP
7!

�.k/

�.I jJP /

defines an isomorphism of M.P /=.I jJP / onto M.Q/=.J jJQ/.

By Proposition 2.9, for each l 2 M.P / if l 2 I jJP , then Z.l/ 2 Z.I jJP / D

Z.I /\P . Thus by definition of �, Z.�.l// D Z.l ı �/ D �.Z.l// 2 Z.J /\Q.
By Proposition 2.8, �.l/ 2 J jJQ. Reversing the roles of � and ��1, our claim is
settled.

Combining (3.6)–(3.7) and our claim above we have isomorphisms

M.Œ0; 1�m/
I

Š
M.P /

I jJP
Š

M.Q/

J jJQ
Š

M.Œ0; 1�n/
J

;

as required to conclude the proof.

Using Theorem 3.1, in Theorem 3.3 below we will show that confluence is a
necessary condition for two direct systems of finitely presented unital `-groups to
have isomorphic direct limits. For the proof we prepare

Corollary 3.2. Let P � Œ0; 1�m and Q � Œ0; 1�n be rational polyhedra.

(i) M.P / ŠM.Q/ if and only if P ŠZ Q.

(ii) If � is a Z-homeomorphism ofQ onto some rational polyhedron R � P , the
map f 7! f ı � is a unital `-homomorphism of M.P / onto M.Q/.

(iii) For every unital `-homomorphism h of M.P / onto M.Q/ there exists a
unique Z-homeomorphism � of Q onto some rational polyhedron R � P

such that h.f / D f ı � for each f 2M.P /.

Proof. (i) Let IP D ¹f 2 M.Œ0; 1�m/ j Z.f / � P º and JQ D ¹g 2 M.Œ0; 1�n/ j
Z.g/ � Qº. By [18, 5.2], the maps ˛Wf jJP 7! f=IP and ˇWg jJQ 7! g=JQ are
isomorphisms of M.P / onto M.Œ0; 1�m/ =IP and of M.Q/ onto M.Œ0; 1�n/ =JQ,
respectively. An application of Theorem 3.1 now settles (i).

(ii) By (i), M.R/ ŠM.Q/. Let us define now the map �WM.R/!M.Q/ by

�Wf 7! f ı �:

Then the proof of Theorem 3.1 shows that � is an isomorphism of M.R/ onto
M.Q/. The map �Wg 7! g jJR is an `-homomorphism of M.P / onto M.R/. Thus

� ı �.f / D .f jJR/ ı � D f ı �
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for each f 2 M.P /, and the map f 7! f ı � is a unital `-homomorphism of
M.P / onto M.Q/.

(iii) With reference to (i), let the unital `-homomorphism h0 of M.Œ0; 1�m/ onto
M.Œ0; 1�n/ =JQ be defined by h0.f / D ˇ.h.f jJP //. Letting I denote the kernel
of h0, it follows that IP � I and the map �Wf=I 7! h0.f / is an isomorphism
of M.Œ0; 1�m/ =I onto M.Œ0; 1�n/ =JQ. By Theorem 3.1, there exist S 2 Z.I /,
T 2 Z.JQ/ and a Z-homeomorphism � of S onto T such that the mapX 7! �.X/

sends Z.I /\S one-one onto Z.JQ/\T . By definition of JQ and Proposition 2.6,
Q is the smallest element of Z.JQ/, whence R D ��1.Q/ is the smallest element
of Z.I /\S . In the proof of Theorem 3.1, a map aW Œ0; 1�n ! Œ0; 1�m is introduced
having the property that �.f =I / D .f ı a/=JQ and ��1 D a jJT for each f 2
M.Œ0; 1�m/. Since Q � T , for each f 2M.Œ0; 1�m/ we can write

h.f jJP / D ˇ�1.h0.f // D ˇ�1.�.f =I // D ˇ�1..f ı a/=JQ/ D .f ı a/ jJQ

D f ı .��1 jJQ/:

Let us define � D ��1 jJQ. Then � WQ ŠZ R, R � P \ S � P and h.f jJP / D
f ı� . Finally, the uniqueness of � follows from the separation property [20, 4.17],
stating that for any two distinct points x; y 2 P there is f 2M.P /with f .x/ D 0
and f .y/ > 0.

Theorem 3.3. Given direct systems S and T of finitely presented unital `-groups
with surjective connecting unital `-homomorphisms

S D .G0; u0/
f1� .G1; u1/

f2� .G2; u2/ � � � ;

T D .H0; v0/
g1� .H1; v1/

g2� .H2; v2/ � � � ;

let .G; u/ and .H; v/ denote their respective direct limits. Then the following
conditions are equivalent:

(i) .G; u/ Š .H; v/.

(ii) S and T are confluent.

Proof. (ii)) (i) was dealt with in the Introduction. For the converse implication,
Proposition 2.5 yields rational polyhedra P0; P1; : : : such that M.Pi / Š .Gi ; ui /

for each i D 0; 1; 2; : : : . Let �i WPi ŠZ �i .Pi / � Pi�1 be the Z-homeomorphism
associated to each fi , as given by Corollary 3.2. Let the sequence P be defined by

P D P 00 � P
0
1 � P

0
2 � � � � ;
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where P 00 D P0 � Œ0; 1�
m and P 0i D �1 ı � � � ı �i .Pi / for each i D 1; 2; : : : . Once

more from Corollary 3.2 we get

.Gi ; ui / ŠM.Pi / ŠM.P 0i /: (3.8)

It follows that .G; u/ Š M.Œ0; 1�m/ =hP i. Applying the same construction to T

we obtain a sequence

Œ0; 1�n � Q0
�1
 Q1

�2
 Q2

�3
 � � � ;

where for each i , .Hi ; vi / Š M.Qi / and �i is a Z-homeomorphism of Qi onto
�i .Qi / � Qi�1. Let Q D Q00 � Q01 � Q02 � � � � , where Q00 D Q0 and
Q0i D �1 ı � � � ı �i .Qi / for each i D 1; 2; : : : . It follows that

.Hi ; vi / ŠM.Qi / ŠM.Q0i / and .H; v/ ŠM.Œ0; 1�n/ =hQi: (3.9)

By hypothesis, M.Œ0; 1�m/ =hP i Š .G; u/ Š .H; v/ Š M.Œ0; 1�n/ =hQi: By The-
orem 3.1, there exist P 2 hP i, Q 2 hQi and a Z-homeomorphism �WP ŠZ Q

sending Z.hP i/\P one-one onto Z.hQi/\Q. By definition of hP i and hQi, there
exist P 0

k
and Q0

l
such that P 0

k
� P and Q0

l
� Q. Thus, for each i � k there

exists i 0 such that ��1.Q0i 0/ � P 0i . Reversing the roles of � and ��1 it follows
that for each j � l there exists j 0 such that �.P 0j 0/ � Q0j . Summing up, there
are indices i.1/ < j.1/ < i.2/ < j.2/ < � � � such that �.P 0

i.k/
/ � Q0

j.k/
and

��1.Q0
j.k/

/ � P 0
i.kC1/

for each k D 1; 2; : : : . The desired result now follows
from (3.8) and (3.9), in view of Corollary 3.2.

4 Weighted abstract simplicial complexes

Let us recall that a (finite) abstract simplicial complex is a pairH D .V; †/ where
V is a finite nonempty set, whose elements are called the vertices ofH , and † is a
collection of subsets of V whose union is V, and with the property that every sub-
set of an element of † is again an element of †. Following Alexander [2, p. 298],
given a two-element set ¹v;wº 2 † and a 62 V we define the binary subdivi-
sion .¹v;wº; a/ ofH as the abstract simplicial complex .¹v;wº; a/H obtained by
adding a to the vertex set, and replacing every set ¹v;w; u1; : : : ; utº 2 † by the
two sets ¹v; a; u1; : : : ; utº and ¹a;w; u1; : : : ; utº and their subsets. A weighted
abstract simplicial complex is a triple W D .V; †; !/ where .V; †/ is an abstract
simplicial complex and ! is a map of V into the set ¹1; 2; 3; : : :º. For ¹v;wº 2 †
and a 62 V, the binary subdivision .¹v;wº; a/W is the abstract simplicial complex
.¹v;wº; a/.V; †/ equipped with the weight function Q!WV [ ¹aº ! ¹1; 2; 3; : : :º
given by Q!.a/ D !.v/C !.w/ and Q!.u/ D !.u/ for all u 2 V.
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For every regular complex ƒ, the skeleton of ƒ is the weighted abstract simpli-
cial complex Wƒ D .V; †; !/ given by the following stipulations:

(i) V D vertices of ƒ.

(ii) For every vertex v of ƒ, !.v/ D den.v/.

(iii) For every subsetW D ¹w1; : : : ; wkº of V,W 2 † iff conv.w1; : : : ; wk/ 2ƒ.

Given two weighted abstract simplicial complexes W D .V ; †; !/ and W 0 D
.V 0; †0; !0/ we write

 WW Š W 0;

and we say that  is a combinatorial isomorphism between W and W 0, if  is
a one-one map from V onto V0 such that !0..v// D !.v/ for all v 2 V, and
¹w1; : : : ; wkº 2 † iff ¹.w1/; : : : ; .wk/º 2 †0 for each subset ¹w1; : : : ; wkº
of V.

Definition 4.1. Let W be a weighted abstract simplicial complex and r a regular
complex. Then a r-realization of W is a combinatorial isomorphism � between
W and the skeleton Wr of r. We write �WW ! r to mean that � is a r-reali-
zation of W .

For any regular complex ƒ, the identity function over the set of vertices of ƒ is
a ƒ-realization of Wƒ, called the trivial realization of the skeleton Wƒ.

Symmetrically, let W D .V; †; !/ be a weighted abstract simplicial complex
with vertex set V D ¹v1; : : : ; vnº. For e1; : : : ; en the standard basis vectors of Rn,
let �W be the complex whose vertices are

v01 D e1=!.v1/; : : : ; v
0
n D en=!.vn/;

and whose k-simplexes (k D 0; : : : ; n) are given by

conv.v0i.0/; : : : ; v
0
i.k// 2 �W iff ¹vi.0/; : : : ; vi.k/º 2 †:

Note that �W is a regular complex and j�W j � Œ0; 1�n. The function

Q�W vi 2 V 7! v0i 2 Œ0; 1�
n (4.1)

is a�W -realization ofW , called the canonical realization of W . The dependence
on the order in which the elements ¹v1; : : : ; vnº are listed, is tacitly understood.

For later purposes, we record here the following trivial property of linear
Z-homeomorphisms.

Lemma 4.2. Let T D conv.v0; : : : ; vk/ � Rm and U D conv.w0; : : : ; wk/ � Rn

be regular k-simplexes. If den.vi / D den.wi / for all i D 0; : : : ; k, then there is
precisely one linear Z-homeomorphism �T of T onto U such that �T .vi / D wi
for all i .
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Lemma 4.3. Let ƒ and r be regular complexes, with jƒj � Rm and jrj � Rn.
We then have:

(i) If � WWƒ Š Wr is a combinatorial isomorphism between the skeletons of
ƒ and r, then there is a Z-homeomorphism �� of jƒj onto jrj such that
�� .v/ D �.v/ for each vertex v of ƒ, and �� is linear over each simplex
of ƒ.

(ii) Letting r D �Wƒ
, it follows that the combinatorial isomorphism Q� of (4.1)

betweenWƒ andWr uniquely extends to a Z-homeomorphism �Q� of jƒj onto
jrj such that �Q� is linear over each simplex of ƒ.

Stellar transformations

Let W D .V ; †; !/ and W 0 be two weighted abstract simplicial complexes.
A map [ W W ! W 0 is called a stellar transformation if [ is either a deletion
of a maximal set of †, or a binary subdivision, or else [ is the identity map.

A sequence W D .W0; W1; : : :/ of weighted abstract simplicial complexes is
stellar if WjC1 is obtained from Wj by a stellar transformation.

Recalling Definition 4.1 we have

Lemma 4.4. Let W D .V ; †; !/ and W 0 D .V 0; †0; !0/ be two weighted ab-
stract simplicial complexes, � a regular complex, and � a �-realization of W ,
�WW ! �. Suppose that [WW ! W 0 is a stellar transformation.

(i) In case [ deletes a maximal set M 2 †, let [.�/W� ! �0 delete from � the
corresponding maximal simplex conv.�.M//. Then the map �0 D � jJV 0 is a
�0-realization of W 0.

(ii) In case [ is the binary subdivision W 0 D .¹a; bºc/W at some two-element
set E D ¹a; bº 2 †, and c 62 V , let e be the Farey mediant of the 1-simplex
conv.�.E//. Let [.�/ be the Farey blow-up �0 D �.e/ of � at e. Then the
map �0 D � [ ¹.c; e/º is a �0-realization of W 0.

Further, we have a commutative diagram

W
[
�! W 0??y� ??y�0

�
[.�/
�! �0:

We say that [.�/ is the �-transformation of [. (It is tacitly understood that if [ is
the identity map, then [.�/ W �! �0 is the identity function.)
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5 Construction of the map W 7! G .W /

In this section we will construct a map W 7! G .W/, from stellar sequences to
unital `-groups and prove that the map is onto all finitely generated unital `-groups.

Main construction

Let W D W0; W1; : : : be a stellar sequence. For each j D 0; 1; : : : let [j be
the corresponding stellar transformation sending Wj to WjC1. For some n � 1

and regular complex �0 in the n-cube let �0 be a �0-realization of W0. Then
Lemma 4.4 yields a commutative diagram

W0
[0
�! W1

[1
�! W2 : : :??y�0 ??y�1 ??y�2

�0
[0.�0/
�! �1

[1.�1/
�! �2 : : : :

(5.1)

The sequence of supports j�0j � j�1j � � � � is called the �0-orbit of W and
is denoted O.W ; �0/ (the role of �0 being tacitly understood). As in Lemma 2.3,
the filtering set O.W ; �0/ determines the `-ideal I.W ; �0/ D hO.W ; �0/i of
M.Œ0; 1�n/, as well as the unital `-group G .W ; �0/ D M.Œ0; 1�n/ =I.W ; �0/: In
the particular case when �0 is the canonical realization of W0 we write O.W/,
I.W/, G .W/ instead of O.W ; �W0

/, I.W ; �W0
/, G .W ; �W0

/.

Theorem 5.1. For every finitely generated unital `-group .G; u/ there is a stellar
sequence W such that G .W/ Š .G; u/.

As a preliminary step for the proof we need the following immediate conse-
quence of the definitions:

Lemma 5.2. For any weighted abstract simplicial complex W and regular com-
plexes r and �, let � be a r-realization of W , and � a �-realization of W .
Let � W jrj ! j�j be the Z-homeomorphism of Lemma 4.3 corresponding to the
combinatorial isomorphism  D � ı ��1. Suppose the stellar transformation [
transforms W into W 0. Let the commutative diagram

�
[.�/
�! �0x??� x??�0

W
[
�! W 0??y� ??y�0

r
[.�/
�! r 0

(5.2)
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be as in Lemma 4.4. Let further  0 D �0 ı �0�1, and � 0 be the Z-homeomorphism
of jr 0j onto j�0j given by Lemma 4.3. Then � jJjr 0j D � 0 , whence in particular
� 0 is linear over each simplex of jr 0j.

We next prove

Lemma 5.3. Let W D W0; W1; : : : be a stellar sequence. Let �0 be a �0-reali-
zation of W0 and �0 be a r0-realization of W0. Then G .W ; �0/ Š G .W ;r0/:

Proof. Let us write for short I D I.W ; �0/, J D I.W ;r0/. By definition of
realization, there is a combinatorial isomorphism � of W�0

onto Wr0
. By Lem-

ma 4.3 (i), � can be extended to a Z-homeomorphism � of j�0j onto jr0j, which
is linear over each simplex of �0. Lemma 5.2 now yields Z-homeomorphisms

�i D � jJ j�i j W j�i j ŠZ jri j; i D 0; 1; 2; : : : ;

with � jJj�i j linear on every simplex of�i . In other words, we have a commutative
diagram

j�0j
i1
 - j�1j

i2
 - j�2j : : :

�0

??yx??��1
0

�1

??yx??��1
1

�2

??yx??��1
2

jr0j
j1

 - jr1j
j2

 - jr2j : : :

where, for each k D 1; 2; : : :, ik W j�kj ,! j�k�1j and jk W jrkj ,! jrk�1j are the
inclusion maps. Corollary 3.2 ensures that the following diagram is commutative:

M.j�0j/
g1� M.j�1j/

g2� M.j�2j/ : : :

˛�1
0

??yx??˛0 ˛�1
1

??yx??˛1 ˛�1
2

??yx??˛2

M.jr0j/
h1� M.jr1j/

h2� M.jr2j/ : : : :

(5.3)

Here gk WM.j�k�1j/ � M.j�kj/ (resp., hk WM.jrk�1j/ � M.jrkj/) are de-
fined by gk.f / D f jJj�kj (resp., hk.f / D f jJjrkj), and ˛k WM.j�kj/ Š
M.jrkj/ are the isomorphisms defined by ˛k.f / D f ı �k D f ı � jJj�kj.

To conclude the proof we observe that G .W ; j�0j/ and G .W ; jr0j/ respectively
are the direct limits of the direct systems

M.j�0j/
g1� M.j�1j/

g2� M.j�2j/ : : :

and
M.jr0j/

h1� M.jr1j/
h2� M.jr2j/ : : : :

From (5.3) it follows that G .W ; j�0j/ Š G .W ; jr0j/, and the proof is complete.
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Proof of Theorem 5.1. By Corollary 2.2, there exists an integer n > 0 such that
.G; u/ is isomorphic to M.Œ0; 1�n/ =I for some `-ideal I of M.Œ0; 1�n/. We list
the elements of I in a sequence f0; f1; : : : . Let Pi D

Ti
jD0Z.fi /, for each

i D 0; 1; 2; : : : .
Since Z.fi / 2 Z.I / and Z.I / is closed under finite intersections, Pi belongs

to Z.I /. Moreover, for each f 2 I there is j D 0; 1; 2; : : : such that Pj � Z.f /.
Thus,

h¹P0; P1; : : :ºi D I: (5.4)

By Proposition 2.6, P0 is the support of a regular complex �0. Proposition 2.7
yields a finite sequence of regular complexes �0;0; �0;1; : : : ; �0;k0

having the
following properties:

(i) �0;0 D �0;

(ii) for each t D 1; 2; : : :, �0;t is obtained by blowing-up �0;t�1 at the Farey
mediant of some 1-simplex E 2 �0;t�1;

(iii) P1 is a union of simplexes of �0;k0
.

Let the sequence of regular complexes �0;k0
; �0;k0C1; : : : ; �0;r0

be obtained by
the following procedure: for each i > 0, delete in�0;k0Ci�1 a maximal simplex T
which is not contained in P1; denote by�0;k0Ci the resulting complex; stop when
no such T exists. Then the sequence of skeletons W�0;0

; : : : ; W�0;k0
; : : : ; W�0;r0

is a finite initial segment of a stellar sequence and j�0;r0
j D P1. Let us write

�1;0 instead of �0;r0
. Proceeding inductively, we obtain a sequence S of regular

complexes
S D �0;0; : : : ; �1;0; : : : ; �2;0; : : : ; �j;0; : : :

such that Pj D j�j;0j for each j D 0; 1; 2; : : : .

To conclude the proof, let W be the stellar sequence given by the skeletons of
the regular complexes in S . Let � be the trivial�0-realization of the skeletonW�0

of �0. Recalling (5.4) we get

I.W ; �0/ D hO.W ; �0;0/i

D h¹j�0;0j; : : : ; j�1;0j; : : : ; ºi D h¹P0; P1; : : :ºi D I:

An application of Lemma 5.3 yields

G .W/ Š G .W ; �0/ DM.Œ0; 1�n/ =I.W ; �0/ DM.Œ0; 1�n/ =I Š .G; u/;

which concludes the proof of Theorem 5.1.
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The following is an immediate consequence of Theorem 3.3:

Corollary 5.4. For any two stellar sequences W and NW let us write O.W/ D

j�0j � j�1j � � � � , and O. NW/ D j N�0j � j N�1j � : : : . Then the following
conditions are equivalent:

(i) G .W/ Š G . NW/.

(ii) For some integer i � 0 there is a Z-homeomorphism � of j�i j such that
h¹�.j�i j/; �.j�iC1j/; : : :ºi D hO. NW/i.

6 Concluding remarks

6.1 Relations with Beynon’s work

In his Ph.D. thesis, [4, Lemma 1, pp. 173–174], Beynon proves that confluence
is a necessary condition for the isomorphism of the direct limit of two sequences
of finitely presented `-groups. From the 20 lines of his self-contained proof we
have been unable to extract any simplifying argument for our Theorems 3.1–3.3.
This should come as no surprise: the proofs of several results in the theory of
finitely presented `-groups need not have an analog for finitely presented unital
`-groups—and vice-versa. Here are some typical examples:

� By Baker–Beynon duality theory, finitely generated projective `-groups are the
same as finitely presented `-groups. As shown in [8], finitely generated projective
unital `-groups are a tiny fragment of finitely presented ones.

� Baker–Beynon duality also yields a correspondence between abstract simplicial
complexes A and finitely presented `-groups G, such that G is isomorphic to G0

iff A and A0 are connected by a path of Alexander stellar moves. This follows
from the main result of Alexander’s classical paper [2]. Stellar moves are a gen-
eralization of the binary subdivisions considered in this paper, and their inverses.
By contrast, the results of this paper yield, as a particular case, a correspondence
between finitely presented unital `-groups .G; u/ and weighted abstract simplicial
complexes W , in such a way that .G; u/ is isomorphic to .G0; u0/ iff the regu-
lar fans corresponding to W and W 0 are connected by a path of regular blow-ups
and blow-downs. This follows from the proof of the weak Oda conjecture by
Włodarczyk–Morelli, [26, 19].

� As proved in [22], every finitely presented unital `-group has a faithful invariant
positive unital homomorphism into R, but no finitely presented `-group G has a
faithful invariant positive homomorphism into R, unless G is a finite product of
integers with the product ordering.
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� The isomorphism problem of finitely presented `-groups is undecidable. The
(un)decidability of the isomorphism problem for finitely presented unital `-groups
is open. As shown in [1] for finitely presented unital `-groups with one-dimen-
sional maximal spectral space, weighted abstract simplicial complexes and their
connectability may be a key tool to settle this problem (also see [23]).

6.2 Relations with Elliott classification

Up to isomorphism, every stellar sequence W determines a unique AF C*-algebra
A D AW via the map

W 7! G .W/ 7! K�10 .G .W//;

where K0.A/ is the unital dimension group of A, [16]. Combining Elliott classifi-
cation [13, 16] with Theorem 5.1, it follows that the range of the map W 7! AW

coincides (up to isomorphism) with the class of unital AF C*-algebras A whose
dimension group K0.A/ is lattice-ordered and finitely generated. Various impor-
tant AF C*-algebras existing in the literature belong to this class, including the
Behnke–Leptin algebra with a two-point dual [3], the Effros–Shen algebras [11],
and various algebras considered in [9] and [24], the universal AF C*algebra M1

of [21] (D the algebra A of [6], see [23]). Corollary 5.4 provides a simple cri-
terion to recognize when two stellar sequences W and W 0 determine isomorphic
AF C*-algebras AW and AW 0 . This criterion is a simplification of the equivalence
criterion for Bratteli diagrams, [7, 2.7]. The proof of Theorem 5.1 crucially uses
Proposition 2.7, which is an affine variant of the De Concini–Procesi theorem on
the elimination of points of indeterminacy in toric varieties.

Acknowledgments. We are very grateful to the referee for his careful reading of
an earlier version of this paper, for his illuminating remarks, and for drawing our
attention to references [1], [4] and [12]. Now he might be considered as a fourth
co-author of this paper.
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