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In the present paper we extend the results of [4] by completely character-
izing dual canonical subvarieties of BL-algebras. These are subvarieties
of algebras that satisfy the equation xk = xk+1 for some integer k ≥ 1.
As a corollary we get a full description of subvarieties of BL-algebras that
admit completions.
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1 INTRODUCTION

A lattice-based algebra A is called complete if its lattice reduct is complete,
i.e., the join and the meet of any subset of the universe A of A exist. A variety
V of lattice-based algebras is said to admit completions if for every algebra
A ∈ V there is a complete algebra B ∈ V and an embedding φ : A →
B. Completions of algebras have proved to be powerful tools to deal with
completeness theorems in logic.

Basic Fuzzy Logic and their algebraic counterparts, BL-algebras, are pre-
sented by Hájek in [10]. BL-algebras have different equivalent definitions:
they are commutative integral bounded residuated lattices (see [7]) satisfy-
ing prelinearity and divisibility, and they are bounded basic hoops (see [1]).
They form a variety of lattice-based algebras, thus it is natural to study which
subvarieties of BL-algebras admit completions.
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Different methods to complete lattice-based algebras have been developed.
One of the most investigated is the method of canonical extensions (see [9]).
If A is a distributive lattice, the canonical extension Aσ (unique up to iso-
morphism) of A is a doubly algebraic distributive lattice that contains A as a
separating and compact sublattice. Since a BL-algebra A is a bounded dis-
tributive lattice with two additional operations · and →, to obtain the canonical
extension of A we extend the base lattice A to the complete lattice Aσ and we
need also to extend the extra operations · and → to Aσ . There are two natu-
ral ways to extend an operation f : one is the canonical extension f σ and the
other is the dual canonical extension f π (see [8]). Then there are two possible
candidates for the canonical extension of a BL-algebra A, namely the canon-
ical extension Aσ and the dual canonical extension Aπ . A class of algebras
is called canonical or dual canonical if it is closed under canonical or dual
canonical extensions respectively. In [4], we studied canonical extensions of
subvarieties of BL-algebras and we proved that a subvariety of BL-algebras
is canonical if and only if it is finitely generated. We also proved that there are
some non-finitely generated subvarieties of BL-algebras that are dual canon-
ical. Thus, in the case of BL-algebras, dual canonical extensions seem to be
more interesting than canonical extensions. On the other hand, a crucial result
from [11] shows the existence of BL-algebras that can not be embedded into
any complete BL-algebra, hence there are subvarieties of BL-algebras that do
not admit any completion.

Combining the results of [11] and [4], we characterize those subvarieties
of BL-algebras that admit completions. Our main result is:

Main Theorem: Let V be a subvariety of BL-algebras. Then the following
statements are equivalent:

(i) The equation xk = xk+1 is satisfied in V for some integer k ≥ 1.

(ii) V is dual canonical.

(iii) V admits completions.

In the second section, we recall the definition of BL-algebra and we collect
some results about BL-algebras needed to achieve our aim. We also introduce
k-subvarieties and we offer a classification theorem for subvarieties of BL-
algebras, which is crucial in the proof of the Main Theorem. In the third
section, we study dual canonicity of k-subvarieties. Using the results of these
two sections, we prove the Main Theorem in the last section.

2 CLASSIFICATION OF SUBVARIETIES OF BL-ALGEBRAS

A hoop is an algebra A = 〈A, ·, →, 1〉 of type (2, 2, 0), such that 〈A, ·, 1〉 is a
commutative monoid and for all x, y, z ∈ A:

1. x → x = 1,
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2. x · (x → y) = y · (y → x),

3. x → (y → z) = (x · y) → z.

A natural order ≤ can be defined in any hoop by x ≤ y iff x → y = 1. A
hoop A is called basic if it is a subdirect product of totally ordered hoops.
Therefore, the natural order in a basic hoop is a distributive lattice. More
information about hoops can be found in [3].

A BL-algebra is a bounded basic hoop, i.e., an algebra A = 〈A, ·, →, 0, 1〉
of type (2, 2, 0, 0) such that 〈A, ·, →, 1〉 is a basic hoop, where 0 and 1 are the
lower and upper bounds of the natural order of A. The BL-algebra A with
only one element, that is 0 = 1, is called the trivial BL-algebra.

Among the subvarieties of BL-algebras we highlight: the subvariety MV ,
of MV-algebras (see [5]), the subvariety G of Gödel algebras (or prelinear
Heyting algebras), and the subvariety PL of product algebras (see [6]).

When the natural order of a basic hoop (BL-algebra) A is total, A is called
a totally ordered hoop (BL-chain). Every subvariety V of BL-algebras is
generated by a family of BL-chains (see [10]). In particular, the set of BL-
chains in a subvariety of BL-algebras is a generating set. This is why in the next
section we shall start our study of completions in subvarieties of BL-algebras
by investigating completions of the BL-chains in the variety.

Let (I , ≤ ) be a totally ordered set with lower bound ⊥. For each i ∈ I
let Ai = 〈Ai, ·i, →i, 1〉 be a totally ordered hoop such that for every i �= j,
Ai ∩ Aj = {1}. Then we can define the ordinal sum as the hoop

⊕
i∈I Ai =

〈∪i∈I Ai, ·, →, 1〉 where the operations ·, → are given by:

x · y =




x ·i y if x, y ∈ Ai,

x if x ∈ Ai \ {1}, y ∈ Aj and i < j,

y if y ∈ Ai \ {1}, x ∈ Aj and i < j.

x → y =




1 if x ∈ Ai \ {1}, y ∈ Aj and i < j,

x →i y if x, y ∈ Ai,

y if y ∈ Ai, x ∈ Aj and i < j.

If in addition A⊥ is a BL-chain, then
⊕

i∈I Ai is a BL-chain, whose lower
bound is the lower bound of A⊥. For simplicity we denote by A1 ⊕ A2 the
ordinal sum of two hoops, where the order of the index set is 1 < 2.

The natural order in an ordinal sum
⊕

i∈I Ai is given by:

x ≤ y iff

{
x, y ∈ Ai and x ≤i y, or

x ∈ Ai \ {1}, y ∈ Aj and i < j.
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A basic hoop is called sum irreducible if it is totally ordered and it cannot
be written as the ordinal sum of two non-trivial totally ordered hoops. The
following result is crucial for our investigations:

Theorem 2.1. (see [1]) Each non-trivial BL-chain admits a unique decom-
position as an ordinal sum of non-trivial sum irreducible hoops.

In [1], it is proved that sum irreducible hoops are equivalent to totally
ordered Wajsberg hoops, i.e., totally ordered hoops that satisfy the equation

(x → y) → y = (y → x) → x. (1)

Bounded Wajsberg hoops are reducts of MV-algebras, in the following sense:
if W = 〈W , ·, →, 1〉 is a Wajsberg hoop and 0 is the lower bound of W , then
W = 〈W , ·, →, 0, 1〉 is the corresponding MV-algebra. Unbounded Wajsberg
hoops coincide with cancellative totally ordered hoops, i.e., totally ordered
hoops whose based monoids are cancellative (see [3, Section 1]). Summa-
rizing, if A is a BL-chain and A = ⊕

i∈I Wi is its decomposition into sum
irreducible hoops, then W⊥ is an MV-chain and for each i ∈ I \ {⊥}, Wi is
either a reduct of an MV-chain or a cancellative Wajsberg hoop.

For n ≥ 2, let

Ln = { 0

n − 1
,

1

n − 1
, . . .

n − 1

n − 1
}.

The algebra Ln = 〈Ln, ·, →, 0, 1〉 with x · y = max(0, x + y − 1) and x → y =
min(1, 1 − x + y), is the unique (up to isomorphism) n-element MV-chain
(see [5, Corollary 3.5.4]). From our previous observations, each finite totally
ordered Wasjberg hoop is isomorphic to the hoop reduct of Ln for some n ≥ 2.
With an abuse of notation we shall denote by Ln the MV-chain as well as its
hoop reduct.

We collect some results about BL-algebras that will be needed throughout
the paper.

Lemma 2.2. (see [1]) Let A be a BL-chain and let A = ⊕
i∈I Wi be its decom-

position into sum irreducible hoops given by Theorem 2.1. The subhoops of
A are totally ordered hoops of the form B = ⊕

i∈J Vi, such that J ⊆ I and
for each i ∈ J , Vi is a subhoop of Wi. The subalgebras of A are obtained
similarly, but we must require that ⊥ ∈ J and that V⊥ is a subalgebra of W⊥.

Theorem 2.3. (see [4]) Let V be a variety of BL-algebras. If there exists an
infinite set S of natural numbers such that

{L2
⊕

Lt : t ∈ S} ⊆ V ,
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then there exists an infinite totally ordered Wajsberg hoop W, such that L2 ⊕
W ∈ V .

Theorem 2.4. (see [4]) Let W be an infinite totally ordered Wajsberg hoop
and let A = L2⊕W be a BL-chain. Then the variety of BL-algebras generated
by A contains the variety PL of product algebras.

Given a natural number k ≥ 1, a subvariety V of BL-algebras is called a
k-subvariety if every algebra A ∈ V is k-potent, i.e., it satisfies the equation:

xk = xk+1, (2)

where x1 = x and for every k, xk+1 = xk · x. Observe that the MV-chain
(hoop) Ln satisfies (2) for every n ≤ k + 1. Moreover, a BL-chain A satisfies
equation (2) if and only if A ∼= ⊕

i∈I Lri where 2 ≤ ri ≤ k + 1 for each i ∈ I
. We will call these BL-chains k-chains.

Theorem 2.5. LetV be a subvariety of BL-algebras that it is not a k-subvariety
for any k = 1, 2, . . .. Hence there is a BL-chain B ∈ V such that if B =⊕

i∈I Wi is the unique decomposition of B into sum irreducible hoops, then
for some i ∈ I , Wi is an infinite totally ordered Wajsberg hoop.

Proof. Assume on the contrary, that every BL-chain B ∈ V can be uniquely
decomposed as B = ⊕

i∈I Lri for some lower bounded totally ordered set I
and natural numbers ri ≥ 2, i ∈ I . Since V is not a k-subvariety and V is
generated by its chains, for every k = 1, 2, . . . , there are a BL-chain Bk ∈ V
and a natural number rk > k + 1 such that Lrk is a subhoop of Bk . Recalling
that L2 is a subalgebra of Ln for every integer n ≥ 2, from Lemma 2.2, we
get that for each k = 1, 2, . . . , there is rk > k + 1 such that either Lrk is an
MV-algebra in V or L2 ⊕ Lrk is a BL-chain in V . Suppose first that

T = {k ∈ N | Lrk is an MV-algebra in V}
is infinite. Then there is an infinite set of non-isomorphic finite MV-chains
contained in V . In [5, Proposition 8.1.2], it is proved that any infinite set
of non-isomorphic finite MV-chains generates the variety MV . Therefore
MV ⊆ V implies the existence of an infinite MV-chain in V . Otherwise, if T
is finite, then the set

S = {k ∈ N | L2 ⊕ Lrk ∈ V}
is infinite. Because of Theorem 2.3, there is an infinite totally ordered
Wajsberg hoop W such that L2 ⊕ W ∈ V , also contradicting our original
assumption. �

We present a classification of subvarieties of BL-algebras that will be nec-
essary to give a complete description of subvarieties that admits completions.
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Theorem 2.6. Let V be a subvariety of BL-algebras. Then one and only one
of the following happens:

1. There is k ≥ 1 such that V is a k-subvariety.

2. PL ⊆ V or there is a non-finitely generated subvariety S of
MV-algebras such that S ⊆ V .

Proof. Assume that V is a k-subvariety. Since no infinite MV-chain satisfies
(2), V does not contain a non-finitely generated subvariety of MV . The stan-
dard product algebra P defined over the real unit interval [0, 1] (where · is
taken as the usual product, see [10]) does not satisfy equation (2) for any k.
Therefore PL � V .

Assume now that V is not a k-subvariety. From Theorem 2.5, there is a BL-
chain B ∈ V such that in its decomposition as ordinal sum of sum irreducible
hoops, there is an infinite totally ordered Wajsberg hoop Wi. If i = ⊥, then
Lemma 2.2 yields that Wi is an infinite MV-chain in V . The subvariety of
MV-algebras generated by Wi is a non-finitely generated subvariety of MV-
algebras contained in V . Otherwise, from Lemma 2.2, L2⊕Wi is a subalgebra
on B. From Theorem 2.4 we get PL ⊆ V . �

3 COMPLETIONS OF SUBVARIETIES OF BL-ALGEBRAS

The family of subvarieties that admit completions is constraint by the next
result:

Theorem 3.1. ([11]) Let V be a subvariety of BL-algebras. If PL ⊆ V or V
contains a non-finitely generated subvariety of MV , then V does not admit
completions.

From Theorem 2.6 it is left to study completions in k-subvarieties.

There are different methods to complete a lattice-based algebra. Most of
them focus on completing the distributive lattice reduct first and extending
the extra operations to the complete lattice then. We will concentrate on dual
canonical extensions. The canonical extension of a distributive lattice L is a
doubly algebraic distributive lattice Lσ containing L as a separating compact
sublattice, i.e., satisfying:

Separation: If p and q are complete join irreducible
elements in Lσ , p �= q then there exists
a ∈ L such that a ≤ p and a �= q.

Compactness: For every X, Y ⊆ L with
∧

X ≤ ∨
Y ,

there exist finite sets F ⊆ X, I ⊆ Y
such that

∧
F ≤ ∨

I .

An easy application of the definition canonical extension yields:



MVLSC_03 page 7

COMPLETIONS IN SUBVARIETIES OF BL 7

Lemma 3.2. Let I be a totally ordered set and let Iσ be its canonical com-
pletion. For each finite subchain i1 < i2 < . . . < in of Iσ , there is a finite
subchain j1 < j2 < . . . < jn of I such that if ik ∈ I, then jk = ik .

Proof. We denote J∞(Iσ ) the set of complete join irreducible elements of Iσ .
If ik ∈ Iσ \ I , then

ik =
∨

{c ∈ J∞(Iσ ) | c ≤ ik}.

Since Iσ is a totally ordered set, there exists c ∈ J∞(Iσ ) such that ik−1 < c ≤
ik < ik+1. Similarly, there exists d ∈ J∞(Iσ ) with ik−1 < c ≤ ik < d ≤ ik+1.
Since I is a separating sublattice of Iσ , there is jk ∈ I such that ik−1 < c <

jk ≤ d < ik+1. If ik ∈ I take jk = ik . Now the sequence j1 < j2 < . . . < jn of
I satisfies the desired result. �

As mentioned in the introduction, if an algebra A has a distributive lattice
reduct there are two standard ways to extend each operation in A to the
complete lattice Aσ . They are called the canonical extension and the dual
canonical extension (see [8] or [9]). Since we are only going to deal with dual
canonical extensions, we briefly recall its definition. For details see [9].

Given a BL-algebra A = 〈A, ·, →, 0, 1〉, the dual canonical extension is an
algebra Aπ = 〈Aσ , ·π , →π , 0, 1〉 of the same type. To define the extensions
·π and →π of the operations · and →, let us first recall that the set of open
elements of Aσ is given by

O(Aσ ) = {x ∈ Aσ : x =
∨

(x ↓ ∩A)}

where x ↓ is the set of elements of Aσ less or equal than x. Similarly the set
of closed elements of Aσ is given by

K(Aσ ) = {y ∈ Aσ : y =
∧

(y ↑ ∩A)},

where x ↑ is the set of elements of Aσ greater or equal than x. Then ·π , →π

are defined as follows:
If x, y ∈ O(Aσ ) and z ∈ K(Aσ ), then

x ·π y = ∨{a · b : a ≤ x, b ≤ y, a, b ∈ A}

and

z →π x = ∨{a → b : z ≤ a, b ≤ x, a, b ∈ A}

In any other case,

c ·π d = {x ·π y : c ≤ x, d ≤ y, x, y ∈ O(Aσ )}
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and

e →π f = ∧{z →π x : z ≤ e, f ≤ x, z ∈ K(Aσ ), x ∈ O(Aσ )}.

A subvariety V of BL-algebras is called dual canonical if Aπ ∈ V for every
A ∈ V .

The following result, that can be deduced from [9, Thm 4.3], allows to
extend dual canonicity of a family of algebras to the variety that they generate.

Theorem 3.3. Let S be a set of BL-algebras closed under ultraproducts and
dual canonical extensions. Then the subvariety of BL-algebras generated by
S is dual canonical.

Next we describe the dual canonical extension of a k-chain.

Lemma 3.4. ([4, Thm. 4.4]) Let A = ⊕
i∈I Lri be a BL-chain. Then

Aπ ∼= ⊕
i∈Iσ Di,

where

Di =



Lri if i ∈ I

L2 if i /∈ I

As a immediate consequence of this lemma we get:

Corollary 3.5. The dual canonical extension of a k-chain is a k-chain.

Lemma 3.6. Let A be a k-chain for some k ≥ 2. Then every finite subalgebra
of Aπ is isomorphic to a finite subalgebra of A.

Proof. Let A = ⊕
i∈I Lri be the decomposition of A as ordinal sum of

Wasjberg hoops. According to Lemmas 3.4 and 2.2, if B is a finite subal-
gebra of Aπ , there is a finite subset J = {⊥ = j0 < j1 < . . . < jn} ⊆ Iσ , such
that B = ⊕

j∈J Ltj and for each j ∈ J ,

Ltj =
{

is a subalgebra of Lrj if j ∈ I ,
L2 if j ∈ Iσ \ I .

From Lemma 3.2, we get a finite subset K = {⊥ = k0 < k1 < . . . <

kn} ⊆ I such that if jw ∈ I then kw = jw. For each k ∈ K we take

Lsk =
{

Ltj if k = j for some j ∈ J
L2 if k �= j for any j ∈ J .
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Observe that
⊕

k∈K Lsk
∼= ⊕

j∈J Ltj = B. Since K ⊆ I and for each k ∈ K \J ,
L2 is a subalgebra of Lrk , we can conclude that

⊕
k∈K Lsk is a subalgebra of

A, and the lemma is proved. �

Theorem 3.7. For any k-chain A, Aπ is in the subvariety of BL-algebras
generated by A.

Proof. Assume that τ is an equation in the language of BL-algebras which is
not satisfied by Aπ . Therefore τ is not satisfied by a finite subalgebra B of
Aπ . By the previous Lemma there is a finite subalgebra B′ of A isomorphic to
B and clearly τ is not satisfied in B′. Now, since τ is not satisfied by a finite
subalgebra of A, then τ is not satisfied by A. We conclude that every equation
satisfied by A is satisfied by Aπ and the result of the theorem follows. �

Now we are ready to prove the main result of this section.

Theorem 3.8. Let V be a k-subvariety. Then V is dual canonical.

Proof. We denote by S the set of chains in V . Clearly V is generated by S.
Since V is a k-subvariety, each element of S is a k-chain. By Theorem 3.7, S
is closed under dual canonical extensions. An ultraproduct of BL-chains in V
is a BL-chain in V , hence S is closed under ultraproducts. Now an application
of Theorem 3.3 proves that V is dual canonical. �

4 CONCLUSION

We have developed the tools to prove:

Main Theorem Let V be a subvariety of BL-algebras. Then the following
statements are equivalent:

(i) The equation xk = xk+1 is satisfied in V for some integer k ≥ 1.

(ii) V is dual canonical.

(iii) V admits completions.

Proof. (i)⇒(ii) Follows from Theorem 3.8. (ii)⇒(iii) Straightforward.
(iii)⇒(i) It is a direct consequence of Theorem 3.1 and Theorem 2.6.
This can also be deduced from the results in [2] (for more details see the
Acknowledgments). �

The Main Theorem comes to close two circles of ideas: one started in [4],
where we characterized subvarieties of BL-algebras that are canonical, and
we observed that the class of subvarieties that are dual canonical is strictly
bigger. Now we can offer a complete characterization of subvarieties of BL-
algebras that are dual canonical. The second is that, based on the important
results of [11], we provide a complete algebraic description of the subvarieties
of BL-algebras that admit completions.
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