
An Argument-Based Multi-Agent System for
Information Integration

Marcela Capobianco and Guillermo R. Simari

Artificial Intelligence Research and Development Laboratory
Department of Computer Science and Engineering

Universidad Nacional del Sur – Av. Alem 1253, (8000) Bah́ıa Blanca Argentina
Email: {mc,grs}@cs.uns.edu.ar

Abstract. In this paper we address the problem of obtaining a consoli-
dated view of the knowledge that a community of information agents pos-
sesses in the form of private, possibly large, databases. Each agent in the
community has independent sources of information and each database
could contain information that is potentially inconsistent and incom-
plete, both by itself and/or in conjunction with some of the others. These
characteristics make the consolidation difficult by traditional means. The
idea of obtaining a single view is to provide a way of querying the re-
sulting knowledge in a skeptical manner, i.e., receiving one answer that
reflects the perception of the information community.
Agents using the proposed system will be able to access multiple sources
of knowledge represented in the form of deductive databases as if they
were accessing a single one. One application of this schema is a novel ar-
chitecture for decision-support systems (DSS) that will combine database
technologies, specifically federated databases, which we will cast as in-
formation agents, with an argumentation-based framework.

Categories and Subjects Descriptors: I.2.4 [Artificial Intelligence]: Knowledge
Representation Formalisms and Methods—Representation languages, Representations
(procedural and rule-based); H.1.0 [Models and Principles]: Systems and Information
Theory—General systems theory.
General Terms: Algorithms, Design, Performance.
Keywords: Argumentation, Knowledge representation, Design languages for agent
systems.

1 Introduction

Information systems, and the capability to obtain answers from them, play a
key role in our society. In particular, data intensive applications are in constant
demand and there is need for computing environments with much more intelli-
gent capabilities than those present in today’s Data-base Management Systems
(DBMS). The expected requirements for these systems change every day: they
constantly become more complex and more advanced features are demanded
from them.



In this paper we address the problem of obtaining a consolidated view of the
knowledge that a community of information agents possess in the form of private,
possibly large, databases. Each agent in the community has independent sources
of information and each database could contain information that is potentially
inconsistent and incomplete, both by itself and/or in conjunction with some of
the others. These characteristics make the consolidation difficult by traditional
means. The idea of obtaining a single view is to provide a way of querying the
resulting knowledge in a skeptical manner, i.e., receiving one answer that reflects
the perception of the information community.

Agents using the proposed system will be able to access multiple sources
of knowledge represented in the form of deductive databases as if they were
accessing a single one. One application of this schema is a novel architecture
for decision-support systems (DSS) that will combine database technologies,
specifically federated databases, which we will cast as information agents, with
an argumentation-based framework.

Recently, there has been much progress in developing efficient techniques to
store and retrieve data, and many satisfactory solutions have been found for the
associated problems. However it remains an open problem how to understand and
interpret large amounts of information. To do this we need specific formalisms
that can perform complicated inferences, obtain the appropriate conclusions,
and justify their results. We claim that these formalisms should also be able to
access seamlessly databases distributed over a network.

In the field of deductive databases there has been a continued effort to pro-
duce an answer to this problem. Deductive databases store explicit and implicit
information; explicit information is stored in the manner of a relational database
and implicit information is recorded in the form of rules that enable inferences
based on the stored data. These systems combine techniques and tools from
relational databases with rule based formalisms. Hence, they are capable of han-
dling large amounts of information and perform some sort of reasoning based
on it. Nevertheless, these systems have certain limitations and shortcomings for
knowledge representation and modeling commonsense reasoning, especially for
managing incomplete and potentially contradictory information, as argued by
several authors [17, 23, 16].

Argumentation frameworks [9, 19, 14] are an excellent starting point for build-
ing intelligent systems with interesting reasoning abilities. Research in argumen-
tation has provided important results while striving to obtain tools for common-
sense reasoning, and this prompted a new set of argument-based applications in
diverse areas where knowledge representation issues play a major role [10, 5, 7].

We believe that deductive databases can be combined with argumentation
formalisms to obtain interactive systems able to reason with large databases,
even in the presence of incomplete and potentially contradictory information.
This can be a significant advantage with respect to systems based on logic pro-



gramming, such as datalog, that cannot deal with contradictory information.1 In
particular, this could be useful in contexts where information is obtained from
multiple databases, and these databases may be contradictory among themselves.

The multi-agent system introduced here virtually integrates different databa-
ses into a common view; in that manner users of this system can query multiple
databases as if they were a single one. This schema can be applied to obtain
a novel system architecture for decision-support systems (DSS) that combines
database technologies, specifically federated databases [18], with an argumenta-
tion based framework.

In our proposal we consider that information is obtained from a number
of different heterogeneous database systems, each represented by a particular
agent. The reasoning mechanisms, based on an argumentative engine, use this
information to construct a consolidated global view of the database. This task is
performed by the reasoning agent, that is based on a set of rules expressed in a
particular argumentation framework. This agent can deal with incomplete and
contradictory information and can also be personalized for any particular DSS
in a relatively simple way.

We have also considered that one of the design objectives of interactive sys-
tems is that they can respond in a timely manner to users’ queries. So far the
main objection to the use of argumentation in interactive systems is their compu-
tational complexity. In previous work [6] we have addressed the issue of optimiz-
ing argumentation systems, where the optimization technique consisted in using
a precompiled knowledge component as a tool to allow significant speed-ups in
the inference process. We also apply this technique in our reasoning agent.

To understand the advantages of the proposed reasoning mechanism used
in our multiagent system, consider a set of databases used by the employers
responsible of drug administration, sales, and delivery in a given hospital. These
databases contains information regarding drugs, patients, known allergies, and
addictions. Suppose a deductive database system in the style of datalog is used
to query this information to derive certain relations. In this setting, there is
a rule establishing that a drug should be given to a patient if the patient has
a prescription for this drug signed by a physician. There could also be a rule
saying that the drug should not be sold if the prescription is signed by the
patient. In this case, if Dr. Gregory House enters the clinic with a prescription
signed by himself to get Vicodin, the employers could query the system to see if
the drug should or should not be sold. If a traditional deductive database is used,
in the style of datalog or another logic programming based system, this would
give raise to a contradiction and the system would not be able to recommend a
course of action. Using our system, an argument can be built backing that the
medication should be sold, given that there is a prescription signed by a doctor
that warrants it. However, an argument for not selling the drug could also be
built considering that the doctor and the patient are the same person. Our

1 Some extensions of datalog handle negation using CWA (see [8]), but these ap-
proaches do not allow negation in the head of the rules in the style of extended logic
programming.



argument-based framework can then compare both arguments, decide that the
second argument is preferred, and answer the query saying that the drug should
no be sold. In addition, it can also explain the reasons that back its answer. Note
that this kind of behavior cannot be obtained in Datalog-like systems.

The rest of this article is organized as follows. Section 2 sums up related
work, Section 3 contains our proposal for the system architecture, and section 4
formally describes the reasoning module, a key component of this architecture.
Section 5 presents a key optimization for the argumentation-based reasoning
process, and Section 6 shows a realistic example of the system’s mechanics.
Finally, Section 7 states the conclusions.

2 Integrating DBMS and Reasoning Systems

Previous work on the integration of databases and reasoning systems has al-
most been restricted to coupling Prolog interpreters and relational databases.
These approaches were motivated in the declarative nature of logic program-
ming languages and the data-handling capabilities of database systems. Several
researchers have built intelligent database systems coupling Prolog and a rela-
tional DBMS or extending Prolog with database facilities [8]. These works were
motivated by the fact that Prolog attracted attention in the 80’s for its ability
to support rapid development of complex applications. Besides, Prolog is based
on Horn Clauses that are close relatives of database query languages and its
language is more powerful than SQL [24].

Brodie and Jarke [4] envisioned several years ago that large scale data pro-
cessing would require more efficient and more intelligent access to databases. He
proposed the integration of logic programming and databases to meet future re-
quirements. First, he identified two different approaches for coupling a Prolog
interpreter and a Relational DBMS, which are usually called “tight coupling’ and
“loose coupling”. In the tight coupling approach the Prolog interpreter and the
Relational DBMS are strongly integrated. For example, the Prolog interpreter
can directly use low level functionalities of the DBMS, like relation manage-
ment in secondary memory, and relation access via indexes [12]. In contrast, in
the loose coupling approach, the Relational DBMS is called by the Prolog inter-
preter at the top level, that acts like a standard user. It sends Relational queries
to the DBMS, and the corresponding answers are treated as ground clauses by
the interpreter.

Brodie and Jarke also identified four basic architectural frameworks for com-
bining Prolog and a database system:

– Loose coupling of an existing Prolog implementation to an existing relational
database system;

– Extending Prolog to include some facilities of the relational database system;
– Extending an existing relational database to include some features of Prolog;
– Tightly integrating logic programming techniques with those of relational

database systems.



They recommend the fourth alternative (tight integration), based on the
belief that a special purposed language for large scale knowledge base systems
would best address issues regarding performance, knowledge representation and
software engineering. They also put forward a number of issues concerning the
best division of tasks between logic programming and a DBMS.

Zaniolo [25] proposed an approach to intelligent databases based on deduc-
tive databases. He advocates for elevating database programming to the more
abstract level of rules and knowledge base programming to create an environ-
ment more supportive of the new wave of database applications. To achieve
these goals the LDL/LDL+ project was developed. During the project a new
logic-based language was designed along with the definition of its formal seman-
tics, new implementation techniques were developed for the efficient support of
rule-based logic languages, and it was successfully used in a wide range of ap-
plication domains. The system supported an open architecture and SQL schema
from external databases could be incorporated into the LDL program seamlessly.

In the following section we present the system architecture for our proposal.
We believe that argumentation can offer a new perspective into the problem of
reasoning with large databases, giving more expressive power to the reasoning
component, making it able to decide even in the presence of uncertain and/or
contradictory information. This addresses a limitation that was present in each
of the deductive database systems considered in this section.

3 System Architecture

In this section we present an architectural pattern for our multiagent system that
can be applied to design information-based applications where a certain level of
intelligence is required. Such applications will be engineered for contexts where:
(1) information is uncertain and heterogeneous, (2) handling of great volume of
data flows is needed, and (3) data may be incomplete, vague, or contradictory.
These applications are also expected to integrate multiple information systems
such as databases, knowledge bases, source systems, etc.

Our system architecture is presented in Figure 1. The architecture is modular
and is independent of any particular domain or application. We have used a
layered architectural style, where every layer provides a series of services to the
one above. The first of our layers concerns data and knowledge acquisition. This
layer will receive heterogeneous sources of data and will extract and transform
this data into the formats required of the particular application. It can work with
diverse sources, such as laboratory data, different types of sensors, knowledge
bases, etc.

The received data will be formatted to comply with the relational models
provided by a group of federated databases that share a common export schema.
In our system, each one of the databases is represented by an agent. The common
export schema will be the result of a negotiation process among these agents.
The union of the views of these databases will generate a key element of our
framework, the extensional database that contains the information needed for the



Fig. 1. Proposed architectural pattern

reasoning module. The extensional database also will provide the data elements
with a certainty degree that depends of the credibility of the data source from
where it was obtained.

We have chosen to use a multi-source perspective for the characterization of
data quality [3]. In this case, the quality of data can be evaluated by comparison
with the quality of other homologous data (i.e., data from different information
sources which represent the same reality but may have contradictory values).
The approaches usually adopted to reconcile heterogeneity between values of
data are: (1) to prefer the values of the most reliable sources, (2) to mention the
source ID for each value, or (3) to store quality meta-data with the data.

For our proposed architecture, we have used the second approach. In multi-
source databases, each attribute of a multiple source element has multiple values



with the ID of their source and their associated Quality of Expertise, which is
represented as meta-data associated with each value, such as a given certainty
degree. This degree may be obtained weighting the plausibility of the data value,
its accuracy, the credibility of its source, and the freshness of the data.

The federated database layer provides the extensional database to the pre-
sentation layer. The extensional database can be computed on demand and is
not necessarily stored in a physical component. The presentation layer contains
the services related with the reasoning process and its optimization. This is the
core of our proposal and will be described later on in Sections 4 and 5. The
reasoning agent that generated the consolidated view is part of this layer. It
contains the set of rules that encode the specific knowledge of the application.
These rules will be used by the argumentation-based inference engine. The pre-
sentation layer also commands the generation of the extensional database, and
the selection if it is going to be done on demand (following a lazy approach) or
if it has to be computed completely. It can also generate a partial view of the
system according to these rules, resulting in an optimization mechanism. This
partial view depends only on the set of rules and must be changed accordingly
if changes on the rules are produced. Finally, the query services layer is com-
posed by an interactive agent that receives user queries, provides answers, and
can also explain the reasons backing these answers.

4 The DB DeLP Argumentation Framework

In this section we formally define the argumentation system that is used by
the reasoning agent in the Query Services Layer of the proposed system archi-
tecture. Here we detail the semantics and proof theory of the framework and
we also show some practical examples. A simplified view of our system would
describe it as a deductive database whose inference engine is based on a spe-
cialization of the DeLP language [15]. This particular framework will be known
as Database Defeasible Logic Programming (DB DeLP). Formally, DB DeLP is
a language for knowledge representation and reasoning that uses defeasible ar-
gumentation to decide between contradictory conclusions through a dialectical
analysis. DB DeLP also incorporates uncertainty management, taking elements
from Possibilistic Defeasible Logic Programming (P DeLP) [2, 1], an extension of
DeLP in which the elements of the language have the form (φ, α), where φ is a
DeLP clause or fact and α expresses a lower bond for the certainty of φ in terms
of a necessity measure. Conceptually, our deductive database consists of an ex-
tensional database EDB, an intensional database IDB, and a set of integrity
constrains IC. In what follows, we formally define these elements.

The language of DB DeLP follows a logic programming style. Standard logic
programming concepts (such as signature, variables, functions, etc.) are defined
in the usual way. Literals are atoms that may be preceded by the symbol “∼”
denoting strict negation, as in extended logic programming.

Definition 1. [Literal–Weighted Literal] Let Σ be a signature, then every atom
A of Σ is a positive literal, while every negated atom ∼A is a negative literal. A



literal of Σ is a positive literal or a negative literal. A certainty weighted literal,
or simply a weighted literal, is a pair (L,α) where L is a literal and α ∈ [0, 1]
expresses a lower bound for the certainty of L in terms of a necessity measure.

The extensional database EDB is composed by a set of certainty weighted
literals, according to the export schema of the federated database that is part
of our architecture. Conceptually, it accounts for the union of the views of every
particular database that belongs to the federation [18]. When implementing the
system, this set of ground literals may not be physically stored in any place, and
may simply be obtained on demand when information about a particular literal
is needed.

The certainty degree associated with every literal is assigned by the federated
database layer that assigns a particular degree to every data source according to
its plausibility. The resulting extensional database is not necessarily consistent,
in the sense that a literal and its complement w.r.t. strong negation may both
be present, with different or the same certainty degrees. In this case, the system
decides according to a given criterion which fact will prevail and which one will
be removed from the view.

species(X,Y)

(species(simba,lion), 0.6)
(species(mufasa,lion), 0.7)
(species(grace,lion), 0.6)
(species(grace,leopard), 0.4)
. . .

age(X,Y)

(age(simba,young), 0.65)
(age(mufasa,old), 0.7)
(age(grace,adult), 0.8)
(age(dumbo,baby), 0.8)
. . .

Fig. 2. An Extensional Database in DB DeLP

The intensional part of a DB DeLP database is formed by a set of defeasi-
ble rules and integrity constraints Defeasible rules provide a way of performing
tentative reasoning as in other argumentation formalisms [9, 19, 14].

Definition 2. [Defeasible Rule] A defeasible rule expresses a tentative, weighted,
relation between a literal L0 and a finite set of literals {L1, L2, . . . , Lk}. It has
the form (L0 –≺ L1, L2, . . . , Lk, α) where α ∈ [0, 1] expresses a lower bound for
the certainty of the rule in terms of a necessity measure.

In previously defined argumentation systems, the meaning of defeasible rules
L0 –≺ L1, L2, . . . , Lk was understood as “L1, L2, . . . , Lk provide tentative reasons
to believe in L0” [22], but these rules did not have an associated certainty degree.
In contrast, DB DeLP adds the certainty degree, that expresses how strong is the
connection between the premises and the conclusion. A defeasible rule with a
certainty degree 1 will model a strong rule. Figures 2 and 3 show an extensional
and an intensional database in our formalism.



(feline(X) –≺ species(X,lion),1)
(climbs tree(X) –≺ feline(X),0.65)
(∼climbs tree(X) –≺ species(X,lion),0.70)
(climbs tree(X) –≺ species(X,lion), age(X,young).,0.75)
(∼climbs tree(X) –≺ sick(X),0.45)

Fig. 3. An Intensional Database in DB DeLP

Note that DB DeLP programs are range-restricted, a common condition for
deductive databases: a program is said to be range-restricted if and only if ev-
ery variable that appears in the head of the clause also appears in its body. This
implies that all the facts in the program must be ground (cannot contain vari-
ables). These programs can be interpreted more efficiently since full unification
is not needed, only matching that is significantly more efficient. Nevertheless,
the reason for this decision comes from a semantic standpoint, given that a de-
feasible reason in which there is no connection between the head and the body
has no clear meaning; the range restriction ensures this connection.

Integrity constraints are rules of the form L← L0, L1, . . . , Ln where L is a lit-
eral, and L0, L1, . . . , Lk is a non-empty finite set of literals, These rules are used
to compute the derived negations as follows. For the extensional and intensional
databases regarding felines, consider that the set of integrity constraints is com-
posed by {∼leopard(X) ← lion(X), ∼lion(X) ← leopard(X)} and the negations
{ (∼species(grace,lion), 0.4), (∼species(grace,leopard), 0.6)} are then added
to the extensional database. The certainty degree of the added rule is calculated
as the minimum of the certainty degree of the literals that are present in the
body of the integrity constraint rule used to obtain it. Note that a conflict may
arise with information received from other knowledge bases, since we may want
to add a literal and its complement may be already present in the extensional
database. Then the system will decide according to a given criterion which fact
will prevail and which one will be removed from the view. A standard criterion
in this case would be using the plausibility of the source, the certainty degree of
the literals, or a combination of both. Databases in DB DeLP, for short called
defeasible databases, can also include built-in predicates as needed along with
their corresponding axioms.

The P DeLP language [11], which presented the novel idea of mixing argu-
mentation and possibilistic logic, is based on Possibilistic Gödel Logic or PGL [2,
1], which is able to model both uncertainty and fuzziness and allows for a par-
tial matching mechanism between fuzzy propositional variables. In DB DeLP, for
simplicity reasons, we will avoid fuzzy propositions, and hence it will be based
on the necessity-valued classical Possibilistic logic [13]. As a consequence, pos-
sibilistic models are defined by possibility distributions on the set of classical
interpretations, and the proof theory for our formulas, written |∼, is defined by
derivation based on the following instance of the Generalized Modus Ponens rule
(GMP): (L0 –≺ L1 ∧ · · · ∧ Lk, γ), (L1, β1), . . . , (Lk, βk) ` (L0,min(γ, β1, . . . , βk)),
which is a particular instance of the well-known possibilistic resolution rule, and



which provides the non-fuzzy fragment of DB DeLP with a complete calculus for
determining the maximum degree of possibilistic entailment for weighted literals.
Literals in the extensional database are the base case of the derivation sequence;
for every literal Q in EDB with a certainty degree α it holds that (Q,α) can be
derived from the corresponding program.

A query presented to a DB DeLP database is a a ground literal Q which must
be supported by an argument. Deduction in DB DeLP is argumentation-based,
thus a derivation is not enough to endorse a particular fact, and queries must
be supported by arguments. In the following definition instances(IDB) accounts
for any set of ground instances of the rules in IDB, replacing free variables for
ground literals in the usual way.

Definition 3. [Argument]–[Subargument] Let DB = (EDB, IDB, IC) be a de-
feasible database, A ⊆ instances(IDB) is an argument for a goal Q with neces-
sity degree α > 0, denoted as 〈A, Q, α〉, iff:

1. Ψ ∪ A |∼(Q,α),
2. Ψ ∪ A is non contradictory, and
3. there is no A1 ⊂ A such that Ψ ∪ A1 |∼(Q, β), β > 0.

An argument 〈A, Q, α〉 is a subargument of 〈B, R, β〉 iff A ⊆ B.

Arguments in DB DeLP can attack each other; this situation is captured by
the notion of counterargument. An argument 〈A1, Q1, α〉 counter-argues an ar-
gument 〈A2, Q2, β〉 at a literal Q if and only if there is a sub-argument 〈A, Q, γ〉
of 〈A2, Q2, β〉, (called disagreement subargument), such that Q1 and Q are com-
plementary literals. Defeat among arguments is defined combining the counter-
argument relation and a preference criterion “�”. This criterion is defined on
the basis of the necessity measures associated with arguments.

Definition 4. [Preference criterion �][11] Let 〈A1, Q1, α1〉 be a counterargu-
ment for 〈A2, Q2, α2〉. We will say that 〈A1, Q1, α1〉 is preferred over 〈A2, Q2, α2〉
(denoted 〈A1, Q1, α1〉 � 〈A2, Q2, α2〉) iff α1 ≥ α2. If it is the case that α1 > α2,
then we will say that 〈A1, Q1, α1〉 is strictly preferred over 〈A2, Q2, α2〉, de-
noted 〈A2, Q2, α2〉 � 〈A1, Q1, α1〉. Otherwise, if α1 = α2 we will say that both
arguments are equi-preferred, denoted 〈A2, Q2, α2〉 ≈ 〈A1, Q1, α1〉.

Definition 5. [Defeat][11] Let 〈A1, Q1, α1〉 and 〈A2, Q2, α2〉 be two arguments
built from a program P. Then 〈A1, Q1, α1〉 defeats 〈A2, Q2, α2〉 (or equivalently
〈A1, Q1, α1〉 is a defeater for 〈A2, Q2, α2〉) iff (1) Argument 〈A1, Q1, α1〉 counter-
argues argument 〈A2, Q2, α2〉 with disagreement subargument 〈A, Q, α〉; and (2)
Either it is true that 〈A1, Q1, α1〉 � 〈A, Q, α〉, in which case 〈A1, Q1, α1〉 will be
called a proper defeater for 〈A2, Q2, α2〉, or 〈A1, Q1, α1〉 ≈ 〈A, Q, α〉, in which
case 〈A1, Q1, α1〉 will be called a blocking defeater for 〈A2, Q2, α2〉.

As in most argumentation systems [9, 20], DB DeLP relies on an exhaustive
dialectical analysis which allows to determine if a given argument is ultimately
undefeated (or warranted) w.r.t. a program P. An argumentation line starting



with an argument 〈A0, Q0, α0〉 is a sequence [〈A0, Q0, α0〉, 〈A1, Q1, α1〉, . . . ,
〈An, Qn, αn〉, . . . ] that can be thought of as an exchange of arguments between
two parties, a proponent (even-numbered arguments) and an opponent (odd-
numbered arguments).

Given a program P and an argument 〈A0, Q0, α0〉, the set of all acceptable
argumentation lines starting with 〈A0, Q0, α0〉 accounts for a whole dialectical
analysis for 〈A0, Q0, α0〉 (i.e. all possible dialogs rooted in〈A0, Q0, α0〉), formal-
ized as a dialectical tree and denoted T〈A0,Q0,α0〉. Nodes in a dialectical tree
T〈A0,Q0,α0〉 can be marked as undefeated or defeated nodes (U-nodes and D-
nodes, resp.). A dialectical tree will be marked as an and-or tree: all leaves in
T〈A0,Q0,α0〉 will be marked as U-nodes (as they have no defeaters), and every in-
ner node is to be marked as a D-node iff it has at least one U-node as a child,
and as a U-node otherwise. An argument 〈A0, Q0, α0〉 is ultimately accepted as
valid (or warranted) iff the root of T〈A0,Q0,α0〉 is labeled as a U-node.

Definition 6. [Warrant][11] Given a database DB, and a literal Q, Q is war-
ranted w.r.t. DB iff there exists a warranted argument 〈A, Q, α〉 that can be built
from P.

Example 1. Suppose the system has to solve the query climbs(simba). Then ar-
gument

A2 = {(climbs(simba) –≺ feline(simba), 0.65), (feline(simba) –≺ species(simba,lion), 1)}

must be built. This argument has a certainty degree of 0.6, taking into account
the certainty degree of the literals on which the deduction is founded.

Next, the system looks for the defeaters. The only defeater is:

〈A4,∼climbs(simba), 0.6〉,A4 = {(∼climbs(simba) –≺ species(simba,lion), 0.75)}

But this argument is in turn defeated by 〈A3, climbs(simba), 0.6〉,

A3 = {(climbs(simba) –≺ species(simba,lion),age(simba,young), 0.75)}

Thus, climbs(simba) is warranted.

5 Optimization of DB DeLP’s Dialectical Process

To obtain faster query processing in the DB DeLP system we integrate pre-
compiled knowledge to avoid the construction of arguments which were already
computed. The approach follows the proposal presented in [6] where the pre-
compiled knowledge component is required to: (1) minimize the number of stored
arguments in the pre-compiled base of arguments (for instance, using one struc-
ture to represent the set of arguments that use the same defeasible rules); and
(2) maintain independence from the observations that may change with new per-
ception in order to avoid modifying also the pre-compiled knowledge when new
observations are incorporated.



�
�
�
�
�
��

L
L
L
L
L
LL

U

species(simba,lion),age(simba,young)

|f

climbs(simba)

�
�
�
�
�
��

L
L
L
L
L
LL

D

species(simba,lion)

|f

∼climbs(simba)

�
�
�
�
�
��

L
L
L
L
L
LL

U

species(simba,lion)

|f
feline(simba)

|f
climbs(simba)

Fig. 4. Dialectical tree from Example 1

Considering these requirements, we define a database structure called dialec-
tical graph, which will keep a record of all possible arguments in an DB DeLP

database DB (by means of a special structure named potential argument) as
well as the counterargument relation among them. Potential arguments, origi-
nally defined in [6], contain non-grounded defeasible rules, thus depending only
on the set of rules in the IDB, i.e., they are independent from the extensional
database.

Potential arguments have been can be thought as schemata that sum up
arguments that are obtained using different instances of the same defeasible
rules. Recording every generated argument could result in storing many argu-
ments which are structurally identical, only differing on the constants being used
to build the corresponding derivations. Thus, a potential argument stands for
several arguments which use the same defeasible rules. Attack relations among
potential arguments can be also captured, and in some cases even defeat can
be pre-compiled. In what follows we introduce the formal definitions, adapted
from [6] to fit the DB DeLP system.

Definition 7. [Weighted Potential Argument] Let IDB be an intensional data-
base. A subset A of IDB is a potential argument for a literal Q with an up-
per bound γ for its certainty degree, noted as 〈〈A,Q, γ〉〉 if there exists a non-
contradictory set of weighted literals Φ and an instance A that is obtained by
finding an instance for every rule in A, such that 〈A, Q, α〉 is an argument
w.r.t. the database with Φ as its extensional database and IDB as its inten-
sional database (α ≤ γ) and there is no instance 〈B, Q, β〉 of A such that β > γ.



Definition 7 does not specify how to obtain the set of potential arguments
from a given database. The interested reader may consult [6] for a constructive
definition and its associated algorithm. The calculation of the upper bound γ
deserves special mention, since the algorithm in [6] was devised for a different
system, without uncertainty management. This element will be used later on
to speedup the extraction of the dialectical tree from the dialectical graph for
a given query. To calculate γ for a potential argument A we simply choose the
lower certainty degree of the defeasible rules present in A.

The nodes of the dialectical graph are the potential arguments. The arcs
of our graph are obtained by calculating the counterargument relation among
the nodes previously obtained. To do this, we extend the concept of counter-
argument for potential arguments. A potential argument 〈〈A1,Q1, α〉〉 counter-
argues 〈〈A2,Q2, β〉〉 at a literal Q if and only if there is a non-empty potential
sub-argument 〈〈A,Q, γ〉〉 of 〈〈A2,Q2, β〉〉 such that Q1 and Q are contradictory
literals.2 Note that potential counter-arguments may or may not result in a real
conflict between the instances (arguments) associated with the corresponding
potential arguments. In some cases instances of these arguments cannot co-exist
in any scenario (e.g., consider two potential arguments based on contradictory
observations). Now we can finally define the concept of dialectical graph:

Definition 8. [Dialectical Graph] Let DB = (EDB, IDB, IC) be a defeasible
database. The dialectical graph of IDB, denoted as GIDB, is a pair

(PotArgs(IDB), C)

such that:

1. PotArgs(IDB) is the set {〈〈A1,Q1, α1〉〉, . . . , 〈〈Ak,Qk, αk〉〉} of all the poten-
tial arguments that can be built from IDB;

2. C is the counterargument relation over the elements of PotArgs(IDB).

Example 2. Consider the feline database previously presented; its dialectical
graph is composed by:
(feline(X) –≺ species(X,lion),1)

(climbs tree(X) –≺ feline(X),0.65)

(∼climbs tree(X) –≺ species(X,lion),0.70)

(climbs tree(X) –≺ species(X,lion), age(X,young),0.75)

(∼climbs tree(X) –≺ sick(X),0.45)

– 〈〈A1, climbs(X), 0.65〉〉, A1 = {(climbs(X) –≺ feline(X), 0.65)}.
– 〈〈A2, climbs(X), 0.65〉〉, A2 = {(climbs(X) –≺ feline(X), 0.65),

(feline(X) –≺ species(X,lion), 1)}.
– 〈〈A3, climbs(X), 0.75〉〉,

A3 = {(climbs(X) –≺ species(X,lion), age(X,young), 0.75)}.
2 Note that P (X) and ∼P (X) are contradictory literals even though they are non-
grounded. The same idea is applied to identify contradiction in potential arguments.



– 〈〈A4,∼climbs(X), 0.75〉〉, A4 = {(∼climbs(X) –≺ species(X,lion), 0.75)}.
– 〈〈A5,∼climbs(X), 0.45〉〉, A5 = {(∼climbs(X) –≺ sick(X), 0.45)}.
– 〈〈A6, feline(X), 1〉〉, A6 = {(feline(X) –≺ species(X,lion), 1)}.
– Dp = {(A2,A4), (A4,A3)}
– Db = {(A1,A4), (A4,A1), (A1,A5), (A5,A1), (A2,A5), (A5,A2), (A3,A5), (A5,A3)}.

The relationsDb andDp can be depicted as shown in Figure 2, where blocking
defeat is indicated with a double headed arrow.

A4 A5 A6

A1 A2 A3

�
�

�
�

��	

�

?

6@
@
@

@
@@R

I6

?�
�

�
�
���

�������������

Fig. 5. Dialectical graph corresponding to Example 2.

Having defined the dialectical graph we can now use a specific graph travers-
ing algorithm to extract a particular dialectical tree rooted in a given potential
argument. The facts present in the EDB will be used as evidence to instantiate
the potential arguments in the dialectical graph that depend on the intensional
database IDB. This gives rise to the inference process of the system. This pro-
cess starts when a new query is formulated. Consider the dialectical graph in
Example 2 and suppose the set of facts in Figure 2 is present in the extensional
database. Lets see how the system works when faced with the query climbs(simba).

First, the set of potential arguments in the dialectical graph is searched to
see if there exists an element whose conclusion can be instantiated to match the
query. It finds 〈〈A2, climbs(X), 0.65〉〉,

A2 = {(climbs(X) –≺ feline(X), 0.65), (feline(X) –≺ species(X,lion), 1)}

A2 can be instantiated to

A2 = {(climbs(simba) –≺ feline(simba), 0.65), (feline(simba) –≺ species(simba,lion), 1)}
that has a certainty degree of 0.6 taking into account the certainty degree of the
literals on which the deduction is founded.

Now, to see if climbs(simba) is inferred by the system from the intensional and
the extensional database, we must check whether A2 can sustain its conclusion
when confronted with its counterarguments. Using the links in the dialectical
graph we find one defeater for A2, instantiating potential argument

A4 = {(∼climbs(X) –≺ species(X,lion), 0.75)}



to

A4 = {(∼climbs(simba) –≺ species(simba,lion), 0.75)}

The argument 〈A4,∼climbs(simba), 0.6〉 is defeated by 〈A3, climbs(simba), 0.6〉
(an instantiation of 〈〈A3, climbs(X), 0.75〉〉). Thus, climbs(simba) is warranted and
we found the same dialectical tree that was found in example 1 with an opti-
mized inference mechanism. Note that the links for the defeaters present in the
dialectical graph are used to find the conflicts. This makes it easier to recover
the tree from the dialectical graph of the framework.

The deductive database can be subject to constant changes as is the case with
every real world database. The only restriction is that it must not be changed
while a query is being solved. The dialectical graph is not affected by changes in
the extensional database.

We present now a classic example in traditional deductive database systems
based on logic programming, that usually causes problems with the semantics.
In our case the system follows a cautious semantics, not deriving either p(a) or
q(a).

Example 3. Consider a deductive database composed by:

– EDB = {(r, 0.6), (s, 0.6)},
– IDB = {(p(X) –≺ ∼q(X), 0.8), (q(X) –≺ ∼p(X), 0.8)}

The dialectical graph GIDB is composed by the two potential arguments:

– 〈〈A1, p(X), , 〉〉 A1 = {(p(X) –≺ ∼q(X), 0.8)}.
– 〈〈A2, q(X), , 〉〉 A1 = {(q(X) –≺ ∼p(X), 0.8)}.

and the defeat relation Db = {(A1, A2), (A2, A1)}.
Suppose the system is faced with the query p(a). The dialectical tree for this

query is formed by argument 〈A1,∼q(a), 0.6〉, A1 = {(p(a) –≺ ∼q(a), 0.6)} that
is in turn defeated by 〈A2, q(a), 0.6〉, A1 = {(q(a) –≺ ∼p(a), 0.6)}.

The situation with query q(a) is analogous and therefore the system cannot
derive p(a) nor q(a).

Note that the DB DeLP system can seamlessly treat this example without
semantic or operational problems. Furthermore, there is no need for imposing
additional restrictions, such as requiring predicate stratification. Traditional sys-
tems would enter a loop jumping from one rule to the other. This is prevented in
DB DeLP by the circularity condition imposed on argumentation lines of dialec-
tical trees.3 This condition does not allow the re-introduction of A1 as a defeater
of A2 in the dialectical tree of the previous example.

3 This condition was inherited from the original DeLP system, the interested reader
may consult [15].



6 A Worked Example

In this section we present an example to illustrate the practical uses of defeasible
databases. The example is based on a classical benchmark in deductive databases
concerning data on prescriptions, physicians and patients [21]. The system is a
DSS to help employees decide whether a given medication should be sold to
a patient. The relation prescription (pres) means that there is a prescription
for a given drug to be administered to a given patient. Allergic shows known
allergic reactions in patients, physician lists where physicians work, patient lists
insurance company and clinics to which a patient usually goes, and psychiatrist
(psy) establishes that a physician is also a psychiatrist (see Figure 6).

patients(patient id,clinic,insurance)

(patients(456,new line,hope), 0.6)
(patients(587,delta,hope), 0.6)
(patients(234,new line,trust), 0.6)
(patients(1211,delta,trust), 0.6)
(patients(254,star,trust), 0.6)
. . .

physicians(phy id,clinic)

(physicians(432,star), 0.7)
(physicians(54,delta), 0.7)
(physicians(672,new line), 0.7)
(physicians(432,delta), 0.7)
. . .

pres(note id,patient id,phy id,drug,text)

(pres(23445,587,432,pen,text1), 0.6)
(pres(23446,587,54,amoxicillin,text2), 0.6)
(pres(23447,587,54,vicodin,text3), 0.6)
(pres(23448,1211,54,morphine,text4), 0.6)
(pres(23449,234,672,diazepam,text5), 0.6)
. . .

allergic(patient id,drug)

(allergic(587,pen), 0.7)
(allergic(1211,pen), 0.6)
(allergic(1211,morphine), 0.6)
. . .

psy(phy id)

(psy(672), 0.8)
(psy(54), 0.8)
. . .

The intensional database is formed by the rules in Figure 6. The first rule
says that a medication should be sold if there is prescription for it. The second
rule says that it should not be sold if the physician is suspended and the third
says that it should not be sold if the patient is allergic. The fourth rule concerns
special drugs that have to be authorized before being sold and for that should
have been prescribed by a psychiatrist. The fifth rule establishes the drug is not
authorized when it is prescribed by a psychiatrist that has been suspended.

The dialectical graph contains arguments A, B, C, D, and E:

– 〈〈A, sell(Patient,Drug), 0.65〉〉,
A = {(sell(Patient,Drug) –≺ pres(X,Patient,Y,Drug), 0.65)}.



(sell(Patient,Drug) –≺ pres(X,Patient,Y,Drug),0.65)
(∼sell(Patient,Drug) –≺ pres(X,Patient,Y,Drug),susp(Y),0.75)
(∼sell(Patient,Drug) –≺ allergic(Patient,Drug),0.95)
(auth pres(Patient,Drug) –≺ pres(X,Patient,Y,Drug),psychiatrist(Y),0.6)
(∼auth pres(Patient,Drug) –≺ pres(X,Patient,Y,Drug),psy(Y),susp(Y),0.7)

– 〈〈B,∼sell(Patient,Drug), 0.75〉〉,
B = {(∼sell(Patient,Drug) –≺ pres(X,Patient,Y,Drug,Text),susp(Y), 0.75)}.

– 〈〈C,∼sell(Patient,Drug), 0.95〉〉,
C = {(∼sell(Patient,Drug) –≺ allergic(Patient,Drug), 0.95)}.

– 〈〈D, authorize pres(Patient,Drug), 0.6〉〉,
D = {(auth pres(Patient,Drug) –≺ pres(X,Patient,Y,Drug,Text),psy(Y), 0.6)}.

– 〈〈E,∼authorize pres(Patient,Drug), 0.7〉〉,
E = {(∼auth pres(Patient,Drug) –≺ pres(X,Patient,Y,Drug,Text),psy(Y),

susp(Y), 0.7)}.

B C

A

E

D

?

@
@
@

@
@@R

I

?

Fig. 6. Dialectical graph for clinical database.

Suppose the system is faced with a query for the fact sell(587,vicodin). It first
finds a potential argument that can be instantiated to support this fact, so it
selects A and instantiates it to:
A = {(sell(787,vicodin) –≺ pres(23447,587,54,vicodin,text3), 0.6)}. Using the
dialectical graph we can see that there are two links that connect A with its de-
featers, so we can explore to see if an instance of B or C can be built to attack
argument A. Since this is not the case argument A is the only argument in the
dialectical tree and the answer is yes.

Next, the system is faced with query sell(587,pen). The structure is similar to
the previous case, but in this situation potential argument A is instantiated to

A = {(sell(587,pen) –≺ pres(23445,587,432,pen,text1), 0.6)}

and following the links in the dialectical graph we find defeater B that can be
instantiated to:
B = {(∼sell(587,pen) –≺ allergic(587,pen), 0.7)}. No more defeaters can be
added to this dialectical tree so the answer to sell(587,pen) is no.



Now the query auth pres(234,diazepam) is performed. In this case potential
argument D is instantiated to:
D = {auth pres(234,diazepam) –≺ pres(23449,234,672,diazepem,text5),

psy(672), 0.6)} and no defeater can be found for D thus the answer is yes.
Facts can be added to the database and also new tables can be created. Sup-

pose we add a new table that contains a list of doctors that have been suspended
due to legal issues. This table contains the fact (suspended(672), 0.8). If query
authorize pres(234,diazepam) is re-processed by the system the answer would now
be no, given that a new argument:
E = {(∼auth pres(234,diazepam) –≺ pres(23449,234,672,diazepam,text5),

psychiatrist(672),suspended(672), 0.7)}. can be built by instantiating E, result-
ing in a defeater for D. Thus, D is no longer warranted. Note how new tables and
new facts can be added to the system without rebuilding the dialectical graph.

7 Conclusions and Future Work

In this work, we have defined a multi-agent system which virtually integrates
different databases into a common view. We have also presented a layered ar-
chitectural model that we have designed to develop practical applications for
reasoning with data from multiple sources. This model provides a novel system
architecture for decision-support systems (DSS) that combines database tech-
nologies with an argumentation based framework.

We have also defined an argumentation-based formalism that integrates un-
certainty management and is specifically tailored for database integration. This
formalism was also provided with an optimization mechanism based on pre-
compiled knowledge. Using this mechanism, the argumentation system can com-
ply with real time requirements needed to manage data and model reasoning
over this data in dynamic environments.

Future work may be done in different directions. First, many important and
interesting issues could be considered in the general framework of database the-
ory or information integration theory, such as how integrity constraints affect
this set-up, how our proposal relates to local/global views, or which connections
could be established with database repairs. Second, we will integrate DB DeLP

with a massive data component to obtain experimental results regarding the
system’s behavior in such trying environment.

A related research line could also be obtained by extending the language of
DB DeLP to use it in practical systems, particularly to implement argumentation-
based active databases and decision support systems backed by large repositories
of data.

Acknowledgements. This research was partially supported by CONICET (Ar-
gentina), and by the Universidad Nacional del Sur. The authors would also like
to thank the anonymous reviewers for their valuable comments and suggestions
that helped improve the quality of this work.



References

1. Alsinet, T., Chesñevar, C.I., Godo, L., Simari, G.R.: A logic programming frame-
work for possibilistic argumentation: Formalization and logical properties. Fuzzy
Sets and Systems 159(10), 1208–1228 (2008)

2. Alsinet, T., Godo, L.: A complete calculus for possibilistic logic programming with
fuzzy propositional variables. In: Proceedings of the Sixteenth Conference on Un-
certainty in Artificial Intelligence (UAI-2000). pp. 1–10. ACM Press (2000)

3. Berti, L.: Quality and recommendation of multi-source data for assisting tech-
nological intelligence applications. In: Proc. of 10th International Conference on
Database and Expert Systems Applications. pp. 282–291. AAAI, Italy (1999)

4. Brodie, M.L., Jarke, M.: On integrating logic programming and databases. In:
Expert Database Workshop 1984. pp. 191–207 (1984)

5. Bryant, D., Krause, P.: An implementation of a lightweight argumentation engine
for agent applications. Logics in Artificial Intelligence 4160(1), 469–472 (2006)

6. Capobianco, M., Chesñevar, C.I., Simari, G.R.: Argumentation and the dynamics
of warranted beliefs in changing environments. Journal of Autonomous Agents and
Multiagent Systems 11, 127–151 (2005)

7. Carbogim, D., Robertson, D., Lee, J.: Argument-based applications to knowledge
engineering. The Knowledge Engineering Review 15(2), 119–149 (2000)

8. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog
(and never dared to ask). IEEE Trans. on Knowledge and Data Eng. 1(1) (1989)

9. Chesñevar, C.I., Maguitman, A.G., Loui, R.P.: Logical Models of Argument. ACM
Computing Surveys 32(4), 337–383 (2000)

10. Chesñevar, C.I., Maguitman, A.G., Simari, G.R.: Argument-based critics and rec-
ommenders: A qualitative perspective on user support systems. Data & Knowledge
Engineering 59(2), 293–319 (2006)

11. Chesñevar, C.I., Simari, G.R., Alsinet, T., Godo, L.: A logic programming frame-
work for possibilistic argumentation with vague knowledge. In: Proc. of Uncertainty
in Artificial Intelligence Conference (UAI 2004), Banff, Canada (2004)

12. Cuppens, F., Demolombe, R.: Cooperative answering: a method to provide intel-
ligent access to databases. In: Proc. 2nd Conf. on Expert Database Systems. pp.
621–643 (1988)

13. Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In: D.Gabbay, C.Hogger,
J.Robinson (eds.) Handbook of Logic in Art. Int. and Logic Prog. (Nonmonotonic
Reasoning and Uncertain Reasoning), pp. 439–513. Oxford Univ. Press (1994)

14. Dung, P.M.: On the Acceptability of Arguments and its Fundamental Role in
Nonmonotonic Reasoning and Logic Programming and n-Person Games. Artificial
Intelligence 77(2), 321–357 (1995)

15. Garćıa, A.J., Simari, G.R.: Defeasible Logic Programming: An Argumentative Ap-
proach. Theory and Practice of Logic Programming 4(1), 95–138 (2004)

16. Lakshmanan, L.V.S., Sadri, F.: Probabilistic deductive databases. In: Proc. of the
Int. Logic Programming Symposium. pp. 254–268 (1994)

17. Lakshmanan, L.V., Shiri, N.: A parametric approach to deductive databases with
uncertainty. Journal of Intelligent Information Systems 13(4), 554–570 (2001)

18. McLeod, D., Heimbigner, D.: A federated architecture for information manage-
ment. ACM Transactions on Information Systems 3(3), 253–278 (1985)

19. Prakken, H., Vreeswijk, G.: Logical systems for defeasible argumentation. In: Hand-
book of Philosophical Logic, vol. 4, pp. 219–318 (2002)



20. Prakken, H., Vreeswijk, G.: Logical systems for defeasible argumentation. In: Hand-
book of Philosophical Logic, vol. 4, pp. 219–318 (2002)

21. Quian, X.: Query folding. In: Proc. 12th Intl. Conf on Data Engineering. pp. 48–55
(1996)

22. Simari, G.R., Loui, R.P.: A Mathematical Treatment of Defeasible Reasoning and
its Implementation. Artificial Intelligence 53(1–2), 125–157 (1992)

23. Subrahmanian, V.S.: Paraconsistent disjunctive deductive databases. Theorethical
Computer Science 93(1), 115–141 (1992)

24. Zaniolo, C.: Prolog: A database query language for all seasons. In: Expert Database
Workshop 1984. pp. 219–232 (1984)

25. Zaniolo, C.: Intelligent databases: Old challenges and new opportunities 3/4(1),
271–292 (1992)


