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CTED P
ROOFAbstract

Topological optimization provides a powerful framework to obtain the optimal domain topology for several engineering problems.

The topological derivative is a function which characterizes the sensitivity of a given problem to the change of its topology, like opening a

small hole in a continuum or changing the connectivity of rods in a truss.

A numerical approach for the topological optimization of 2D linear elastic problems using boundary elements is presented in this

work. The topological derivative is computed from strain and stress results which are solved by means of a standard boundary element

analysis. Models are discretized using linear elements and a periodic distribution of internal points over the domain. The total potential

energy is selected as cost function. The evaluation of the topological derivative is performed as a post-processing procedure. Afterwards,

material is removed from the model by deleting the internal points and boundary nodes with the lowest values of the topological derivate.

The new geometry is then remeshed using a weighted Delaunay triangularization algorithm capable of detecting ‘‘holes’’ at those

positions where internal points and boundary points have been removed. The procedure is repeated until a given stopping criterion is

satisfied.

The proposed strategy proved to be flexible and robust. A number of examples are solved and results are compared to those available

in the literature.

r 2007 Published by Elsevier Ltd.
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1. Introduction

Structural optimization is a major concern in the design
of mechanical systems. The classical problem in engineer-
ing design consists in finding the optimum geometric
configuration of a body that maximizes or minimizes a
given cost function while it satisfies the problem boundary
conditions. During the last 20 years a number of numerical
techniques have been developed to solve the problem
efficiently.

Following Ceá et al. [1], structural optimization techni-
ques can be classified as follows:
e front matter r 2007 Published by Elsevier Ltd.

ganabound.2007.10.003

ing author. Tel.: +54 223 4816600x186; fax:

6.

ess: cisilino@fi.mdp.edu.ar (A. Cisilino).

s article as: Carretero Neches L, Cisilino A. Topology optimiz

.1016/j.enganabound.2007.10.003
�

atio
Size optimization: Only the cross sections of the
structure are optimized. This approach is specially
suited for the optimization of beam/bar structures.

�
 Shape optimization: The optimal geometry is searched

within a class of domains having the same topology as
the initial design, i.e., no holes are introduced in the
optimization domain.

�

71
Topology optimization: The shape and connectivity of
the domain are both design variables; the introduction
of new boundary is permitted via the creation of holes.
This versatile approach is capable of delivering optimal
designs with a priori poor information on the optimal
shape of the structure, and it possess the ability of
producing the best overall structure [2].
73

75
Homogenization methods are possibly the most used
approach for topology optimization [3]. In these methods a
77
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material model with micro-scale voids is introduced and
the topology optimization problem is defined by seeking
the optimal porosity of such a porous medium using one of
the optimality criteria. In this way, the homogenization
technique is capable of producing internal holes without
prior knowledge of their existence. However, the homo-
genization method often produces designs with infinitesi-
mal pores that make the structure not manufacturable. A
number of variations of the homogenization method have
been investigated to deal with these issues, such as
penalization of intermediate densities and filtering proce-
dures [4]. On the other hand, there exist the so-called level
set methods which are based on the moving of free
boundaries [5,6]. Although very effective, the main draw-
back of level set methods is the need of pre-existent holes
within the model domain in order to conduct a topology
optimization.

The topological derivative provides an alternative
approach for shape optimization. It was firstly introduced
by Ceá et al. [7] by combining a fixed point method with
the natural extension of the classical shape gradient. The
basic idea behind the topological derivative is the evalua-
tion of cost function sensitivity to the creation of a hole. In
this way, wherever this sensitivity is low enough (or high
enough depending on the nature of the problem) the
material can be progressively eliminated. Topological
derivative methods aim to solve the aforementioned
limitations of the homogenization methods.

A numerical approach for the topological optimization
of 2D elastic problems using boundary elements is
presented in this work. The formulation of the problem is
based on the results by Novotny et al. [8], who introduced a
new procedure for computing the topological derivative
which allows overcoming some mathematical difficulties
involved in its classical definition. The boundary element
analysis is done using a standard direct formulation.
Models are discretized using linear elements and a periodic
distribution of internal points over the domain. The total
strain energy is selected as cost function. Afterwards,
material is removed from the model by deleting the internal
points with the lowest (or highest) values of the topological
derivate. The new geometry is remeshed using an extended
Delaunay tessellation algorithm capable of detecting
‘‘holes’’ at those positions where internal points and nodes
have been removed. In this way, the procedure avoids using
intermediate densities, the classical limitation of the
homogenization methods. The procedure is repeated until
a given stopping criterion is satisfied. The performance of
the proposed strategy is illustrated for a number of
examples and their results compared to solutions available
in the literature.

Although the FEM has been the main numerical tool for
the implementation of topology optimization techniques,
there are implementations using BEM (see Ref. [9]) and
free boundary parametrization methods [6]. To the
authors’ knowledge, the only antecedent in the implemen-
tation of the Novotny et al. [8] approach for the
Please cite this article as: Carretero Neches L, Cisilino A. Topology optimiz

(2007), doi:10.1016/j.enganabound.2007.10.003
computation of the topological derivative using BEM are
the recent works by Cisilino [10] and Marckzak [11] for
potential problems and by Marckzak [12] for elastic
problems. Both implementations, that due to Marckzak
[11,12] and the one presented in Ref. [10] use similar
procedures for the computation of the topological deriva-
tive results. However, they differ in the strategy proposed
for the creation of the holes and the model update and
remeshing. The procedures introduced in Ref. [10] for
potential problems are extended here to elasticity pro-
blems.
ED P
ROOF

2. Topological sensitivity analysis

The original definition of the topological derivative, DT,
relates the sensitivity of a cost function c(O) when the
topology of the optimization domain O is altered by
creating a small cavity or hole. However, the direct
application and implementation of this concept is not
straightforward, as it is not possible to establish a
homeomorphism between the domains with different
topologies (domains with and without the hole).
Novotny et al. [8] proposed an alternative definition of

the DT that overcomes the problem. They assimilated the
creation of a hole to the perturbation of a pre-existing hole
whose radius tends to zero (see Fig. 1). Therefore, both
topologies of the optimization domain O are now similar
and it is possible to establish a homeomorphism between
them. According to this new definition, the expression for
the DT is

DT ðxÞ ¼ lim
�!0
d�!0

cðO�þd�Þ � cðO�Þ

f ð�þ d�Þ � f ð�Þ
, (1)

where c(Oe) and c(Oe+de) are the cost function evaluated
for the reference and perturbed domain, e is the initial
radius of the hole, de is a small perturbation of the hole
radius and f is a regularization function. The function f is
problem dependant and f(e)-0 when (e)-0.
It could be argued that the new definition of the DT in

Eq. (1) merely provides the sensitivity of the problem when
the size of the hole is perturbed and not when it is
effectively created (as one has in the original definition of
the topological derivative). However, it is understood that
to expand a hole of radius e, when e-0, is nothing more
than creating it (a complete mathematical proof that
establishes the relation between both definitions of the DT

is given in Ref. [8]). Moreover, the relationship between the
two definitions constitutes the formal relation between the
DT and the shape sensitivity analysis. The advantage of the
novel definition for the topological derivative given by Eq.
(1) is that the whole mathematical framework developed
for the shape sensitivity analysis can now be used to
compute the DT.
ation of 2D elastic structures using boundary.... Eng Anal Bound Elem
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Fig. 1. New definition of the DT as proposed by Novotny et al. [8]: (a) original domain with pre-existing hole c(Oe) and (b) perturbed domain c(Oe+de).
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3. The topological derivative for elasticity problems

In the present work the DT is applied to the optimization
of two-dimensional elastostatics. Following Novotny et al.
[8,13], the topological derivative equations are briefly
reviewed next, considering a mechanical model restricted
to infinitesimal strains and displacements with a linear
isotropic constitutive relation.

Let Oe be the domain of a deformable body with a small
hole with boundary qBe. The boundary Ge=GN[GD[qBe is
submitted to a set of surface tractions t̄ on the Neumann
boundary GN and displacement constraints on the Dirichlet
boundary GD. An homogeneous Neumann condition t̄ ¼ 0
is imposed on the hole boundary qBe. Then, in absence of
body forces the mechanical model can be described using
the following variational formulation in terms of the
displacement field ue: find ue: find ue such that
Z
O�

s�ðu�Þ��ðw�ÞdO� ¼

Z
GN

t̄ � w� dG�, (2)

where we is a field of admissible displacement variations
which satisfies the condition we=0 on GD; and se and ee are
the stress and strain fields, respectively.

The boundary-value problem given in Eq. (2) for the
reference configuration Oe, must also be satisfied in the
perturbed configuration Oe+de (see Section 2). In this way
the variational formulation for the perturbed configuration
is
Z
O�þd�

s�þd�ðu�þd�Þ��þd�ðw�þd�ÞdO�þd� ¼

Z
GN

t̄ � w�þd� dG�þd�,

(3)

where it has been assumed that the external loads remain
fixed during the shape change.

The cost function c(O) is, in a certain way, arbitrary.
For the case of elasticity problems the total strain energy
can be adopted. The expression of the total strain energy
for the reference domain is
Please cite this article as: Carretero Neches L, Cisilino A. Topology optimiz

(2007), doi:10.1016/j.enganabound.2007.10.003
D P
ROOFcðO�Þ ¼

1

2

Z
O�

s�ðu�Þ��ðu�ÞdO� �

Z
GN

t̄u� dG�, (4)

where the domain integral in the right-hand side represents
the total strain energy stored in the body and the boundary
integral represents the external work. This objective
function is equivalent to optimize the mean compliance
of the problem.
The optimization problem can be stated as the mini-

mization of the total potential energy (4) with the weak
(variational) form of the state equations (2) and (3) as
constraints. All these three equations can be used to derive
the expression for the DT using Eq. (1). This result was
obtained by Novotny et al. [8] using Reynold’s transport
theorem and the concept of material derivatives of spatial
fields:

DT ðxÞ ¼ lim
�!0

1

f ð�Þ

Z
qB�

1

2
s�ðu�Þ��ðu�ÞdqB�: (5)

Finally, an asymptotic analysis is performed in order to
know the behaviour of the displacement solution ue, as well
as the associated strain and stress fields, se and ee, when e-
0. From this asymptotic analysis the final expression for the
DT in the original domain O (without the hole) are
obtained:

DT ðxÞ ¼
2

1þ n
r � eþ

3n� 1

2ð1� n2Þ
tr r tr e (6)

for plane stress and

DT ðxÞ ¼ 2ð1� nÞr � eþ
ð1� nÞð4n� 1Þ

2ð1� 2nÞ
tr r tr e (7)

for plane strain.
The symbol n in expressions (6) and (7) stand for the

Poisson ratio, while tr r and tr e stand for the trace of the
stress and strain tensors, respectively.
ation of 2D elastic structures using boundary.... Eng Anal Bound Elem
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4. BEM implementation

The implemented algorithm solves the optimization
problem incrementally by progressively removing a small
portion of the domain per increment (usually known as
hard kill algorithm [14]). In addition to the constrains
introduced in the previous section while presenting the
formulation of the topological derivative, it is necessary to
consider some additional constraint to the problem in
order to avoid the algorithm leading to the trivial solution
of the problem, i.e., the complete extinction of the
optimization domain. The simplest way to tackle this
problem is by introducing a goal minimum material
volume fraction, gmin ¼ vol(Ofinal)/vol(O0), as stopping
criterion.

The algorithm can be summarized as follows (the index j

stands for increment number):

75
(i)

77

Fig. 2

remes

Plea

(200
Provide an initial domain Oj ¼ 0 and the stopping
criterion Fig. 2a.
(ii)

79
Solve the BEM model for the Oj domain (Fig. 2b).
Compute the stress r and strain e fields at internal and
boundary points.
81

(iii)
 Compute the DT(x) using the formula (4) or (5).

(iv)
83

Select the points with the minimum values of DT (a
few percent of the total number of points).
(v)

85
Create holes by removing the points selected in step
(iv) (Fig. 2c).
(vi)

87
Check stopping criterion. If necessary, make j ¼ j+1,
define a new domain Oj, remesh the BEM model (Fig.
UNCORRECTE

ΓD

ΓN

u = u
t = t

n

. BEM implementation: (a) problem definition and boundary conditions; (b) ini

hing.

se cite this article as: Carretero Neches L, Cisilino A. Topology optimization

7), doi:10.1016/j.enganabound.2007.10.003
2d) and go to step (ii).

(vii)
 At this stage the desired final topology is obtained.
D P
ROOF

4.1. Boundary element analysis

Since the DT is a function of the stress and strains only,
its evaluation does not require any special BEM imple-
mentation. Moreover, the recovery of the local DT value
can be easily implemented as a post-processing procedure.
The present implementation uses a parallel version of the
BEM code SERBA which accompanies the book by Paris
and Cañas [15]. The so-called SERBAPA (SERBA
PArallel) was coded using message passing interface
(MPI) standard and it runs on Beowulf Cluster set up
using Linux and built using five Pentium 4 CPUs. It is
worth to note that in addition to the computing time
improvement for the problem solution, SERBAPA resulted
in important time savings in the post processing when
computing stresses and strains at internal points. This is
due to the important number of internal points used in the
model discretization (see Section 4.2).

4.2. Model discretization and remeshing

The model discretization and remeshing strategies are
key issues for the performance of the implemented
algorithm. The initial BEM model is discretized using
two-node linear continuous elements and a regular array of
89

91

93

95

97

99

101

103

105

107

109

111

113tial BEM model; (c) elimination internal points; and (d) BEM model
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internal points following the pattern depicted in Fig. 2b.
The removal of internal and boundary points in every
increment is followed by a model remeshing. With this
purpose the programme MeshSuite, based on an a-shapes
algorithm is employed [16]. Alpha shapes can be viewed as
Delaunay triangularization of a point set weighted by the
parameter a. Alpha shapes formalize the intuitive notion of
shape, and for varying parameter a, it ranges from crude to
fine shapes. The most crude shape is the convex hull itself,
which is obtained for very large values of a. As a decreases,
the shape shrinks and develops cavities that may join to
form holes. In this work the parameter a is selected as the
average distance between boundary nodes. This is the
reason why internal points are distributed on the model
domain using a regular array. Upon the input of the
coordinates of the boundary nodes and internal points
after each optimization step (see Fig. 2c), MeshSuite
outputs the connectivity of the new model boundary (see
Fig. 2d). Thus, those points not used as boundary nodes
are assimilated to internal points in the new discretization.

Depending on the spatial distribution of the points, two
problems may arise in the new boundary discretization (see
Fig. 3a): (i) a multi-connected boundary points which take
part in the connectivity of two (or even more) boundaries;
and (ii) there are closed contours defining ‘‘islands’’
disconnected from the main model boundary. Both
problems are remedied by simply removing the conflicting
points from the model. Multi-connected points are
UNCORRECTE
J

Fig. 3. (a) Problems arising during the automatic model remeshing, multi-

connected boundary nodes and ‘‘islands’’ disconnected from the main

model boundary; and (b) suitable model discretization after the deletion of

the conflicting points.

Please cite this article as: Carretero Neches L, Cisilino A. Topology optimiz

(2007), doi:10.1016/j.enganabound.2007.10.003
identified after checking that every valid boundary node
belongs to the connectivity of two boundary elements only.
On the other hand, for the deletion of the disconnected
portions of the model it is necessary to test whether a
closed contour defines an ‘‘island’’ or a hole. This is done
by defining an auxiliary point in the direction of the
outward normal to the contour (see point J in Fig. 3a). If it
is verified that the auxiliary point is outside the contour the
conflicting points constitute an ‘‘island’’ and they are
removed. It is worth noting that the two checks mentioned
above are performed in every increment of the optimiza-
tion algorithm. Moreover, the checks are performed
repeatedly until no problems are detected, since the
D 87
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P = 40 N

Fig. 4. Geometry for the Examples 1 and 2. Short cantilever beams with

loads applied (a) at the middle of the middle and (b) at the top of the free

vertical edge.
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T

deletion of a point as a consequence of previous checks
could lead to the occurrence of new conflicting situations.

5. Examples

Results for four examples are presented in this section.
In order to assess the performance of the BEM algorithm,
the first three examples are well-known validation exam-
ples. The last example is dedicated to an application
problem.

For all examples, the material used is steel with modulus
of elasticity of 210GPa and Poisson’s ratio n ¼ 0.3. All the
examples are in plane stress condition.

5.1. Short cantilever beam with load at the middle of the free

vertical edge

This first validation example consists in the short
cantilever beam illustrated in Fig. 4a. The optimization
domain is a square of size 10m� 10m, discretized using
400 boundary elements and 9801 internal points following
the pattern shown in Fig. 2b. Using this discretization
scheme, each internal point and boundary node represents
around 0.01% of the initial model domain. The left side of
the domain was fixed (zero displacement boundary
condition) and a total vertical load P ¼ 40N was applied
at the middle of the right side. The load P was applied over
a length d ¼ 0.4m (four boundary elements). The specified
minimum material volume fraction is gmin ¼ 0.2.

Two methods were used for setting the rate of material
removal. The first one consisted in removing a constant
amount of material in every increment, this amount
computed as a percentage of the initial model volume,
UNCORREC

0.60.70.80.91.0
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Fig. 5. Example 1: evolution of the normalized cost fu
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vol(O0). Using this strategy (which in what follows will be
referenced as the ‘‘constant method’’) the problem was
solved removing 5%, 1% and 0.2% of the initial model
volume in every increment. In the second method the
amount of removed material was updated in every
increment, that is, the amount of removed material is
computed as a percentage of the current model volume,
vol(Oj). In this way the actual amount of removed material
diminishes with the progress of the optimization process. A
percentage of 5% was used when solving the problem using
the so-called ‘‘updated method’’.
Fig. 5 displays the evolution of the normalized cost

function in terms of the material volume fraction for the
three solutions computed using the constant and the
updated methods. Besides, Fig. 6 illustrates the intermedi-
ate (volume fraction in the range 0.45pgjp0.48) and final
geometries (volume fraction 0.20pgjp0.23) obtained using
the constant method.
The results in Fig. 5 allow verifying the convergence of

the optimization scheme. The three sets of results obtained
using the constant method show that the overall value of
the cost function diminishes with the reduction of the
amount of material removed per increment. At the same
time it can be seen that the three sets of results behave
similarly up the volume fraction gE0.50 (the normalized
cost function at this point ranges from 2.02pC/C0p1.88
for a material removal rates of 5% and 0.2%, respectively),
and then start diverging. In essence, the 5% solution starts
producing more ‘‘expensive’’ results when compared to 1%
and 0.2% removal rates. This observation is in accordance
with the geometries illustrated in Fig. 6. The intermediate
results show that the 1% and 0.2% geometries respond to
the same basic design: two principal ‘‘4-shape’’ structures
93
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(a-1)

5% constant

γ=0.48

(a-2)

5% constant

γ=0.23

(b-1)

1% constant

γ=0.47

(b-2)

1% constant

γ=0.21

(c-1)

0.2% constant

γ=0.45

(c-2)

0.2% constant

γ=0.21

Fig. 6. Example 1: intermediate and final geometries computed using different material removal rates with the constant method.
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connected by auxiliary beams (see Figs. 6b-1 and c-1),
while the 5% approach produced a different design
consisting in a single exterior ‘‘4-shape’’ structure with
an internal regular lattice (see Fig. 6a-1). Similarly, the final
geometries resulting from the 1% and 0.2% solutions are
very similar (see Figs. 6b-2 and c-2), and they present a
significant improvement in terms of the cost-function
minimization when compared to the 5% solution (see
Fig. 5).

Fig. 7 depicts the evolution of the model geometry with
the material volume fraction computed using the updated
method. When compared with the results in Fig. 6, it can
be observed that the intermediate geometry for g ¼ 0.50
(Fig. 7c) looks like a transition of those obtained using the
constant method with material removal rates of 1% and
5% shown in Figs. 6a-1 and b-1 (the new solution
Please cite this article as: Carretero Neches L, Cisilino A. Topology optimiz

(2007), doi:10.1016/j.enganabound.2007.10.003
combines portions of an interior ‘‘4-shape’’ structure with
a small lattice). Besides, the normalized cost C/C0

associated to this geometry is within the range indicated
for the constant-method results (see Fig. 5). For the rest of
the simulation the cost function presents a similar
behaviour to that of the 5% constant-method solution.
Moreover, the configurations of the model geometries at
g ¼ 0.21 (the result corresponding to the specified mini-
mum material volume fraction) posses a similar configura-
tion (see Figs. 6a-1 and 7d).
Finally, the problem was solved using the updated

method with a specified minimum material volume fraction
gmin=0.07. The resulting intermediate geometry for
g=0.13 and the final geometry for g=0.075 are illustrated
in Figs. 7e and f, respectively. The final solution is in
agreement with that obtained by other authors (see for
ation of 2D elastic structures using boundary.... Eng Anal Bound Elem
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Fig. 7. Example 1: evolution of the model geometry with the material volume fraction. Solution computed using an updated method.
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example Ref. [17]). It is worth to mention that updated
method was the only capable of achieving such a
demanding material volume fraction reduction. All the
Please cite this article as: Carretero Neches L, Cisilino A. Topology optimiz

(2007), doi:10.1016/j.enganabound.2007.10.003
solutions attempted using the constant method with the
above reported material removal rates failed to produce
valid models for material volume fractions go0.15. This is
ation of 2D elastic structures using boundary.... Eng Anal Bound Elem
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because at a given stage the algorithm removed an
excessive amount of material which resulted in discon-
nected model geometry.
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UNCORRECT5.2. Short cantilever beam with the load at the top of the free

vertical edge

The geometry of the second validation example is
illustrated in Fig. 4b. The problem has the same dimen-
sions, discretization and boundary conditions to that of the
first example, with the only exception that the load P is
now placed at the top corner of its right edge. Like in the
first example the load P was applied over a length
d ¼ 0.4m (four boundary elements). The specified mini-
mum material volume fraction is gmin ¼ 0.3.

Fig. 8 displays the evolution of the normalized cost
function in terms of the material volume fraction for both
solutions. The problem was solved using the constant
method, with material removal rates of 5% and 1%. The
results present similar behaviours to those obtained for the
first example. The cost functions for both solutions behave
almost coincident up a volume fraction gE0.50, and then
start diverging. The 5% solution produces more ‘‘expen-
sive’’ results than the 1% solution.

The evolution of the problem geometries are depicted in
Fig. 9. As it can be seen, both solutions converge to the
same final configuration, which is in accordance to that
reported by other authors [12,13].
113

Please cite this article as: Carretero Neches L, Cisilino A. Topology optimiz
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D P
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5.3. Michell-type structure

This example consists in the design of a Michell-type
structure. This kind of problems is also a usual benchmark
for topology optimization algorithms. The initial domain is
shown in Fig. 10a. It consists in a rectangle with
dimensions 200m� 100m submitted to a distributed
constant load q ¼ 10 kN/m along the lower edge. Dis-
placement boundary conditions are imposed in order to
ensure the model symmetry. The problem was discretized
using 600 boundary elements and 19,700 internal points.
The problem was solved using the constant method, with a
material removal rate of 1%. The specified minimum
material volume fraction is gmin ¼ 0.60.
A number of intermediate and final optimization

geometries are shown in Figs. 10b–d. The resultant
topology is the classical result for this problem [17].

5.4. Design of a hook

This last example consists in a design of a hook to lift a
load. The initial optimization domain is chosen as a
rectangular plate with dimensions 100mm� 150mm with a
circular hole used to introduce a bolt to connect the hook
to the lifting mechanisms, and a slot used access the
loading point (see Fig. 11a). The problem was discretized
using 783 boundary elements and 22,482 internal points.
The problem was solved using the constant method, with a
material removal rate of 1%. The specified minimum
material volume fraction is gmin ¼ 0.30.
Figs. 11b–d depict the evolution of the optimization

procedure. One the optimization was completed; the
ation of 2D elastic structures using boundary.... Eng Anal Bound Elem
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Fig. 9. Example 2: intermediate and final geometries computed using different material removal rates.
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NCORresulting geometry was smoothed in order to provide a
manufacturable final design (see Fig. 12a). The final design
was solved using a new BEM model and the obtained
results compared to those of the initial geometry. The
normalized cost for the final design is C/C0 ¼ 0.7, while
the displacement of the loading point is incremented only
35%.
105

107
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111

113
U
6. Conclusions

An effective BEM implementation for the topological
optimization of 2D elastic structures was presented in this
work using the total strain energy as cost function. The
problem formulation is based on some recent results by
Novotny et al. [13], who introduced a new procedure for
computing the topological derivative which allows over-
Please cite this article as: Carretero Neches L, Cisilino A. Topology optimiz

(2007), doi:10.1016/j.enganabound.2007.10.003
coming some mathematical difficulties involved in its
classical definition.
The optimization problem is solved incrementally, by

progressively removing a small portion of the domain per
increment. BEM models are discretized using linear
elements and a regular array of internal points. The
topological derivative is computed at boundary nodes and
internal points from the strain and stress results. In every
step the material removal is done by deleting those internal
points and/or boundary nodes with the lowest values of the
topological derivative. The material removal is followed by
a model remeshing which consists in weighted Delaunay
triangularization algorithm and a checking procedure
devised to avoid the occurrence of invalid BEM models.
The process is repeated until the given stopping criterion
(the goal minimum material volume fraction) is achieved.
ation of 2D elastic structures using boundary.... Eng Anal Bound Elem
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Fig. 10. Michell-type structure: (a) initial problem geometry and (b–d)

boundary conditions and evolution of the geometry with the material

volume fraction.

γ=0.60

γ=0.40 γ=0.30

Initial geometry

P

Fig. 11. Design of a hook: (a) initial geometry for the hook and (b–d)

evolution of the model geometry with the material volume fraction.
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Two methods were used for setting the rate of material
removal: (i) a constant amount of material per increment
given as a percentage of the initial model volume, and (ii)
Please cite this article as: Carretero Neches L, Cisilino A. Topology optimiz

(2007), doi:10.1016/j.enganabound.2007.10.003
an updated amount of material given as a percentage of the
current model volume. The convergence analysis of the
cost function indicates that for the constant method a
material removal per increment equal to 1% is enough to
produce results independent of the material removal rate.
Besides, the constant method failed to produce geometries
with volumes less than 15% of the initial geometry volume.
Although it can be argued that this limitation of the
constant method can be tackled by using finer discretiza-
tions and smaller material removal rates, this alternative is
not convenient in terms of computing cost. On the other
hand, the updated method allows achieving geometries
with final volumes only a few percent of the initial one.
ation of 2D elastic structures using boundary.... Eng Anal Bound Elem
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The proposed method proves to be efficient and robust.
Its performance is assessed by solving a number of
benchmark problems and an application example.
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