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a b s t r a c t

The magnesium hydride stability and bonding have been studied using density functional

theory (DFT). To this aim, calculations on the electronic structure were performed. We also

modeled the bulk hydride with a Nb atom as a substitutional impurity. Furthermore, both

systems were modeled containing different types of vacancies (Mg, H or HeMg complex).

The crystal orbital overlap population for both the metalemetal and metalehydrogen

bonds was also computed. The influence of vacancy-like defects was studied through the

calculation of the positron lifetimes in defected MgH2 and defected MgH2eNb. For the pure

hydride, the results show an increment in the atom bonds in correlation with an increase

of the positron localization reflected in a rise of the positron lifetimes. On the other hand,

in all considered cases for Mg or/and H vacancies, the presence of Nb reduces the hydride

bond about 36%. This decrease in the hydride stability was associated with a decrease in

the probability of the positron localization and a consequently reduction of the positron

lifetimes.

ª 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
1. Introduction candidates for the reversible hydrogen storage due to its low
It is well known that the use of fossil fuels produces envi-

ronmental compromise, the CO2 emission contributes to

global warming and the availability of oil reserves around the

globe is related to geopolitical tensions. These issues stimu-

late the study of renewable and clean energy sources to

replace the use of fossil fuels [1e3]. Hydrogen is a suitable

energy vector to be used for the new economy. However, there

are several technological problems that need to be solved,

among them hydrogen storage on solid-state materials that

chemically bind or physically absorb hydrogen at densities

greater than the liquid phase [4]. Among light metals,

magnesium hydride is considered one of the most promising
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price and high weight percent storage (7.6 wt.%). However, its

slow hydrogenation and de-hydrogenation kinetics and the

requirement of high temperatures (w300 �C) for its decom-

position are the major shortcomings for mobile applications.

To solve this problem, it has been proposed to dopeMgH2with

transition metals (TM), such as Nb, Sc, Ti, V, Y and Zr.

Specifically, the transitionmetals act as catalysts reducing the

desorption temperature [5e8]. In fact, understanding the

microscopic mechanisms linked to the hydrogenation and

de-hydrogenation processes are of utmost importance for

industrial applications.

There is an interesting number of experimental and theo-

retical studies considering MgH2 and MgH2eNb [5e16]. Song
ublished by Elsevier Ltd. All rights reserved.
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Fig. 1 e Unit cell of MgH2.
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et al. [10] studied the influence of the doping elements on the

MgH2 stability. These authors found a decrease in the heat of

theMgH2-X formationbeingX¼Cu,Ni,Al,Nb, andFe toTi. This

destabilization was attributed to a weakening of the MgeH

bonding. On the other hand, Xiao et al. [14] reported a decrease

in the formation enthalpy ofMgH2-TM. They also analyzed the

structural and electronic effects on these hydrides.

Asknownthediffusion insolids ismediatedbyvacancy-like

defects. Specifically, themicroscopicmechanismsoperating in

the hydrogenation and de-hydrogenation of magnesium

hydride are related to the formation and diffusivity of vacan-

cies in bulk MgH2 [17]. Therefore, it is essential to understand

the roleof thementioneddefects on theelectronic andbonding

properties. The H vacancy interaction metal has been the

objective of several studies [18e21]. Under this frame, the aim

of the present work is to study the metalehydrogen bonding

and the effect of the transition metals on the stability of the

vacancyehydride complexes in MgH2eNb using first principle

calculations. Thus, after generating the crystal structure

described in Section 3, ab initio calculations were performed to

provide information on the energy and electronic structure of

the hydrides pure and Nb doped MgH2, and both structures

containing vacancies.

Positron annihilation spectroscopy, mainly positron life-

time technique (PALS) is almost the unique experimental tool

to directly obtain information on vacancy-like defects (see

a review in Ref. [22]). However, experimental studies on

vacancy-like defects in magnesium hydrides are scarce

[23e25], any contribution to this issue is of utmost impor-

tance. For example, there are no reported theoretical studies.

In such a way, the present work is also addressed to the

analysis of the structural changes in the hydrides in presence

of point defects.
2. Computational method

The energy and electronic structure calculations for the

absorption of hydrogen in MgeNb were carried out using two

computational methods. The first, the atomic superposition

and electrondelocalization tight-binding (ASED-TB) formalism

[26e28], implemented with the YAeHMOP package [29] is

described in detail in Refs. [30e32]. Although the method is

approximate, it has been used in the present work because it

gives a starting point of the main interactions during the

absorption process. In fact, the ASED-TB scheme has been

successfully used as a comparative tool to study surface and

interfacial phenomena in differentmetalseH systems [33e42].
Table 1 e Atomic parameters for ASED-TB calculation.

Atom Orbital IP (Ev) x1 X2 c1 c2

H 1s �13.6 1.3

Mg 3s �9.0 1.1

3p �4.5 1.1

Nb 5s �10.10 1.89

5p �6.86 1.85

4d �12.1 4.08 1.64 0.6401 0.5516
Weused as input parameters, a basis set of atomic orbitals and

experimental ionization potentials (IP). To obtain a detailed

descriptionof theelectronic structure properties,wehaveused

a full valence (s p d ) set of Slater-typeorbitals (STO).Asusual, in

the ASED approximation, single-z STO for the s and p orbitals

anddouble-z STO for the d orbitalswere used. Thevalues of the

Slater exponents applied were those optimized for Mg and Nb

by Vela and Gázquez [43]. Regarding the experimental valence

orbital IPvalues,whichareusedas thediagonal elementsof the

Hamiltonian matrix, spectroscopic data were utilized [44]. In

order to minimize exaggerated electron drifts, the IP were

adjusted following the same procedure reported in Ref. [45].

The atomic parameters are listed in Table 1.

Additional calculations were carried out within the

gradient-corrected density functional theory (GC-DFT) using

a supercell containing 48 atomic sites in a tetragonal lattice to

model bulk MgH2 with a 2 � 2 � 2 reciprocal space grid in the

supercell Brillouin zone. Specifically, we used the Amsterdam

Density Functional 2000 package (ADF-BAND2000) [46]. The

molecular orbitals were represented as linear combinations of

Slater functions. The gradient correction of the Becke

approximation for the exchange energy functional [47] and

the B3LYP approximation for the correlation functional were
Fig. 2 e (a) Total DOS curves for MgH2, (b) Projected DOS in

a Mg atom, (c) Projected DOS in an H atom. In (b) and (c) the

corresponding atomic levels are labeled. EF [ L11.12 eV.
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Fig. 3 e (a) Total DOS curves for MgH2 D Nb, (b) projected DOS in a Mg atom, (c) in an H atom and (d) in a Nb atom. The lines

on the right are the corresponding atomic levels. EF [ L11.90 eV.
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employed [48]. In order to increase the computational effi-

ciency, the innermost atomic shells of electrons were kept

frozen for every atom except hydrogen, since the internal

electrons do not contribute significantly to the bonding. We

have used a triple-zeta basis set with polarization functions to

express the atomic orbitals of Mg and Nb. The basis set of Mg

consisted of 3s and 3p orbitals and for Nb 5s, 5p and 4d.

To understand the MgH2 þ Nb interactions we have used

the concepts of density of states (DOS) and the overlap pop-

ulation density of states (OPDOS), as described in Refs [33e36].
Table 2 e Overlap population (OP) for the MgH2 and
MgH2 D Nb systems perfects and with vacancies.

Structure Bond Distance (Å) OP DOP (%)

MgH2 MgeMg 3.520 0.005 e

MgeH 1.247 0.595 e

MgH2eVH MgeMg 0.005 0

MgeH 0.596 0.2

MgH2eVMg MgeMg 0 e

MgeH 0.622 4.5

MgH2eVHeVMg MgeMg 0 e

MgeH 0.632 6.2

MgH2eNb MgeMg 3.520 0.012 140

MgeH 1.247 0.401 �32.6

NbeMg 3.520 0.045 e

NbeH 1.930 0.272 e

MgH2eNbeVH MgeMg 0.019 280

MgeH 0.401 �32.6

NbeMg 0.044 �2.2

NbeH 0.272 e

MgH2eNbeVMg MgeMg 0.011 120

MgeH 0.379 �36.3

NbeMg 0.045 e

NbeH 0.258 �5.1

MgH2eNbeVHeVMg MgeMg 0.018 26

MgeH 0.380 �36.1

NbeMg 0.044 �2.2

NbeH 0.270 �0.7
To calculate the positron lifetimes we have followed the

procedure described in Refs [49e51]. Specifically, we have

made our calculations mentioned using the free available

Doppler program developed by the Electronic Properties of

Materials Research Group at the Helsinki University of Tech-

nology [52]. In particular, we have used a two-component

Density Functional Theory (DFT) in which the electron density

of the solid was approximated by the superposition of free-

atom electron densities. The potential felt by the positron was

constructed as a sum of the Coulomb and correlation poten-

tials, respectively. Then, positron lifetimes were obtained as

the inverse of the annihilation rates calculated as an overlap

integral of the electron and positron densities plus a term that

takes into account the electronepositron correlation function

at the positron site [51]. This term is usually called enhance-

ment factor. Positron lifetimes were calculated using either

the local density approximation (LDA) or the Generalized

Gradient Approximation (GGA) of the correlation energy. In

the first case, the Boronski and Nieminen (BN) approximation

for the electronepositron enhancement factor [53] was used.

When using GGA, the ArponenePajanne approximation [54]

for the enhancement factor was utilized. In the case of

calculation of the positron lifetimes in the bulk hydrides, only

the G point of the Brillouin zone was considered. Instead, the

lifetimes in vacancies were calculated in the G and L points of

the Brillouin zone (options allowed into the program Doppler)

[52]. In all the positron calculations a mesh of 192 � 192 � 128

grid points was used. For the present work, the tetragonal

structure of MgH2 was modeled using a 384 atoms supercell

without atomic position relaxation.
3. Crystal and defect structure

The MgH2 solid has a tetragonal structure of rutile type

(P42/mnm, group No. 136), specified by a lattice parameter

a and the c/a ratio (see Fig. 1). The primitive cell has two
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Fig. 4 e COOP curves of MgH2: (a) MgeMg first neighbors

and (b) MgeH.

i n t e rn a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 3 5 ( 2 0 1 0 ) 1 2 4 2 1e1 2 4 2 712424
Mg atoms, one at the origin and the other at the center of the

cell at (1/2, 1/2, 1/2) plus four hydrogen atoms at (�x, �x, 0)

and (1/2 � x, 1/2 � x, 1/2). The exact values of c/a and x

depend on the pressure, at ambient conditions the following

reported values c/a ¼ 0.6687 and x ¼ 0.304 were used [9,55].

Specifically, the presence of an H vacancy (VH), or a Mg

vacancy (VMg) or an HeMg mixed vacancy (VH � VMg) in the

pure and niobium-doped magnesium hydride were analyzed.

In such a way, VH and VMg were introduced removing one H

and/or one Mg atom from the center of the cell. Besides, the

MgH2eNb structure was generated by replacing one Mg atom

by another Nb; i.e., the supercell contains 1 Nb atom, 127 Mg

atoms and 256 H atoms.
4. Results and discussion

Let us discuss first the electronic structure of pure MgH2. The

total and projected DOS are presented in Fig. 2. The Mg and H

based states present similar plots to those reported in Refs.

[5,10]. The Mg and H bands present a mixed state between

�17 eV to the Fermi level. TheMg s and p states have a band of
Fig. 5 e COOP curves of the MgH2 D Nb: (a) MgeMg fir
5.94 eV. The Mg s states are located between �11.4 eV and

�16.9 eV followed by the p states up to the Fermi level.

When a Mg atom is replaced by a Nb one, its projected DOS

shows a narrow band close to the Fermi level (see Fig. 3). On

the other hand, the presence of a vacancy in the studied

compounds only changes the Mg pz orbital occupation.

Besides, the Nb substitutional position introduces a de-pop-

ulation in all orbitals nearest neighbors of Mg. The Mg and H

states are similar to those presented in Fig. 2.

Table 2 presents the changes in the overlap population (OP)

for the different systems studied. The introduction of an H

vacancy has almost no effect on the chemical bonds for both

MgeH and MgeMg. However, when a Mg vacancy is consid-

ered theMgeHbond increases its OP by 4.5%. If both vacancies

are simultaneously considered the main effect still comes

from VMg. When Nb is considered as substitutional to Mg, the

MgeMg bond increases its OP by 140%, while the MgeH bond

decreases (32.6%) and the NbeH bond is developed. If H

vacancy is added, the MgeMg OP becomes greater and no

further MgeH OP decrease is observed. Besides, the NbeH

bond remains unchanged. When a VMg is considered, the

NbeH OP decreases about 5.1% and when VMg and VH are

simultaneously introduced the increase of the MgeMg OP is

only 26%. In all considered cases, containing Nb as substitu-

tional, VMg, VH or VMgeVH defect strongly reduces the MgeH

bond by 32e36%.

The COOP curves in Figs. 4 and 5b clearly show that the

addition of a substitutional Nb reduces the MgeH OP peaks

between �17 eV and EF while the NbeH OP is much lower and

is not compensated by the loss in the MgeH bond (see Fig. 5d).

This behavior can be interpreted as a destabilization of the

MgH2 cohesion by Nb.

In previous works reported by Barbiellini et al. [54,56], it

was concluded that LDA systematically overestimates the

annihilation rate while GGA improves the predictive power of

positron lifetime calculations over those based on the LDA.

For this reason, in the present work positron lifetimes were

calculated using GGA. In Table 3, s values corresponding to

positron annihilation in pure Mg and Nb as in the perfect bulk

state as well for these puremetals containing single vacancies

are presented. Our results show a very good agreement with

the lifetimes reported in the literature (see Table 3).
st neighbors, (b) MgeH, (c) NbeMg and (d) NbeH.
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Table 3 e Positron lifetimes in the perfect bulk and in
a monovacancy for pure Mg and pure Nb. Lifetime values
were calculated using GGA.

Material Present work Reported values

Bulk Vacancy Bulk VACANCY

Mg 226 292 226a 292a

Nb 134 224 134a, 135b 224a, 225b

a Ref. [57].

b Ref. [56].
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On the other hand, we report in Table 4 the positron life-

times calculated for magnesium hydride and niobium-doped

magnesium hydride. When comparing, negligible differences

between the s values obtained for both bulk materials are

observed. Besides, the absolute positron lifetime for MgH2 is

near but slightly lower than that for bulk Mg. The addition of

Nb as a dopant to the MgH2 does not introduce significant

changes in the respective s, despite the lifetime in the perfect

Nb is almost 70% lower than that in bulk Mg.

When considering single vacancies in the above

mentionedmaterials, the results obtained depend on the kind

of point defect considered for the calculations.

Firstly, we will discuss the results obtained for magnesium

hydride. In this case, when this hydride contains aMg vacancy

the positron lifetime increases about 11.5%. When an H

vacancy is considered into the MgH2, a s increment of

approximately 1% is obtained. In the case of a mixed vacancy

complex, composed by a Mg vacancy plus an H one, the

calculated s values show a strong increase (w17%).

On the other hand, all the positron lifetime calculated for

single vacancies inMgH2eNbare systematically below to those

obtained for the pure hydride (see in Table 4 the percentage

relative lifetime changes with respect to the bulk materials).

Preliminary results of a work in progress we are devel-

oping, using a self-consistent calculations, would indicate

that the positron lifetime differences between both hydrides

containing Mg or HeMg vacancies can be attributed to the

higher electron density around this transition metal.

A final paragraph deserves a joint analysis of the positron

results and the electronic and bonding properties of the

hydrides studied.When comparing positron lifetimeswith the

OP results for magnesium hydrides, an increment of the
Table 4 e Positron lifetimes calculated for magnesium
hydride and niobium-doped magnesium hydride (see
details in the text). In the table, the percentage variations
(%) in the positron lifetimes taken with respect to that
corresponding to the bulk material are also presented.

Material

MgH2 MgH2eNb

sGGA(ps) % sGGA(ps) %

Bulk 219.5 e 219.2 e

VMg 244.0 11.5 241.0 10

VH 221.2 0.9 220.0 0.5

VHeVMg 256.6 17 251.4 14.5
positron lifetime is correlated to an increase in the atombonds

reflected in a better stability of the hydrides. The substitution

of a Mg atom by a Nb one in MgH2 modifies the electronic

density around the Nb atom decreasing the positron lifetime

and in such a sense the probability of positron localization. As

shown in Table 2, this modification can be associated with

a decrease in the hydride stability. The same behavior was

observed with the hydride systems containing vacancies.
5. Conclusions

We have studied the influence of vacancies on the electronic

structure, bonding and positron lifetimes in pure magnesium

hydride and in niobium-doped magnesium hydride. To this

aim, first principle calculations were used to compute the

crystal orbital overlappopulation forboth themetalemetal and

metalehydrogenbonds in theperfectMgH2 and in thismaterial

containing a Mg vacancy, an H one or a mixed HeMg vacancy

complex. The same calculations were also performed in the

magnesium hydride with a Nb atom as substitutional impurity

and on this material containing the same kind of vacancies

above mentioned. Simultaneously, the influence of vacancy-

like defects in the hydride was studied through the calculation

of the positrons lifetime in the previously referred materials.

The main results can be summarized as follows:

i) In all considered cases for Mg or/and H vacancies, the

presence of Nb reduces the metalehydrogen bond about

36%. The combined effect of Mg and H vacancies is close

to that for the Mg vacancy. When Nb is considered,

a small NbeH bond is detected but this does not

compensate the decrease in the MgeH bonding.

ii) When comparing the positron lifetimes for MgH2 and this

system with a Nb atom located as a substitutional

impurity, no lifetime difference was found.

iii) In the pure magnesium hydride containing an H vacancy,

the lifetime only increases approximately 1%. However,

this parameter increases about 11% if a Mg vacancy is

considered and the strongest increase in the positron

lifetime value (w17%) was found for a mixed vacancy

complex, composed by a Mg vacancy and an H vacancy.

iv) In MgH2eNb containing different kinds of vacancies the

calculated positron lifetimes are systematically below to

those obtained for the pure hydride

v) The net effect of Nb in bonding is to decrease the MgH2

stability regardless of the presence of vacancies, as was

experimentally found.

Finally, it is important to point out that the results obtained

from positron calculations are in agreement with those

obtained from DOS and OP curves.
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[55] Bortza M, Berthevillea B, Böttgerb G, Yvona K. Structure of
the high pressure phase g-MgH2 by neutron powder
diffraction. J Alloys Compd 1999;287:L4e6.

[56] Barbiellini B, Puska MJ, Korhonen T, Harju A, Torsti T,
Nieminen RM. Calculation of positron states and
annihilation in solids: a density-gradient-correction scheme.
Phys Rev B 1996;53:16201e13.

[57] Campillo JM, Ogando E, Plazaola F. Positron lifetime
calculation for the elements of the periodic table. J Phys
Condens Matter 2007;19:1e20. 176222.

http://tfy.tkk.fi/epm/research/positron/dopplerdoc.pdf
http://tfy.tkk.fi/epm/research/positron/dopplerdoc.pdf
http://dx.doi.org/10.1016/j.ijhydene.2010.08.111
http://dx.doi.org/10.1016/j.ijhydene.2010.08.111

	Electronic and bonding properties of MgH2–Nb containing vacancies
	Introduction
	Computational method
	Crystal and defect structure
	Results and discussion
	Conclusions
	Acknowledgements
	References


