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ABSTRACT

Botnets are an important security problem on the Internet. They continuously evolve their structure, protocols and
attacks. This survey analyzes and compares the most important efforts carried out in a network-based detection area. It
accomplishes four tasks: first, the comparison of previous surveys and the proposal of four new dimensions to analyze their
classification schemes; second, a new classification and comparison of network-based botnet detection proposals, which
includes the definition of 20 desired properties of every botnet detection paper; third, an extensive comparison between the
most representative detection proposals; and fourth, the description of the most important problems and highlights in the
area. We conclude that the area has achieved great advances so far, but there are still many open problems. Copyright ©
2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Botnets have been the source of most security problems on
the Internet almost since 2003 [1]. The amount of attacks
[2–5], digital identities stolen and computers infected [6,7]
have motivated researchers to create better detection meth-
ods. For some countries, this is a matter of national
security.�

Botnets are detected using different characteristics of
the network traffic, for example, using networks statis-
tics [8], communication protocols [9], suspicious traffic
behavior [10], graphical representations of behaviors [11],
actions in honeypots [12], behavioral features [13], col-
laborative feedback in large networks [14] and malicious
actions [15]. However, botnets evolve and thus make obso-
lete most detection methods.

Several surveys on the botnet phenomenon have been
created [16–18]. Although these surveys have helped to
better understand botnets, they usually do not include an
analysis of the botnet detection methods.

� http://www.theregister.co.uk/2011/06/14/
making_hacking_tools_should_be_criminal_act_say_eu_ministers/

Our survey aims at analyzing, classifying and com-
paring the most relevant network-based botnet detection
methods.

This survey is divided into four major parts: first, an
analysis of previous surveys; second, a new classification
and comparison of detection proposals; third, an analysis
of detection proposals; and fourth, an analysis of the most
important issues found in the area.

Our contributions can be summarized as follows:

� A novel comparison and summary of previous sur-
veys in the area.

� A novel comparison and classification of botnet
network detection characteristics and properties.

� An analysis of the desired properties of botnet detec-
tion papers.

� An analysis and discussion of the most important
proposals.

� A discussion of open problems in the botnet detec-
tion area.

We conclude that the area has accomplished great
results, but it still has open problems.

The rest of the paper is organized as follows. Section 2
describes and analyzes previous botnet detection surveys.

Copyright © 2013 John Wiley & Sons, Ltd.
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Section 3 proposes a novel classification of botnet detec-
tion methods. Section 4 analyzes the most relevant detec-
tion papers. Section 5 discusses the state of the area, and
Section 6 presents the conclusions.

2. PREVIOUS SURVEYS

As far as we know, there are no previous surveys on botnet
detection methods. However, several surveys on botnets
include a brief analysis of detection methods. These sur-
veys are analyzed in this section to describe how the
detection methods are classified.

Botnet detection methods are only classified in two
categories in [19]: honeynets and passive traffic.

Several data sources for botnet detection are enumer-
ated in [16]. Also, a separation between detection tech-
niques and measurement studies is proposed. Behavior
analysis is included in the last group. In addition, the sur-
vey uses a table to relate data sources, proposed techniques
found in the literature and invariant bot behaviors. How-
ever, these last behaviors are not deeply analyzed, and the
final schema is rather confusing. For example, the detec-
tion techniques of the comparison table have no relation
with the detection techniques previously discussed in the
same paper. Finally, the invariant botnet properties pro-
posed (propagation, communication and attack) are not
described or defined.

The detection techniques are classified into four classes
in [20]: signature-based, anomaly-based, Domain Name
System (DNS)-based and mining-based techniques. This is
the first survey to use capabilities in a comparison table
of detection techniques: ability to detect unknown bots,
capability of botnet detection regardless of botnet proto-
col, encrypted command-and-control (C&C) channels and
structure, real-time detection and accuracy. Some of these
are included in our survey for comparison. The main con-
tribution is the description of four detection classes and the
analysis of more than 13 papers.

The evadability of detection methods is studied in [21].
The evasion cost is proposed as a measure of how good
each method is. This cost represents the complexity of the
evasion technique and the utility lost by the botnet when
the evasion technique is successful. Eight detection char-
acteristics are proposed: Basis, Hub, Internet Relay Chat
(IRC), Flow-chars, Time, Net-Det, Syntax and Taint. These
characteristics are the most complete detection methods
topology presented to date.

A discussion on how to use traffic measurement meth-
ods to deal with network security issues is presented in
[22]. This is the first study that describes the current limi-
tations of the intrusion detection field. It warns against four
common problems: simulated datasets that are not good
enough, lack of normal traffic models, detection features
that tend to be overfitted and a few validity and reliabil-
ity problems in the evaluation criteria. It is not included in
our survey comparison table because it does not compare
detection methods.

Several botnet detection and tracing methods are ana-
lyzed in [23]. They are separated into honeypot-based,
IRC-based and DNS-based methods. The IRC-based cate-
gory is separated into traffic analysis-based and anomaly
activities-based methods.

A comprehensive botnet topology is presented in [24]. It
includes infection mechanisms, C&C models and detection
methods among others. However, the analysis only distin-
guishes between signature-based algorithms and anomaly-
based algorithms.

Botnet attacks and threats are analyzed in [25]. It states
the importance of discovering abnormal behaviors. These
behaviors are categorized as network based, host based
and global correlated. Unfortunately, no further analysis of
these behaviors is performed.

A topology of network-based and anomaly-based detec-
tion systems is presented in [17]. Detection types are
classified into learnt models (where normal behavior rep-
resentation is obtained automatically) and specification
models (where normal behavior representation is obtained
manually). Learnt models detect anomalies by comparing
new traffic against three cases: rules of normality, models
of normality and normality statistics profiles. The mod-
els of normality use data mining, neural networks or time
series analysis, among others. The specification models
create models of normal network behaviors on the basis
of how protocols are normally used (protocol based), dif-
ferent protocols states (state based) and which protocol
transactions are legal (transaction based). This survey is
not particularly applied to botnets, but it is closely related
to common techniques in the botnet detection area.

The detection methods are separated into honeynet-
based and passive traffic monitoring in [26]. Passive traf-
fic monitoring includes the behavior-based, DNS-based
and data mining detection. Furthermore, it expands the
behavior-based detection to include signature-based and
anomaly-based detection.

The detection sources are separated into honeynets and
intrusion detection system (IDS) in [18]. IDS sources are
separated into signature-based and anomaly-based cat-
egories. The anomaly-based category is separated into
host-based and network-based categories. The network-
based category is separated into active monitoring and
passive monitoring. This is the only survey that proposes a
classification for active botnet monitoring.

2.1. Survey comparison

The aim of our survey is to analyze and compare detection
methods. However, the analysis of the previous surveys
showed that it was difficult to find how they categorized
the detection methods. Each survey emphasized different
aspects of the papers. Therefore, it was difficult to find out
a common comparison criterion.

The comparison structure of each survey was stud-
ied to extract the main dimensions in which information
was organized. These dimensions are used to compare the
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previous surveys. Then, in Section 3, they are used again
to help compare the botnet detection papers.

Table I shows which information is analyzed on each
survey.

The following is the summary of the dimensions:

� Detection sources: where the base information comes
from (e.g., application logs from a public network,
NetFlow logs from a private network or network
packets from a honeypot).

� Detection features: the characteristics used to build
the topology. Papers were analyzed and classified
using these features (e.g., encrypted botnet detec-
tion, botnet protocol detected and syntax needed for
detection).

� Detection techniques: how researchers gain access to
the features proposed for detection (e.g., anomaly or
signature based).

� Detection algorithms: algorithms used to obtain
results (e.g., Bayesian statistics and neuronal net-
works).

The analysis of the surveys also revealed some
limitations from the perspective of classifying detec-
tion methods. These limitations helped shape our
survey:

� All the surveys use different terminologies, which
makes the comparison difficult. What a survey calls
method is called technique in another. What a survey
calls bot is called botnet in another.

� Most surveys focus on few dimensions or do not have
dimensions at all. Whereas one survey includes the
botnet sources dimension, another only describes the
botnet protocols. The not included labels in Table I
show this issue.

Table I. Survey comparison.

Survey Detection sources Detection features Detection techniques Detection algorithms

[16] Network packets, Not included Behavior (attack and Not included
DNS logs, cooperative behaviors)
darknet data and and signature based
traffic flows

[21] Not included Net-det, Syntax, Taint, Not included Not included
Time, Basis, Hub,
IRC and Flow-chars

[20] Not included Unknown bots, protocol, Signature, anomaly, Not included
encrypted, real time, DNS and mining based
accuracy and Net-det

[23] Honeynets and Not included Signature and Not included
network packets anomaly based

[24] Not included Not included Signature and Not included
anomaly based

[19] Honeynets and Not included Not included Not included
network packets

[25] Not included Not included Behavior based Not included
(network and host
based and global
correlated)

[17] Not included Not included Anomaly-based learnt Data mining,
models (model, rule neuronal networks,
and statistical based) pattern matching,
and specification expert systems,
models (protocol, Bayesian statistics,
state and transaction covariance, matrices,
based) chi-squared and

statistics
[26] Honeynets and Not included Behavior, DNS and Not included

network traffic data mining based
[18] Honeynets Not included Signature and anomaly Not included

and IDS based (host and network
based [active and
passive monitoring])

DNS, Domain Name System; IDS, intrusion detection system; IRC, Internet Relay Chat.

Security Comm. Networks (2013) © 2013 John Wiley & Sons, Ltd.
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� Most surveys tend to describe the papers rather than
analyze them. What a botnet detection paper stated as
truth is not even doubted in other surveys.

� Most surveys do not reference enough papers to sup-
port their comparison structure.

These limitations suggest the need for a new, broader
and up-to-date survey. A comprehensive topology and
comparison are needed to deeply understand each detec-
tion proposal. The next section describes the details of our
proposed topology.

3. CLASSIFICATION OF DETECTION
PROPOSALS

This section compares the detection proposals on the basis
of different points of view. The analysis carried out in
previous sections allowed us to generate two comparison
perspectives:

(1) In Section 3.1, the detection proposals are arranged
in a topology map of network-based botnet detection
characteristics.

(2) In Section 3.2, a list of the 20 desired properties of
all the network-based botnet detection proposals is
created.

Both perspectives cover different aspects of the propos-
als and contribute to the understanding of the state of the
area. As far as we know, our topology map is the first one
presented in the network-based botnet detection area.

In Section 3.3, these perspectives are used to compare
the detection papers. To the best of our knowledge, the
comparison tables in Section 3.3 are presented for the
first time.

3.1. Topology map of network-based
botnets detection characteristics

The first comparison perspective is a type of topology map
where each paper can appear more than once. The map,
shown in Figure 1, aims at presenting a clear view of how
the detection proposals differ from each other. It allows
researchers to quickly find which papers implemented each
technique.

Note that in Figure 1, we used [27b] to reference the
Appendix B of [27]. Also, note that some categories do not
have any paper assigned. They were included because they
represent well-known techniques and help to see where
new papers could be assigned.

The topology map is divided into the following cate-
gories to cover the different aspects of the papers:

� Detection algorithms
It differentiates between the type of algorithms.

– Supervised: infers a function from supervised
(labeled) training data, also known as classi-
fiers.

– Semi-supervised: uses both labeled and unla-
beled data for training.

– Unsupervised: finds hidden structures in unla-
beled data.

– Signal processing: analyzes signals (filtering,
correlation, spectrum analysis, pattern recog-
nition, etc.)

– Heuristics rules: usually based on ad hoc tech-
niques, such as manually finding the best
threshold.

� Detection techniques
It differentiates the main technique used for detection.

– Anomaly based: uses anomaly-based tech-
niques to detect behavior patterns.

� Bot behavior: detects the behavior of
one bot with data from one bot alone.

� Botnet behavior: detects the behavior
of a group of bots acting as a botnet
(not individually).

� Temporal behavior: detects behavior
changes over time; involves time mea-
surement.

� Peer to peer (P2P)
� Hypertext Transfer Protocol

(HTTP)
� IRC
� DNS
� Generic: detects any protocol.
� Port scan
� Network metrics: uses net-

work metrics (e.g., bytes
per second and packets per
minute)
� Simple Mail Transfer Proto-

col (SMTP)

– Fingerprint based: uses a string or byte
sequence for detection.

� Detection sources
It refers to where the packets were captured and not
how they were captured.

– Normal packets: verified normal packets.

� Virtual internal networks: captures
verified normal packets from an inter-
nal and controlled network.

� Real networks: captures packets
from real networks; traffic should

Security Comm. Networks (2013) © 2013 John Wiley & Sons, Ltd.
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Clustering [30][27][28][31][35][13]
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Artificial Neural Networks
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Real Malware [38][27][10][34][31][33][37][13]

Signal
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CUSUM [31]

SPRT [27]

Heuristic
Rules [28][27][30][10][32][34][29][36][31]
          [33][35][37][13]
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SMTP [30][31]

k-nearest neighbor [35]Instance-based
learning

HMM [37]
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Figure 1. Topology map of network-based botnet detection characteristics. ART, adaptive resonance theory; CUSUM, cumulative
sum; DNS, Domain Name System; EM, expectation–maximization; HTTP, Hypertext Transfer Protocol; HMM, hidden Markov model;
Internet Relay Chat; P2P, peer to peer; SOM, self-organizing map; SMTP, Simple Mail Transfer Protocol; SPRT, sequential probability

ratio test; SVM, support vector machine.

be labeled background if it is not
verified.

– Botnet packets: refers to the source of botnet
packets.

� Honeypots: honeypots connected to
the Internet.

� Darknets: from darknets.

� Virtual networks: from a controlled
virtual network. Malware is manually
installed.

� Compiled malware: modified versions
of known malware.

� Real malware: uses unmodified real
binary malware to infect their comput-
ers.

� Packets logs: uses packet logs.

Security Comm. Networks (2013) © 2013 John Wiley & Sons, Ltd.
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� Simulated: simulated data.

The topology map presented is useful in visualizing
how each proposal tackled the botnet detection problem.
However, it is not enough to understand what each paper
proposed. The next subsection uses another point of view
to describe the classification of papers in the topology.

3.2. Desired properties

The botnet detection proposals have a common set of prop-
erties that can be used to better understand them. For
example, they can be compared on the basis of how they
verify the dataset used, how they filter the data or how
they report results. Most detection proposals have focused
on the description of the detection method and the true
positive metrics. However, they have not considered the
importance of other properties, such as the training dataset
verification, a complete error rate analysis, the description
of the assumptions or the diversity of the training dataset.
These are equal or more important than the positive
results report.

This subsection describes what we consider as the 20
most important desired properties of a network-based bot-
net detection proposal. These properties help to understand
and compare each proposal. They show what is missing on
each paper and what is being overemphasized.

These properties were created partially based on ideas
from previous surveys. They are separated into five groups
for better visualization and description. The following are
the property description:

(1) First group: verification issues
Verification methods applied to the datasets.

(a) Training dataset diversity: how diverse are
the botnet training data.

(b) Training dataset verification: how is the bot-
net and normal training data verification
performed.

(c) Validation dataset verification: how is the
botnet and normal validation data verifica-
tion carried out.

(d) Reproducibility: can the proposal be verified
and reproduced?

(2) Second group: results issues
Results achieved in the paper, how they were
obtained and expressed.

(a) Experimental setup: how were the experi-
ments designed?

(b) Accuracy-based performance metrics: how
well did the proposal perform?

(c) Results comparison: were the results com-
pared?

(d) Capture in a host or in a network: does it
need the proposal to capture from a network
or a single host?

(3) Third group: theoretical background
Hypothesis and assumptions in the paper.

(a) Paper hypothesis: how was the hypothesis
verified?

(b) Assumptions: which assumptions were
made?

(4) Fourth group: detection characteristics
The main characteristics of the detection.

(a) Statical bot detection: which bot statistical
features does this proposal detect?

(b) Unknown botnet detection: does it detect
unknown botnets?

(c) Encrypted botnet detection: does it detect
botnet that use encrypted connections?

(d) Real-time detection: does it detect botnets in
real time?

(e) Protocol-dependent features: does detection
depend on a protocol?

(5) Fifth group: detection method
The detection method itself.

(a) Preprocessing: how was the dataset pre-
pared?

(b) Main detection method: which is the main
detection method proposed?

(c) Differentiation from other attacks: how were
other attacks, such as port scanning, differ-
entiated?

(d) Malicious actions detected: which malicious
actions does it detect?

(e) Automatic botnet identification method: how
are botnets automatically detected?

The next subsection uses these properties to analyze and
compare papers.

3.3. Paper comparison

This subsection compares the detection papers on the basis
of the two previous perspectives. Tables are used for the
main topics to help visualize the differences.

The comparisons performed in the following subsec-
tions are a good resource to quickly understand the moti-
vations and contexts of the papers. They give hints about
the details of the works and help to better understand the
proposals.

Before the comparison, a common confusion about the
use of the terms bot detection and botnet detection should
be addressed. The difference becomes important when
dealing with detection methods. It can be safely assumed

Security Comm. Networks (2013) © 2013 John Wiley & Sons, Ltd.
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Table II. Comparison of anomaly-based behavior detection techniques.

Papers Bot behavior Botnet behavior Temporal behavior Protocol behavior

BotMiner [28] Pattern of packets per Same attack is ordered Mean bytes per second Port scan detection;
flow and mean bytes to every bot; and flows per hour many MX records asked;
per packet; connects synchronized attacks; packet and byte transfer;
to many SMTP servers; bots have similar traffic fph, ppf, bpp and bps
ask many MX records patterns

BotSniffer [27] Binary download?; Attacks are Attacks are in the same Port scan detection
send SPAM? synchronized; IRC time windows; IRC

answer messages are responds to PRIVMSG
synchronized in the same time window

BotHunter [29] Attack signature prior None Time windows are used Port scan detection
knowledge

Appendix B of Connects to the C&C None Bot connects to HTTP None
[27] C&C periodically

N-gram [30] None None Features are computed Features are computed
within a time interval for each protocol

Stability [10] P2P bot flows are stable None Botnet flows are stable Botnet P2P protocol is
in average bytes per flow within a time window stable

Models [31] Attack signature prior None Features are analyzed Eight traffic features
knowledge; traffic in time slices
patterns

Unclean [32] SPAM and phishing Botnets infect the same Bots appear in the same Port scan detection
unclean networks networks over time

FluXOR [33] None Anomalous changes in None None
the features of domains

Tight [34] None Botnet controls bots at C&C server sends orders bpp, bps and pps
the same time at the same time

Tamed [35] None Infect the same OSs; Use time windows None
bots use the same C&C;
bots use the same
payload

Incremental Generates same traffic in None Traffic is similar in different None
[36] different time windows time windows

Markov [37] None None None Port scan detection

Synchronize Bots synchronize their None Traffic is aggregated in None
[13] traffic time windows

bpp, average bytes per packets; C&C, command and control; fph, flows per hour; HTTP, Hypertext Transfer Protocol; IRC, Internet Relay Chat; MX, mail

exchanger; OSs, operating systems; P2P, peer to peer; ppf, packets per flow; SMTP, Simple Mail Transfer Protocol.

that the methods needed to detect a whole botnet are dif-
ferent from the methods needed to detect one infected
computer alone. When we try to detect a bot alone, there
is less traffic to analyze, and there is no synchronization
or correlation with other bots. Although the detection tech-
niques can be similar, the design and goal of the techniques
are different.

3.3.1. Comparison of anomaly-based behavior

detection techniques.

Table II shows the classification of papers in the
anomaly-based subcategory of the detection techniques
category of the topology map. Data in this table were found
after an in-depth analysis of the proposals, because most
of them did not show this information explicitly. The rel-

evance of each value in Table II is different. For example,
in N-gram [30], the features are computed within a time
interval, and thus, it is considered that it uses temporal
behaviors. However, time windows are used only to avoid
the continuous computation of the features, and thus, they
are not so important. In contrast, in BotHunter [29], time
windows are a major part of the proposal. Without them, it
would not work properly.

Table III clearly shows which protocol is used on each
proposal.

3.3.2. Detection sources comparison.

Tables IV and V show a comparison of normal and
botnet data sources for detection. Each proposal trains
or verifies its methods using one or more datasets. The

Security Comm. Networks (2013) © 2013 John Wiley & Sons, Ltd.
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Table III. Botnet protocol detected.

Papers HTTP IRC P2P Generic

BotMiner [28]
p p p

BotSniffer [27]
p p

BotHunter [29]
p

Appendix B of [27]
p

N-gram [30]
p

Stability [10]
p

Models [31]
p p p

Unclean [32]
p

FluXOR [33]
p

Tight [34]
p

Tamed [35]
p p

Incremental [36]
p p

Markov [37]
p

Synchronize [13]
p

HTTP, Hypertext Transfer Protocol; IRC, Internet Relay Chat; P2P,

peer to peer.

design of the capture methodology and the origin of these
datasets are very important to understand the conditions
under which the method was validated.

In these tables, the term compiled is used with refer-
ence to binary bots compiled by the authors from public
source codes. Compiled malware has to be configured
before being used. For example, the C&C server and the
encryption passwords must be set. Consequently, these
malware are not equal to the ones in the wild. However,
the implications of using modified malware are normally
underestimated. Most proposals do not describe the modi-
fications carried out. The use of custom-compiled malware
can be a good approach if the limitations are clearly stated.

These tables also use the term virtual with reference
to the use of virtual machines or virtual networks to exe-
cute the binaries. The use of virtualization technology is
commonly accepted for malware execution, but it should
be noted that some malware detects virtual machines to
avoid being executed. This could potentially bias the type
of malware that the proposal could analyze.

Finally, the terms training and testing are used with ref-
erence to the training and testing phases of the method,
respectively. When only one of these labels appear, it
means that the paper did not consider or need the other
phase.

The analysis of Tables IV and V shows that most pro-
posals lack some type of dataset. If an algorithm needs to
be trained, at least independent training and testing datasets
should be used, and a validation dataset is highly rec-
ommended. Furthermore, few proposals have training and
testing datasets with both normal and botnet captures.

These tables show that some proposals use the same
datasets for training and testing. This practice should be
avoided for statistical reasons [38]. The tables also help
to compare the amount of data used on each proposal.
Whereas some methods used only one bot binary in a vir-
tual network, others captured more than 15 bot families in
several universities.

The overall amount of data sources used during train-
ing and testing can be seen in Figures 2 and 3, where the
gray-scale corresponds to each detection method. Two con-
clusions are presented from the analysis of the graphics.
First, most methods prefer controlled environments over
real networks to capture botnets. This happens during both
the training and testing phases. However, the implications
of this decision, such as the type of attacks not captured,

Table IV. Comparison of normal sources for detection.

Papers Normal packets

BotMiner [28] Testing: 10-day university campus
BotSniffer [27] Testing: university campus IRC; university campus complete
BotHunter [29] Testing: university campus, 100 Mb/s (two captures); production public/17 network (10 days)
Appendix B of [27] Testing: one HTTP-only capture (~17 GB); four full data capture (~33 GB)
N-gram [30] Training: 1-h Wi-Fi traffic

Testing: 1-h Wi-Fi traffic; one virtual IRC (60 clients); one real IRC public network
Stability [10] Training: four complete university; two virtual P2P traffic

Testing: Same as training
Models [31] Testing: 1 /21 university network; 1 /20 university network
Unclean [32] Training: 47 million public network IPs

Testing: Same as training
FluXOR [33] Training: 50 SPAM domains and normal mails

Testing: Same as training
Tight [34] Training: Crawdad Wi-Fi data

Testing: Same dataset
Tamed [35] Testing: two university /16 nets
Incremental [36] Testing: internal network capture
Markov [37] Training and testing: 1 month of 11 C-class university nets
Synchronize [13] Testing: one host port scanning, two hosts (7-h normal usage)

HTTP, Hypertext Transfer Protocol; IP, Internet Protocol; IRC, Internet Relay Chat; P2P, peer to peer.
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Table V. Comparison of botnet sources for detection.

Papers Botnet packets

BotMiner [28] Testing: three compiled virtual IRC (four clients each); one IRC real log (259 clients); two HTTP compiled
virtual (four and one client); two P2P virtual (82 and 13 clients)

BotSniffer [27] Testing: one honeynet-captured IRC bot; three compiled virtual IRC (five clients and two with four clients);
two compiled virtual HTTP (four clients and one client); two real IRC text logs

BotHunter [29] Testing: 10 IRC bots in a virtual network; honeynet: 26 hosts; 2019 infections in 3 weeks;
unknown amount of bots

Appendix B of [27] Testing: four compiled virtual HTTP bots (one client each); one compiled virtual HTTP bot (four clients);
one compiled virtual HTTP bot (one client)

N-gram [30] Training: one IRC botnet from a honeypot (10 clients); one compiled internal virtual IRC bot (60 clients)
Testing: one IRC botnet from a honeypot (10 clients); one compiled internal virtual IRC bot (60 clients)

Stability [10] Training: honeynet P2P storm bot; 13 different versions
Testing: Same as training

Models [31] Training: two third-party IP text report, two public NetFlow logs, bot IPs from IRC logs
Testing: bot IPs (unknown source)

FluXOR [33] Training: 75 SPAM mail domains
Testing: training dataset with cross-validation; domains from Web browsing

Tight [34] Training: internal virtual network, one bot (74 traces)
Testing: same as training

Tamed [35] Training: four virtual bots (21 traces), three honeynet botnets
Incremental [36] Testing network captures: three internal virtual bots, four third-party virtual P2P bots
Markov [37] Training and testing: same as normal
Synchronize [13] Testing: two virtual bots (21 h); five compiled bots in an 18-host university network (one botnet family)

HTTP, Hypertext Transfer Protocol; IP, Internet Protocol; IRC, Internet Relay Chat; P2P, peer to peer.

Figure 2. Sum of botnet sources for all the experiments during
testing. Gray scale corresponds to each method.

have not been estimated. Second, training phases use much
less sources than testing phases. This is probably due to the
unsupervised methods used.

3.3.3. Detection algorithms comparison.

Table VI shows a comparison of the algorithms and
techniques used on each paper. It was rather difficult to cre-
ate this table because some proposals did not describe the
algorithms explicitly. All the papers have used heuristic-
based rules at some point of the analysis. The (sup)
reference means supervised technique, the (unsup) refer-
ence means unsupervised technique and the (sp) reference
means signal processing.

Figure 3. Sum of botnet sources for all the experiments during
training. Gray scale corresponds to each method.

3.3.4. Accuracy-based performance metrics

comparison.

Accuracy-based performance metrics, as stated in [39],
can be measured using multiple techniques. Table VII
describes the definition and explanation of the two-class
problem metrics. It helps to better understand what the
papers reported:

� TP, or true positives, are the number of times the
model predicts positive when the example label is
positive.

Security Comm. Networks (2013) © 2013 John Wiley & Sons, Ltd.
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Table VI. Detection algorithms comparison.

Papers Algorithms

BotMiner [28] X-means and hierarchical clustering (unsup)
BotSniffer [27] SPRT, threshold random walk (sp), hierarchical clustering (unsup)
BotHunter [29] —
Appendix B of [27] Autocorrelation (sp)
N-gram [30] K-means and X-means clustering (unsup), decision tree (sup)
Stability [10] —
Models [31] CUSUM (sp), hierarchical clustering (unsup)
Unclean [32] —
FluXOR [33] Naïve Bayes classifier (sup)
Tight [34] Naïve Bayes, j48 decision trees, Bayesian networks (sup)
Tamed [35] K-means clustering (unsup)
Incremental [36] —
Markov [37] HMM (sup)
Synchronize [13] EM clustering (unsup)

CUSUM, cumulative sum; EM, expectation–maximization; HMM, hidden Markov model; SPRT, sequential probability

ratio test, sp, supervised; unsup, unsupervised.

Table VII. Two-class problem quantities.

Predicted

+ –

Actual + TP FN
– FP TN

FN, false negative; FP, false positive; TN, true negative; TP,

true positive.

� FN, or false negatives, are the number of times the
model predicts negative when the example label is
positive.

� FP, or false positives, are the number of times the
model predicts positive when the example label is
negative.

� TN, or true negatives, are the number of times the
model predicts negative when the example label is
negative.

Metrics can be described on the basis of these defini-
tions:

� Per cent correct or accuracy is the portion of the
test examples that the model predicts correctly: (TP +
TN)/(TP + FN + FP + TN).

� Error rate is the portion of the examples in the test set
that the model predicts incorrectly: (FN + FP)/(TP +
FN + FP + TN).

� Precision is the portion of the test examples predicted
as positive that were really positive: TP/(TP + FP).

� True-positive rate (TPR) or recall is the portion of the
positive examples that the model predicts correctly:
TP/(TP + FN).

� True-negative rate (TNR) is the portion of the nega-
tive test examples that the model predicts correctly:
TN/(FP + TN).

� False-negative rate (FNR) is the portion of the posi-
tive test examples that the classifier predicts falsely as
negative: FN/(TP + FN). Also 1 – TPR.

� False-positive rate (FPR) is the portion of the nega-
tive test examples that the classifier predicts falsely as
positive: FP/(FP + TN). Also 1 – TNR.

� F-measure is the harmonic mean of precision
and recall. The balanced equation is 2*Precision*
Recall/(Precision + Recall).

In [39], it is stated that other researchers have made
the case that evaluations that use accuracy metrics are
problematic, for they do not show how well a model
predicts instances by class. Maloof [39] also stated that
“if a testing set contains many more negative examples
than positive examples, high accuracy could be due to the
model’s exceptional performance on the majority”. Data in
Table VIII and the analysis of the training dataset diversity
extracted from Tables V and IV should help to evaluate this
problem.

Table VIII shows that none of the proposals reported
all the four basic metrics. If a proposal only reports the
TPR value, it is incredibly difficult to understand the sig-
nificance of its results. Moreover, the table shows that two
of the papers did not report any performance metrics at all.

Most of the metrics discussed in [39] were not reported
in the papers. In consequence, whenever possible, we com-
puted some of these values ourselves. Our calculations of
the missing metrics can be prone to errors, so the labels
used in Table VIII are shown in the following paragraphs.
They help to better distinguish the original values from the
calculated values.

References for the computed, non-original values were
as follows:

� G: Some metrics were reported for some experiments.
However, no final value was reported for all the exper-
iments. If G appears with a percentage number, it
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Table VIII. Accuracy-based performance metrics comparison.

Percent Error F-measure
Papers FPR (%) FNR (%) TPR (%) TNR (%) correct rate (%) (%)

BotMiner [28] (A) 0.1875 (G) — 96.82 (G) 81.25 (D) — — —
BotSniffer [27] 0.1600 (G) — 100.00 (G) 84.00 (D) — — —
BotHunter [29] — (G) (G) — — — —
Appendix B of

BotSniffer [27] (A) (G) — (G) — — — —
N-gram [30] (A) 8.1400 (D) 1.64 (D) 98.36 (G) 91.86 (G) — — —
Stability [10] 0.0000 (D) 0.00 (D) 100.00 (G) 100.00 (G) — — —
Models [31] (B) — — 88.00 — — — —
Unclean [32] 1.2100 (G) 1.22 (D) 98.78 (G) 87.90 (D) — — —
FluXOR [33] 0.0000 — — 100.00 (D) — — —
Tight [34] 15.0400 (G) 2.49 (G) 75.10 (D) 84.96 (D) — — —
Tamed [35] (A) — 6.25 (D) 93.75 (G) — — — —
Incremental [36] (A) 14.1500 (G) 0.00 (G) (B) 100.00 (G) 85.85 (D) — — —
Markov [37] (A) 13.0000 (G, B) 11.00 (G, B) 88.00 (G, B) 86.00 (G, B) 87.00 (G, B) 51.0 (G, B) 96.00 (G, B)
Synchronize [13] (A) 0.7000 3.40 95.86 (G) 95.87 (G) 95.87 (G) 4.1 (G) 97.44 (G)

FNR, false-negative rate; FPR, false-positive rate; TNR, true negative rate; TPR, true-positive rate.

means that we could manually compute an averaged
total value by closely analyzing the paper (if more
than one method was used, we use the best result).
The G alone means that we could not deduce a total
value from the isolated experiments.

� —: No value or computation was reported.
� A: This paper does not have an automated method to

decide whether it detected a botnet or not. Results
were obtained by counting the data labels.

� B: Results were reported, but details about the evalu-
ation process were not given. We could not assess if
the numbers were correctly computed.

� D: No value was reported for this metric, but we could
calculate some approximation as the difference with
its counter value. FPR = 1 – TNR, FNR = 1 – TPR,
TNR = 1 – FPR and TPR = 1 – FNR.

Table VIII is one of the most important outcomes of this
survey. It clearly shows that some results have not been
properly computed. None of the proposals reported all
the values. Only one proposal used an alternative method
to report results, such as receiver operating characteristic
curves [37]. Most of the papers did not compute a total
value for each metric (where the G reference was used).
Instead, they reported separate values for each experiment.
Furthermore, most of the papers did not compute some
values at all, forcing us to calculate the missing metrics
using its counterpart value (the D reference). Finally, none
of the papers reported the percentage correct and the error
rate metrics.

3.3.5. Unknown botnet detection capability

comparison.

Table IX compares unknown botnet detection capabil-
ities, that is, the ability to detect botnets that were not
present in the training dataset. For several reasons, this

Table IX. Unknown botnet detection comparison.

Papers HTTP IRC P2P Generic

BotMiner [28] � � � ~�
BotSniffer [27] � ˇ � � �
BotHunter [29] � ˇ � � �
Appendix B of [27] � � � �
N-gram [30] � � � �
Stability [10] � � ˇ �
Models [31] ˇ ˇ ˇ �
Unclean [32] � � � �
FluXOR [33] ˇ ˇ ˇ ˇ �

Tight [34] � ˇ � �
Tamed [35] ˇ ˇ � �
Incremental [36] � � � � ‘
Markov [37] ˇ ˇ ˇ ˇ k

Synchronize [13] ˇ ˇ ˇ ˇ **

HTTP, Hypertext Transfer Protocol; IRC, Internet Relay Chat; P2P,

peer to peer.
�If they scan ports or use a known attack and at the same time

show a network pattern correlation with other bots.
�For botnets that also scan ports or attack.
�If they show two distinct outbound port scans.
�If they use fast-flux techniques.
‘The evaluation and method are not clear.
kIf they scan Transmission Control Protocol ports.
��If they use Transmission Control Protocol.

is perhaps the most difficult desired property to extract:
first, because most papers do not describe which bot-
nets were used on each dataset; second, because most of
the proposals were not designed to detect unknown bot-
nets and therefore they did not describe this ability; and
third, because the unknown botnet concept can be ana-
lyzed from different perspectives. An unknown botnet can
be considered when the following occur:
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Table X. Comparison of protocol-dependent features.

Papers HTTP DNS SMTP TCP ICMP UDP IRC IDS P2P OS

BotMiner [28] —
p

— — — — — — — —
BotSniffer [27]

p p p p
— — — — — —

BotHunter [29] — — — — — —
p p

— —
Appendix B of [27]

p
— — — — — — — — —

N-gram [30]
p p p p p p p

—
p

—
Stability [10]

p p
—

p
—

p
— —

p
—

Models [31]
p

—
p

— — — — — — —
Unclean [32] — — — — — — — — — —
FluXOR [33] — — — — — — — — — —
Tight [34] — — —

p
— —

p
— — —

Tamed [35] — — —
p

—
p

— — —
p

Incremental [36] — — —
p p p

— — — —
Markov [37] — — —

p
— — — — — —

Synchronize [13] — — —
p

— — — — — —

DNS, Domain Name System; HTTP, Hypertext Transfer Protocol; ICMP, Internet Control Message Protocol; IDS, intrusion detection system; IRC,

Internet Relay Chat; OS, operating system; P2P, peer to peer; SMTP, Simple Mail Transfer Protocol; TCP, Transmission Control Protocol; UDP, User

Datagram Protocol.

� The protocol is unknown.
� The attack is unknown.
� The family is unknown, which implies unknown pro-

tocol, C&C servers and attacks.
� The variant is unknown, which implies unknown

attacks or unknown C&C servers but known protocol.

These issues made it difficult to decide whether a
method could detect unknown botnets. However, this prop-
erty is crucial to know if other researchers can use the
proposal safely.

Table IX shows how likely it is that the method detects
an unknown botnet. The analysis of this table reveals that
few proposals are prepared to detect unknown botnets.
Most papers have strong constraints, for example, only
analyzing IRC botnets showing suspicious behavior. It is
worth noting that two proposals seem capable of detecting
unseen botnets almost without constraints [28,31]. How-
ever, none of them have carried out experiments to confirm
this capability. The references for Table IX are as fol-
lows: � means there are no chances of detecting this type
of unknown botnet, ˇ means there are good chances of
detecting this type of unknown botnet and~means there is
a high probability of detecting this type of unknown botnet.
The conditions that should be fulfilled to detect unknown
botnets on each paper are explained in the footnotes.

3.3.6. Comparison of protocol-dependent

features.

Most of the proposals base their detection methods on
the recognizance of statistical protocol features. Most of
the times, this is not a bad practice. However, depending
too much on it could lead to a rigid method. Usually, the
proposals do not explicitly analyze this dependence. Also,
they tend to assume that their statistical features can find all
the traffic they are trying to capture. For example, several
proposals detect the IRC protocol by capturing only the

traffic using the Transmission Control Protocol (TCP) port
6667. However, it is not uncommon to find IRC servers
working on other ports as well.

Table X shows which protocols are statically detected
on the proposals. Most of them use the TCP or User
Datagram Protocol (UDP) port numbers to filter the pro-
tocols. The IDS column identifies the use of statical IDS
rules. The operating system column identifies the detection
of the operating system with statical rules. The analysis of
Table X shows that several proposals detect botnets using
only the TCP. However, botnets have been reported to use
UDP-based protocols as well. The exact details about these
statical filters are explained on each proposal subsection in
Section 4. This table helps us understand how the proposals
were designed and also know how to avoid being detected
by such methods.

3.3.7. Dataset diversity comparison.

This category refers to the various datasets that were
captured and the types of botnets analyzed. It is important
to have a diverse dataset because every botnet has unique
characteristics. The applicability of each proposed method
could be analyzed by studying which botnet was included
in the training and testing datasets. Tables IV and V shows
that several proposals only used one or two botnets for
training and testing. Others used the same dataset for train-
ing and testing. This last practice should be avoided for
statistical reasons [38].

In the next section, each method is described in depth.

4. DETAILED ANALYSIS OF PAPERS

Previous sections described a topology map of detection
characteristics, a set of desired properties of botnet detec-
tion papers and a set of tables to compare the detection
proposals. This section analyzes the context on which each
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Table XI. Generic method comparison.

Papers Verify Preprocess Compare

BotMiner [28] ˇ ˇ �
BotSniffer [27] ˇ ˇ �
BotHunter [29] ˇ � �
Appendix B of [27] ˇ ˇ �
N-gram [30] � ˇ �
Stability [10] ˇ ~ �
Models [31] ˇ ~ �
Unclean [32] � ˇ �
FluXOR [33] ~ ˇ �
Tight [34] ˇ ~ �
Tamed [35] ~ ˇ �
Incremental [36] ˇ ~ �
Markov [37] ˇ ~ �
Synchronize [13] ~ ~ �

proposal was created. It also summarizes the steps of each
detection method and highlights each proposal difficulty,
bias, assumption, hypothesis, advance, contribution and
result. Each paper is described and analyzed in the next
subsections.

Table XI shows a generic comparison of all the pro-
posals before their detailed analysis. It compares three
properties: verify, preprocess and compare. Verify refers
to the verification of the datasets. Preprocess refers to the
preprocessing of the datasets. Compare refers to the com-
parison of the results with those of other proposals. Each
property can be fully developed (~), moderately devel-
oped (ˇ) or not elaborated at all (�). Therefore, a quick
comparison can be performed before reading the descrip-
tion. The analysis text of each proposal further describes
these properties.

4.1. BotSniffer

In the BotSniffer [27] paper, three different botnet detec-
tion approaches are presented. The first two are analyzed
in this subsection and the third one in Section 4.2. Figure 4
shows the architecture of the BotSniffer proposal.

The first two detection approaches share a common
starting base: sniff network packets group together hosts
that connect to the same remote server and port and sepa-
rate these groups in time windows. With these data, the first
approach looks for hosts that had triggered some attack
fingerprint (such as SPAM sending, binary downloading
and port scanning). If more than half of the group had
performed attacks, then the group is marked as a possible
botnet. The sequential probability ratio testing algorithm is
used to decide whether it is a botnet.

The second proposal looks for hosts that answered sim-
ilar IRC protocol responses using the DICE� distance as

� https://secure.wikimedia.org/wikipedia/en/wiki/
Dice’s_coefficient

a similarity function. IRC responses are clustered on the
basis of this similarity measure. If the biggest cluster is
more than half the size of the group, then the group is
marked as a possible botnet. The sequential probability
ratio testing is used again to decide whether the group is
really a botnet.

This paper is one of the most cited papers in the botnet
detection field. It presents several behavioral techniques
to detect botnets that accomplish good results. However,
much new data and botnets have been found since its
publication.

The dataset used for validation may be too scarce
for generalizing the technique. Only one real IRC bot-
net was captured. The rest of the dataset is composed of
one IRC text log and five custom-compiled LAN botnets.
The dataset was verified using three methods, but the first
two are not effective. The first verification was under the
assumption of a clean normal capture because of a well-
administered network. However, even well-administered
networks can have infected computers. The second was
the use of the same BotSniffer method over the dataset. It
is commonly not considered a good practice to verify a
dataset using the same proposed method. The third verifi-
cation was performed using the BotHunter [29] proposal.
This was a good verification. However, it was only used
over the normal captures.

During the preprocessing stage, hard and soft whitelists
were used to filter the dataset. Unfortunately, there is no
analysis of the bias introduced by these lists. For example,
it was found that some nonbotnet Web sites made syn-
chronic requests that are similar to a botnet request. This
possible interference was solved by whitelisting the Web
sites. Protocols different than TCP were filtered out.

Performance metrics were computed for FPRs and TPs
(not TPR). However, FNR and TN metrics were not com-
puted. The missing metrics could be a consequence of the
difficulty to have a labeled dataset. This incompleteness
made it difficult to compare the reported results with those
of other papers.

The FPR was computed over a dataset that only had
normal labels. Under some circumstances, such a metric
could be biased. Normally, it is recommended to compute
the FPR with a dataset having both normal and botnet
labels. Using both labels could be important, as the FPR
calculation needs to divide by the total instances analyzed.
This issue could be caused by the difficulty of obtaining a
labeled dataset.

On the other hand, a mixed capture was used to indicate
the TPR. It would have been very helpful to know exactly
how the mixture was carried out. In addition, there was no
analysis of FNRs or TNs.

The density-check method is based on the assumption
that IRC botnets use very similar messages and that it
is unlikely that humans write very similar messages. The
results obtained support this idea.

The algorithm assumes that the more humans captured
in an IRC channel, the more randomness involved. There-
fore, it could be less likely to obtain a homogeneous crowd,

Security Comm. Networks (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

https://secure.wikimedia.org/wikipedia/en/wiki/Dice's_coefficient
https://secure.wikimedia.org/wikipedia/en/wiki/Dice's_coefficient


Survey botnet detection methods S. Garcia et al.

Network
 Traffic

Preprocessing

Activity
Log

Correlation
Engine

Message
Response
Detection

Protocol
Matcher

Activity
Response
Detection

Figure 4. BotSniffer architecture.

that is, more users are less likely to talk similarly than few
users. However, in [40], it was stated that “Stability is an
important and noteworthy feature of human action (...).”
This may support the idea that more users are more likely
to talk similarly. Furthermore, we believe that this assump-
tion of the proposal was the main reason for the 11 FPs in
the experiments.

It was also assumed that the TCP would be the pri-
mary protocol used for C&C channels. However, it could
be important to add the UDP or Internet Control Message
Protocol as well.

The dataset used was not made public, perhaps because
of privacy issues. This made it impossible to reproduce the
method.

It was not within the goals of the paper to compare
botnet attacks and manually automated attacks. However,
such a comparison may help to better evaluate the results
obtained.

The proposal is stated to have implemented a real-time
correlation engine, but there was no analysis or further
mention.

The detection conditions of the proposal need traffic
from more than one host to detect botnets.

The paper uses a method called threshold random walk
(TRW) within the response crowd activity check algorithm
and within the response crowd density check algorithm
to decide whether there is strong evidence of a botnet
infection. It states that the TRW method needs a large
amount of response crowds to decide properly. Although
it is true that the response crowd activity check algorithm
generates many response crowds, it is also true that the
response crowd density check algorithm does not. Unfor-
tunately, this last algorithm was not deeply analyzed in
the proposal, and therefore, it may not be suitable for
the TRW method. On the other hand, the main detec-
tion method was described to be a protocol-independent
approach; however, it depends on four conditions: first,
on detecting the HTTP; second, on detecting the IRC
protocol; third, on detecting the DNS mail exchanger
records for SPAM sending; and fourth, on detecting
the SMTP.

4.2. Appendix B of BotSniffer

Appendix B of [27] proposes to identify HTTP C&C chan-
nels by detecting a repeating and regular visiting pattern
from one single bot. The proposal uses signal encoding
and autocorrelation approaches. HTTP requests are cap-
tured, and a time series of two tuples (timestamp and
amount of bytes transferred) is generated. The sign of
the bytes transferred value represents the packet direc-
tion. This time series is analyzed using autocorrelation
techniques to find out its time-spatial properties, such as
the presence of a periodic signal. Autocorrelation is com-
puted for each lag, and consequently, an autocorrelation
series is obtained. Some experiments were conducted to
prove this method, which resulted in several TPs and
some FPs. If the proposal would have considered the dif-
ferentiation between manual (or automated) attacks and
botnet attacks, then a more realistic scenario could have
been analyzed.

The analysis of this proposal shows that the dataset
used for verification purposes is only composed of custom-
compiled botnets in a virtual internal network. This dataset
might lack real botnets in the wild. The normal dataset
used is the same as in the original BotSniffer proposal 4.1.
In this dataset, the BotSniffer program itself is used to
test the normality of the BotSniffer validation dataset.
It is not correct to use the same method for validation
purposes.

Different datasets are used to compute the FPs and the
detection performance. However, in [41], it is stated that
“Also, it is important to make sure that the data used for
estimating a model and the data used later for testing and
applying a model come from the same, unknown, sampling
distribution.” Perhaps, different datasets are used because
of the difficulty to obtain more trusted data. Also, this
might be the cause why the proposal does not compute FNs
and TNs. Moreover, it may be why there are no compar-
isons with other proposals, and therefore, the results could
not be verified.

Fortunately, this proposal is capable of detecting botnets
by capturing packets in one host.
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4.3. BotMiner

The BotMiner detection framework [28] has three different
phases of analysis. The first phase groups together hosts
with similar activity patterns. The second phase groups
together hosts that achieve similar attacking patterns, and
the third phase groups together hosts on the basis of simi-
larities from the other two phases. The first phase uses flow
information such as the Internet Protocol (IP) addresses,
ports and the network profile of the flow. It computes
statistical measures such as flows per hour, packets per
flow, average bytes per packets and average bytes per sec-
ond. A two-step X-means clustering method is used to
create clusters of hosts that behaved similarly in the net-
work. The second phase uses the Snort IDS to extract
attacks from each host and to group hosts by attack type.
Among the malicious actions detected are SPAM, exploit
attempts, port scans and binary download. The third phase
computes a score for each attacking host on the basis of
previous similarities and uses it to calculate a similarity
function between hosts. Finally, a dendrogram is created
using this function to find out the best cluster separation.
The most important statical characteristics used were the
mail exchanger DNS queries to detect SPAM and the 25
TCP ports for SMTP.

The proposal uses both virtualized and real botnet cap-
tures. Unfortunately, there is no information about how
the botnet dataset was verified. The normal captures were
verified using the BotHunter and BotSniffer software. In
the preprocessing stage, some well-known Web sites are
whitelisted. However, the implications of the filter are not
exposed. It also forces us to maintain a list of well-known
hosts, which could be error prone and time-consuming.
The results seem encouraging. However, they could not be
reproduced because the dataset was not made public. Com-
parisons with other papers were not carried out. Unlike
other proposals, this work uses one novel idea to differ-
entiate between botnets and manual attacks: botnets act
maliciously and always communicate in a similar way, but
the manual attacks only act maliciously.

4.4. BotHunter

The BotHunter framework [29] recognizes the infection
and coordination dialogue of botnets by matching a state-
based infection sequence model. It captures packets in
the network egress position using a modified version of
the Snort IDS with two proprietary detection plug-ins. The
proposal looks for evidence of botnet life cycle phases to
drive a bot dialogue correlation analysis. IDS warnings
are tracked over a temporal window and contribute to the
infection score of each host. The host is labeled as a bot
when certain thresholds are overcome. This proposal asso-
ciates inbound scans and intrusion alarms with outbound
communication patterns.

An infection is reported when one of two conditions
is satisfied: first, when an evidence of local host infec-
tion is found and evidence of outward bot coordination

or attack propagation is found and, second, when at least
two distinct signs of outward bot coordination or attack
propagation are found.

Five experiments were conducted. The first experi-
ment was carried out on a virtual test bed and used one
VMWare Linux, one IRC server and two infected Windows
instances. The traffic of this experiment was injected. The
second experiment was performed on a honeynet and used
nine Windows XP, 14 Windows 2000 and three Linux from
a Drone Manager. The third experiment was carried out on
a college network and was used for normal packet capture.
The fourth experiment used a university campus for normal
packet capture, and the fifth experiment was performed in
a production network with 130 IP addresses for 10 days.
Only one experiment was carried out with normal and bot-
net data at the same time, probably because of the difficulty
to mix two types of datasets together.

Some normal and botnet captures were not completely
verified, probably because of the difficulty of performing
such a verification. However, the verification of the dataset
is the best way to assess whether a variable represents what
it is intended to measure [42].

The performance metrics reported in the proposal are
incomplete. This might be caused by the limited labels
included in each dataset. In the first experiment, a TPR of
100% was reported, but no FPs or TNs were computed.
In the second experiment, an FP error of 95.1% and an
FN error of 4.9% were reported. In the third experiment,
a TPR of 100% was reported. However, no FPs, FNs or
TNs were reported. In the fourth experiment, an error of
0.81 FPs per day was reported. However, no FNs or TPs
were reported. In the fifth experiment, one FP per 10 days
was reported. However, no FNs or TNs were reported.
Finally, the proposal did not compare the results with
other papers.

The BotHunter proposal is based on a statical IDS; thus,
some of the detections are static. For example, the IRC pro-
tocol is identified by means of the 6667 port, and some IP
addresses of known botnet servers are embedded into the
Snort configuration file. Among the bot statical characteris-
tics detected, the sequence of bytes in the binary download
and the Snort statical fingerprints are used by the proposal.

The proposal did not publish the dataset used. This
might be due to privacy issues or nondisclosure agree-
ments. There are also no details about the Statistical
Scan Anomaly Detection Engine and Statistical Payload
Anomaly Detection Engine port scanning detection algo-
rithms. Consequently, the reproduction of the paper might
be difficult to accomplish.

The proposal does not seem to be designed to detect
bots using only the traffic from one host. Moreover, it is not
designed to differentiate between botnets and manual (or
automatic) attacks. However, as the model is based on the
life cycle of botnets, it is very probable that it could work
fine for this situation. The method has two major advances.
First, it seems capable of analyzing, detecting and report-
ing botnets in real time. Second, it is the only proposal that
was published as a product.
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Figure 5. N-gram architecture.

4.5. N-gram

The N-gram work [30] proposes an unsupervised,
classification-based and IRC-based bot traffic detection
method. Figure 5 shows the architecture of the proposal.
It has two phases: classification of application traffic and
detection of bots. The first phase has several stages. The
first stage classifies traffic into known applications using
signature-based payloads and known ports (signatures
were generated previously). The second stage classifies
unknown traffic from the previous step using a decision
tree based on temporal-frequent characteristics. This tree
differentiates known application communities (the pro-
posal have the temporal-frequent characteristics of known
flows). The third stage uses an anomaly-based approach
to cluster the traffic. To differentiate malicious traffic from
normal traffic, the proposal first creates profiles for known
applications; these profiles use a one-gram technique that
builds a 256-position vector holding the number of times
that every byte appeared in the traffic payload.

The second phase has several stages, and according to
the paper, it starts with the feature analysis stage. However,
no information is given about this stage, seriously limiting
the analysis of the proposal. The real first stage, then, clus-
ters the unknown traffic (which still remains unknown after
the first phase) using the K-means, unmerged X-means
and merged X-means algorithms. The second stage assigns
the label botnet, in the merged X-means algorithm, to the
cluster with the lower standard deviation. There is no infor-
mation about how the labeling is performed in the other
methods. The proposal states that the unmerged X-means
is the normal X-means and that the merged X-means “tries
to find the botnet cluster as cluster with lowest standard
deviation and then gather as many instances that represent
botnet IRC as possible from remaining clusters.”

The proposal assumes that bots reply to commands
quickly, that bots communicate synchronously and that
botnet IRC content is less diverse than normal IRC. The
analysis shows that the training dataset might not be large
enough to be considered representative of the problem. It
has only one real botnet, one simulated botnet and two nor-
mal captures. The paper does not describe any verification
of the normal captures.

The proposal is difficult to reproduce, as the labeling
process is not described, the performance metrics analysis
is incomplete and the dataset was not made public. There
is also no comparison between the results presented and
other papers. The analysis shows that the method is not
completely unsupervised, because the centroids of the k-
means algorithm were manually selected. This introduces

a bias and makes the method unreproducible. The method
presents a novel and simple idea to detect botnet clus-
ters automatically: to search for the cluster with the lowest
standard deviation.

4.6. Unclean

The Unclean proposal [32] predicts future hostile activity
from past network activity. The term spatial uncleanli-
ness is defined as the propensity of bots to be clustered in
unclean networks, and the term temporal uncleanliness is
the propensity of networks to remain unclean for extended
periods. The proposal is divided into two phases.

In the first phase, a dataset is used to evaluate both
unclean properties. Although there is no detailed infor-
mation about the capture procedure, the dataset has two
types of information: the first type is external reports of
phishing, port scans and SPAM activity, and the second
type is some internal network captures. External reports
from third parties are used as ground truth for the experi-
ments. The internal capture was performed by observing a
public network. The spatial uncleanliness property is eval-
uated by comparing the population of IP addresses in an
unclean report against the normal expected random popu-
lation of the Internet. If the hypothesis is true, then the IP
addresses of the bots should be more densely packed than
the randomly selected addresses. The temporal uncleanli-
ness property is evaluated by testing how an old report of
unclean addresses predicts compromised IP addresses in
the future. It is expected that unclean old reports are better
predictors of future IP addresses than randomly chosen IP
addresses.

In the second phase, the paper analyzes the perfor-
mance impact of blocking these future bot IP addresses
to differentiate between innocent, unknown and hostile
IP addresses. An FP is considered each time an innocent
IP address is blocked, and a TP is defined each time an
unclean IP address is blocked. Unknown IP addresses are
not used, probably adding a bias to the results. Results sup-
ported the hypothesis of spatial and temporal uncleanliness
in the experiments.

An analysis of the validation experiments for the first
phase suggests that the results are incomplete. A TPR of
90% was reported, but no FP, TN, FN, FPR or FNR were
reported. Also, results are not compared with those of any
other paper. Two assumptions were made: first, that bots
are always used to attack and, second, that if a 5-month-
old unclean report can predict current unclean activity, then
a recent report should be more effective. The analysis of
this proposal shows that the verification of the external
reports was not described and that the dataset was not pub-
lished. Also, it was not in the design of the proposal to
differentiate between botnets and other types of attacks.

4.7. Tight

The Tight proposal [34] aggregates traffic to identify hosts
that are likely part of a botnet. The hypothesis is that some
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evidence of botnet IRC C&C communication activity can
be found by monitoring IRC traffic at a core location.
The training dataset is composed of 600 GB of wireless
normal traffic from the CRAWDAD archive and 74 flows
of a compiled botnet from an internal test bed. The pro-
posed method has five steps. First, flows are mixed in a
common dataset (unfortunately, there is no information
about how the mixture was performed). Second, a whitelist
and a blacklist are used to filter the flows. Third, flows
are classified according to their chat-like characteristics.
Fourth, correlations are used to find similar C&C flows.
Fifth, a topological analysis of the flows is carried out to
identify common connection endpoints and to manually
determine which is the traffic between the controller and
the rendezvous point.

Several assumptions are made in the paper: first, that the
IRC-based botnet command messages sent by the botmas-
ter are brief and text based; second, that two different flows
of the same application behave similarly; and, third, that
botnet C&C channels do not sustain bulk data transfers.
The analysis shows that some filters overfits the data, such
as deleting the high-bit-rate flows. However, these filters
were not verified, and they seem to be created specifically
to filter out the already-known botnet traffic.

There is an issue regarding the dataset. When the botnet
packets were obtained, the secure shell [43] traffic gener-
ated from the test bed setup was also captured. This biases
the capture. Almost every dataset has a bias, but it is impor-
tant to enumerate and consider them [42]. Furthermore, the
normal captures were not verified, and the dataset was not
published.

Another bias is present in the results. Some results were
obtained by applying the classifiers to one dataset; other
results were obtained by applying the classifiers to another
different dataset. It is commonly accepted [42] that there
should be at least three types of datasets: training, testing
and validation. An evaluation methodology should also be
used [44].

The design of the proposal is considered to detect in real
time, but unfortunately, no experiments were carried out to
support this idea. A major highlight of the paper is that it
focuses on novel behavioral features: a bot communicates
with a C&C server, the server is controlled by a botmaster
and the bots synchronize their actions.

4.8. Stability

In Stability [10], P2P botnets are detected using flow
aggregation and stability measurements. The hypothesis is
that the proposal “can further distinguish the structured-
P2P-based bot from normal clients by detecting the sta-
bility of I-flow.” The dataset was created by capturing
background traffic from a university campus and later
injecting real botnet traffic into it. The botnet traffic was
captured in a honeynet, and thus, it is verified as mali-
cious by the definition of a honeypot. Figure 6 shows the
architecture of the proposal.

NetFlow
Record

Extracting
Aggregations

Stability
Detection

Bot IP 
lists

Suspicious
IP,Port 
Lists

Figure 6. Stability architecture. IP, Internet Protocol.

This proposal is divided into two phases. In the first
phase, the flow features are extracted. In the second phase,
these features are used to compute the stability of the flows.
Before the first phase, the dataset is divided into 1-h time
windows.

The first phase is composed of several steps. In the first
step, protocol flows are aggregated on the basis of the dou-
ble two-tuple IP addresses and ports. In the second step,
for each aggregated flow, two novel values are computed:
flows per aggregation flow (fpf) and average bytes per
aggregation flow (abf). In the third step, an entropy value
that uses the fpf as a random variable is computed. A high
fpf and an abf lower than 300 bytes were used to detect
bot flows.

The aim of the second phase is to compute the flow
stability with two sliding windows: one serves as a base-
line and the other as a detection window. In the first step,
the distance between the abf of both windows is compared
against a predefined threshold. Every time the distance
overcomes the threshold, a flow change is counted. In the
second step, windows are moved forward, and the stabil-
ity index of the flow is computed. If the stability index is
above a threshold of 90%, then a botnet is detected.

The proposal assumes that common DNS ports are not
going to be used for C&C channels and that the common
P2P ports are enough to detect that protocol.

The analysis of the proposal shows that the preprocess-
ing stage adds a bias to the results. The first bias is added
when DNS traffic is filtered out after discovering that it has
a stability index similar to that of P2P botnets. The second
bias is added when port 28000 is filtered after discovering
that it is being misdetected by the algorithm.

Reproduction of the method is not possible because of
two reasons. First, the paper uses several unspecified ad
hoc experimental values. Second, the dataset was not made
public. Unfortunately, the normal traffic was not validated.

4.9. Incremental

In Incremental [36], the botnet activity is monitored on the
basis of similarities between the traffic feature streams of
several hosts.

The proposal is divided into five steps. The first step
captures both normal and botnet traffic from an internal
network. P2P botnet traffic is obtained from a third party.
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The captures in this step are simulated, as the internal
network did not have access to the Internet.

The second step reduces the volume of normal data by
applying some filters. Non-TCPs are filtered out, several
whitelists and blacklists of common Web sites are applied
and packets with more than 300 bytes are deleted. The
third step creates the feature streams. Traffic is divided
into 5-min time windows, and two features are computed:
average bytes per packets and packet amount.

The fourth step computes a distance measure between
streams using an incremental discrete Fourier transforma-
tion technique. The novel characteristic of this technique is
that it does not need to recalculate all the coefficients every
time a new value arrives.

In the fifth step, the Snort IDS is used to manually verify
the activity of the suspect hosts (hosts with high similarity
streams). In this step, it is also decided whether this host is
part of a botnet or not. Unfortunately, no information about
this step is given.

The proposal assumes that simulated botnet traffic
behaves like real botnet traffic and also that the traffic from
their network is normal. The proposal was not designed to
differentiate between botnet and other attacks.

The analysis shows that the results are unclear. No
FNs were computed, and a perfect detection accuracy is
reported. The paper also states that the “false positive rate
is still relative low because we will analyze their activities
to confirm the final result.” Unfortunately, the confirmation
is not in the proposal. The results are not compared with
those of other papers.

The proposal uses several filters in the preprocessing
step. However, it does not seem that the bias added by these
filters would have been evaluated.

Different distance measures are used in the proposal.
However, there is no information about the distances called
protocol distance measure and start time distance mea-
sures. Consequently, it is difficult to reproduce the method.

During the validation experiments, normal traffic and
botnet traffic were mixed. Unfortunately, the mixture pro-
cess is not explained.

This proposal has two highlights. First, it seems capable
of monitoring botnets in real time using the time series-like
feature streams. Second, the feature stream implementa-
tion, although not novel, is an important improvement in
the area.

4.10. Models

The Models [31] proposal identifies single infected
machines using previously generated detection models.
These models are composed of two parts. The first part
extracts the strings received by the bot on the network
to find the commands. The second part tries to find the
responses (attacks) to the command sent. Models are stored
for later use in real networks. The novel idea is to search
for command signatures (string tokens) within the network
traffic and then search for the responses to these com-

mands. This technique correctly separates botnets from
other attacks.

The proposal is separated into five phases.
The first phase consists of several steps. In the first step,

traffic from 50 bots is captured. In the second step, bot
responses are located within the traffic. This is carried out
by separating the traffic into 50-s time windows and by
computing eight features for each time window. The fea-
tures are the number of packets, cumulative size of packets
in bytes, number of unique IP addresses contacted, num-
ber of unique ports contacted, number of non-ASCII bytes
in the payload, number of UDP packets, number of HTTP
packets and number of SMTP packets. In the third step, the
features are normalized. In the fourth step, the change point
detection algorithm uses these features to detect where the
traffic changes. This algorithm uses the cumulative sum
method to detect the changes.

Once the change point is detected, in the fourth step,
data are extracted from the traffic to create the profiles.
Bot command profiles are composed of string snippets
extracted from the 90-s time windows where the change
point detection took place: the number of UDP packets,
number of HTTP packets and number of SMTP packets
and IP addresses. The final response profile is the average
of these vectors over the total time of the bot response.

In the second phase, models for commands and
responses are created. A model has two parts: the strings
for command detection and a network-level description for
response detection.

In the first step of the command model creation, snip-
pets that contain the same tokens are grouped together
using the longest common subsequence algorithm. In
the second step, response traffic payloads are clustered
together using hierarchical clustering. In the third step,
snippets from the first-step clusters are grouped according
to the second-step traffic clusters (snippets likely to gen-
erate the same response). In the fourth step, the precision
of the method is improved by deleting the tokens found in
previously generated and unverified normal captures.

Still, in the second phase, in the first step of the response
model creation, the element-wise average of individual
profiles is computed on each cluster. In the second step,
some FPs are filtered out using a threshold. If none of
the following thresholds are overcome in 50 s, then the
response is discarded: 1000 UDP packets, 100 HTTP
packets, 10 SMTP packets and 20 different IP addresses.

Once the models are created, the proposal implements
them. In the third phase, previous models are mapped into
the Bro IDS. Bro is configured to work in two stages. In
the first stage, if a Bro command signature is matched,
then Bro changes to stage 2. In stage 2, a bot detection
is achieved if any of the following traffic thresholds are
overloaded: the number of UDP packets, number of HTTP
packets, number of SMTP packets or number of unique IP
addresses.

In the fourth phase, an evaluation is performed to obtain
the performance metrics. A total of 416 binary bots (18 bot
families) were obtained from the Anubis service along with
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30 nondescribed storm captures. The evaluation process is
performed in several steps. In the first step, detection mod-
els are created using a training set composed of 25% of the
total traces. In the second step, results are obtained using a
testing set composed of 75% of the total traces.

In the fifth phase, two real-world experiments are car-
ried out. First, the already configured Bro IDS is used in a
university campus network, and later, the same Bro IDS is
used in an organizational network.

The HTTP is detected by filtering the TCP port 80, and
the SMTP is detected by filtering the TCP port 25.

The analysis shows that the bot families are separated
by hand while creating the models, probably because, once
created, the models are useful for a long time. On the other
hand, the FPs are manually verified. These issues make the
verification of the method difficult.

The proposal seems to use a good dataset, but the infor-
mation included is not enough to verify its diversity. Also,
the third-party Anubis dataset is not verified. Moreover,
there is no information about the preprocessing of the
dataset.

A highlight of this proposal is that the results are com-
pared with those of the BotHunter proposal using the
Models proposal [31] dataset.

4.11. FluXOR

The FluXOR proposal [33] detects and monitors fast-flux-
enabled domains. Given a fully qualified domain name,
its goal is to verify whether it concealed a fast-flux ser-
vice network and, in such a case, to identify all the agents
that are part of the network. Although not strictly a bot-
net detection technique, it is one of the few proposals that
could detect fast-flux botnet domains. Suspicious domains
are detected when traces of fast-flux characteristics are
found in the DNS and WHOIS information of the domain.
A fast-flux behavior is detected with nine features that
describe the properties of the domain, such as the degree
of availability and the heterogeneity of the hosts in the
DNS A records. The experiment setup includes a collector
module, which harvests domains from different sources;
a monitor module, which monitors domains; and a detec-
tor module, which feeds the classifier algorithm from the
Waikato Environment for Knowledge Analysis suite [44].
This proposal does not have a detailed performance metrics
analysis, so it is not possible to evaluate how well it per-
formed. A 0% FP was reported; however, no other results
were given.

The analysis shows that the malware domains are
extracted from SPAM mails and normal domains are
extracted from Web history. However, there is no descrip-
tion about the verification of the domains. Unfortunately,
the dataset was not made public, probably because of the
privacy and security issues related to the domain names.
On the other hand, it may be possible to reproduce the
algorithm, as the Waikato Environment for Knowledge
Analysis framework is publicly available [44].

The design of the proposal does not include real-time
detection capabilities. However, under some conditions, it
could be possible to detect fast-flux botnets within a very
short time.

4.12. Tamed

In the Tamed proposal [35], it is hypothesized that “even
stealthy, previously unseen malware is likely to exhibit
communication that is detectable.” The proposal aims to
“identify infected internal hosts by finding communication
aggregates, which consist of flows that share common net-
work characteristics.” This is the first proposal that does
not try to detect botnets themselves but presents a coher-
ent and useful set of features in which future work can rely
their detection methods on. The work is divided into two
phases: the definition of their aggregate feature function
and the evaluation of experiments.

In the first phase, three different aggregation func-
tions are defined: destination aggregation function, pay-
load aggregation function and common platform function.
The destination aggregate function finds suspicious desti-
nation subnetworks for which there are a large number of
interactions with the internal network (and the IP addresses
involved). This is performed by comparing a baseline past
network record with the current network record. The func-
tion is composed of two steps. First, the past normal traffic
is used to remove the periodic communications. Second,
the principal component analysis algorithm is used to find
the most important components, and then, a clustering
technique is used to find the hosts that connect to the same
combinations of destinations.

The payload aggregate function uses the edit distance
with substring moves to output a normalized ratio. This
ratio indicates how many distances are below a given
threshold between two payloads (and thus need training).
The proposal also contributes an algorithm for approximat-
ing the fraction of relevant record pairs that satisfy this
distance (using a variant of the k-nearest neighbor).

The common platform function uses two heuristics for
fingerprinting host operating systems passively: time-to-
live fields and communication characteristics (such as Win-
dows computers connecting to the Microsoft Time Server).
This last function returns the largest fraction of internal
hosts that can be identified with the same operating system.

The proposal assumed that the C&C server can be in
a different network and that bots will not use the Tor*

network.
The analysis shows that the normality of the traffic

captured at the university is not verified but granted as
normal.

In one of the experiments, the traffic from one bot-
net was merged with traffic from the university. The IP
addresses of the bots were substituted with the IP addresses
of hosts in the university. The intention was to have IP

* https://www.torproject.org/
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addresses with normal behavior patterns and botnet behav-
ior patterns at the same time. However, no analysis was
performed about how this change could affect the common
platform aggregate function. This issue might be the rea-
son of some FNs during one experiment. Unfortunately, the
dataset was not made public, so it is difficult to reproduce
the method.

The proposal stated that a 100% TPR was achieved with
the exception of one experiment. In this isolated excep-
tional experiment, an 87.5% TPR was reported. The results
of all the experiments should be computed together to
calculate the performance metrics. There cannot be any
experiment exceptions while computing the results.

The proposal was not designed to detect bots using only
the traffic from one host. Also, it was not designed to
differentiate between botnets and other types of attacks.

4.13. Markov

Port scan activities of botnets are detected in [37]. The
scanning phases are represented with text symbols, and
a hidden Markov model (HMM) is used for training and
detection. The work is divided into four phases. In the
first phase, a system is used to capture information from
the network and generate network logs. Unfortunately, this
system is not described. Data were captured for 1 month in
11 C-class university networks. Incidentally, an unknown
amount of hosts was found to be infected.

In the second phase, the amount of TCP packets present
in certain time windows with SYN and ACK bits is com-
puted. Unfortunately, no information about the time win-
dows is given. The amount of packets is plotted, and each
distinct shape of traffic is assigned a different text symbol.
This phase supposedly ends up with a string of letters (one
gram) that represent each port scan (observations).

In the third phase, the training phase, the Baum–Welch
algorithm is used for 6 h to find a Markov model that max-
imizes the probability of each sequence of observations.

In the fourth phase, strings are extracted from the rest of
the traffic (supposedly of unknown type). However, there
is not much information about this. Then, the Viterbi algo-
rithm is used to find the most probable sequence of states in
an HMM from each group of observed states, that is, to find
the model that better explains the observations. The result
of the Viterbi algorithms is used as a type of score. We
suppose that they selected the sequence of stored port scan
strings that maximizes the score. At some point, a com-
parison is made between a botnet pattern and an unknown
pattern using a similarity function. Finally, the early detec-
tion of port scans is defined by these similarity values.
However, no information about any threshold or decision
boundary is given.

The proposal assumes that the botnets only scan TCP
ports.

The analysis shows that the dataset used is not verified.
There is no clear description of the dataset. Moreover, it
is stated that the dataset contains both unknown data and

botnet data, but it is not labeled. Also, results were not
compared with those of other papers.

Unfortunately, it is difficult to completely understand
the method. There is no information about how the port
scan detection is performed. Also, the proposal states that
the method behaves fine with Monte Carlo simulations, but
there is no information about this. The experimental setup
is not described. Furthermore, a bigger detection system is
described, with botnet policy management and classifica-
tions steps, but there is no information or explanation about
it. The information given about the automatic detection of
botnets does not have enough details.

4.14. Synchronize

Network synchronization and clustering techniques are
used to detect bots in [13]. There are five phases. In the
first phase, data are captured. Three different test beds were
used to capture five datasets. Three of the datasets corre-
spond to botnet captures and two to nonbotnet captures.
The nonbotnet captures include a manual port scan and
normal traffic. Verification of the captures is carried out
for both botnet and nonbotnet datasets. The botnet binaries
are verified with the VirusTotal Web service [45] and the
EUREKA! automated Malware Binary Analysis Service
[46]. The botnet traffic is manually verified by experts. The
nonbotnet traffic is verified by a fresh installation of the
operating system, antivirus programs and the Snort IDS.

In the second phase, the TCP flows are extracted using
the tcptrace tool.

In the third phase, flows are divided into 1-s time win-
dows, and three features are used to aggregate them: the
amount of unique source IP addresses in a time window,
the amount of unique destination IP addresses in a time
window and the amount of unique destination ports in a
time window. Each instance represents a time window with
the aggregated features.

In the fourth phase, the expectation–maximization algo-
rithm is used to cluster the instances. A dataset with both
types of traffic was obtained by merging botnet and non-
botnet data. Four experiments were conducted: first, to
separate between botnets and port scanning activities; sec-
ond, to separate between botnet and nonbotnet traffic from
one host; third, to separate between botnet and nonbot-
net traffic in an unbalanced dataset; and fourth, to separate
between a bot and a network of nonbotnet hosts.

The fifth phase analyzes the results. The proposal con-
siders the usual definition of FPs and FNs. However, it also
includes a novel definition of error metrics based on the
administrator perspective, that is, to compute an FP only
when a nonbotnet IP address is detected as a botnet at least
once during a period and also to compute an FN when a
botnet IP address is always detected as a nonbotnet in a
time window.

The proposal assumes that botnets tend to generate new
flows almost constantly and that botnets’ most typical char-
acteristics are maliciousness, being remotely managed and

Security Comm. Networks (2013) © 2013 John Wiley & Sons, Ltd.

DOI: 10.1002/sec



S. Garcia et al. Survey botnet detection methods

synchronization and also that botnets only use the TCP
protocol.

The analysis shows that the dataset included nonbotnet
data and manual attacks. However, it is rather small, and it
does not cover a large proportion of botnet behaviors. Only
five captures were made, and none of them was made in a
large network.

Unfortunately, there is no justification of the 1-min time
window used. The results were not compared with those of
other papers.

One of the highlights is that all the tools and datasets
used were made public on the Internet. These datasets
might allow other researchers to verify the method.
Another highlight is the differentiation between botnet and
port scanning traffic.

Unfortunately, no automatic botnet detection method
was established, meaning that the final decision is left to
experts.

The next section discusses and analyzes the main issues
found in the area.

5. DISCUSSIONS ABOUT THE
NETWORK-BASED BOTNET
DETECTION AREA

This section discusses the issues found in the network-
based botnet detection area. The analyses of previous sur-
veys and botnet detection papers showed which problems
are solved, which algorithms are used and which questions
remain to be answered. The area has obtained good results.
However, it still has many issues to tackle. The follow-
ing paragraphs discuss some general issues, and the next
subsections discuss two groups of common problems.

Reproducibility
Unfortunately, most methods cannot be reproduced
because of two factors. First, the datasets were not
published. The following papers could not publish
their datasets: [10,27–37]. Second, there was not
enough information about the methods. Without the
step-by-step description of the algorithms, the thresh-
old used and the whitelists, reproduction might be
unachievable. The following proposals did not pub-
lish all the necessary information to reproduce their
results: [10,27–30,32,34–37].
Amount of hosts
The amount of hosts needed in the network to detect
botnets should be considered. It normally depends on
the design of the proposal. Most proposals need a
large amount of hosts and packets to obtain meaning-
ful results. This limitation might play a negative role
in the future adoption of the method. Such amount
of hosts can only be obtained by capturing packets
on large networks. If the organization that uses the
method has such a network, then access to the net-
work can be also made difficult by the nondisclosure
agreements that must be fulfilled. On the other hand,
if the organization does not have such a network, then

it can be extremely difficult to have access to the data.
Therefore, some techniques might be only valuable
for Internet service providers, large organizations or
universities. Currently, there are only two proposals
that detect bots using the traffic of one host alone:
Appendix B of [27] and [13].
Features
An important phase of a botnet detection research is
the preprocess of data before the feature extraction
[42]. Some proposals tend to overfilter the data and
to produce algorithms that work better with a specific
dataset. These decisions should not add a bias to
the experiments. A data dredging bias� can occur
when researchers either do not form a hypothesis in
advance or narrow the data used to reduce the proba-
bility of the sample refuting a specific hypothesis. An
example is the whitelist of known Web sites under
the assumption that there is a low probability that
they will be part of a botnet in the future [27,28,36].
This decision might be taken because most of the
traffic on the datasets was directed to popular Web
sites. However, the assumption that these sites can be
safely whitelisted should be verified, as these sites
were successfully attacked in the past, such as Google
and Adobe.� Furthermore, another source of bias was
the assumptions made to filter out the packets that
did not fit the method. For example, some proposals
filter out packets of the UDP or Internet Control
Message Protocol without further explanations
[13,27,36], narrowing the sample to match their
hypothesis. In general, this type of decision is
not recommended, as some bots use the UDP
exclusively [6].
Experiments
Performance metrics are important in every exper-
iment and therefore should be correctly computed
[44]. However, some experiments were incorrectly
created. For example, some proposals compute the
TPR and FNR metrics using only a botnet capture
[29,31,32]. Other proposals compute the TNR and
FPR using only a normal capture [27,31,32]. These
types of metrics do not help us understand the results,
in the former case, because always predicting a pos-
itive outcome generates a 100% TPR and a 0% FNR
and, in the latter case, because always predicting a
negative outcome generates a 100% TNR and a 0%
FPR. More interesting results would be obtained if
both normal and botnet captures were used in the
experiments.
Metrics
Two important issues were found regarding the
accuracy-based performance metrics. The first issue,
shown in Table VIII, is that most proposals did not
compute the entire set of metrics. This means that

� https://secure.wikimedia.org/wikipedia/en/wiki/
Data-snooping_bias
� http://www.wired.com/threatlevel/2010/01/operation-aurora/
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most proposals cannot be compared. It is difficult to
understand how well the methods performed.

The second issue is that some proposals did not
clearly describe the design of its experiments. For
example, in some papers, it was impossible to tell
if they detected 90% of botnet IP addresses, 90% of
botnet flows or 90% of botnet actions. There is a
huge difference between detecting 90% of botnet IP
addresses within a 5-min time window and detecting
90% of botnet flows within a 5-min time window.

In the next subsections, the discussion is extended to
more specific topics.

5.1. Issues related to the datasets

The importance of using a good dataset, as stated in [34],
is sometimes underestimated. A dataset with few bot-
nets could lead to very limited methods. The following
paragraphs describe the issues found.

First, proposals tend to overlook the verification of
the datasets. A dataset in [37] was used for training and
validation without verification. Furthermore, a proposal
jeopardized the dataset by including in their capture the
secure shell traffic used to set up the virtual environment
[34].

Second, the amount of botnets captured is not evaluated.
Some proposals [30,34] captured a very small amount of
botnets. If the proposal tried to detect HTTP botnets, then a
large amount of different HTTP botnets should be captured
for the sample to be representative of the population.

Third, the amount of time spent on the capture is not
evaluated. The complete behavior of botnets cannot be cap-
tured in a few hours. However, most proposals tend to cap-
ture botnets during a short time [10,13,27,28,30,33–36].
Depending on the design of the proposal, this could lead
to an incomplete view of the botnet behavior. It is recom-
mended to capture traffic during long periods.

Fourth, labels are not verified. Some proposals captured
traffic from an internal network and labeled it as normal
without verification [10,27,29–31,34–37]. However, it is
common to find infected computers inside real networks.
Without verification, this type of traffic should be con-
sidered background instead. Botnet captures are usually
labeled as malicious only because a malware binary was
used, but no verification is carried out. There is no defini-
tion of what should be considered as botnet traffic. Should
the traffic generated by a malware process or the one
generated by an infected computer be considered as a bot-
net? Because an infected computer also generates normal
traffic, the answer is not straightforward.

Fifth, botnets are not distinguished from other types
of traffic besides normal. However, it could be helpful to
distinguish botnets from manual and automated attacks.
If a proposal uses common attacks to detect botnets, care
should be taken not to have FPs. Only one proposal was
designed to use the botnet attack responses and signatures
to better differentiate botnets from attacks [31]. Another

consideration should be made with port scanning activ-
ities. Should it be considered part of a botnet or not?
Port scanning is commonly considered an attack, but it is
also a well-known administrative tool in most networks.
Only one proposal differentiated between port scanning
and botnets [13].

Sixth, there is a need for a public botnet dataset. This is
perhaps the most important conclusion of our survey. It had
been stated that big data should be available for research
and validation [47]. Without a public dataset, it is not pos-
sible to compare methods. Currently, proposals are forced
to create their own datasets. The following reasons con-
tribute to the lack of a common and public dataset. First,
proposals use different botnet features for their analysis.
Therefore, each one needs to create an appropriate dataset.
Second and most important, traffic captures have much pri-
vate information that is dangerous to publish. Researchers
usually had to sign nondisclosure agreements with the net-
work owner before having access to the data. Furthermore,
these captures usually include malware information that
should be kept private to avoid spreading the malware. The
importance of a public dataset is reinforced by these lim-
itations. A public and complete dataset could be a very
valuable contribution to the area. To be useful, it should
be correctly designed, it should include every type of bot-
net, it should be regularly updated and, most importantly,
it should be correctly labeled. The creation of a common
dataset is perhaps one of the most important issues that the
area has yet to achieve.

The seventh issue is on the representation of network
traffic. It is common to need huge amounts of disk stor-
age early in the capture process. Researchers have to solve
the problem of how to store useful data long enough. The
common solution is to use network flow description meth-
ods. The idea is to reduce the volume of unused data and
retain as much useful data as possible. Two standards are
a common choice: IP Flow Information Export (IPFIX)
and Argus network flows. The IPFIX standard was defined
by the Internet Engineers Task Force, and it is based on
the original NetFlow standard. Argus uses its own network
flow definition for the same task. One difference between
Argus and IPFIX is that Argus flows are bidirectional,
whereas IPFIX flows are unidirectional. This subtle differ-
ence can have a critical impact on results and should be
evaluated.

Eighth, the issue is on how to obtain good botnet
binaries. The most common options are as follows:

(1) Use your own honeypots to obtain the binaries.
(2) Obtain binaries from third parties, such as antivirus

or other institution honeypots.
(3) Obtain and compile the source code from the Inter-

net.

The first choice is the best, but it can take a long time
to obtain useful binaries. The second option is the most
common. The third choice is good if the test bed has a
connection to the Internet and no services are simulated.
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5.2. Issues related to the experiments

To achieve meaningful results, it is important to carefully
design the experiments. Some papers correctly proposed to
mix normal captures with botnet captures to obtain a bet-
ter dataset. However, the mixture processes are not often
explained [27,29,34,36]. To mix a dataset means to decide
the balance of the mixture. Different balances produce dif-
ferent results and would have different benefits. In [39], it
was advised that an unbalanced dataset can bias the results.
Nevertheless, it is common to have more packets of normal
activity than botnet activity. The mixture of network pack-
ets is not easy. There are two main options: to concatenate
the traffic or to merge it. To concatenate is easier but more
unreal. To merge is better but more difficult to obtain.

An uncommon solution to the merging issue is to
change the IP address of one botnet host for the IP address
of one normal host [35]. The solution tries to have an IP
address with both types of behavior. However, this change
could have unpredicted implications in the performance
metrics. In fact, in [35], a problem is detected on the
passive operating system detector results.

5.3. Issues related to the detection
methods

The botnet behavior continuously changes, and detection
methods should change also. Supervised methods could
detect known botnets, but new botnets are still difficult to
detect. Methods should adapt to the changing behavior of
botnets and should be more flexible. There is a need to
increase the detection of unknown botnets.

Several proposals used unsupervised methods
[13,27,28,30,31,35]. However, none of them verified the
methods with unknown botnets.

6. CONCLUSIONS

The most relevant papers and surveys in the network-based
botnet detection area have been reviewed. The survey
dimensions, the desired properties, the topology map and
the papers were compared to understand the issues in the
area.

These findings are important for future works. It is eas-
ier to improve our research with the knowledge of what
other proposals have performed.

Our research has encountered two limitations. First,
some papers did not publish the details of their algo-
rithms. Second, there was no access to most datasets. These
problems highlight the difficulty to compare papers.

Our findings suggest that the most relevant issues on
previous surveys are the undefined terminology, the focus
on different aspects of botnets, the narrow analysis of the
papers and the small amount of papers covered.

On the other hand, the problems in the area that need
attention are

� the use of unverified captures,
� the lack of public datasets,
� the small amount of botnets in the datasets,
� the wrong mix-up of packets to create datasets,
� the inaccurate outcomes of experiments,
� the whitelist of common Web sites,
� the lack of comparison with other proposals,
� the inaccurate report of performance metrics and
� the common overfit of preprocessing methods.

Among the reasons for these problems are the fast evo-
lution of botnets and the difficulties in obtaining real and
working botnet traffic.

In light of these conclusions and the available data, a
final word can be said about botnet detection. The inten-
tion is not to find the best methods but to point to the
probably most useful detection approaches. The complex-
ity of botnet network behavior seems to be better detected
with time-based dynamic approaches, that is, approaches
that adapt to changes in behavior over time. To detect
unseen botnets, it seems to be a good path to use the
most general behavioral features, although some partic-
ular behaviors could be missed. It also seems to be a
good approach to use hybrid detection methods, where a
meta-learner can weigh and decide over the results of dif-
ferent behavior detection algorithms. The results obtained
by these types of approaches on IDSs are encouraging [48].
Finally, if several algorithms are used in parallel along with
a huge amount of data, then it may be useful to implement
big-data solutions [49].

Further studies should mainly target dataset improve-
ment and the comparison of methods with those in other
papers. The comparison is perhaps the best way to improve
the efforts in the area. We hope that our research will serve
as a basis for future studies. We are currently in the process
of creating a public and accurate dataset for the compari-
son of methods. We will also cover new detection methods
using botnet characteristics.

REFERENCES

1. McCarty B. Botnets: big and bigger. IEEE Security
& Privacy 2003; 1 (4): 87–90, DOI:10.1109/MSECP.
2003.1219079. Available from: http://ieeexplore.ieee.
org/xpls/abs_all.jsp?arnumber=1219079 [Accessed on
9 May 2013].

2. Microsoft Security Intelligence. Microsoft Security
Intelligence report. Technical Report, Microsoft,
December 2008. Available from: http://www.
microsoft.com/security/sir/archive/default.aspx
[Accessed on 9 May 2013].

3. Wilson C. Botnets, cybercrime, and cyberterrorism:
vulnerabilities and policy issues for congress. Con-
gressional Research Service Reports (CRS) and Issue
Briefs, 2007. DTIC Document, Available from: http://

Security Comm. Networks (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

http://www.microsoft.com/security/sir/archive/default.aspx
http://www.microsoft.com/security/sir/archive/default.aspx
http://www.fas.org/sgp/crs/terror/RL32114.pdf


Survey botnet detection methods S. Garcia et al.

www.fas.org/sgp/crs/terror/RL32114.pdf [Accessed
on 9 May 2013].

4. Stock B, Göbel J, Engelberth M, Freiling F C, Holz T.
Walowdac—analysis of a peer-to-peer botnet. In
2009 European Conference on Computer Network
Defense. IEEE: California, 2009; 13–20. DOI:10.
1109/EC2ND.2009.10. Available from: http://iee
explore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber
=5494343 [Accessed on 9 May 2013].

5. Zhang Y, Xiao Y, Ghaboosi K, Zhang J, Deng H. A
survey of cyber crimes. Security and Communication
Networks 2012; 5(4): 422–43, DOI:10.1002/sec.331.

6. Microsoft Security Intelligence. Microsoft Secu-
rity Intelligence report. Technical Report, Microsoft,
June 2010. Available from: http://www.microsoft.com/
security/sir/default.aspx [Accessed on 9 May 2013].

7. TrendMicro. Global threat trends 1H 2010. Technical
Report, TrendMicro, 2010.

8. Menten LE, Chen A, Stiliadis D. NoBot: embed-
ded malware detection for endpoint devices. Bell
Labs Technical Journal 2011; 16 (1): 155–170,
DOI:10.1002/bltj.

9. Goebel J, Holz T. Rishi: identify bot contaminated
hosts by IRC nickname evaluation. In HotBots’07:
Proceedings of the First Conference on First Workshop
on Hot Topics in Understanding Botnets. USENIX
Association: Berkeley, CA, USA, 2007; 8.

10. Li Z, Wang B, Li D, Chen H, Liu F, Hu Z.
The aggregation and stability analysis of network
traffic for structured-P2P-based botnet detection.
Journal of Networks 2010; 5 (5): 517–526, Avail-
able from: http://academypublisher.com/ojs/index.
php/jnw/article/viewArticle/0505517526 [Accessed
on 9 May 2013].

11. Jaikumar P, Kak AC. A graph-theoretic frame-
work for isolating botnets in a network. Security
and Communication Networks 2012; 5: 1939–0122,
DOI:10.1002/sec.500, Available from: http://dx.doi.
org/10.1002/sec.500 [Accessed on 9 May 2013].

12. Moon YH, Kim E, Hur SM, Kim HK. Detection
of botnets before activation: an enhanced honey-
pot system for intentional infection and behavioral
observation of malware. Security and Commu-
nication Networks 2012, DOI:10.1002/sec.431,
Available from: http://dx.doi.org/10.1002/sec.431
[Accessed on 9 May 2013].

13. García S, Zunino A, Campo M. Botnet behavior
detection using network synchronism. In Privacy,
Intrusion Detection and Response: Technologies for
Protecting Networks, Kabiri P (ed). IGI Global:
Pensilvania, 2012; 122–144. DOI:10.4018/978-1-
60960-836-1.ch005, Available from: http://sebastian-
garcia.isistan.unicen.edu.ar/publications/garciachap_

kabiri book.pdf?attredirects=0 [Accessed on 9 May
2013].

14. Shabtai A, Potashnik D, Fledel Y, Moskovitch R,
Elovici Y. Monitoring, analysis, and filtering sys-
tem for purifying network traffic of known and
unknown malicious content. Security and Communi-
cation Networks 2011; 4 (8): 947–965, DOI:10.1002/
sec.229.

15. Kuwabara K, Kikuchi H, Terada M, Fujiwara M.
Heuristics for detecting botnet coordinated attacks.
In 2010 International Conference on Availability,
Reliability and Security. IEEE: California, 2010;
603–607. Available from: http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=5438029
[Accessed on 9 May 2013].

16. Bailey M, Cooke E, Jahanian F, Xu Y, Karir M. A
survey of botnet technology and defenses. In Cyber-
security Applications & Technology Conference
For Homeland Security. IEEE: California, 2009;
299–304. Available from: http://ieeexplore.ieee.org/
xpl/articleDetails.jsp?arnumber=4804459 [Accessed
on 9 May 2013].

17. Lim SY, Jones A. Network anomaly detection sys-
tem: the state of art of network behaviour analysis,
International Conference on Convergence and Hybrid
Information Technology, 2008. (ICHIT ’08), Daejeon,
Korea, 2008; 459–465.

18. Zadeh MJS, Zeidanloo HR, Safari M, Zamani M,
Amoli PV. Taxonomy of botnet detection tech-
niques. In 2010 3rd IEEE International Conference
on Computer Science and Information Technol-
ogy (ICCSIT). IEEE: California, 2010; 158–162.
DOI:10.1109/ICCSIT.2010.5563555, Available from:
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber
=5563555 [Accessed on 9 May 2013].

19. Zhu Z, Lu G, Chen Y, Fu ZJ, Roberts P, Han K.
Botnet research survey. In 2008 32nd Annual IEEE
International Computer Software and Applications
Conference. IEEE: California, 2008; 967–972. Avail-
able from: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=4591703 [Accessed on 9 May
2013].

20. Feily M, Shahrestani A, Ramadass S. A survey of
botnet and botnet detection. In 2009 Third Interna-
tional Conference on Emerging Security Information,
Systems and Technologies. IEEE: California, 2009;
268–273. Available from: http://ieeexplore.ieee.org/
xpls/abs_all.jsp?arnumber=5210988 [Accessed on 9
May 2013].

21. Stinson E, Mitchell J. Towards systematic eval-
uation of the evadability of bot/botnet detection
methods. In Proceedings of the 2nd Conference
on USENIX Workshop on Offensive Technologies.

Security Comm. Networks (2013) © 2013 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

http://www.fas.org/sgp/crs/terror/RL32114.pdf
http://www.microsoft.com/security/sir/default.aspx
http://www.microsoft.com/security/sir/default.aspx
http://dx.doi.org/10.1002/sec.500
http://dx.doi.org/10.1002/sec.500
http://dx.doi.org/10.1002/sec.431
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5438029
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5438029
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4804459
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4804459
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4591703
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4591703
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5210988
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5210988


S. Garcia et al. Survey botnet detection methods

USENIX Association: Berkeley, CA, USA, 2008;
1–9. Available from: http://portal.acm.org/citation.
cfm?id=1496707 [Accessed on 9 May 2013].

22. Estrada V, Nakao A. A survey on the use of traffic
traces to battle internet threats. In 2010 Third Inter-
national Conference on Knowledge Discovery and
Data Mining. IEEE: California, 2010; 601–604. Avail-
able from: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=5432468 [Accessed on 9 May
2013].

23. Liu J, Xiao Y, Ghaboosi K, Deng H, Zhang J. Bot-
net: classification, attacks, detection, tracing, and
preventive measures, 2009; 1–12. Available from:
http://mts.hindawi.com/utils/getacceptedmsfile.aspx?
msid=692654&vnum=2&ftype=manuscript [Accessed
on 9 May 2013].

24. Li C, Jiang W, Zou X. Botnet: survey and
case study. In 2009 Fourth International Confer-
ence on Innovative Computing Information and
Control ICICIC, Vol. 0. IEEE: California, 2009;
1184–1187. DOI:10.1109/ICICIC.2009.127, Avail-
able from: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=5412718 [Accessed on 9 May
2013].

25. TrendMicro. Taxonomy of botnet threats. Tech-
nical Report, TrendMicro, 2006. Available from:
http://www.cs.ucsb.edu/ kemm/courses/cs595G/TM06.
pdf [Accessed on 9 May 2013].

26. Tyagi AK, Aghila G. A wide scale survey on botnet.
International Journal of Computer Applications 2011;
34(9): 9–22.

27. Gu G, Zhang J, Lee W. BotSniffer: detecting botnet
command and control channels in network traffic, Pro-
ceedings of the 15th Network and Distributed System
Security Symposium (NDSS), San Diego, CA, February
2008.

28. Gu G, Perdisci R, Zhang J, Lee W. BotMiner: clus-
tering analysis of network traffic for protocol- and
structure-independent botnet detection. In SS’08: Pro-
ceedings of the 17th Conference on Security Sym-
posium. USENIX Association: Berkeley, CA, USA,
2008; 139–154.

29. Gu G, Porras P, Yegneswaran V, Fong M, Lee W.
Bothunter: detecting malware infection through IDS-
driven dialog correlation. In Proceedings of 16th
USENIX Security Symposium on USENIX Security
Symposium. USENIX Association: California, 2007;
1–16. Available from: http://portal.acm.org/citation.
cfm?id=1362903.1362915 [Accessed on 9 May 2013].

30. Lu W, Rammidi G, Ghorbani AA. Clustering
botnet communication traffic based on N-gram
feature selection. Computer Communications
2010; 34 (3): 502–514, in press, Available from:

http://www.sciencedirect.com/science/article/B6TYP-
4YWC159-1/2/ea30180085250d194d113823a5f7a4ce
[Accessed on 9 May 2013].

31. Wurzinger P, Bilge L, Holz T, Goebel J, Kruegel
C, Kirda E. Automatically Generating Models for
Botnet Detection. Springer: Berlin, 2010; 232–249.
Available from: http://www.springerlink.com/index/64
U6455075084115.pdf [Accessed on 9 May 2013].

32. Collins MP, Shimeall TJ, Faber S, Janies J, Weaver
R, Shon MD, Kadane J. Using uncleanliness to pre-
dict future botnet addresses. In IMC ’07: Proceedings
of the 7th ACM SIGCOMM Conference on Inter-
net Measurement. ACM: New York, NY, USA, 2007;
93–104.

33. Passerini E, Paleari R, Martignoni L, Bruschi D.
FluXOR : detecting and monitoring fast-flux ser-
vice networks. In Detection of Intrusions and
Malware, and Vulnerability Assessment, Lecture
Notes in Computer Science. Springer: Berlin, 2008;
186–206.

34. Strayer WT, Walsh R, Livadas C, Lapsley D.
Detecting botnets with tight command and con-
trol, Proceedings of the 31st IEEE Conference on
Local Computer Networks, 2006; 195–202. Avail-
able from: http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=4116547&tag=1 [Accessed on 9 May
2013].

35. Yen TF, Reiter M. Traffic aggregation for malware
detection. In Detection of Intrusions and Malware, and
Vulnerability Assessment, vol. 5137/2008, Heidelberg
SB (ed), Lecture Notes in Computer Science. Springer:
Berlin, 2008; 207–227.

36. Yu X, Dong X, Yu G, Qin Y, Yue D, Zhao Y. Online
botnet detection based on incremental discrete Fourier
transform. Journal of Networks May 2010; 5 (5):
568, Available from: http://ojs.academypublisher.com/
index.php/jnw/article/view/853 [Accessed on 9 May
2013].

37. Kim D, Lee T, Kang J, Jeong H. Adaptive pattern min-
ing model for early detection of botnet-propagation
scale. Security and Communication Networks 2011,
DOI:10.1002/sec. Available from: http://onlinelibrary.
wiley.com/doi/10.1002/sec.366/full [Accessed on 9
May 2013].

38. Nguyen T, Armitage G. A survey of techniques for
Internet traffic classification using machine learning.
IEEE Communications Surveys & Tutorials 2008; 10
(4): 56–76, DOI:10.1109/SURV.2008.080406. Avail-
able from: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=4738466 [Accessed on 9 May
2013].

39. Maloof MA. Some basic concepts of machine learning
and data mining. In Machine Learning and Data Min-

Security Comm. Networks (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

http://portal.acm.org/citation.cfm?id=1496707
http://portal.acm.org/citation.cfm?id=1496707
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5432468
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5432468
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5412718
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5412718
http://portal.acm.org/citation.cfm?id=1362903.1362915
http://portal.acm.org/citation.cfm?id=1362903.1362915
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4116547&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4116547&tag=1
http://ojs.academypublisher.com/index.php/jnw/article/view/853
http://ojs.academypublisher.com/index.php/jnw/article/view/853
http://onlinelibrary.wiley.com/doi/10.1002/sec.366/full
http://onlinelibrary.wiley.com/doi/10.1002/sec.366/full
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4738466
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4738466


Survey botnet detection methods S. Garcia et al.

ing for Computer Security Methods and Applications.
Springer: London, 2006.

40. Vallacher RR, Wegner DM. What do people think
they’re doing? Action identification and human behav-
ior. Psychological Review 1987.

41. Kantardzic M, Press I. Data Mining: Concepts,
Models, Methods, and Algorithms 2003; 94 (1):
3–15, Available from: http://www.lavoisier.fr/livre/
notice.asp?id=OKLWR3A3SA3OWF [Accessed on 9
May 2013].

42. Ye N. The Handbook of Data Mining. Lawrence Erl-
baum Associates: New Jersey, 2003. Available from:
http://books.google.com/books?hl=en&lr=&id=vC3gd
PDaf7IC&oi=fnd&pg=PR18&dq=The+handbook+of+
data+mining&ots=SvD1obX1JX&sig=nod2L9tpPXW
YK8QbD6JQ81pwI3M [Accessed on 9 May
2013].

43. Barrett D, Silverman R, Byrnes R. SSH, the secure
shell: the definitive guide. O’Reilly Media, Inc.:
California, 2005. Available from: http://portal.acm.
org/citation.cfm?id=1199540 [Accessed on 9 May
2013].

44. Witten I. Data mining: practical machine learning tools
and techniques. Machine Learning 2005, ISBN: 978-

0-12-374856-0 Available from: http://www.cs.
waikato.ac.nz/ml/weka/book.html [Accessed on 9
May 2013].

45. Hispasec. Virus Total. Available from: http://www.
virustotal.com/es/.

46. Yegneswaran V, Saidi H, Porras P, Sharif M.
Eureka: a framework for enabling static analysis
on malware. In ESORICS ’08 Proceedings of the
13th European Symposium on Research in Com-
puter Security, April. Springer-Verlag: Berlin, 2008;
481–500. Available from: http://dx.doi.org/10.1007/
978-3-540-88313-5_31 [Accessed on 9 May 2013].

47. Huberman B A. Sociology of science: big data deserve
a bigger audience. Nature 2012; 482(7385): 308–308,
DOI:http://dx.doi.org/10.1038/482308d.

48. Rehak M, Pechoucek M, Grill M, Stiborek J, Bartos K,
Celeda P. Adaptive multiagent system for network
traffic monitoring. Intelligent Systems, IEEE 2009; 24
(3): 16–25, DOI:10.1109/MIS.2009.42.

49. Francois J, Wang S, Bronzi W, State R, Engel T.
BotCloud: detecting botnets using mapReduce, 2011
IEEE International Workshop on Information Foren-
sics and Security (WIFS), Tenerife, Spain, 2011; 1–6.
DOI:10.1109/WIFS.2011.6123125.

Security Comm. Networks (2013) © 2013 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

http://www.lavoisier.fr/livre/notice.asp?id=OKLWR3A3SA3OWF
http://www.lavoisier.fr/livre/notice.asp?id=OKLWR3A3SA3OWF
http://portal.acm.org/citation.cfm?id=1199540
http://portal.acm.org/citation.cfm?id=1199540
http://www.cs.waikato.ac.nz/ml/weka/book.html
http://www.cs.waikato.ac.nz/ml/weka/book.html
http://www.virustotal.com/es/
http://www.virustotal.com/es/
http://dx.doi.org/10.1007/978-3-540-88313-5_31
http://dx.doi.org/10.1007/978-3-540-88313-5_31

	Survey on network-based botnet detection methods
	Introduction
	Previous Surveys
	Survey comparison

	Classification of detection proposals
	Topology map of network-based botnets detection characteristics
	Desired properties
	Paper comparison
	Comparison of anomaly-based behavior detection techniques
	Detection sources comparison
	Detection algorithms comparison
	Accuracy-based performance metrics comparison
	Unknown botnet detection capability comparison
	Comparison of protocol-dependent features
	Dataset diversity comparison


	Detailed analysis of papers
	BotSniffer
	Appendix B of BotSniffer
	BotMiner
	BotHunter
	N-gram
	Unclean
	Tight
	Stability
	Incremental
	Models
	FluXOR
	Tamed
	Markov
	Synchronize

	Discussions about the network-based botnet detection area
	Issues related to the datasets
	Issues related to the experiments
	Issues related to the detection methods

	Conclusions




