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Gaussian Decoherence and Gaussian Echo from Spin Environments
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We examine an exactly solvable model of decoherence – a spin-system interacting with a collection
of environment spins. We show that in this simple model (introduced some time ago to illustrate
environment–induced superselection) generic assumptions about the coupling strengths typically
lead to a non-Markovian (Gaussian) suppression of coherence between pointer states. We explore
the regime of validity of this result and discuss its relation to spectral features of the environment.
We also consider its relevance to Loschmidt echo experiments (which measure, in effect, the fidelity
between the initial state and the state first evolved forward with a Hamiltonian H, and then “un-
evolved” with (approximately) −H). In particular, we show that for partial reversals (e.g., when
only a part of the total Hamiltonian changes sign) fidelity may exhibit a Gaussian dependence on
the time of reversal that is independent of the details of the reversal procedure: It just depends on
what part of the Hamiltonian gets “flipped” by the reversal. This puzzling behavior was observed
in several NMR experiments. Natural candidates for such two environments (one of which is easily
reversed, while the other is “irreversible”) are suggested for the experiment involving ferrocene.

PACS numbers: 03.65.Yz; 03.67.-a

INTRODUCTION

“It seems very important to us... that the idea and
genesis of randomness can be made rigorously precise
also if one rigorously follows the determinism; the law
of large numbers comes then not as a mystical princi-
ple and not as a purely empirical fact, but as a simple
mathematical result...” wrote Marian Smoluchowski in
his posthumously published paper [1]. At that time de-
terminism meant classical determinism – the underlying
equations of motion that determined a trajectory of a
classical particle. One could, however, develop simple
stochastic models that encapsulated effects of that exact
dynamics. That was the essence of the approach that led
to the Smoluchowski equation (which is still widely used
today, a century after it was derived using this strategy).

Quantum theory forces one to reassess the relation be-
tween determinism and randomness: Chance plays a dif-
ferent role in the quantum domain. According to Bohr
and Born, quantum randomness is fundamental: A mea-
surement on a quantum system – according to the Copen-
hagen interpretation – necessarily involves a classical ap-
paratus. The outcome of the measurement is randomly
selected with probability given by the famous rule that
connects probability to amplitude (pk = |ψk|

2) conjec-
tured by Max Born. The Copenhagen view of the quan-
tum Universe was challenged by Everett, who half a cen-
tury ago noted that it is possible to imagine that our
Universe is all quantum, and that its global evolution is
deterministic. Randomness will appear only as a result
of the local nature of subsystems (such as an apparatus
or an observer) [2, 3].

It is not our aim here to recapitulate this well known
story, except to point out that it sheds a rather differ-
ent light on the relation between determinism and ran-
domness than did classical physics. The key insight of

Smoluchowski contained in the quote above is, however,
still correct – perhaps even more deeply correct – in the
quantum setting. Entanglement, the quintessential quan-
tum phenomenon, which plays such an important role in
the approach of Everett is central for its validity. We
illustrate here only one aspect of these connections – de-
coherence which is caused by entangling interactions be-
tween the system and the environment.

The story that will unfold makes one more connection
with Smoluchowski: It touches on the debate about the
origins and nature of irreversibility between his two for-
mer professors – Boltzmann and Loschmidt – as the evo-
lution responsible for the buildup of correlations which
lead to decoherence can be (approximately) reversed in
suitable settings, allowing for the study of “Loschmidt
echo” [4, 5, 6, 7].

SPIN DECOHERENCE MODEL

A single spin–system S (with states {|0〉 , |1〉}) inter-
acting with an environment E of many independent spins
({|↑k〉 , |↓k〉}, k = 1..N) through the Hamiltonian

HSE = (|0〉 〈0| − |1〉 〈1|)

N
∑

k=1

gk

2
(|↑k〉 〈↑k| − |↓k〉 〈↓k|)

(1)
may be the simplest solvable model of decoherence. It
was introduced some time ago [2] to show that rela-
tively straightforward assumptions about the dynamics
can lead to the emergence of a preferred set of pointer
states due to einselection (environment–induced supers-
election) [2, 8]. Such models have gained additional im-
portance in the past decade because of their relevance to
quantum information processing [9].
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The purpose of our paper is to show that – with a
few additional natural and simple assumptions – one can
evaluate the exact time dependence of the reduced den-
sity matrix, and demonstrate that the off–diagonal com-
ponents display a Gaussian (rather than exponential) de-
cay [10]. In effect, we exhibit a simple soluble example of
a situation where the usual Markovian [11] assumptions
about the evolution of a quantum open system are not
satisfied. Apart from their implications for decoherence,
our results are also relevant to quantum error correction
[12] where precise precise knowledge of the dynamics is
essential to select an efficient strategy. Moreover, while
the model Hamiltonian of Eq. (1) is very specific, it sug-
gests generalizations that lead one to conclude that Gaus-
sian decay of polarization may be common, and specify
when a reversal of the Hamiltonian evolution in a part of
the spin environment naturally leads to a Gaussian de-
pendence of the return signal on the time of reversal, a
feature of Loschmidt echo observed in NMR experiments.

To demonstrate the Gaussian time dependence of de-
coherence we first write down a general solution for the
model given by Eq. (1). Starting with:

|ΨSE(0)〉 = (a |0〉 + b |1〉)

N
⊗

k=1

(αk |↑k〉 + βk |↓k〉) , (2)

the state of SE at an arbitrary time is given by:

|ΨSE(t)〉 = a |0〉 |E0(t)〉 + b |1〉 |E1(t)〉 (3)

where

|E0(t)〉 =

N
⊗

k=1

(

αke
igkt/2 |↑k〉 + βke

−igkt/2 |↓k〉
)

= |E1(−t)〉 . (4)

The reduced density matrix of the system is then:

ρS = TrE |ΨSE(t)〉 〈ΨSE(t)|

= |a|2 |0〉 〈0| + ab∗r(t) |0〉 〈1|

+ a∗br∗(t) |1〉 〈0| + |b|2 |1〉 〈1| , (5)

where the decoherence factor r(t) = 〈E1(t)|E0(t)〉 can be
readily obtained:

r(t) =

N
∏

k=1

(

|αk|
2eigkt + |βk|

2e−igkt
)

. (6)

It is straightforward to see that r(0) = 1, and that for
t > 0 it will decay to zero, so that the typical fluctuations
of the off-diagonal terms of ρS will be small for large
environments, since:

〈

|r(t)|2
〉

= 2−N
N
∏

k=1

(

1 + (|αk|
2 − |βk|

2)2
)

, (7)

Here 〈...〉 denotes a long time average [2]. Clearly,
〈

|r(t)|2
〉

−→
N→∞

0, leaving ρS approximately diagonal in

a mixture of the pointer states {|0〉 , |1〉} which retain
preexisting classical correlations.

This much was known since [2]. The aim of this paper
is to show that, for a fairly generic set of assumptions,
the form of r(t) can be further evaluated and that – quite
universally – it turns out to be approximately Gaussian
in time. Thus, the simple model of Ref. 2 predicts a uni-
versal (Gaussian) form of the loss of quantum coherence,
whenever the couplings gk of Eq. (1) are sufficiently con-
centrated near their average value so that their standard
deviation

〈

(gk − 〈gk〉)
2
〉

exists and is finite. When this
condition is not fulfilled other sorts of time dependence
become possible. In particular, r(t) may be exponential
when the distribution of couplings is a Lorentzian.

We shall also consider implications of the predicted
time dependence of r(t) for echo experiments. In par-
ticular, the group of Levstein and Pastawski [4, 5, 6, 7],
have carried out experiments that aim to implement time
reversal of dynamics, as was suggested long time ago
by Loschmidt [13], who used time reversal as a coun-
terargument to Boltzmann’s ideas about H-theorem and
the origins of irreversibility. Boltzmann’s reported (pos-
sibly apocryphal) reply “Go ahead and do it!”, which
may reflect his belief in the molecular disorder hypoth-
esis [14], points to the origin of the difficulty in imple-
menting such reversal in practice for all of the relevant
degrees of freedom. It is nevertheless possible in some
settings to carry out “Loschmidt echo experiments” that
approximate Loschmidt’s original idea [13].

When the reversal is successful for only some of the
relevant degrees of freedom (E ′′) but does not encompass
all of the environment E (leaving behind “unreversed”
E ′) the result is a partial Loschmidt echo (also dubbed
“Boltzmann echo” [15]). As in Ref. [16], we interpret
the decay in the Loschmidt echo as the effect of cou-
pling to a second environment. We shall study the par-
tial Loschmidt echo in the context of the simple model of
Eq. (1) and Ref. [2], and conclude that its basic implica-
tions may generalize to a much broader range of dynamics
relevant to NMR experiments.

In our case the state of all the degrees of freedom after
a partial reversal (that happens at t = tR) is given by:

|ΦSE′E′′(t)〉 = eiHSE′ teiHSE′′ (2tR−t)|ΦSE′E′′(0)〉 (8)

The echo signal measured in the experiments concerns
only a part of the whole – the system S. It is given by:

µ(2tR) = TrρS(t = 0)ρS(t = 2tR) .

This is in effect the fidelity of the state of S. We shall ex-
press µ(t) in terms of decoherence factors corresponding
to E ′ and E ′′: This follows from a straightforward gener-
alization of Eqs. (5, 6) to the case of partial Loschmidt
echo with two environments, only one of which gets re-
versed.
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GAUSSIAN DECOHERENCE

Evaluating time dependence of the decoherence factors
for E ′ and E ′′ is therefore our first goal. To this end we
carry out multiplication of Eq.(6), re–expressing r(t) as
a sum:

r(t) =

N
∏

k=1

|αk|
2eit

P

n gn +

N
∑

l=1

|βl|
2

N
∏

k 6=l

|αk|
2 ×

eit(−gl+
P

n 6=l
gn) +

N
∑

l=1

N
∑

m 6=l

|βl|
2|βm|2 ×

N
∏

k 6=l,m

|αk|
2e[it(−gl−gm+

P

N
n 6=l,m

gn)] + ... (9)

Decoherence factor is then a sum of 2N complex contri-
butions with fixed absolute values and with phases that
rotate at the rate given by the eigenvalues of the total
Hamiltonian.

Decay of r(t) can be understood (see [2]) as a progres-
sive randomization of a walk in a complex plane: At t = 0
all of the phases are the same so all of the steps – all of
the contributions to the decoherence factor – add up in
phase yielding |r(t = 0)| = 1. However, as time goes on,
these phases rotate at various rates so r(t) is a termi-
nal point of what becomes in time a random walk (on a
complex plane) where the directions of various steps are
uncoordinated (see Fig. 1).

This view of the decay of r(t) is the first instance where
the random walk analogy is useful in our paper. The
terminal point of this random walk determines decoher-
ence factor. Another random walk – this time in energy
– can be invoked in computing eigenvalues of the total
Hamiltonian. These eigenvalues are responsible for the
rotation rates of the individual steps that contribute to
r(t). We shall now see that this random walk in energies
is responsible for the (typically Gaussian) decay of the
decoherence factor.

To exhibit the Gaussian nature of r(t) we start by not-
ing that there are

(

N
0

)

,
(

N
1

)

,
(

N
2

)

, ... etc. terms in the
consecutive sums above. The binomial pattern is clear,
and can be made even more apparent by assuming that
αk = α and gk = g for all k. Then,

r(t) =

N
∑

l=0

(

N

l

)

|α|2(N−l)|β|2leig(N−2l)t, (10)

i.e., r(t) is the binomial expansion of r(t) =
(

|α|2eigt + |β|2e−igt
)N

.

We now note that, as follows from the Laplace-de
Moivre theorem [17], for sufficiently large N the coef-
ficients of the binomial expansion of Eq. (10) can be ap-

0 0.2 0.4 0.6 0.8

-0.5

-0.25

0

0.25

0.5

0.75

1

FIG. 1: Decoherence factor r(t) decomposed as a sum of
complex terms as in Eq. (9), for |αk|

2 = |βk|
2 = 1/2 and

N = 8 spins in the environment with random couplings gk

from a uniform distribution. The times plotted are t = 0,
(at “noon”), and t = 0.25, 0.5, 0.75, 1, 1.25, and 1.5 in a
“clockwise direction”: The coordinate of the complex plane
is rotated clockwise by an angle 2π/7 for each r(t) (dashed
lines), starting with a vertical axis for t = 0. Notice the ran-
dom walk-like behavior of r(t). The dotted curve line is the
envelope of the random walks – the net decoherence factor
decaying with a Gaussian form in accord with our discussion.

proximated by a Gaussian:

(

N

l

)

|α|2(N−l)|β|2l ≃
exp

[

− (l−N |β|2)2

2N |αβ|2

]

√

2πN |αβ|2
. (11)

This limiting form of the distribution of the eigenenergies
of the composite SE system immediately yields our main
result:

|r(t)| = exp(−2N |αβ|2(gt)2) (12)

So, r(t) is approximately Gaussian since it is a Fourier
transform of an approximately Gaussian distribution of
the eigenenergies of the total Hamiltonian resulting from
all the possible combinations of the couplings with the
environment.

A few quick comments on the above form of the de-
coherence factor may be in order: We note that in the
limit of large Ng2 it predicts “instantaneous” decay of
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quantum coherence. We also note that when αβ = 0 the
environment is incapable of decohering the system (as it
is then in an eigenstate of the global Hamiltonian, so the
“measurement-like evolution” that is at the heart of de-
coherence is impossible). Last but not least, we note that
when the environment is mixed, decoherence will proceed
unimpeded, and that it will be most efficient when the
mixture is perfect – when |α|2 = |β|2 = 1

2 .

LAW OF LARGE NUMBERS AND ENERGIES

To yield a Gaussian decay of |r(t)|, the set of all the re-
sulting eigenenergies of the total Hamiltonian must have
an (approximately) Gaussian distribution. This behavior
is generic, a result of the law of large numbers [17]: these
energies can be thought of as the terminal points of an
N–step random walk. The contribution of the k–th spin
of the environment to the random energy is +g or −g
with probability |α|2 or |β|2 respectively (Fig. 2-a).

The same argument can be carried out in the more
general case of Eq. (9). The “random walk” picture that
yielded the distribution of the couplings remains valid
(see Fig. 2-b). However, now the individual steps in the
random walk are not all equal. Rather, they are given
by the set {gk} (see Eq. 1) with each step gk taken just
once in a given walk. There are 2N such distinct random
walks. This exponential proliferation of the contributing
coupling energies allows one to anticipate rapid conver-
gence to the universal Gaussian form of their distribution,
and, therefore, of the decoherence factor r(t).

Indeed, we can regard eigenenergies resulting from the
sums of gk’s as a random variables. Its probability distri-
bution is given by products of the corresponding weights.
That is, the typical term in Eq. (9) is of the form:

pW eiEW t ≡

(

∏

k∈W+

|αk|
2eigkt

)(

∏

k∈W−

|βk|
2e−igkt

)

.

(13)
The resulting terminal energy is

EW =
∑

k∈W+

gk −
∑

k∈W−

gk, (14)

and the cumulative weight pW is given by the correspond-
ing product of |αk|

2 and |βk|
2. Each such specific random

walk W corresponding to a given combination of right
(k ∈ W+) and left (k ∈ W−) “steps” (see Figs. 1 and
2) contributes to the distribution of energies only once.
The terminal points EW may or may not be degener-
ate: As seen in Fig. 2, in the degenerate case, the whole
collection of 2N random walks “collapses” into N + 1
terminal energies. More typically, in the non-degenerate
case (also displayed in Fig. 2), there are 2N different
terminal energies EW . In both cases, the “envelope” of
the distribution P (EW ) should be Gaussian, as we shall
show below.

(b)(a)

-5 0 5
E

-5 0 5
E

0

0.1

0.2

P(
E

)

FIG. 2: The distribution of the energies obtains from the ran-
dom walks with the steps given by the coupling size and in
the direction (+gk or −gk) biased by the probabilities |αk|

2

and |βk|
2 as in Eq. (17) (although in these examples we set

|αk|
2 = 1/2). (a) When all the couplings have the same size

gk = g (Eq. (10)), a simple Newton’s triangle leads to an ap-
proximate Gaussian for the distribution of energies. (b) When
the couplings randomly differ from step to step (Eq. (9)), the
resulting distribution still approaches an approximately Gaus-
sian envelope for large N .

In contrast to the usual classical random walk scenario
(where each event corresponds to specific random walk)
in this quantum setting all of the random walks in the
ensemble contribute simultaneously – evolution happens
because the system is in a superposition of its energy
eigenstates. The resulting decoherence factor r(t) can be
viewed as the characteristic function [17] (i.e., the Fourier
transform) of the distribution of eigenenergiesEW . Thus,

r(t) =

∫

eiEtη(E)dE, (15)

where the strength function η(E), also known as the local
density of states (LDOS) [18] is defined in general as

η(E) =
∑

λ

| 〈ΨSE(0)|φλ〉 |
2δ(E − Eλ). (16)

Above |φλ〉 are the eigenstates of the full Hamiltonian
and Eλ its eigenenergies. In our particular model (Eq. 1)
the eigenstates are associated with all possible random
walks in the set W , and therefore

η(E) =
∑

W

pW δ(E − EW ). (17)

Decoherence in our model is thus directly related to the
characteristic function of the distribution of eigenenergies
η(E). Moreover, since the EW ’s are sums of gk’s, r(t) is
itself a product of characteristic functions of the distri-
butions of the couplings {gk}, as we have already seen in
the example of Eq. (6). Thus, the distribution of EW
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FIG. 3: (Left panels) Assumed distribution of the couplings
gk, from top to bottom: uniform, Gaussian, and exponen-
tial. (Center panels) Resulting distribution of the eigenener-
gies EW (center panels) for N = 6 (EW < 0) and N = 24
(EW > 0). In the case of |αk|

2 = 1/2 this distribution is in
effect the “strength function” (local density of states). (Right
panels) Decoherence factor r(t) for different initial conditions
with N = 6 (dashed lines), N = 24 (thin solid lines) and the
average (bold line) rapidly approaches a Gaussian whenever
couplings have a finite variance.

belongs to the class of the so–called infinitely divisible

distributions [17, 19].

The behavior of the decoherence factor r(t) – charac-
teristic function of an infinitely divisible distribution –
depends only on the average and variance of the distri-
butions of couplings weighted by the initial state of the
environment [17, 19]. The remaining task is to calculate
η(E), which can be obtained through the statistical anal-
ysis of the random walk picture described above. If we
denote xk the random variable that takes the value +gk

or −gk with probability |αk|
2 or |βk|

2 respectively, then
its mean value ak and its variance bk are

ak = (|αk|
2 − |βk|

2)gk,

b2k = g2
k − a2

k = 4|αk|
2|βk|

2g2
k. (18)

The behavior of the sums of N random variables xk (and
thus, of their characteristic function) depends on whether
the so–called Lindeberg condition holds [17]. It is ex-
pressed in terms of the cumulative variances B2

N =
∑

b2k,
and it is satisfied when the probability of the large indi-
vidual steps is small; e.g.:

P ( max
1≤k≤N

|gk − ak| ≥ τBN ) −→
N→∞

0, (19)

for any positive constant τ . In effect, Lindeberg condition
demands that the variance of couplings exist and be finite
– i.e., that BN be finite: when it is met, the resulting

distribution of energies E =
∑

xk is Gaussian

P

(

E − EN

BN
< x

)

−→
N→∞

∫ x

−∞

e−s2/2ds, (20)

where EN =
∑

k ak. In terms of the LDOS this implies

η(E) ≃
1

√

2πB2
N

exp

(

−(E − EN )2

2B2
N

)

, (21)

an expression in excellent agreement with numerical re-
sults already for modest values of N . This distribution of
energies yields a corresponding approximately Gaussian
time–dependence of r(t), as seen in Fig. 3. Moreover,
at least for short times of interest for, say, quantum er-
ror correction, r(t) is approximately Gaussian already
for relatively small values of N . This conclussion holds
whenever the initial distribution of the couplings has a
finite variance. The general form of r(t) after applying
the Fourier transform of Eq. (15) is

r(t) ≃ eiEN te−B2
N t2/2. (22)

It is also interesting to investigate cases when Linde-
berg condition is not met. Here, the possible limit dis-
tributions are given by the stable (or Lévy) laws [19].
One interesting case that yields an exponential decay of
the decoherence factor is the Lorentzian distribution of
couplings (see Fig. 4). It can be expected e.g. in the
effective dipolar couplings to a central spin in a crystal
[25]. Further intriguing questions concern the robust-
ness of our conclusion under the changes of the model.
We have begun to address this issue elsewhere [20] but,
for the time being, we only note that the addition of a
strong self–Hamiltonian proportional to σx changes the
nature of the time decay [20, 21]. On the other hand,
small changes of the environment Hamiltonians, like for
instance truncated dipolar interactions,

HE =
∑

i,j

gij

(

2σz
i σ

z
j − σx

i σ
x
j − σy

i σ
y
j

)

, (23)

seem to preserve the Gaussian nature of r(t) [20]. This
universality of Gaussian decoherence extends beyond the
short-time regime where it was emphasized in Ref. 26. It
arises as a consequence of the central limit theorem that
leads to Gaussian distribution of the eigenenergies, a lim-
iting behavior that can be expected for reasons pointed
out above (see also [10]) under generic conditions in many
body systems [27].

PARTIAL REVERSAL AND GAUSSIAN ECHO

Let us now consider a Loschmidt echo – reversal of the
sign of the Hamiltonian – carried out at a time tR. In our
model it can be implemented by appropriate “flipping”
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-4 -2 0 2 4
g

0

0.2

0.4

P(g)

-2 0 2
E

W

P(E
W

)

0 20 40
N

-1
t

10
-9

10
-6

10
-3

10
0

r(t)

FIG. 4: Same as Fig. 3 but for a Lorentzian distribution of
the couplings gk. In this case r(t) decays exponentially. The
histogram and the dashed line in r(t) correspond to N = 20,
the straight thin line is a particular case for N = 100 and
the thick line is the average. We note that the convergence
is slower than in the Gaussian case of Fig. 2, because real-
izations of gk are more likely to have one or two dominant
couplings. Therefore, although the average shows a clear ex-
ponential decay, fluctuations are noticeable even for large N .
Notice also that the logarithmic scale confirms the long time
saturation of r(t) at ∼ 2−N/2, Eq (7).

of the spins in the environment. We first note that the
measured observable µ(t) signal can be readily related to
the decoherence factor:

µ(t) = TrρS(t)ρS(0)

= (a∗〈0| + b∗〈1|)ρS(t)(a|0〉 + b|1〉)

= |a|4| + |b|4 + 2|ab|2Re r(t) (24)

For a complete Loschmidt echo, the sign of the the whole
Hamiltonian would be reversed at t = tR, so for t > tR;

µ(t) = |a|4| + |b|4 + 2|ab|2Re r(tR − (t− tR)) . (25)

Hence, the decoherence factor is now r(2tR − t), and the
system will return to its initial state at t = 2tR.

We now suppose with Petitjean and Jacquod [15] that
only a part of the Hamiltonian is reversed (e.g., only some
of the spins – spins in E ′′ – get flipped). In our model,
environments E ′ and E ′′ do not interact. Thus, the net
decoherence factor is a product of the decoherence factors
coming from each environment,

r(t) = r′(t)r′′(t), (26)

with

r′(t) ≈ eiEN′t exp
(

−B2
N ′t2/2

)

= ei
P

g′
kt exp

(

−
∑

(g′k)2t2/2
)

(27)

and

r′′(t) ≈ eiEN′′(2tR−t) exp
(

−B2
N ′′(2tR − t)2/2

)

= ei
P

g′′
k (2tR−t) exp

(

−
∑

(g′′k )2(2tR − t)2/2
)

.(28)

Since the time reversal only applies to E ′′,

µ(t) = |a|4| + |b|4 + 2|ab|2Re r′(t)r′′(2tR − t) . (29)

At the instant t = 2tR when the echo signal is usually
acquired r′(2tR) = 1 and:

r(2tR) = ei2EN′tR exp

(

−
B2

N ′(2tR)2

2

)

= ei2
P

g′
ktR exp

(

−2
∑

(g′k)2t2R

)

. (30)

Thus, reversal is incomplete. The deficit in the signal
exhibits a Gaussian dependence on the instant of reversal
tR. This is the effect of the on-going decoherence due
to E ′ – these spins in the environment that did not get
reversed.

These equations exhibit the Gaussian time dependence
(e.g., of the echo signal on the time of reversal tR)
for large values of tR (i.e., beyond the initial quadratic
regime) as was found in some of the Loschmidt echo ex-
periments carried out by Levstein and Pastawski [4] (see
Fig. 5). Most importantly, the partial reversal provides
an explanation of the surprising experimentally observed
insensitivity of the Gaussian decay of polarization to the
details of the pulse that initiates reversal: As noted in
Ref. [6], one might have expected that reversal pulse with
larger amplitude will “turn back” evolution in a larger
fraction of the environment, but this does not seem to
happen. Rather, independence of the “backwards evolu-
tion” of the pulse inducing reversal indicates that always
the same subset of the environment is turned back. It is
therefore tempting to interpret their experimental results
using the “two environment” theory we have outlined
above. We believe that such interpretation is basically
correct, but that a more careful discussion should take
into account differences between the system investigated
in Ref. [4] and our simple model.

This view of the above data seems especially appropri-
ate since in ferrocene (Fe(C5H5)2, the molecule used in
Ref. [6]) there are (at least) two environments that are
likely to respond differently to the attempted “Loschmidt
reversal” of the dynamics. To point them out we need
a bit more detailed description of the experiment. The
ferrocene molecule (Fig. 6) consists of two rings, each
with 5 hydrogen atoms attached to 5 carbon atoms. The
Loschmidt echo experiment starts when a rare 13C atom
(that appears in a small fraction of all the molecules)
is polarized by the external field that starts the experi-
ment. This polarization is then transferred to its adja-
cent hydrogen. Once it is there, it can easily “diffuse” to
the other hydrogens within the ring (or possibly within
the molecule). This process is rapid; a brief (∼ 100µs)
approximately Gaussian decay leads to an ondulating
plateau. The hydrogen adjacent to the 13C atom is about
20% polarized at this instant (see Fig. 7).

Up to that point, the agreement between the numeri-
cal simulation of quantum evolution in a single ferrocene
molecule and the experiment is remarkable, suggesting
that the only environment explored by the injected po-
larization is the “immediate neighborhood”: hydrogens
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FIG. 5: Attenuation of the polarization echoes in a single
crystal of ferrocene as a function of reversal time tR: The data
correspond to an orientation where the two molecules per unit
cell are magnetically equivalent. The solid line corresponds to
a Gaussian fitting yielding a characteristic time T = (400 ±
10)ms as the single free parameter. The inset shows in effect
ln(µ(2t0) − µ(∞)) vs t0 in a log-log plot. The slope of the
resulting line is 2.1 ± 0.08, and is consistent with Eq. (30)
(This illustration, Fig. 11 of Ref. [4], is reproduced here by
permission of the authors.)

FIG. 6: Schematic representation of a ferrocene (Fe(C5H5)2)
molecule. The hydrogens (white, on the outside) are coupled
to the carbon atoms (light grey) which form a pentagon ring.
The two rings are joined in the middle by an iron atom (dark
grey). They can rotate with respect to each other and with
respect to the solid matrix in which ferrocene is imbedded,
which suggests natural division into the immediate environ-
ment that can be effectively reversed and the more distant
environment where the reversal is likely to fail.

within the original Fe(C5H5)2. Indeed, the value of the
numerical plateau (∼ 1

5 of the original polarization) sug-
gests that only the 5 hydrogens from the C5H5 “ring”
that includes the rare 13C atom participate early on.

By contrast with this initial interval, there is a marked
discrepancy between the experiment and the single
molecule simulations afterwards: Experimental data in-
dicate leakage of the polarization from the molecule, with
the signal decaying with time below the single molecule

numerical prediction (see Fig. 7). As time goes on, both
the measured and the simulated polarizations ondulate
(indicating partial “revivals”, presumably because of the
finite size of the ferrocene molecule [23]) but the exper-
imental data also indicates persistent polarization leak-
age. Over the same time interval the simulation contin-
ues to hover just above 20% of the original signal, and
exhibits at best only much slower systematic decay.

Given the previous discussion, we have now reached the
“eureka moment”: The immediate environment – hydro-
gens in the ferrocene (and, possibly, in only one of the
C5H5 rings) are responsible for short term approximately
Gaussian decay, and for the partial revivals, consistent
with the behavior of such small quantum systems (as
seen in Fig. 2). This is clearly a good candidate for our
E ′′ – the “reversible” part of the whole environment.

By contrast, once the signal leaks out to more distant
E ′ (which is responsible for the discrepancy between the
single molecule simulations and the experimental data),
“the cat is out of the bag”, and it (e.g., the polarization
which has leaked out of the molecule) might be very dif-
ficult to recapture. This view is supported by what is
known about the structure of solid ferrocene: Individual
molecules (and, indeed, the two rings of the individual
molecule) rotate on timescales short compared to these
probed in the echo experiments. This dynamics will be
much more difficult to reverse in the echo experiment.

The reversal will then result in the desired echo only on
subsystems in which the atom has fixed neighbors (like
the C5H5 ring), but is unlikely to succeed elsewhere. So,
the environment of the ferrocene molecule (neighboring
ferrocene molecules, and possibly even its other ring) con-
stitute E ′.

In closing this section we note that the timescale on
which the echo decays is consistent with a Gaussian fit to
the experimental data of the decay of the local polariza-
tion divided by the numerical simulation of the isolated
molecule, see Fig. 7. The fit is consistent with an echo
decay timescale of 4 times the initial scale for decay of the
local polarization, i.e. ∼ 400µs (see Fig. 5 for compar-
ison). This is an ecouraging observation. Further, this
scale would not be affected by a better reversal with the
immediate environment E ′′, consistent with the observed
insensitivity of the echo to radiofrequency power [6].

DISCUSSION

The model we have proposed is suggestive, but it is
not yet conclusive: It offers only a rather simplified rep-
resentation of the experiment. For instance, it is much
more reasonable to say that the polarization first diffuses
to the immediate “reversible” environment, and that the
more remote environment decoheres all of this reversible
E ′′ (and not just the original system). Nevertheless, the
split into two environments – our key assumption – ex-
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FIG. 7: Evolution of the local spin polarization in a single
crystal of ferrocene. The dots are the experimental data for a
0 degree orientation of the crystal with respect to the external
magnetic field. The thin solid line is the calculated evolution
of the local polarization in a complete molecule where the
rings rotate independently in a staggered configuration. The
dashed line is the ratio between the simulation to the experi-
mental data. The thick solid line is a Gaussian fit to the initial
experimental data (up to 100µs), and the thick dotted line is
a fit to the ratio between experiment and simulation. The
characteristic decay times of the fitted Gaussians are 90µs
and 340µs respectively. This data is reproduced from Fig. 8
of Ref. [4] with permission from the authors.

plains the key features of the data in a way that naturally
fits the physics of the system. However, it is useful to list
at least some of the approximations we have made, and
to consider their implications.

To begin with, interactions between the spins in Ref.
[4] are dipolar, so the interaction Hamiltonian does not
have the simple structure of the Ising Hamiltonian of
Eq. (1). Moreover, spins of the real environment inter-
act with each other. Furthermore, interaction and self-
Hamiltonians of the spins do not commute in general.

Consequently, the straightforward manipulations that
allowed us to derive Gaussian time dependence of the de-
coherence factor from first principles within a few lines
cannot be directly carried out for more realistic mod-
els of the experiment. Nevertheless, the central ingre-
dient needed to establish the Gaussian character of the
echo does not seem to depend on these detailed assump-
tions. Rather, it is – in essence – the (approximately)
Gaussian nature of the distribution of the eigenenergies
of the total Hamiltonian, which then leads to the Gaus-
sian time dependence of the decoherence factor. One can
certainly believe that this very generic requirement is sat-
isfied under conditions that are far more common than

the specific assumptions of the simple decoherence model
we have analyzed. Indeed, this broad applicability is the
very essence of the central limit theorem we (and others
[27]) have invoked.

Even more convincing is the direct experimental evi-
dence: Short time Gaussian dependence of the signal be-
fore reversal in the experiments involving ferrocene has
been established [7] (see Fig. 5). This is in effect the de-
coherence factor – the characteristic function of the dis-
tribution of the relevant eigenenergies of the underlying
Hamiltonian responsible for the evolution. And approxi-
mately Gaussian r(t) implies (by the arguments involving
Fourier transform) Gaussian eigenenergies.

Time evolution of the NMR polarization signal is in
such settings often interpreted as diffusion [25, 28]. This
makes intuitive sense in the experiments that lead to
Fig. 5, as only rare nuclei of C13 in a small fraction
of ferrocene molecules are initially polarized, so the de-
cay of the polarization signal is caused by the spreading
of that polarization over an increasingly larger environ-
ment. However, this effective diffusion must obviously
reflect a reversible dynamical process generated by an
underlying Hamiltonian, as fundamentally diffusive evo-
lution could never be reversed. This is reflected in the
short time mesoscopic echoes observed in this “diffusive”
process [23] due to the small size of the first environment.
To account for the diffusive character of the evolution the
distribution of eigenenergies, η(E) must be Gaussian in
character. So, while specific assumptions we used in our
simple model are not satisfied in the experimental set-
ting, Gaussianity of the energy spectrum we were led to
as a result of these assumptions may well turn out to be
a fairly generic feature.

SUMMARY AND CONCLUSIONS

We have seen how – in the quantum setting of decoher-
ence and Loschmidt echo – deterministic dynamics can
lead to evolutions that have a distinctly stochastic Gaus-
sian character. While our model is rather simple and
clearly too idealized to directly address experimental sit-
uation of Refs. [4, 5, 6, 7], it also suggests that our main
results – Gaussian decay of the decoherence factor and
Gaussian echo – will appear whenever the energy spec-
trum of the excitation corresponding to the initial state
of the system is approximately Gaussian. As we have
noted earlier, there is ample evidence of this in the exist-
ing experiments involving ferrocene. Even more, we can
reproduce the observed insensitivity to perturbations of
the Gaussian echo decay. Qualitative – and even quan-
titative – comparisons between predictions of our model
and the experimental data are promising.
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