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Abstract Mobile devices have evolved from simple electronic agendas and mobile
phones to small computers with great computational capabilities. In addition, there
are more than 2 billion mobile devices around the world. Taking these facts into
account, mobile devices are a potential source of computational resources for clusters
and computational Grids. In this work, we present an analysis of different schedulers
based on job stealing for mobile computational Grids. These job stealing techniques
have been designed to consider energy consumption and battery status. As a result of
this work, we present empirical evidence showing that energy-aware job stealing is
more efficient than traditional random stealing in this context. In particular, our results
show that mobile Grids using energy-aware job stealing might finish up to 11 % more
jobs than when using random stealing, and up to 24 % more jobs than when not using
any job stealing technique. This means that using energy-aware job stealing increases
the energy efficiency of mobile computational Grids because it increases the number
of jobs that can be executed using the same amount of energy.
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1 Introduction

Unlike years ago, today’s mobile devices have the capability of executing complex
software that requires large amount of CPU/memory and might also need other special
capabilities, such as 3D graphics rendering. In addition, current storage technologies
make it possible to store several gigabytes in a small card, which means that mobile
devices have the ability of storing large amount of data. In addition to mobile devices
internal capabilities, they have the capability of using wide-range wireless networking
technologies [25] meaning that mobile devices might be connected to Internet or to
other devices most of the time. All in all, mobile devices have evolved from simple
agendas and PDAs to small computers with similar capabilities to few year-old com-
puters [45]. Furthermore, there are more than 2 billion mobile device owners, and
people in established markets usually own 2 or more mobile devices [42].

Taking into account these facts, several researchers [1,11,12,14,17,19,26,27,33,
42,44,45] have studied how to scavenge mobile devices resources to solve complex
computational problems, such as scientific problems [43]. Although mobile devices
capabilities are limited when compared to server or desktop machines, the large
amount of mobile devices might compensate their limitations [45]. In fact, these
works [27,42,45] present mobile devices as part of distributed computer environ-
ments, such as traditional computational Grids or clusters. By “computational” we
mean Grids whose main purpose is to offer CPU processing time to user applications,
while “traditional” means distributed environments relying on fixed (and not mobile)
computing resources, such as PCs or servers. As this paper concerns CPU-intensive
applications, computational Grids will be referred simply to as “Grids”.

Although there are plenty of works, such as [35,37,38,47,49,51], studying tradi-
tional Grid and clusters, mobile devices introduce new research issues to current dis-
tributed environments [45]. Some of the issues are intrinsic to mobile devices, while
others emerge from combining mobile devices with traditional distributed computing.
For instance, a typical issue in mobile devices is their different software platforms [2]
with different APIs and the fragmentation within each unique platform [15]. This
issue makes it difficult to run the same software in different mobile devices even
when they are running the same operating system. Moreover, a problem of merging
mobile devices with fixed distributed environments is security because different mobile
devices are owned by different people to keep their personal data, such as pictures and
contacts. Therefore, each mobile device owner wants to have their data as well as
their communications with their services secure [46]. This usually does not happen
in some traditional distributed environments, such as clusters or Clouds, where all of
their components are owned by a single organization, so intra-net communication is
more controlled.

A recurrent problem when dealing with mobile devices is energy consumption.
This is because mobile devices energy source are batteries, and when a mobile device
consumes all its battery, the mobile device cannot remain functional. An interesting
fact is that in general mobile device capabilities have been exponentially growing,
but battery capacity has barely improved [41,43]. This issue affects mobile devices
when connected to distributed environments irrespective of the distributed environ-
ment purpose. For instance, some researchers have studied the viability of connecting
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mobile devices through wireless networks to peer-to-peer (P2P) network overlays,
such as Kademlia, and the impact of these connections on battery consumption [22].
This work is oriented to content sharing, such as music or video. In addition, other
researchers aim at minimizing battery consumption during data transfer [40] within a
program, for example transferring a serialized object, which usually requires less data
transfer than content itself.

Furthermore, there is a line of research that aims at reducing battery consump-
tion by offloading complex computational tasks from mobile devices into distributed
environments [24,42]. In particular, [24] analyzes the possibility of offloading mobile
devices processing into Cloud Computing environments, such as Amazon EC2.1 The
authors discuss different usage scenarios and how the associated privacy and security
mechanisms might affect this approach efficiency.

In contrast, several researchers [1,8,12,14,26,30,33,44,45] have proposed using
mobile devices as resources to execute complex computational tasks. These researchers
argue that mobile devices are a considerable source of computational resources and
they are able to handle this kind of tasks [43]. However, these works have identified two
main issues that are not present in distributed environments where only fixed servers
and desktops machines are connected. The first problem is that wireless networks are
not as fast, reliable and low-latency as wired networks. The second issue is again
that mobile devices run on battery. Hence, when using mobile device resources, the
distributed environment have to take into account this factor to avoid draining mobile
devices batteries, while not hurting the distributed environment global performance.

This work is focused on the second issue, i.e., considering battery consumption
when scavenging mobile devices resources. In particular, this work analyzes how
to apply the well-known job stealing [3] technique to balance load in distributed
environments where mobile devices are used to perform CPU-intensive computational
tasks. Basically, a job is an atomic unit of work that is assigned to a particular node,
which executes the job. In job stealing, an unloaded node tries to take jobs from loaded
nodes in an attempt to balance the workload across the nodes. In this case, the goal is
to determine whether job stealing also balances battery consumption and therefore to
try to maximize the amount of jobs that can be executed by a set of mobile devices
without requiring incrementing their battery capacity.

This work is based on the Simple Energy-Aware Scheduler (SEAS) [44], a job
scheduler for CPU-intensive processing in mobile Grids [12], or Grids comprising
mobile devices only. The SEAS was designed to assign jobs to mobile devices taking
into account their computational capabilities, their battery current charge and their
battery consumption rate. When a job is assigned to a mobile device, the job is enqueued
until the mobile device can execute it. In addition, battery consumption rate varies
according to several factors, such as workload and network usage, and mobile devices
battery sensors are not very accurate. As a result of these facts, the scheduler choice
might not be the best possible choice, but re-scheduling is not supported. Hence, a bad
choice made by SEAS cannot be corrected and this might have a negative impact on the
global mobile Grid energy efficiency. In this context, job stealing might rebalance the

1 http://aws.amazon.com/ec2/.
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distributed environment as job execution progresses, improving the energy efficiency
of the mobile Grid as a whole.

In brief, the main contribution of this paper is the assessment of different job stealing
algorithms in SEAS to reduce overall battery consumption in mobile Grids, which is a
major issue in the area [28]. Therefore, the goal of our study is twofold: reduce energy
consumption by improving job scheduling in mobile Grids, but also obtaining better
throughput by using the energy potentially saved to execute a larger number of jobs.
Interestingly, the analyzed job stealing algorithms, which were originally proposed for
traditional Grids, can be implemented easily in current devices. This is a key feature
because some of the existing scheduling algorithms specifically proposed for mobile
Grids [27,30] require to know too much about the mobile Grid environment making
them difficult, or sometimes impossible, to be implemented in real systems [45].
According to our experiments, a mobile Grid using job stealing might solve up to
24 % more jobs that the same mobile Grid using SEAS. This means that with the same
amount of energy, the mobile Grid finished more jobs when using job stealing.

The rest of this paper is organized as follows. Section 2 surveys related works on
mobile Grids as well as job stealing algorithms. Section 3 presents our approach for
using job stealing in mobile Grids, which focuses on efficient energy usage. Then,
Sect. 4 discusses the experiments performed to validate our approach. Finally, Sect. 5
concludes the paper and outlines future research lines.

2 Related works

Since mobile devices gained the ability of connecting to the Internet through wireless
networks, researchers have been studying how to exploit them in distributed computing
environments. Firstly, mobile devices were proposed as visualization and management
devices of this kind of environments [13]. Although some researchers still put mobile
devices only in this role [19], others are studying mobile devices capabilities for sci-
entific computing [21,32,43]. These researches aim at not only determining whether
mobile devices are capable of executing scientific computation tasks, but also provid-
ing guidelines of how to implement this kind of software efficiently.

Although [43] pointed out that mobile devices are considerable slower than desk-
top machines, which is expected, [43] showed that mobile devices can perform a
substantial amount of work when on battery. This means that they deliver a good task
percentage execution per energy unit ratio. This is important because in mobile Grids,
mobile devices are supposed to belong to different mobile device owners, which might
together contribute to perform a larger work that can be divided in smaller execution
units.

The motivation of mobile device owners for contributing can be different. Some
mobile device owners might be willing to freely contribute to some project. This
scheme has proved to be successful in traditional Grid projects, such as the ones
carried out by the World Community Grid 2 or SETI@home.3 Besides, mobile device

2 World Community Grid http://www.worldcommunitygrid.org/.
3 SETI@home http://setiathome.berkeley.edu/.
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owners might share resources because they expect to also use other mobile device
resources when they need them [29]. Even more, potential mobile Grid users might
consider paying external mobile device users for using this latter’s mobile devices [14].
Since encouraging mobile device owners to share is a main factor for mobile Grids to
succeed, there are some works [10,12,31] discussing alternatives towards achieving
this goal. However, this topic is out of this paper scope and constitutes in itself a fresh
research line in the area.

Apart from sharing issues, for which as pointed out interesting advances have been
achieved, developing mobile Grids is also challenging because of mobile devices’
resource limitations and intermittent network connectivity [9]. At the same time, there
is a clear motivation of supporting computational mobile Grids since they are promis-
ing mainly because tree facts:

– mobile devices computational capabilities are significant [43],
– these capabilities can be used by scavenging unused mobile devices capabilities [1],

and
– the ubiquity of mobile devices [42].

However, the success of computational mobile Grid heavily depends on the ability of
using mobile device resources without draining the batteries. Therefore, the selection
of the resource to use is very important [8,12,18,30]. This problem is still open mainly
because the information needed for taking optimal scheduling decisions is not usually
available in real mobile Grids. In this context, our goal is to improve the amount of jobs
executed using mobile Grids. To do this, we have extended the SEAS algorithm [44]
with job stealing techniques.

The next section presents background on mobile Grid schedulers, and in particular,
describes the SEAS, which is the scheduler this work is based on. Then, Sect. 2.2
discusses related works on job stealing, i.e., the techniques used to increase the energy
efficiency and throughput of SEAS.

2.1 Mobile Grid schedulers

Mobile Grids present new challenges when compared with traditional Grids because
mobile devices are too different from servers and desktop computers. One of these
issues is how to schedule jobs for maximizing the number of executed jobs with the
same battery capacity. Intuitively, existing schedulers aim at finishing as many jobs as
possible before the mobile devices batteries become depleted [12,26–28,30,44,45].

Examples of these kinds of schedulers are presented in [26,27,30] where different
optimal job schedulers for Grids of mobile devices are proposed. These schedulers
take into consideration different important variables, but all of them aim at optimizing
job assignation to minimize energy consumption while maximizing utilities. Utility is
defined by giving a value to each job, i.e., the value of executing a job “A” might be
different from the value of executing a job “B”. To know whether a job can be assigned,
these schedulers need to know exactly how many work-units, e.g., operations, are
necessary for completing each job, how much energy a work-unit consumes in each
device, the time limits for each job and the amount of available energy in each device.
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Assuming all this information is known, the scheduler assigns the jobs using a non-
linear optimization function that aims at maximizing the utility, while minimizing
energy consumption. In particular, the optimization method is based on Lagrange
multipliers. The main drawback of this approach is that these assumptions are very
unlikely to hold in real-life deployments. In addition, these schedulers do not take
into account owners’ usage of the mobile devices, i.e., these latter are assumed to be
dedicated computing nodes.

In [12], the authors propose another scheduling and pricing strategy. The authors
assume that the connection between a Grid and the mobile devices is an edge router,
called Grid controller. This mobile Grid model is frequently used, and the Grid con-
trollers are generically known as Proxies [45]. The proposed scheduler operates as
a market, where mobile devices offer their computational capabilities to the Grid. In
this market, the Grid controller works as a broker, selecting a mobile device based on
historical information of price and the probability of accepting a job. Then, the Grid
controller makes an offer for having the job executed. The mobile device might accept
the offer, reject it or negotiate for a better price. If the offer is accepted or rejected, the
scheduling process finishes. But in case the negotiation continues, the Grid controller
re-offers and the process continues until the job is accepted by the mobile device, or
until the Grid controller or the mobile device finish the negotiation. To perform the
negotiation, the Grid controller must know the work-units required by the job, the
mobile device processing rate, the mobile device remaining uptime estimation and the
CPU time price.

Although there are other proposed schedulers, in general, they all share the same
assumptions [44,45]. As a result, they all inherit the same weaknesses. Firstly, bat-
tery estimation is one of the most important problems. Although there are models for
estimating this [4,16], they require to know several variables about the battery, such
as electrolyte concentration, electrolyte potential, or solid-phase potential, usually
not available in real mobile devices. In addition, these models are based on com-
plex mathematical models that might represent complex jobs themselves for mobile
devices, making them unsuitable to be used as part of mobile Grid schedulers because
scheduling decisions also consume battery. The other problem is knowing how long it
would take to execute a job in a mobile device. In general, this problem is impossible
to solve because solving it would mean solving the halting problem [50]. However,
[7] aims at estimating both time and battery consumption for executing a particular
application. Yet, this approach uses other complex models that make it unsuitable for
scheduling because in some cases it may take longer to perform the model simulation
than to actually run the applications, thus wasting energy.

Furthermore, the SEAS [44] is an algorithm that uses simple mathematical models
to estimate how many energy units per job are assigned in a particular mobile device.
Having this information, the SEAS tries to keep this proportion balanced across all
mobile devices connected to the Grid. Since this work is heavily based on the SEAS,
Appendix presents a comprehensive description of the scheduler.

Interestingly, the SEAS has proven to be more suitable for mobile Grids than tradi-
tional scheduling algorithms for Grids, such as Round Robin, or Random assignation.
However, the SEAS might experience serious performance loss under certain common
conditions. Firstly, if all jobs arrive at the initial time, the battery estimation might not
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be good enough because the estimation algorithm has not enough data yet to make an
accurate estimation. Secondly, the SEAS does not take into account mobile devices
workload from user applications. Finally, if jobs present too much variation in compu-
tational requirements, the required resources per job estimation might be biased. Since
using a resource consumes energy, wrongly performing the required resources per job
estimation means wrongly estimating the required energy for a job, which might in
turn result in an energy waste.

In order to overcome these issues, we evaluated the outcome of equipping SEAS
with traditional job stealing techniques. Job stealing is a well-known paradigm for job
scheduling in parallel and distributed environments that has proven to be effective,
algorithmically simple, and easy to implement. The next section introduces related
works in the job stealing area.

2.2 Job stealing

Broadly speaking, regardless the parallel or distributed environment targeted, the prob-
lem of scheduling a set of jobs on several computational resources can be addressed
by following two paradigms: work sharing and work stealing. In work sharing, when-
ever a resource or node has some jobs to execute, it attempts to move some of the
jobs to underutilized resources. In opposition, in work stealing—from now on job
stealing—idle resources periodically try to take jobs from overloaded resources.

The benefits of one approach over the other have been in the past subject of long
debates [3]. In traditional Grid environments, job stealing is very popular, as evidenced
by a number of job schedulers proposed to efficiently harness Grid resources based
on deterministic resource victim selection (e.g., [38]) or those that rely on random
decisions (e.g. [47,49,51]). Within the former group, the Javelin 3 [38] middleware
arranges Grid resources as a unique tree, and includes a scheduling algorithm by
which whenever a resource runs out of jobs to execute, selects a neighboring resource
to request jobs from based on the tree structure. In other words, an idle resource first
attempts to steal job from its children, if any, and if unsuccessful, from its parent.
This ensures that all the jobs assigned to the subtree rooted at a resource are processed
before that resource takes new jobs from its parent.

With respect to random job stealing algorithms, the JCluster platform [51] pro-
poses Transitive Random Stealing, by which each resource remembers the originating
resource (history information) from which a job was last received after a steal attempt
and sends requests directly to that resource (the short-cut path). In addition, the stealer
resource also forwards this history information to other resources which want to take
a job from the stealer node (the transitive policy). On the other hand, the WSPE (Work
Stealing Programming Environment) [47] Grid programming environment proposes
Round Stealing, which enhances the original Random Stealing algorithm. Instead of
randomly selecting a neighbor resource to send a steal request, the resource sends
individual asynchronous steal requests to each neighbor in rounds. As soon as the
first reply (i.e., job to execute) arrives, the obtained job is pushed onto the resources
local job queue. As the communication demands of the proposed algorithm are high,
WSPE complements its scheduler with a peer-to-peer network overlay that arranges
resources based on network latency.
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Fig. 1 Proxy-based mobile Grid

Furthermore, Satin [49] is a Grid platform that includes the Cluster-aware Random
task Stealing mechanism (CRS). With CRS, when a Grid resource becomes idle, it
attempts to steal an unfinished task both from resources belonging to the same local
cluster or external resources (i.e., from clusters reached via WAN links), however intra-
cluster steals have higher priority than inter-cluster ones, minimizing expensive WAN
communication. This job stealing mechanism is indirectly exploited by some Grid
meta-schedulers such as JGRIM (Java GRidifying by Injecting Metaservices) [35]
and BYG (BYtecode Gridifier) [37], which partially rely on Satin for handling job
execution.

3 Energy-efficient job stealing

In traditional distributed computing environments, job stealing is used as a computa-
tional load balancing mechanism [49]. Basically, this technique aims at minimizing
unused nodes in such environments. In addition, this prevents jobs from waiting to
be executed when there are idle resources, which improves throughput. Since these
are important concerns in mobile Grids as well, job stealing might be applied in this
context. However, it is necessary to consider the potential energy efficiency levels
offered by these techniques [45] to successfully apply job stealing in mobile Grids.

Figure 1 depicts the mobile Grid architecture on which this work is based. Basically,
this infrastructure is centralized from the mobile devices point of view. The central
component, called proxy, is the one that handles the interaction between the traditional
Grid and the mobile devices as well as mobile devices interactions. In this infrastruc-
ture, nodes from the traditional part of the Grid see the mobile Grid as a single virtual
resource [12,26,44] to which they can ask for executing jobs, but internally it is a
distributed environment. From now on, this work is focused on the proxy and mobile
devices. In this context, the former receives jobs to execute, and it assigns them to the
mobile devices to perform the execution.

It is worth mentioning that, in its present form, the proxy based architecture has two
main drawbacks [45]: scalability and reliability. Firstly, the number of mobile devices
that can be connected to a proxy is limited by the computational capabilities of the
proxy. Secondly, if a proxy fails, all the mobile devices connected to that proxy would
become unavailable to the Grid. Yet, the scalability problem can be easily solved by

123

Author's personal copy



Energy-efficient job stealing for CPU-intensive processing in mobile devices

adding new and independent proxies to the Grid. On the other hand, the reliability
issue might be solved using redundancy or reconnecting the mobile devices to other
proxies. Although these issues are out of this paper scope, notice that they have been
tackled in different previous works [17,18,20,23]. Some of these advances could be
then applied in the near future to ensure scalability and reliability to the architecture.

As mentioned above, this work is based on the SEAS algorithm. This means that
when the proxy receives a job execution request, it uses the SEAS algorithm to assign
the job to a mobile device. Notice that the SEAS assumes that the jobs are independent
and atomic computational units, which means that a job never depends on other jobs’
output and the job cannot be divided for executing in several mobile devices. In the
original SEAS approach, there are only two possible outcomes for the job. One of
them is that the job is executed in the mobile device and it returns the execution result
to the proxy. In this case, if the mobile device has no more jobs assigned, it remains
idle until the proxy assigns it a new job. The other one is that the mobile device runs
out of battery before finishing the job execution, which means that the job execution
is canceled. In addition, when a node runs out of battery, it does not only cancel the
currently executing job, but also all the jobs enqueued in that node waiting to be
executed. Notice that when a mobile device runs out of battery, several jobs might
be canceled at once, namely the ones which are executing and the ones which are
enqueued waiting to be executed in the device.

By introducing job stealing, mobile devices are more active during job assignation.
According to this fact, the proxy works as described above receiving jobs and assigning
them to mobile devices. However, mobile devices behave differently because when a
mobile device finishes executing all its assigned jobs, it looks at other mobile devices
to steal their jobs. Essentially, when a mobile device becomes idle, it selects another
mobile device, which is called victim, and tries to offload it.

The first issue is how an idle mobile device, called stealer, selects a victim. We
have analyzed three different strategies for selecting the victim:

Random Stealing (RS) This selection strategy consists on choosing a random mobile
device as a victim. We selected this strategy because it is widely used in job stealing
algorithms for traditional Grids [47,49,51]. This strategy usually performs well in
many scenarios and its computational cost is very low.

Best Ranking Aware Stealing (BRAS) This selection strategy consists on picking up
the mobile device that is best ranked according to the SEAS ranking criteria and
naturally has enqueued or unfinished jobs. This strategy aims at offloading the least
overloaded mobile devices.

Worst Ranking Aware Stealing (WRAS) This selection strategy is also based on the
SEAS ranking strategy, but, instead of selecting the best ranked mobile device, it
selects the worst ranked one. In this case, the goal is to globally balance the load
because the mobile devices that have no load take the load from the most loaded ones.

Notice that the SEAS ranking formula uses three variables: a benchmark factor of
each device, the estimated uptime of a device, and the number of jobs assigned to that
device (please refer to Appendix for details on the formula). Basically, the ranking
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consists in multiplying the benchmark by the estimated uptime to determine how many
units of work the mobile device can perform in a given time. Then, this number is
divided by number of jobs plus one in order to determine how many units of work
would be available, on average, to execute each job if other job is assigned to that
mobile device. In this context, BRAS tries to offload nodes that are likely to finish
their jobs, so they become idle and start stealing jobs quickly. As a result, victims
are more likely to become idle, and, in turn, they would be themselves able to further
offloading other mobile devices. Essentially, this strategy is expected to generate an
offloading chain-reaction. In contrast, WRAS offloads the nodes that are overloaded
to make more likely that this mobile device can finish all the remaining jobs assigned
to them. As a result, we expect that if more nodes are more likely to finish all their
jobs, more jobs would be finished by the time all mobile devices run out of battery.

In addition to selecting a victim, the stealer should also determine how many jobs it
will steal. Stealing several jobs at once might reduce the networking overhead because
it requires establishing only one connection. Since networking requires using a lot of
energy [22,25] reducing the need for that might extend the battery life. For this issue,
we have analyzed two policies:

Fixed Number In this policy, a stealer always steals the same (statically determined)
number of jobs. In this model, the stealer always behaves the same upon each steal
attempt. In these experiments, we fixed this number to one because is the maximum
number of jobs that a node can execute at once. As will be explained in the next
section, we employed single-core mobile devices in the experiments. For n-core mobile
devices, each steal attempt might actually try to retrieve around n jobs.

Exponential This policy exponentially increases the number of stolen jobs based on
how many times the node became idle. Basically, if a mobile device becomes idle for
the nth time, it would steal 2n jobs. For example, the first time, the stealer steals one
job (20), the second time, the stealer steals two jobs (21), and so on.

One victim selection strategy and one offloading policy represent a particular com-
bination that can be used in a mobile Grid. The next section presents an evaluation of
the six possible combinations between strategies and policies in terms of throughput
and energy usage when applied to mobile Grids.

4 Evaluation

In order to evaluate the different job stealing algorithms, we have performed several
simulations. Simulation is a common method to evaluate different algorithms for
distributed computing [5,6] because it reduces time and costs, making it possible
to test approaches before a large-scale deploy is carried out. In addition, simulation
makes experiments easily replicable.

For making the simulations as real as possible, we have profiled different mobile
devices battery consumption under several CPU load conditions. Then, we used the
profiles to extrapolate how mobile devices would behave when working as part of a
mobile Grid. Therefore, Sect. 4.1 outlines the procedure followed to profile mobile
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device battery consumption, as it is a crucial aspect of our assessment. Then, Sect. 4.2
presents our simulation approach. Finally, Sect. 4.3 discusses the experimental results.

4.1 Mobile device profiling

For performing intra-mobile device profiling, we developed an application to take into
account three variables: time, CPU load and battery charge. Although the profiler was
implemented for Android, the profiling method can be easily adapted to any other
mobile device platform. The proposed profiler measures two of them, namely time
and battery charge, while it tries to keep a constant CPU load (Target CPU Load),
which is given as a parameter. To measure time, the profiler uses the mobile device
internal clock. For measuring battery, the profiler uses the event based system battery
report, in this case via the Android Intent API. Essentially, the profiler saves the battery
charge and the time upon each new battery event issued by the Android system.

To assure that the measures are consistent with a particular CPU load, the profiler
must force the mobile device to keep a particular Target CPU Load. To do this, we have
designed a subsystem that generates CPU load by performing floating-point opera-
tions in a dedicated thread. However, constantly executing floating-point operations
consumes 100 % of the CPU. Therefore, a monitoring component constantly adjusts
a delay time between the operations.

Algorithm 1 shows the logic of the thread that consumes CPU. Basically, the thread
that executes this algorithm sleeps during a period of time and then executes a set
of floating-point operations, and it repeats this process until the thread is externally
killed. The sleeping time is being constantly adjusted by the Algorithm 2, which runs
in another thread. In contrast, the number of operations executed in each cycle is fixed
in the constant CYCLES. This constant had to be defined because the granularity of the
time in the method “wait” is milliseconds. Since current mobile devices processors
are relatively fast, it was impossible to control the CPU load by only executing a
floating-point operation and sleeping. In all the profiles we executed, the CYCLES
constant was fixed in one million. Yet, this number could not work well with slower
or faster processors.

Algorithm 2 shows the algorithm of the thread that adjusts the sleep time for gen-
erating the target CPU load. As mentioned, this algorithm runs in another thread and
adjusts the CPU usage. Firstly, it measures the CPU use by calculating the average
of 30 measures taken in 200 ms. Each measure is calculated using the information
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reported by Android through the /proc/stats file, in the same way as the Linux
command top.4 Then, the thread calculates the rate between the current CPU use and
the target CPU use. Using this rate, it modifies the sleep time in the CPU loader thread
in the same proportion in an attempt to move the CPU usage closer to the target. Notice
that when the target CPU usage is 0 %, none of these threads are started.

To obtain the profiles, we ran the software in some mobile devices with fully charged
batteries and plugged to the electrical power line. Then, when the CPU load was near
to the Target CPU Load by a threshold of 5 %, we unplugged the mobile devices and
left the profiler running without human interaction until the batteries were depleted.
The profiler logged all the recollected data in a file on each mobile devices SD card.

From a technical point of view, we had to take some precautions to minimize
Android scheduler and power manager impact on the profiles. The first problem is
that the Android scheduler is very aggressive and might terminate the profiler, which
intensively uses the CPU, especially when the mobile device screen is locked. To
prevent this situation from happen, both threads, the CPU loader and the CPU loader
adjuster, run within a Service in foreground. Basically, a Service5 is a special class
of the Android framework that represents a component that performs long-running
operations without providing any graphical interface. In particular, when a Service is
in foreground, it tells the Android scheduler that this latter should avoid killing the
Service unless extremely necessary.6

The other main issue is that Android might reduce the CPU speed to preserve battery.
However, we assume that the CPU will be fully used when processing computations
within a mobile Grid, which must be took into account in our profiling application.
Android provides a mechanism, called power locks, that allows applications to tell
whether it needs to keep some part of the system to be active. In particular, the above
service asks for a partial wake lock7 that keeps the CPU active, but not the screen or

4 Linux top command: http://procps.sourceforge.net/.
5 Android Services: http://developer.android.com/guide/topics/fundamentals/services.html.
6 Android Processes and Threads: http://developer.android.com/guide/topics/fundamentals/processes-and-
threads.html.
7 Android Power Lock: http://developer.android.com/reference/android/os/PowerManager.html.
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Table 1 Profiler CPU load

Device Target
CPU load
(%)

Total profiling
time
(hh:mm:ss)

# of Measurements Average
CPU
load (%)

Standard
deviation
(%)

Samsung I5500 0a 35:23:47.082 7,034 3.83 1.08

30 22:57:43.507 4,831 30.26 3.92

75 11:15:20.006 2,385 75.28 4.04

100 9:45:28.792 2,066 99.98 0.04

ViewPad 10s 0a 27:15:39.293 5,476 10.23 2.26

30 19:29:27.824 4,154 30.11 2.01

75 13:49:49.690 2,951 76.92 1.76

100 13:57:44.642 2,977 99.99 0.03
a The CPU load registered is generated by the Android OS and bundle applications

the keyboard light on. We also keep a WiFi connection active and connected to the
Internet so that bundled applications, such as e-mail, can stay active. Besides, a mobile
device connected to a Grid is expected to be connected to a wireless network.

Table 1 outlines the results obtained by the profiler in regard to the injected CPU
load. Firstly, it can be noticed that the profiled mobile devices have always the CPU
slightly loaded when the Target CPU Load is 0 %. This might result from the fact
that bundled applications can periodically perform some operations, such as fetching
e-mails or look for software updates. On the other hand, the Android platform has a
very active role on application life-cycle, such as managing Intents, which also use
CPU. Despite these facts, the other profiles were generated with a CPU load very
approximated to the Target CPU Load. In addition, the standard deviation is very low,
indicating that the dispersion of the measurements is small.

Finally, we executed Java versions of the well-known Linpack and SciMark 2.0
benchmarks on the Samsung I5500 and ViewPad 10s. These benchmarks were used to
determine how fast these mobile devices are for performing scientific computational
tasks [43]. As a result of these benchmarks, we have determined that the Samsung
I5500 has 7.6 megaflops, while the ViewSonic ViewPad 10s has 35.49 megaflops.
Although these are the Linpack results, the SciMark 2.0 results were very similar,
being these results 7.24 and 35.06 for the Samsung I5500 and the ViewSonic ViewPad
10s respectively.

4.2 Mobile Grid simulation

As stated earlier, simulation is a widely accepted practice for evaluating distributed
systems performance [5,6]. This is because it is difficult to deploy a distributed envi-
ronment to evaluate different approaches. In addition, simulated environments allow
researchers to fairly compare different approaches. Hence, we used a simulated envi-
ronment to assess job stealing in mobile Grids, which is also an accepted practice in
mobile Grids [26,27,30].
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To perform the experiments, we then used an event based simulation software of
our own. This means that everything that might occur in the mobile Grid is considered
by the software as an event. For instance, a job arrival, battery notification, or job
terminations are all different kind of events for the simulator. Hence, we had to convert
all the profiled information to events for the simulator. In addition, we generated jobs
with their associated arrival time and requirements in terms of floating-point operations
each input job needs to finish.

In order to simulate a job execution in a mobile device, the simulator uses two
profiles of the same mobile device: the base profile—i.e., the default CPU consumption
by Android itself and the mobile device owner—and the 100 % CPU load profile. The
base profile represents the use of the mobile device when it is not running any job as
a mobile Grid node. The 100 % CPU load profile is used when simulating that the
mobile device is running a job assigned from the mobile Grid. As the reader can note,
we assume that each job is optimized and correctly coded to use as much CPU as it is
available.

The intra-device model used to switch between profiles when a job is started or
finished, and calculating how long it would take to finish the job, is based on the
following assumptions:

– A job uses the unused CPU of the base profile. For instance, if the user is currently
using 31 % of the CPU, the job will use the remaining 69 %.

– The CPU used by a job might vary if a base profile CPU event occurs while the
job is executing. This is because we assume that the base profile represents user
CPU usage and the mobile Grid should not interfere with users’ tasks. Therefore,
if a user requires more CPU, the mobile Grid should allow it to happen.

– The CPU usage of a profile between events is constant. This means that the CPU
load only changes on registered events.

– The battery consumption between two battery events is lineal. This is because
mobile devices do not allow users to analyze what happens between battery
events.To calculate how long it takes to perform a job in a particular mobile device,
the simulator analyzes what occurs between events. Firstly, when the job arrives,
it calculates using Eq. 1 whether the job will finish before the next battery event
or not:

Job time = job operations

device flops ∗ (1 − current CPU use)
(1)

If the job finished before the next battery event, the simulator adds the corresponding
event into the events queue. Otherwise, the simulator calculates how many operations
will be performed before the next CPU event and updates the number of operations in
the job (see Eq. 2), so the simulator can perform the previous analysis when the new
CPU event arrives. This continues until either the job is finished or the mobile device
depletes its battery, leaving the mobile Grid.

Updated operations = job operations − device flops

∗(1 − current CPU use) ∗ time to battery event (2)
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Fig. 2 Profile switch model

As suggested, the model used to simulate profile switching is based on the assump-
tion that the remaining battery between two events can be calculated as a lineal func-
tion, and a mobile device uses 100 % of its CPU when it is running a job. Basically,
when a mobile device profile changes, the simulator calculates the actual battery charge
and then calculates, using the new profile, how long it would take until the next battery
event. Therefore, the simulator removes the actual battery event and adds a new one
that will trigger later on.

Figure 2 depicts how the simulator switches between the base profile, which is
based on a 30 % CPU target profile, and the 100 % CPU target profile. As it can be
seen in the upper part, battery events occur when the battery discharges by 1 % or a
job starts or finishes. This figure also shows that the gradient of the remaining battery
might vary when a battery event unrelated to a job execution occurs (the third battery
event from left to right). Finally, the figure, in its bottom part, also shows that the base
profile is used to determine the CPU percentage a job will use.

4.3 Experimental results

To evaluate how the different job stealing techniques behave on mobile Grids, we
defined 16 different execution scenarios. All these scenarios use a mobile Grid com-
prising 100 mobile devices, following some of the profiles mentioned in the previous
section as well as different number of jobs. Firstly, we selected two types of mobile
Grid deployments: one consisting of 70 Samsung I5500 and 30 ViewPad 10s, the other
consisting of 50 Samsung I5500 and 50 ViewPad 10s. Secondly, we selected two base
profiles for each type: the 0 % CPU load and the 30 % CPU load. As a result, we
obtained four different mobile Grid configurations. Regarding to mobile Grid consti-
tution, we considered two cases: one were low-end devices are more common that
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high-end ones, and other were both types are equally common. In addition, the two
base profiles used represent one in which mobile devices are not used at all and other
in which they are used for non CPU intensive tasks, such as reading mail or browsing
the Web.

For each of these mobile Grid configurations, we generated two different job con-
figurations, namely short and long jobs. Short jobs take to execute an average of 5 min
with a standard deviation of 2.5 min in a normal distribution. In contrast, long jobs
take to execute an average of 30 min with a standard deviation of 15 min in a normal
distribution. In both cases, it is assumed that the mobile device load is 0 %. Notice
that the short/long job configurations are instead different for each mobile Grid con-
figuration because the numbers of operations for obtaining these times are different
not because of the CPU profiles, but the hardware. For instance, the short jobs for
the 70 Samsung I5500 and 30 ViewPad 10s Grid have 4790.97 million operations on
average, while the short jobs for the 50 Samsung I5500 and 50 ViewPad 10s Grid have
6464.55 million operations on average. The following equation is used to obtain the
number of operations for each configuration.

Job average operations = time ∗ average flops (3)

where, the average flops is defined as the average mobile device flops:

Average flops =
∑

mobile device flops

number of mobile devices
(4)

Finally, for each mobile Grid-job length combination, we generated another two
configurations based on how much work is assigned to the Grid. The first configu-
ration, which we call ideal (id. for short), consists of assigning to the mobile Grid
approximately the maximum number of jobs that the mobile Grid ideally could finish
before depleting the overall mobile devices energy capacities. The second configura-
tion, which we call saturated (sat. for short), consists of assigning to the mobile Grid
approximately twice as much as the maximum number of jobs that the mobile Grid
could handle according to the ideal configuration. Basically in this case, what changes
is not the mobile Grid hardware, but the number of jobs. The following equation, in
which uptime refers to the uptime in the 100 % CPU use profile, was used to estimate
the ideal number of jobs:

Ideal jobs= ViewPad flops ∗ uptime+I550 flops ∗ uptime

job average operations
∗ (1−base profile CPU)

(5)

In each of these 16 scenarios, which are the combination of the different settings
described in the columns of Table 2, we tested the original SEAS [44] and the SEAS
with job stealing using the different strategy-policy combinations. This means that
there were seven schedulers: six with job stealing, which resulted from combining the
three strategies (RS, BRAS and WRAS) with the two policies (Fixed, Exponential or
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Table 2 Grid simulation
configurations

Grid nodes Base profile Job Configuration

Short Id.

70 Samsung I5500-30
ViewPad 10s

0 % CPU load Long Id.

50 Samsung I5500-50
ViewPad 10s

30 % CPU load Short Sat.

Long Sat.

Exp), and one without job stealing. All in all, 112 scenarios were evaluated during the
simulations.

The simulations were designed to determine which approach executes more jobs
using the same mobile Grid configuration. This is because executing more jobs with
the same mobile Grid configuration means that the mobile Grid as a whole is using less
energy per job [12,26,27,45], meaning that the mobile Grid would be more energy-
efficient. In other words, given the same set of jobs and the same overall energy
capacity, we evaluate which stealing technique better improves the original SEAS
under the designed scenarios, if applicable. Another issue we studied is how many
job transferences (i.e., moving a job from a device to another) each stealing strategy
generates. This is important because in real life mobile Grids each stealing attempt
might represent extra energy consumption because it might use network resources at
both ends [22,25].

However, notice that networking is out of this paper evaluation. Hence, the sim-
ulations presented in this section assume a perfect network that means that (a) data
transfer are instantaneous, (b) there is no off-line time and (c) using the network does
not consume battery. Although these assumptions do not hold in real life mobile Grids,
they are commonly accepted in the research area when analyzing and experimenting
with mobile Grid resource managers [12,26,33,44,45], and schedulers in particular.
In fact, (a) and (b) apply to all the tested job stealing techniques, and thus a fair
experimental testbed is used.

With regard to (c), and according to [42], sending a small packet (1KB or less)
from a standard mobile device through a WiFi link requires around 0.02 Joules, while
sending a 10 KB packet or higher requires 0.15 Joules. In our context, a job stealing
request is a small packet, whereas transferring a job from a mobile node to another
would require one medium-sized packet as we are dealing with CPU-intensive (and not
data-intensive) jobs. As will be discussed later, the worst execution in terms of average
steal requests resulted in 22,825 steals. Considering the worstcase scenario in which
each job steal request leads to a job transfer (i.e., all requests are successful) the total
required energy in Joules is 22,825∗ (0.02+0.15) = 3,880.25. Then, considering the
battery data shown in Table 3, this energy, when compared to the amount of energy
available in the two 100-node Grid configurations (70 Samsung I5500/30 ViewPad 10s,
and 50 Samsung I5500/50 ViewPad 10s) represents 3,880.25

70∗15,984+30∗97,416 = 0.068 %

and 3,880.25
50∗15,984+50∗97,416 = 0.096 %, respectively. Indeed, even when there is certainly

some impact, these very small percentages confirm that ignoring network energy
consumption in our simulations does not compromise the significance of the results.
It is worth noting that, in the calculations, the energy necessary to maintain a WiFi
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Table 3 Battery-related
characteristics of the mobile
devices used

Metric Samsung I5500 ViewPad 10s

Volts 3.70 8.20

MAh 1,200 3,300

Wh 4.40 27.06

W-s (Joules) 15,984 97,416

connection active (around 0.024 Joules [42]) is not computed as mobile device profiling
was performed with the WiFi connection active (see Sect. 4.1).

Turning to the simulations performed, we carried out 10 different runs for each
scenario In each run, two variables were analyzed: the percentage of finished jobs
and the percentage of stolen jobs. Table 4 presents the average percentage of finished
jobs as well as the standard deviation obtained in the 10 simulations. In all the cases,
the standard deviation is less than 1.5 %. This indicates that the results were fairly
stable in regard to finished jobs across the different simulation runs. An interesting
fact is that in the saturated configurations, all the job stealing techniques tend to finish
approximately the same amount of jobs, which is always higher than the amount
finished by the SEAS.

The other variable analyzed is the number of stolen jobs over total jobs. Notice that
this metric can be more than 100 % if the stealing technique produced more steals than
jobs are in the simulation, e.g., if each job is stolen 2 times on average, this metric
value would be 200 %. Table 5 shows the average and standard deviation of this metric
in the different simulation scenarios. The standard deviation for this variable can be
as high as 16.4 %, but this happens when the average is high, e.g., more than 130 %.
Therefore, these cases do not affect the analysis because these values are far from
optimal results. Yet, the average standard deviation is 2.08 %, which indicates that the
deviation is not that high. In fact, the Pearson correlation between the average of each
scenario and the standard deviation is 0.875 (ρ < 0.0001). This means that in the best
cases, i.e., when the number of steals is small, the deviation tend to be small too, so
the best cases did not vary in the different runs. Having this into consideration, the
following analyses were performed using the average values previously discussed.

The first evaluation aims at studying the percentage of the ideal number of jobs
each scheduler can successfully execute. Therefore, the analysis is limited to the eight
scenarios with the ideal number of jobs. Figure 3 outlines the results of this study.
Basically, the simulations revealed that in 64.28 % of the cases more than 90 % of
the jobs were finished and in 44.64 % of the cases more than 95 % of the jobs were
executed implying that all the presented techniques have a fair performance. Another
interesting fact is that WRAS with Fixed Number policy finished 95 % of the jobs in 6
out of the 8 scenarios, while WRAS with Exponential policy finished 95 % of the jobs
in 7 out of the 8 scenarios.

Once we performed this simulation, we analyzed which of the job stealing tech-
niques executed more jobs in each one of the 16 scenarios. Basically, WRAS with the
Fixed Number policy executed more works in 5 out of the 16 scenarios, while WRAS
strategy with the Exponential policy performed better in 4 out of the 16 simulations.
Figure 4 shows how the different techniques behaved in the different scenarios. Each
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Fig. 4 Finished jobs
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Fig. 5 Finished jobs: Average difference with respect to the best technique

scenario is normalized by the technique that finished more jobs, which is represented
by the white color. This figure evidences that WRAS in its two variations performed
better that any other approach in general, with a near best performance when it did
not have the best performance.

The better performance of WRAS might be because when a mobile device becomes
idle, it offloads work from the worst ranked mobile device. Since the mobile device
that steals a job is idle, it is likely that its rank is much higher than the worst ranked
device. Therefore, the stealer’s rank would be slightly affected, while the victim’s rank
might be more affected. As a result of the stealing, rank dispersion will be reduced,
while average rank might increase in the best case. A better rank implies that is less
likely that the mobile devices have many jobs when their batteries become depleted.
In contrast, BRAS did not work as well as WRAS did, but better than the original
SEAS and RS though. This might happen because stealing chain-reaction from the
best ranked node does not manifest as fast as expected. As a result of this, worst ranked
nodes are never offloaded which leads to a lot of job execution failures.

Figure 5 presents more evidence that the WRAS strategy was the job stealing
technique that had the best performance on average. Basically, this figure depicts how
many less jobs on average a scheduler was able to finish when compared with the
technique that performed better. For instance, the value for SEAS is 13.36 % meaning
that on average, SEAS finished 89.36 % of the jobs that the best scheduler for that
scenario finished.

Another analysis consisted in determining the number of jobs transferred by the
different job stealing techniques. This is important because this kind of action requires
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Fig. 6 Steals per job in each simulation

network usage. This, in practice, might have a negative impact on battery consump-
tion [22,24,25,45]. Therefore, we analyzed the number of steals per job in the
simulation. Notice that we only consider node-to-node transfers, which are generated
by the stealing algorithm, and we do not consider proxy-to-node transfers generated
by jobs arrival. This decision allowed us to eliminate noise and accurately measure
the performance of the stealing algorithms in respect to job steals. Figure 6 illustrates
the number of steals per job in each simulation. In the worst case, the number of steals
that were produced in the simulations where more than two times the number of jobs.
In contrast, the number of steals per job in the best scenario was 0.039.

Again, WRAS in its two variants was the strategy that achieved the best results.
WRAS with the Fixed Number policy performed a steal, on average, 0.222 times per
job. In this case, the worst scenario was 0.627 steals per job, while the best scenario
was 0.040 steals per job. In contrast, WRAS with the Exponential policy performed
better having an average of 0.164 steals per job, while its worst and best scenarios
had 0.364 steals per job and 0.048 steals per job, respectively. Finally, Fig. 7 depicts
how many jobs, in percentage, over the best scheduler, each particular scheduler stole
on average. For example, the value for WRAS with Exponential policy was 10.54 %
meaning that it performed 10.45 % more steals than that the best scheduler in an average
scenario. Notice that in some scenarios that percentage is zero because WRAS with
Exponential policy was the best scheduler for that scenario.

In these simulations, the BRAS also performed worse than the WRAS. This might
stem from the fact that BRAS was expected to generate a stealing chain-reaction.
Although this chain-reaction was not fast enough to finish more jobs than WRAS, it is
large enough to issue more job steals. In brief, the BRAS strategy generates more steals
than WRAS, but not enough to outperform it with respect to finished jobs. Finally,
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Fig. 7 Average stolen jobs over the best technique

RS finished fewer jobs requiring a large amount of stealings. RS is a computationally
costless alternative to the other techniques because it performs well on traditional
distributed environments. However, according to our simulations, energy constrained
distributed systems are very sensitive to schedule decisions meaning that non-energy
aware scheduling techniques are likely to result in low energy efficiency.

Regarding to the policy, these simulations show that the Exponential policy worked
better than the Fixed Number policy for BRAS and WRAS, but not for RS. This might
be because the Exponential policy tends to offload overloaded nodes very quickly,
while increasing the load of underloaded ones. However, when this policy is used
randomly, it is likely that the offloaded node is not the best or worst producing more
steals. As a result, the offloaded node will produce another steal increasing the number
of steals without really balancing the mobile Grid load. Briefly, the WRAS strategy
with Exponential policy was the best combination in most of the studied scenarios and
it performed fairly well in the other scenarios.

Table 6 shows which technique had the best performance in the simulations for
each scenario. This table takes into consideration two metrics, namely finished jobs
and stolen jobs. Firstly, it can be seen that the schedulers using job stealing techniques
always outperformed the scheduler without job stealing, i.e., the SEAS. Secondly, RS
in conjunction with either policies only finished more jobs than other combinations
two times and the former always stole more jobs than the other combinations, which is
undesirable. Regarding finished jobs, the best techniques were BRAS and WRAS with
the Fixed number policy. On the other hand, regarding stolen jobs, WRAS in its two
variants performed better. However, when both metrics are simultaneously taken into
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consideration, WRAS with Fixed number in particular, and more importantly WRAS in
general worked better (23 out of 32 scenario-metric combination). Besides, in contrast
with what happens in traditional distributed environments [47,49,51], RS performance
was rather poor. Finally, regardless the particular scenario, the simulations using job
stealing techniques always reported better results than the simulations using only
the SEAS regardless the Grid conformation or the size and number of jobs to be
solved.

5 Conclusions

Several authors [13,14,22,24,26,27,44,45] have recognized that mobile devices
are the new frontier for distributed systems. These authors have proposed using
mobile devices in different ways ranging from simple front-end applications
for accessing extra-device computational resources [13,19,24] to fully integrated
devices [12,30,33]. In this context, this paper presents an analysis of different job
stealing strategies when applying them in mobile Grids.

This work results show that job stealing can increase the jobs that a mobile Grid can
execute. This means that job stealing improves the energy efficiency of mobile Grids
because they can execute more jobs with the same amount of energy. As a corollary,
energy is managed more efficiently by using energy aware job stealing. In addition,
this work analyzes several job stealing techniques to determine which of them are
applicable for mobile Grids. Notice that the analyzed job stealing techniques can be
implemented on mobile devices because they do not need information that is complex
to be obtained [45], such as job execution time or the battery required for executing
jobs [30].

Traditional distributed computing environments using RS for selecting a job stealing
victim have proven to be a viable option to CPU-intensive computing with good
results [47,49,51]. However, RS has not had a good performance in mobile Grids
according to the experimental results reported in this paper. Although RS executed
more works than SEAS in general, RS in its two variants performed, on average, worst
than WRAS in its two versions. In addition, RS stole up to 759 % more works than
the best technique for each scenario, stealing on average 240 % more works than the
best technique for each scenario. Since each steal requires using network and in turn
networking requires energy [22,24], a technique that requires more steals might be
less energy efficient that other techniques which require less steals.

In order to better assess how the job stealing process might impact on energy
efficiency, we will extend this work to take into account the network usage and its
impact on mobile devices batteries. Currently, our simulator assumes that transfer-
ring a job from one device to another does not consume energy, which is not the
case in real devices. The reason of assuming this in this paper is to move forward
towards evaluating the feasibility of job stealing in mobile Grids by considering
jobs with rather high CPU processing times but very little bandwidth requirements,
which make our results significant. Data intensive scientific applications such as
sequence alignment or ray tracing [36], pose new challenges to Grid scheduling sys-
tems that must be addressed so as to achieve good energy efficiency. Complementary,
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apart from network energy consumption, we will also study more realistic net-
working scenarios taking into account network latency, speed and failure possibil-
ity [25]. In addition, one of the most important network-related aspects to cover
and study in the future is scenarios with nodes leaving and joining the Grid, which
is unpredictable. Certainly, autonomic computing refers to the capability of a dis-
tributed platform of self-managing and self-adapting to unpredictable environmen-
tal changes, and hence this paradigm is in principle a good path towards build-
ing more elaborated schedulers capable of coping with this aspect. In fact, auto-
nomic computing is often materialized via bio-inspired algorithms such as Ant
Colony Optimization, which have proved to be useful when managing resources
in conventional Grids [34,39]. Then, bio-inspired techniques remain a possible
solution to explore to tackle this problem. The support for experimenting with
this new scenarios will be added to the current version of our simulation soft-
ware.

In addition, we will develop a real mobile Grid system that implements both the
architecture of Fig. 1 and the different studied job stealing techniques to evaluate them
in a real environment. To this end, we are currently developing a job execution mobile
Grid middleware for master-worker applications based on Android 2.3 and higher,
which is a platform version used by more than half of all active devices. 8. Finally,
we will analyze different payment schemes for encouraging mobile device owners to
share their mobile device resources [14]. To do this, we are considering adding price
negotiation into the job stealing and the SEAS [12].

Appendix: Simple energy aware scheduler (SEAS)

The SEAS [44] is a scheduling algorithm for mobile Grids that is designed to perform
scheduling along with as few estimations, such as device estimated remaining battery,
as possible. The SEAS is a centralized scheduler, i.e., all the mobile devices that are
considered by the scheduler must be connected to a central server which is called
proxy. Basically, the proxy receives a job execution request and assigns the job to a
mobile device. In order to select a mobile device, it ranks them according to which
might assign more resources per job. For a mobile device m, this value is calculated
as follows:

Resources per jobm = estimated uptimem × benchmarkm

number jobsm + 1
(6)

where estimated uptimem is the estimated uptime for the mobile device with the
remaining battery power, benchmarkm is the value obtained using some benchmark that
represents the MIPS (Million Instructions Per Second) the device is able to perform,
which in scientific computing might be the Linpack or the SciMark 2.0 [43], and
number jobsm represents the number of jobs assigned to that particular device. This
function adds one to the number of jobs because it calculates which would be the node
rank if a new job is added to it.

8 Platform Versions: http://developer.android.com/resources/dashboard/platform-versions.html.
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The only estimation the SEAS needs is each mobile device remaining uptime.
The proposed estimation algorithm is based on the fact that battery APIs are event-
based and the battery information is reported as a discrete variable. Examples of
this are the iOS,9 Android10 and ACPI11 battery APIs. A basic way of estimat-
ing remaining uptime with this event system is assuming a lineal discharge rate.
Therefore, it is possible to calculate the discharge rate when two consecutive bat-
tery events happen. For two events i − 1 and i , the discharge rate dr can be calculated
as follows:

The only estimation the SEAS needs is each mobile device remaining uptime. The
proposed estimation algorithm is based on the fact that battery APIs are event-based
and the battery information is reported as a discrete variable. Examples of this are the
iOS, Android and ACPI battery APIs. A basic way of estimating remaining uptime
with this event system is assuming a lineal discharge rate. Therefore, it is possible
to calculate the discharge rate when two consecutive battery events happen. For two
events i − 1 and i , the discharge rate dr can be calculated as follows:

dr = ci − ci−1

ti − ti−1
(7)

where, ci and ci−1 are the battery charge reported by the events i and i −1, respectively.
ti and ti−1 are the times when these events occurred. Therefore, the remaining uptime ut
might be estimated as follows:

9 iOS battery discharge notification: http://developer.apple.com/library/ios/#documentation/UIKit/
Reference/UIDevice_Class/Reference/UIDevice.html#/apple_ref/c/data/
UIDeviceBatteryStateDidChangeNotification.
10 Android Battery Intent: http://developer.android.com/reference/android/content/Intent.html#ACTION
_BATTERY_CHANGED .
11 Advanced Configuration and Power Interface Specification version 5: http://acpi.info/DOWNLOADS/
ACPIspec50.pdf.
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ut = ci

dr
(8)

However, the discharge rate is actually not lineal [48] and hence the estimation
heavily varies from event to event. Thus, the SEAS uses a modified version of the
estimator that returns an average remaining time instead of returning the previously
defined remaining time. This average is calculated using the estimated uptime, which
is defined as the current uptime plus the estimated remaining time as defined above.
Therefore, the new estimated remaining time is the average estimated uptime minus the
current uptime. Algorithm 3 describes how the remaining time is calculated. According
to [44], this algorithm tends to work better over time and is suitable for the SEAS
purpose.

References

1. Aron J (2012) Harness unused smartphone power for a computing boost. New Scientist
215(2880):18. doi:10.1016/S0262-4079(12)62255-6. http://www.sciencedirect.com/science/article/
pii/S0262407912622556

2. Blom S, Book M, Gruhn V, Hrushchak R, Köhler A (2008) Write once, run anywhere: a survey
of mobile runtime environments. In: International conference on grid and pervasive computing,
pp 132–137. doi:10.1109/GPC.WORKSHOPS.2008.19

3. Blumofe R, Leiserson C (1994) Scheduling multithreaded computations by work stealing. In: Annual
IEEE symposium on foundations of computer science. IEEE Computer Society, Los Alamitos,
pp 356–368. doi:10.1109/SFCS.1994.365680

4. Boovaragavan V, Harinipriya S, Subramanian VR (2008) Towards real-time (milliseconds) parame-
ter estimation of lithium-ion batteries using reformulated physics-based models. J Power Sources
183(1):361–365. doi:10.1016/j.jpowsour.2008.04.077. http://www.sciencedirect.com/science/article/
B6TH1-4SFS0MD-4/2/e4746e187e06b4aebb77c9a930f56b7f

5. Buyya R, Murshed M (2002) GridSim: a toolkit for the modeling and simulation of distributed resource
management and scheduling for grid computing. Concurrency Comput Pract Exp 14(13):1175–1220

6. Calheiros RN, Ranjan R, Beloglazov A, De Rose CAF, Buyya R (2011) Cloudsim: a toolkit for
modeling and simulation of cloud computing environments and evaluation of resource provisioning
algorithms. Softw Pract Exp 41(1):23–50

7. Callou G, Maciel P, Tavares E, Andrade E, Nogueira B, Araujo C, Cunha P (2011) Energy con-
sumption and execution time estimation of embedded system applications. Microprocess Microsyst
35(4):426–440. doi:10.1016/j.micpro.2010.08.006. http://www.sciencedirect.com/science/article/pii/
S0141933110000529

8. Choi S, Lee J, Yu H, Lee H (2011) Replication and checkpoint schemes for task-fault tolerance in
campus-wide mobile grid. In: Kim Th, Adeli H, Cho Hs, Gervasi O, Yau SS, Kang BH, Villalba JG
(eds) Grid and distributed computing. Communications in computer and information science, vol 261.
Springer, Berlin, pp 455–467. http://dx.doi.org/10.1007/978-3-642-27180-9_56

9. Chu DC, Humphrey M (2004) Mobile ogsi.net: Grid computing on mobile devices. In: Proceedings of
the 5th IEEE/ACM international workshop on Grid computing, GRID ’04. IEEE Computer Society,
Washington, pp 182–191. doi:10.1109/GRID.2004.44

10. Duan L, Kubo T, Sugiyama K, Huang J, Hasegawa T, Walrand J (2012) Incentive mechanisms for smart-
phone collaboration in data acquisition and distributed computing. In: INFOCOM, 2012 Proceedings
IEEE, pp 1701–1709. doi:10.1109/INFCOM.2012.6195541

11. Fernando N, Loke SW, Rahayu W (2013) Mobile cloud computing: a survey. Future Gen Comput
Syst 29(1):84–106. doi:10.1016/j.future.2012.05.023. http://www.sciencedirect.com/science/article/
pii/S0167739X12001318

12. Ghosh P, Das SK (2010) Mobility-aware cost-efficient job scheduling for single-class grid jobs in
a generic mobile grid architecture. Future Gen Comput Syst 26(8):1356–1367. doi:10.1016/j.future.
2009.05.003. http://www.sciencedirect.com/science/article/pii/S0167739X09000648

123

Author's personal copy

http://dx.doi.org/10.1016/S0262-4079(12)62255-6
http://www.sciencedirect.com/science/article/pii/S0262407912622556
http://www.sciencedirect.com/science/article/pii/S0262407912622556
http://dx.doi.org/10.1109/GPC.WORKSHOPS.2008.19
http://dx.doi.org/10.1109/SFCS.1994.365680
http://dx.doi.org/10.1016/j.jpowsour.2008.04.077
http://www.sciencedirect.com/science/article/B6TH1-4SFS0MD-4/2/e4746e187e06b4aebb77c9a930f56b7f
http://www.sciencedirect.com/science/article/B6TH1-4SFS0MD-4/2/e4746e187e06b4aebb77c9a930f56b7f
http://dx.doi.org/10.1016/j.micpro.2010.08.006
http://www.sciencedirect.com/science/article/pii/S0141933110000529
http://www.sciencedirect.com/science/article/pii/S0141933110000529
http://dx.doi.org/10.1007/978-3-642-27180-9_56
http://dx.doi.org/10.1109/GRID.2004.44
http://dx.doi.org/10.1109/INFCOM.2012.6195541
http://dx.doi.org/10.1016/j.future.2012.05.023
http://www.sciencedirect.com/science/article/pii/S0167739X12001318
http://www.sciencedirect.com/science/article/pii/S0167739X12001318
http://dx.doi.org/10.1016/j.future.2009.05.003
http://dx.doi.org/10.1016/j.future.2009.05.003
http://www.sciencedirect.com/science/article/pii/S0167739X09000648


J. M. Rodriguez et al.

13. González-Castaño FJ, Vales-Alonso J, Livny M, Costa-Montenegro E, Anido-Rifón L (2003) Condor
grid computing from mobile handheld devices. SIGMOBILE Mobile Comput Commun Rev 7(1):
117–126. doi:10.1145/881978.882005

14. Gray J (2008) Distributed computing economics. Queue 6(3):63–68. doi:10.1145/1394127.1394131
15. Ham HK, Park YB (2011) Mobile application compatibility test system design for android fragmenta-

tion. In: Kim Th, Adeli H, Kim HK, Kang Kj, Kim KJ, Kiumi A, Kang BH (eds) Software engineering,
business continuity, and education. Communications in computer and information science, vol 257.
Springer, Berlin, pp 314–320

16. Hu Y, Yurkovich S (2012) Battery cell state-of-charge estimation using linear parameter varying sys-
tem techniques. J Power Sources 198(0):338–350. doi:10.1016/j.jpowsour.2011.09.058. http://www.
sciencedirect.com/science/article/pii/S0378775311018295

17. Huang Y, Venkatasubramanian N (2007) Supporting mobile multimedia applications in mapgrid. In:
Proceedings of the 2007 international conference on wireless communications and mobile computing,
IWCMC ’07. ACM, New York, pp 176–181. doi:10.1145/1280940.1280978

18. Huang Y, Venkatasubramanian N, Wang Y (2007) MAPGrid: a new architecture for empowering
mobile data placement in Grid environments. In: Seventh IEEE international symposium on cluster
computing and the grid, 2007. CCGRID 2007, pp 725–730. doi:10.1109/CCGRID.2007.69

19. Huynh D, Knezevic D, Peterson J, Patera A (2011) High-fidelity real-time simulation on deployed plat-
forms. Comput Fluids 43(1):74–81. doi:10.1016/j.compfluid.2010.07.007. http://www.sciencedirect.
com/science/article/pii/S0045793010001829

20. Ibrohimovna M, Groot S (2008) Proxy-based fednets for sharing personal services in distributed
environments. In: The fourth international conference on wireless and mobile communications, 2008,
ICWMC ’08, pp 150–157. doi:10.1109/ICWMC.2008.25

21. Kaushik A, Vidyarthi DP (2012) A cooperative cell model in computational mobile grid. Int J Bus
Data Commun Networking 8:19–36. doi:10.4018/jbdcn.2012010102

22. Kelenyi I, Nurminen J (2008) Energy aspects of peer cooperation measurements with a mobile dht
system. In: IEEE international conference on communications workshops, 2008. ICC Workshops ’08,
pp 164–168. doi:10.1109/ICCW.2008.36

23. Khalaj A, Lutfiyya H, Perry M (2010) The proxy-based mobile grid. In: Cai Y, Magedanz T, Li M,
Xia J, Giannelli C, Akan O, Bellavista P, Cao J, Dressler F, Ferrari D, Gerla M, Kobayashi H, Palazzo
S, Sahni S, Shen XS, Stan M, Xiaohua J, Zomaya A, Coulson G (eds) Mobile wireless middleware,
operating systems, and applications. Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, vol 48. Springer, Berlin, pp 59–69. http://dx.doi.
org/10.1007/978-3-642-17758-3_5

24. Kumar K, Lu YH (2010) Cloud computing for mobile users: Can offloading computation save energy?
Computer 43(4):51–56. doi:10.1109/MC.2010.98

25. Lehr W, McKnight LW (2003) Wireless Internet access: 3G vs. WiFi? Telecommun Policy 27:351–370
26. Li C, Li L (2009) Utility-based scheduling for grid computing under constraints of energy bud-

get and deadline. Comput Stand Interf 31(6):1131–1142. doi:10.1016/j.csi.2008.12.004. http://www.
sciencedirect.com/science/article/B6TYV-4V70RB2-4/2/65554f30c6e3068ba1697c540f160003

27. Li C, Li L (2010) Energy constrained resource allocation optimization for mobile grids. J Parallel Dis-
trib Comput 70(3):245–258. doi:10.1016/j.jpdc.2009.06.003. http://www.sciencedirect.com/science/
article/B6WKJ-4WKTWWB-1/2/7f0834c24e7b7dd44adae8e22ce49ad5

28. Li C, Li L (2010) Energy efficient resource management in mobile Grid. Mobile Inf Syst 6:193–211.
doi:10.3233/MIS-2010-0099. http://iospress.metapress.com/content/3R214MM142481741

29. Li C, Li L (2011) A multi-agent-based model for service-oriented interaction in a mobile grid comput-
ing environment. Pervas Mobile Comput 7(2):270–284. doi:10.1016/j.pmcj.2010.10.006. http://www.
sciencedirect.com/science/article/pii/S1574119210001173

30. Li C, Li L (2011) Tradeoffs between energy consumption and qos in mobile grid. J Supercomput
55:367–399. doi:10.1007/s11227-009-0330-5

31. Li Z, Shen H (2012) Game-theoretic analysis of cooperation incentive strategies in mobile ad hoc
networks. IEEE Trans Mobile Comput 11(8):1287–1303. doi:10.1109/TMC.2011.151

32. Lin CM, Lin JH, Dow CR, Wen CM (2011) Benchmark dalvik and native code for android system.
In: 2011 Second international conference on innovations in bio-inspired computing and applications
(IBICA), pp 320–323. doi:10.1109/IBICA.2011.85

123

Author's personal copy

http://dx.doi.org/10.1145/881978.882005
http://dx.doi.org/10.1145/1394127.1394131
http://dx.doi.org/10.1016/j.jpowsour.2011.09.058
http://www.sciencedirect.com/science/article/pii/S0378775311018295
http://www.sciencedirect.com/science/article/pii/S0378775311018295
http://dx.doi.org/10.1145/1280940.1280978
http://dx.doi.org/10.1109/CCGRID.2007.69
http://dx.doi.org/10.1016/j.compfluid.2010.07.007
http://www.sciencedirect.com/science/article/pii/S0045793010001829
http://www.sciencedirect.com/science/article/pii/S0045793010001829
http://dx.doi.org/10.1109/ICWMC.2008.25
http://dx.doi.org/10.4018/jbdcn.2012010102
http://dx.doi.org/10.1109/ICCW.2008.36
http://dx.doi.org/10.1007/978-3-642-17758-3_5
http://dx.doi.org/10.1007/978-3-642-17758-3_5
http://dx.doi.org/10.1109/MC.2010.98
http://dx.doi.org/10.1016/j.csi.2008.12.004
http://www.sciencedirect.com/science/article/B6TYV-4V70RB2-4/2/65554f30c6e3068ba1697c540f160003
http://www.sciencedirect.com/science/article/B6TYV-4V70RB2-4/2/65554f30c6e3068ba1697c540f160003
http://dx.doi.org/10.1016/j.jpdc.2009.06.003
http://www.sciencedirect.com/science/article/B6WKJ-4WKTWWB-1/2/7f0834c24e7b7dd44adae8e22ce49ad5
http://www.sciencedirect.com/science/article/B6WKJ-4WKTWWB-1/2/7f0834c24e7b7dd44adae8e22ce49ad5
http://dx.doi.org/10.3233/MIS-2010-0099
http://iospress.metapress.com/content/3R214MM142481741
http://dx.doi.org/10.1016/j.pmcj.2010.10.006
http://www.sciencedirect.com/science/article/pii/S1574119210001173
http://www.sciencedirect.com/science/article/pii/S1574119210001173
http://dx.doi.org/10.1007/s11227-009-0330-5
http://dx.doi.org/10.1109/TMC.2011.151
http://dx.doi.org/10.1109/IBICA.2011.85


Energy-efficient job stealing for CPU-intensive processing in mobile devices

33. Litke A, Skoutas D, Tserpes K, Varvarigou T (2007) Efficient task replication and management for
adaptive fault tolerance in mobile grid environments. Future Gen Comput Syst 23(2):163–178. doi:10.
1016/j.future.2006.04.014. http://www.sciencedirect.com/science/article/pii/S0167739X0600080X

34. Ludwig S, Moallem A (2011) Swarm intelligence approaches for grid load balancing. J Grid Comput
9(3):279–301

35. Mateos C, Zunino A, Campo M (2010) On the evaluation of gridification effort and runtime aspects
of JGRIM applications. Future Gen Comput Syst 26(6):797–819

36. Mateos C, Zunino A, Hirsch M, Fernández M, Campo M (2011) A software tool for semi-automatic
gridification of resource-intensive java bytecodes and its application to ray tracing and sequence align-
ment. Adv Eng Softw 42(4):172–186

37. Mateos C, Zunino A, Trachsel R, Campo M (2011) A novel mechanism for gridification of compiled
java applications. Comput Inf 30(6):1259–1285

38. Neary MO, Cappello P (2005) Advanced eager scheduling for java-based adaptive parallel computing.
Concurrency Comput Practice Exp 17(7–8):797–819. doi:10.1002/cpe.v17:7/8

39. Pacini E, Mateos C, García Garino, C (2012) Schedulers based on ant colony optimization for para-
meter sweep experiments in distributed environments. In: Bhattacharyya S, Dutta P (eds) Research on
computational intelligence for engineering, science and business. IGI Global (in Press)

40. Palmer N, Kemp R, Kielmann T, Bal H (2009) Ibis for mobility: solving challenges of mobile computing
using grid techniques. In: HotMobile ’09: Proceedings of the 10th workshop on mobile computing
systems and applications. ACM, New York, pp 1–6. doi:10.1145/1514411.1514426

41. Paradiso JA, Starner T (2005) Energy scavenging for mobile and wireless electronics. IEEE Pervas
Comput 4(1):18–27. doi:10.1109/MPRV.2005.9

42. Rice A, Hay S (2010) Measuring mobile phone energy consumption for 802.11 wireless networking.
Pervas Mob Comput 6(6):593–606. doi:10.1016/j.pmcj.2010.07.005. http://www.sciencedirect.com/
science/article/pii/S1574119210000593

43. Rodriguez J, Mateos C, Zunino A (2012) Are smartphones really useful for scientific computing?
Lecture notes in computer science, vol 7547, pp 38–47

44. Rodriguez JM, Zunino A, Campo M (2010) Mobile grid seas: simple energy-aware scheduler. In: 39th
JAIIO 3rd high-performance computing symposium

45. Rodriguez JM, Zunino A, Campo M (2011) Introducing mobile devices into grid systems: a survey.
Int J Web Grid Services 7(1):1–40

46. Rosado DG, Fernández-Medina E, López J, Piattini M (2011) Systematic design of secure mobile
grid systems. J Network Comput Appl 34(4):1168–1183. doi:10.1016/j.jnca.2011.01.001. http://www.
sciencedirect.com/science/article/pii/S1084804511000026

47. Rosinha RB, Geyer CFR, Vargas PK (2009) WSPE: a peer-to-peer grid programming environment.
Concurrency Comput Practice Exp 21(13):1709–1724. doi:10.1002/cpe.v21:13

48. Shen WX, Chan CC, Lo EWC, Chau KT (2002) Estimation of battery available capac-
ity under variable discharge currents. J Power Sources 103(2):180–187. doi:10.1016/
S0378-7753(01)00840-0. http://www.sciencedirect.com/science/article/B6TH1-44V3JXV-2/2/
77bf800f9c9901c16d550f67a4a31e6b
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