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The objective of the article was to perform a predic-
tive analysis, based on quantitative structure–prop-
erty relationships, of the dissociation constants
(pKa) of different medicinal compounds (e.g., sali-
cylic acid, salbutamol, lidocaine). Given the impor-
tance of this property in medicinal chemistry, it is
of interest to develop theoretical methods for its
prediction. The descriptors selection from a pool
containing more than a thousand geometrical, topo-
logical, quantum-mechanical, and electronic types
of descriptors was performed using the enhanced
replacement method. Genetic algorithm and the
replacement method (RM) techniques were used as
reference points. A new methodology for the selec-
tion of the optimal number of descriptors to include
in a model was presented and successfully used,
showing that the best model should contain four
descriptors. The best quantitative structure–prop-
erty relationships linear model constructed using 62
molecular structures not previously used in this type
of quantitative structure–property study showed
good predictive attributes. The root mean squared
error of the 26 molecules test set was 0.5600. The
analysis of the quantitative structure–property
relationships model suggests that the dissociation
constants depend significantly on the number of
acceptor atoms for H-bonds and on the number of
carboxylic acids present in the molecules.
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Knowledge of the physicochemical properties of a drug compound,
e.g., its acid–base properties, is important in the optimization
stage of a drug development project (1). The dissociation constant
(pKa) is a measure of the tendency of a molecule or ion to keep
a proton at its ionization center(s) (2). In biological terms, pKa is
important in determining whether a molecule will be taken up by
aqueous tissue components or lipid membranes and is related to
logP (the partition coefficient) (3). Because most drugs are ionized
in physiological conditions, pKa is particularly relevant to medicinal
chemistry because it is major factor in the pharmacokinetics of
drugs (3,4). Commonly, dissociation constants of drug compounds
are determined by techniques such as titration by potentiometry
and UV–Vis spectrometry (1). Although highly useful, these tech-
niques typically need sample amounts in the order of a few mg
for analysis (1). Moreover, with these techniques, there is no dif-
ferentiation in analytical response between the analyte of interest
and any analog impurity (1).

Therefore, it is of great interest to be able to predict the pKa of
compounds that have not yet been tested experimentally, as well as
attempting to determine which structural parameters have an effect
on the pKa values. A generally accepted remedy for the lack of exper-
imental data in complex chemical phenomena is the analysis based
on quantitative structure–property relationships (QSPR) (5).

The ultimate role of the different formulations of the QSPR theory
is to suggest mathematical models for estimating relevant proper-
ties of interest, especially when they cannot be experimentally
determined for some reason. These studies simply rely on the
assumption that the physicochemical properties of a compound are
determined solely by its molecular structure. The molecular struc-
ture is therefore translated into the so-called molecular descriptors
through mathematical formulae obtained from several theories, such
as chemical graph theory, information theory, and quantum mechan-
ics (6,7). Currently, there are thousands of theoretical descriptors
available in the literature, and one usually faces the problem of
selecting those which are the most representative of the property
under consideration (8).

The main objective of the research presented in this paper was to
develop a model for the prediction of the dissociation constants
(pKa) of 88 (62 training set and 26 test set) drug compounds (e.g.,
salicylic acid, salbutamol, lidocaine) whose experimental data were
collected from the literature and were not used in a predictive
study before. Furthermore, a recently developed methodology for
the determination of the optimal number of descriptors will be pre-
sented and applied.
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Materials and Methods

Data Set
In this study, we used a training set of 62 compounds and a test
set of 26 compounds with known dissociation constants (pKa) mea-
sured in zero ionic strength aqueous solutions (1,9–17). The training
set was selected with the purpose of having a distribution of data
as normal as possible. The test molecules were chosen randomly
taking care that their experimental pKa values were sufficiently
representative of the whole span. This was achieved by taking a
random selection of the test set and afterward checking that the
selection was spread over the experimental values; if the selection
was not properly dispersed, the process was repeated. Table 1
shows the compound names and their experimental pKa values.

Molecular Descriptors
The structures of the compounds were firstly pre-optimized with the
molecular mechanics force field (MM+) procedure included in the
Hyperchem 6.03 packagea, and the resulting geometries were fur-
ther refined by means of the semiempirical method PM3 (parametric
method-3) using the Polak-Ribiere algorithm and a gradient norm
limit of 0.01 kcal �)1. We computed the molecular descriptors by
means of the software Dragon 5.0b, including parameters of all
types: Constitutional, Topological, Geometrical, Charge, GETAWAY
(Geometry, Topology, and Atoms-Weighted AssemblY), WHIM
(Weighted Holistic Invariant Molecular descriptors), 3D-MoRSE
(3D-Molecular Representation of Structure based on Electron
diffraction), Molecular Walk Counts, BCUT descriptors, 2D-Autocor-
relations, Aromaticity Indices, Randic Molecular Profiles, Radial
Distribution Functions, Functional Groups, and Atom-Centered
Fragments (8). Additionally, four quantum-chemical descriptors
(molecular dipole moments, total energies, HOMO-LUMO energies),
which are not provided by the program Dragon, were added to the
pool so the selection methodology was able to chose the most
suitable descriptors form a pool with higher diversity. The resulting
pool contained D = 1294 descriptors.

Model Search
In our calculations, we employ the computer system Matlab 5.0.c It
is our purpose to search the set D of D descriptors, for an optimal
subset d of d << D ones with minimum standard deviation S,

S2 ¼ 1
ðN � d � 1Þ

XN

i¼1

res2
i ð1Þ

by means of the multivariable linear regression (MLR) technique.
In this equation, N is the number of molecules in the training
set, and resi the residual for molecule i, the difference between
the experimental property (p) and predicted one (ppred). More
precisely, we want to obtain the global minimum of S (d),
where d is a point in a space of D! ⁄ [d!(D-d)!] ones. Each point
is a possible model of d descriptors as discussed below. Taking
into account that a full search (FS) of optimal variables is
impractical because it requires D! ⁄ [d!(D-d)!] linear regressions,
some time ago, we proposed the replacement method (RM) (18–
21), and later the enhanced replacement method (ERM) (22), that

produce linear regression QSPR models that are quite close the
FS ones with much less computational work. These alternative
techniques approach the minimum of S by judiciously taking into
account the relative errors of the coefficients of the least-
squares model given by a set of d descriptors d = {X1,X2,…,Xd}.
The RM gives models with better statistical parameters than the
forward stepwise regression procedure (23) and variants of the
more elaborated genetic algorithms (24) The ERM leads to even
better statistical parameters with slightly more computational
work (22).

A GA is a search technique based on natural evolution where vari-
ables play the role of genes (in this case, a set of descriptors) in
an individual of the species. An initial group of random individuals
(population) evolves according to a fitness function (in this case,
the standard deviation) that determines the survival of the individu-
als. The GAs offer a combination of hill-climbing ability (natural
selection) and a stochastic method (crossover and mutation) and
explore many solutions in parallel, processing information in a very
efficient manner. The practical application of GAs requires the tun-
ing of some parameters such as population size, generation gap,
crossover rate, and mutation rate. These parameters typically inter-
act among themselves nonlinearly and cannot be optimized one at
a time. There is considerable discussion about parameter settings
and approaches to parameter adaptation in the evolutionary compu-
tation literature; however, there does not seem to be conclusive
results on which may be the best (25).

The GA parameter optimization required several runs, leading to the
following results: number of individuals = 250; generation gap = 0.9;
single point crossover probability = 0.6; mutation probability =
0.7 ⁄ d. The implementation of GA was performed stopping each run
when one individual occupied more than 90% of the population or
when the number of generations reached 1500.

The Kubinyi function (FIT ) (26,27) is a statistical parameter that clo-
sely relates to the Fisher ratio (F ), but avoids the main disadvan-
tage of the latter that is too sensitive to changes in small d values
and poorly sensitive to changes in large d values. The FIT (d) crite-
rion has a low sensitivity to changes in small d values and a sub-
stantially increasing sensitivity for large d values. The greater the
FIT value the better the linear equation. It is given by the following
expression:

FIT ¼ R 2ðN � d � 1Þ
ðN þ d 2Þð1� R 2Þ ð2Þ

where R is the correlation coefficient, N is the number of molecules
in the training set, and d is the number of descriptors included in
the model. It is expected that a plot of FIT vs. d presents a maxi-
mum from which it is possible to calculate the optimal number of
molecular descriptors (dopt) to be included in the linear regression
model. There are many occasions when the maximum is not
reached after adding a reasonable number of descriptors in the
model. For this reason, we recently proposed a variable FIT equa-
tion or VFIT that depends on an adjustable parameter k that gives
more weight to d in the numerator of the FIT equation (28). It
reads:
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Table 1: Experimental and pre-
dicted (eqn 4) dissociation constants
(pKa) and residuals

Number Name of molecules CAS pKa exp. pKa. pred. Residual

Training set
1 Oxprenolol 6452-71-7 9.3 9.20 0.10
2 Protriptyline 438-60-8 10.7 10.22 0.48
3 Trimipramine 739-71-9 9.4 9.71 )0.31
4 Quinine 130-95-0 9.7 8.90 0.80
5 Salbutamol 34391-04-3 10.3 9.66 0.64
6 Tulobuterol 41570-61-0 10.4 9.53 0.87
7 Procainamide 51-06-9 9.2 9.13 0.07
8 Morphine 57-27-2 9.9 8.52 1.38
9 Codeine 76-57-3 8.2 8.27 )0.07

10 Lidocaine 137-58-6 7.9 8.89 )0.99
11 Sumatriptan 103628-46-2 9.6 8.30 1.30
12 Buspirone 36505-84-7 7.2 7.20 0.00
13 Bufuralol 57704-16-2 9 9.60 )0.60
14 Bupivacaine 2180-92-9 8.1 9.60 )1.50
15 Mepivacaine 22801-44-1 7.7 8.95 )1.25
16 Prilocaine 721-50-6 7.9 9.25 )1.35
17 Ketamine 6740-88-1 7.5 8.94 )1.44
18 Acetaminophen 103-90-2 9.5 8.07 1.43
19 Phenylpropanolamine 14838-15-4 9.44 9.51 )0.07
20 4-Aminophenol 123-30-8 10.46 8.78 1.68
21 Verapamil 52-53-9 9.04 9.36 )0.32
22 Norverapamil 67018-85-3 9.87 9.59 0.28
23 D-617 Ref. (14) 10.35 9.34 1.01
24 Phenobarbital 50-06-6 7.41 7.41 0.00
25 Barbital 57-44-3 7.91 7.09 0.82
26 Amobarbital 57-43-2 7.94 7.77 0.17
27 Diltiazem 42399-41-7 7.75 7.60 0.15
28 Rifampicin 13292-46-1 7.58 8.34 )0.76
29 Promazine 58-40-2 9.09 9.09 0.00
30 Indapamide 26807-65-8 9.16 7.81 1.35
31 Desipramine 50-47-5 10.28 9.71 0.57
32 Triflupromazine 146-54-3 8.56 7.26 1.30
33 Diazepam 3900-31-0 7.63 7.81 )0.18
34 Acetylsalicylic acid 50-78-2 3.74 3.85 )0.11
35 Benzoic acid 65-85-0 4.17 4.72 )0.55
36 4-Hydroxybenzaldehyde 123-08-0 7.58 7.86 )0.28
37 4-Hydroxybenzoic acid 99-96-7 4.44 4.60 )0.16
38 Nicotinic acid 59-67-6 4.84 3.06 1.78
39 Pyridine 110-86-1 5.27 7.80 )2.53
40 Salicylic acid 69-72-7 3.07 4.60 )1.53
41 Alminoprofen 39718-89-3 5.02 5.05 )0.03
42 Carprofen 53716-49-7 4.36 4.51 )0.15
43 Fenoprofen 31879-05-7 5.7 4.49 1.21
44 Flurbiprofen 5104-49-4 4.2 4.31 )0.11
45 Indoprofen 31842-01-0 4.25 4.00 0.26
46 Naproxen 22204-53-1 4.2 4.29 )0.09
47 Pirprofen 31793-07-4 4.64 4.31 0.33
48 Suprofen 40828-46-4 4.11 4.26 )0.15
49 Tiaprofenic acid 33005-95-7 3.8 4.22 )0.42
50 Imazapyr 81334-34-1 1.9 3.02 )1.12
51 Acifluorfen 62476-59-9 3.8 1.45 2.35
52 Imazethapyr 81385-77-5 2.1 3.43 )1.33
53 Nicosulfuron 111991-09-4 4.6 4.19 0.41
54 Thifensulfuron-methyl 79277-27-3 4 4.10 )0.10
55 Metsulfuron-methyl 74223-64-6 3.3 4.39 )1.09
56 Triasulfuron 82097-50-5 4.6 4.78 )0.18
57 Chlorsulfuron 64902-72-3 3.6 5.09 )1.49
58 Bensulfuron-methyl 83055-99-6 5.2 4.06 1.14
59 Flumetsulam 98967-40-9 4.6 4.33 0.27
60 Metosulam 139528-85-1 4.8 5.43 )0.63
61 Fomesafen 72178-02-0 2.7 3.78 )1.08
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VFIT ¼ R 2ðN � kd � 1Þ
ðN þ d2Þð1� R 2Þ ð3Þ

Using this equation, it is possible to obtain dopt as the number of
descriptors that yields a maximum (dmax) value in a VFIT vs. d plot.
A new technique to determine the parameter k is presented in this
work; the procedure consists of taking incremental values of 0.5 in
k until the maximum remains unchanged for two increments and
complies with the rule of thumb that at least five data points
should be present for each fitting parameter (29).

As a theoretical validation of all the models, we choose the well-
known leave-one-out (loo) and the leave-more-out cross-validation
procedures (l-n%-o) (30), where n% represents the percentage of
molecules removed from the training set. We generated 5 000 000
cases of random data removal for l-n%-o, where n% = 11% (seven
compounds). In addition, with the purpose of demonstrating that
the best model found does not result from happenstance, we
resorted to a widely used approach to establish the model robust-
ness: the so-called y-randomization (31). It consists in scrambling
the experimental property p in such a way that the property value
and the compound do not match; 5 000 000 cases of random
scrambling were generated.

Results and Discussion

To determine the optimal number of descriptors, we calculated dif-
ferent predictive relationships with the ability to link the molecular

structure of the drug compounds with the dissociation constants
(pKa), by means of linear regression models with 1–12 para-
meters (d) that were selected by ERM from the pool of D = 1294
descriptors.

As can be seen in Table 2, as k in VFIT is increased a first maxi-
mum appears at d = 8 (k = 3.5) that remains for one increment, a
second one d = 6 (k = 4.5), a third one at d = 5 (k = 5), afterward a
maximum at d = 4 (k = 5.5) that remains for six more increments
(k = 6, 6.5, 7, 7.5, 8, 8.5) and complies with the above-mentioned
practical rule (29).

Thus, the resulting VFIT with k = 5.5 increases with d up to a maxi-
mum value d = dmax = 4 shown in Figure 1. We assume that this is
the optimal value of descriptors in the model. Figure 1 also shows
that FIT does not present a maximum in the interval of d between

Table 1: (Continued )
Number Name of molecules CAS pKa exp. pKa. pred. Residual

62 Diclofop 40843-25-2 3.4 3.58 )0.18
Test set
63 Acebutolol 37517-30-9 9.2 8.91 0.29
64 Procaine 59-46-1 8.9 8.63 0.27
65 Phenylephrine 59-42-7 8.9 8.90 0.00
66 Chlorpheniramine 132-22-9 9.14 8.94 0.20
67 Gallopamil 16662-46-7 9.01 9.19 )0.18
68 D-620 Ref. (14) 9.84 9.62 0.22
69 D-702 Ref. (14) 10.32 9.61 0.71
70 D-703 Ref. (14) 9.15 9.61 )0.46
71 D-715 Ref. (14) 9.88 9.86 0.02
72 Chlorpromazine 50-53-3 9.21 8.91 0.30
73 Levomepromazine 7104-38-3 9.15 8.92 0.23
74 Thioridazine 50-52-2 9.5 9.76 )0.26
75 Propericiazine 2622-26-6 8.1 9.18 )1.08
76 Secobarbital 76-73-3 7.92 7.93 )0.01
77 Bupropion 34841-39-9 8.3 9.16 )0.86
78 Diphenhydramine 58-73-1 9.12 9.34 )0.22
79 Propranolol 318-98-9 9.55 9.52 0.03
80 Doxepin 1229-29-4 9.16 9.22 )0.06
81 Omeprazole 73590-58-6 6.15 7.06 )0.91
82 Alprenolol 13655-52-2 9.38 9.73 )0.35
83 Atenolol 29122-68-7 9.42 9.27 0.15
84 Metoprolol 51384-51-1 9.44 9.25 0.19
85 Ibuprofen 15687-27-1 4.55 5.15 )0.60
86 Ketoprofen 22071-15-4 4.18 4.51 )0.33
87 Fluazifop 83066-88-0 3.2 1.37 1.83
88 Imazaquin 81335-37-7 3.8 3.42 0.38

Table 2: Incremental values of k and the resulting number of
descriptors (d ) that present a maximum in VFIT

k d (max. in VFIT) k d (max. in VFIT)

1.5 – 5.5 4
2 – 6 4
2.5 – 6.5 4
3 – 7 4
3.5 8 7.5 4
4 8 8 4
4.5 6 8.5 4
5 5 9 3
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1 and 12. We thus conclude that the best QSPR model according to
ERM is

pKa ¼ 7:4368ð�0:4Þ þ 5:854ð�0:7Þ � RDF 010m

� 4:0272ð�0:3Þ � nCOOH � 3:1513ð�0:5Þ � nCOOHPh

� 0:5444ð�0:04Þ � nHAcc

ð4Þ

N ¼ 62;R ¼ 0:9301;S ¼ 0:9865;FIT ¼ 4:685;p<10�7

Rloo ¼ 0:9106;Sloo ¼ 1:1144;Rl-11%-o ¼ 0:8433;Sl-11%-o ¼ 1:4781

RTS ¼ 09657;RMSETS ¼ 0:5600

Here, the absolute errors of the regression coefficients are given in
parentheses; p is the significance of the model, FIT the Kubinyi

function, loo and l-11%-o stand for the leave-one-out and leave-
more-out cross-validation techniques, respectively, RMSE stands for
root mean squared errors, and TS stands for test set.

Following the same strategy, the RM yields the same model found
by ERM. We also tried the GA on the same problem, the best four
descriptors model obtained after twenty runs using the previously
mentioned optimized parameters was also the model in eqn (4)
found by ERM.

Table 3 shows a summary of the linear models with 1 to dopt + 1
parameters for ERM. As can be seen that the training set statistical
parameters of the models improve through d = 5 nevertheless
RMSE of the test set only improves trough d = 4. This indicates
that that the optimal number of descriptors is d = 4, corroborating
the results obtained using the above-mentioned VFIT methodology,
and that the model with d = 5 is possibly over fitted. Table 4 dis-
plays the details of the molecular descriptors of Table 3.

After analyzing 5 000 000 cases of y-randomization on eqn (4), the
smallest S value obtained was 2.0508 is considerably larger than
the one found in the true calibration (S = 0.9865). In this way, the
robustness of the model could be further proved, showing that the
calibration resulted in a true structure–property relationship and
was not a fortuitous correlation.

The plot of predicted vs. experimental pKa shown in Figure 2 sug-
gests that the 62 training and 26 test set compounds approximately
follow a straight line. Table 1 also includes the predicted dissocia-
tion constants (pKa) obtained via eqn (4) for the training and test
sets and the corresponding residuals. Figure 3 shows that the
behavior of the residuals in terms of the predictions follows a nor-
mal distribution. No molecule in the set exhibits a residual larger
than 3S that can be considered as an outlier.

The correlation matrix shown in Table 5 reveals that the descriptors
of the linear model are not seriously inter-correlated (Rij < 0.3842)
and therefore, all the descriptors contain structural information that
is not overlapped with any of the rest of the descriptors in the
model, which justifies the appearance of all those parameters in
the equation. The predictive power of the linear model is satisfac-
tory as revealed by its stability upon the inclusion or exclusion of
compounds, measured by the statistical parameters Rloo = 0.9106
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Figure 1: VFIT and FIT as functions of the number of descriptors
for the training set.

Table 3: Linear QSPR models for the training set with N = 62.
The best relationship appears in boldface

Model Descriptors used R S RMSETS

M1 MATS1m 0.7360 1.7728 1.4574
M2 Me, nCOOH 0.8523 1.3814 0.8563
M3 nDB, nCOOH, nCOOHPh 0.9029 1.1449 0.6678
M4 RDF010m, nCOOH,

nCOOHPh, nHAcc (eqn 4)

0.9301 0.9865 0.5600

M5 nDB, RDF010e, H6m,
nOHPh, O-057

0.9444 0.8914 0.5891

Table 4: Meaning of the symbols for the molecular descriptors appearing in the different models

Molecular descriptor Type Description

MATS1m 2D Autocorrelations Moran autocorrelation – lag 1 ⁄ weighted by atomic masses
Me Constitutional Mean atomic Sanderson electronegativity (scaled on Carbon atom)
nCOOH Constitutional Number of carboxylic acids (aliphatic)
nDB Constitutional Number of double bonds
nCOOHPh Constitutional Number of carboxylic acids (aromatic)
RDF010m Radial Distribution Function Radial Distribution Function – 1.0 ⁄ weighted by atomic masses
nHAcc Constitutional Number of acceptor atoms for H-bonds (N O F)
RDF010e Radial Distribution Function Radial Distribution Function – 1.0 ⁄ weighted by atomic Sanderson electronegativities
H6m GETAWAY H autocorrelation of lag 6 ⁄ weighted by atomic masses
nOHPh Constitutional Number of phenols
O-057 Atom-Centered Fragments Phenol ⁄ enol ⁄ carboxyl OH

QSPR Study of the Dissociation Constants of Pharmaceutical Compounds
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and Rl-11%-o = 0.8433. According to the literature, Rl-n%-o must be
greater than 0.71 to have a validated model (32).

An adequate contrast of the presented model with previously
reported ones is not feasible because they are based on sets of
molecules of different nature and size. Nevertheless, a few exam-
ples are presented as a reference points: Jover et al. (33) con-
structed QSPR model based on the nonlinear more sophisticated
neural network arriving to a model that showed an RMSE of the
test set of 0.95; Lee and Crippen (4) have compiled many models in
a recent review from which the only comparable model in the train-
ing set size is a linear free energy relationship found by Dixon and
Jurs(34) that presented a RMSE of 0.471 on the test set, using
a one family set of molecules in contrast to the broader set used
in the present work; Harding et al. (2) presented several models
based on a quantum topological molecular similarity (QTMS) study,

nevertheless no external validation was reported. Hence, as men-
tioned, an appropriate contrast is not possible; nonetheless, the
presented model contrasts well with previously reported work using
a data set with a high diversity of structures.

The molecular descriptors appearing in the linear eqn (4) combine
different dimensional aspects of the molecular structure and can be
classified as follows: (i) a radial distribution function: RDF10m,
weighted by atomic masses; and three constitutional descriptors:
nCOOH, number of aliphatic carboxylic acids, nCOOHPh, number of
aromatic carboxylic acids, and nHAcc, number of acceptor atoms for
H-bonds (N O F). The combination of the four selected descriptors
is the best one for predicting the property under study (pKa), lead-
ing to a model with standard deviation S that is lower than that
achieved by any other 4-descriptors equation obtained from the
pool D.

A radial distribution function (RDF) (35) of an ensemble of atoms
can be interpreted as the probability distribution of finding an atom
in a spherical volume of certain radius, also incorporating different
atomic properties to differentiate the contribution of each atom to
the property under study. For the case of RDF010m, the sphere
radius is of 10.0 � and atomic masses are employed to distinguish
their nature.

Constitutional descriptors are OD-descriptors, independent from
molecular connectivity and conformations (8). The descriptor nCOOH
is determined by counting the number of aliphatic carboxylic acids
present in a molecule. The descriptor nCOOHPh is determined by
counting the number carboxylic acids in an aromatic ring present in
a molecule. The descriptor nHAcc is determined by counting the
number of acceptor atoms for H-bonds (with N, O, and F) (36).

The standardization of the regression coefficients of eqn (4) (23)
allows assigning a greater importance to the molecular descriptors
that exhibit larger absolute standardized coefficients. The descriptor
order according to the standardized coefficients shown between
parentheses is:

nHAccð0:6642Þ > nCOOHð0:6364Þ > RDF 010mð0:4594Þ
> nCOOHPhð0:3331Þ

ð5Þ

The first descriptor depends on the number of H-bond acceptors
present in different functional groups; the second depends on
importance and an additional descriptor depends on the number of
carboxylic acid groups, this suggests that the dissociation constants
(pKa) have a significant dependence on the number of carboxyl acid
present in the molecule which may not be surprising.

–4.0

–3.0

–2.0

–1.0

0.0

1.0

2.0

3.0

4.0

1 2 3 4 5 6 7 8 9 10 11 12

R
es
id
ua
l

pKa pred.

2.5 S
3 S

Figure 3: Dispersion plot of the residuals for the training (rhom-
bus) and test sets (triangles) according to eqn (4).
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Figure 2: Experimental pKa versus calculated pKa using eqn (4)
for the training set (rhombus) and test set (triangles).

Table 5: Correlation matrix for the descriptors in eqn (4)
(N = 62) The highest correlation appears in boldface

RDF010m nCOOH nCOOHPh nHAcc

RDF010m 1 0.1769 0.2903 0.3842

nCOOH 1 0.1526 0.2005
nCOOHPh 1 0.0602
nHAcc 1
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Conclusions

In this paper, we constructed a predictive QSPR model for dissoci-
ation constants (pKa), an important parameter in the optimization
stage of a drug development project, from 62 different medicinal
compounds using four molecular descriptors that take into account
2D- and 3D-aspects of the molecular structure. The model showed
good predictive ability established by the theoretical and test set
validations. We presented a successful strategy to determine the
optimal number of descriptors in a QSPR model. Our results
showed that in this case, the ERM gives identical results as GA
and RM. The analysis of the QSPR model suggests that the disso-
ciation constants depend significantly on the number of acceptor
atoms for H-bonds and on the number of carboxylic acids present
in the molecules.

We expect the presented model to be a useful tool in the prediction
of pKa, in a fast and costless manner, for any future studies
that may require an estimation of this important physicochemical
property.
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