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Surface tension of highly magnetized degenerate quark matter
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We study the surface tension of highly magnetized three-flavor quark matter within the formalism of multiple
reflection expansion. Quark matter is described as a mixture of free Fermi gases composed of quarks u, d , s

and electrons in chemical equilibrium under weak interactions. Due to the presence of strong magnetic fields the
particles’ transverse motion is quantized into Landau levels, and the surface tension has a different value in the
parallel and transverse directions with respect to the magnetic field. We calculate the transverse and longitudinal
surface tension for different values of the magnetic field and for quark-matter drops with different sizes, from
a few fm to the bulk limit. For baryon number densities between 2 to 10 times the nuclear saturation density,
the surface tension falls in the range of 2 to 20 MeV/fm2. The largest contribution comes from strange quarks
which have a surface tension an order of magnitude larger than the one for u or d quarks and more than two
orders of magnitude larger than for electrons. Our results show that the total surface tension is quite insensitive
to the size of the drop. We also find that the surface tensions in the transverse and parallel directions are almost
unaffected by the magnetic field if eB is below ∼5 × 10−3 GeV2. Nevertheless, for higher values of eB, there is
a significant increase in the parallel surface tension and a significant decrease in the transverse one with respect
to the unmagnetized case.
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I. INTRODUCTION

Systems of strongly interacting matter under the influence
of intense magnetic fields are the subject of current studies.
They have direct application to the physics of neutron stars
and the properties of the quark gluon plasma produced in
relativistic heavy-ion collisions. In the last case, recent studies
indicate that the magnetic field could be as strong 1019 G
[1]. Some neutron stars—more specifically, the so-called
magnetars—are believed to have large magnetic fields in
the core, perhaps as large as ∼1019 G according to some
authors [2–6].

The cores of massive neutron stars have densities exceeding
a few times the nuclear saturation density. Under such condi-
tions, a deconfinement transition to quark matter is possible
and a hybrid star or a strange quark star can be formed. The
conversion of the star is expected to start with the nucleation
of small quark-matter drops [7–10] which subsequently grow
at the expenses of the gravitational energy extracted from the
contraction of the object and/or through a strongly exothermic
combustion process. Quark-matter droplets with a variety of
geometrical forms can also arise within the mixed hadron-
quark phase that is expected to form inside hybrid stars if global
charge neutrality is allowed [11]. Also, the most external layers
of a strange star may fragment into a charge-separated mixture,
involving positively charged strange droplets (strangelets)
immersed in a negatively charged sea of electrons, forming
a crystalline solid crust [12].

Surface tension is a key ingredient in the understanding of
such droplets and the associated phenomenology [13–16]. In
the case of mixed phases, it is known that there is a critical
value for the surface tension of the order of tens of MeV/fm2

[17–20], which determines two possible scenarios: If the

surface tension is smaller than the critical value, a mixed
phase is energetically favored; if it is larger, the hadron-quark
interface in hybrid stars must be a sharp discontinuity. Surface
tension is also an important aspect in the process of quark-
matter nucleation that leads to the formation of hybrid or
strange quark stars because it determines the critical size and
the nucleation time of the first quark-matter droplets [21–23].

Even though the surface tension is crucial in the above-
mentioned phenomena, there is still a broad spectrum of
values depending on the models considered for its description.
Early estimates pointed to values below 5 MeV/fm2 [24], but
larger values within 10 to 50 MeV/fm2 were widely used in
the literature; see, e.g., Refs. [8,16,25–27]. Also, calculations
within the linear sigma model with up and down quarks at
zero or low temperature and finite quark chemical potential,
including vacuum and medium fluctuations, predict a surface
tension of ∼5 to 15 MeV/fm2 [15]. However, much larger
values have also been reported in the literature. Estimates given
in Ref. [17] give values in the range 50 to 150 MeV/fm2, and
values around ∼300 MeV/fm2 were suggested on the basis of
dimensional analysis of the minimal interface between a color-
flavor locked phase and nuclear matter [28]. More recent works
evaluated the surface tension of three-flavor quark matter
within the Nambu–Jona–Lasinio (NJL) model including finite-
size effects within the multiple reflection expansion formalism
and the effect of color superconductivity. These calculations
also give large values, above 100 MeV/fm2 [22,29].

In this paper we calculate the surface tension of degenerate
three-flavor quark matter in chemical equilibrium under weak
interactions, assuming that the system is a mixture of free
Fermi gases composed of quarks u, d, s and electrons
immersed in a strong magnetic field. We describe finite-size
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effects within the multiple reflection expansion (MRE) frame-
work [30–33]. The article is organized as follows: in Sec. II we
present the quark-matter description under the influence of an
external magnetic field and include finite-size effects. Then,
in Sec. III we present our results and, finally, in Sec. IV give a
summary and our conclusions.

II. SURFACE EFFECTS IN A MAGNETIZED FERMI GAS

A. Effect of magnetic field

Let us consider a Fermi gas immersed in a magnetic
field B pointing in the z direction. The transverse motion of
particles with electric charge qf e is quantized into Landau
levels (LLs) with k2

⊥ = 2ν|qf eB|, where ν � 0 is an integer.
Assuming zero anomalous magnetic moment, the single-
particle momentum and energy are

k =
√

k2
x + k2

y + k2
z =

√
k2
z + 2ν|qf eB|, (1)

E =
√

k2
z + m2

f + 2ν|qf eB|. (2)

Due to Landau quantization, momentum integrals in the
transverse plane must be replaced by sums over the discretized
levels. Thus, in the thermodynamic integrals we must use

1

(2π )3

∫
· · · d3k −→ |qf eB|

2π2

∑
n

∫ ∞

0
· · · dkz, (3)

where, for spin- 1
2 particles, n is related with ν by

ν = n + 1

2
− s

2

q

|q| , (4)

with s = ±1 being the spin projection of the particle along the
direction of the magnetic field.

The Fermi momentum for flavor f is

kzF
f,ν =

√
μ2

f − 2ν|qf eB| − m2
f . (5)

Since kzF
f,ν must be positive, we obtain a constraint in the sum

of Landau levels,

ν � νmax = μ2
f − m2

f

2|qf eB| . (6)

According to Ref. [4] we can replace

∑
n

→
∑
s=±1

νmax∑
n=0

→
νmax∑
ν=0

αν, (7)

with αν = 2 for all the cases except for ν = 0, where αν = 1.
Therefore, we have

1

(2π )3

∫
· · · d3k −→ |qf eB|

2π2

νmax∑
ν=0

αν

∫ ∞

0
· · · dkz. (8)

B. Finite-size effects: Inclusion of multiple reflection expansion

In the present work we consider the formation of finite-size
droplets of quark matter. The effect of finite size is included
in the thermodynamic potential adopting the formalism of
multiple reflection expansion (MRE; see Refs. [31–33] and
references therein).

In the MRE framework, the modified density of states of a
finite droplet with an arbitrary shape is given by [30]

ρMRE(k,mf ,S,V, . . . ) = 1 + 2π2

k

S

V
fS + · · · , (9)

where S is the droplet’s surface, V its volume, and

fS(k) = − 1

8π

(
1 − 2

π
arctan

k

mf

)
(10)

is the surface contribution to the new density of states. For
matter immersed in a magnetic field B pointing in the z
direction, the momentum k in Eqs. (9) and (10) is given by
k = (k2

z + 2ν|qf eB|)1/2. The MRE density of states is shown
in Fig. 1 for the Landau levels with ν = 0 and ν = 1, and some
values of V/S.

The MRE density of states for massive quarks is reduced
compared with the bulk density of states, and for a range of

FIG. 1. The density of states ρMRE as a function of kz for the strange quark, using V/S = 10, 100, 1000 fm. In panel (a) we show the results
for the lowest Landau level ν = 0. In such case the curves are the same for any value of the magnetic field. In panel (b) we consider ν = 1 with
eB = 0.05 GeV2 (thick curves) and eB = 0.5 GeV2 (thin curves).
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small momenta it may become negative (see Fig. 1). The way
of excluding this nonphysical negative density of states is to
introduce an infrared cutoff �f,ν in momentum space (see
Ref. [33] for details). Thus, we have to perform the following
replacement:

1

(2π )3

∫
· · · d3k −→ 1

(2π )3

∫ ∞

�f,ν

· · · ρMRE 4πk2dk. (11)

For magnetized matter, we combine Eqs. (8) and (11) and
obtain

1

(2π )3

∫
· · · d3k −→ |qf eB|

2π2

νmax∑
ν=0

αν

∫ ∞

�f,ν

· · · ρMREdkz,

(12)
where �f,ν is the cutoff in the momentum along the direction
of the magnetic field.

C. Calculation of infrared cutoff

To obtain the value of �f,ν , we have to solve the equation

ρMRE(kz,mf ,S,V ) = 0 (13)

with respect to the momentum kz and take the larger root as
the infrared cutoff. Taking only the first two terms of Eq. (9)
we obtain

k

mf

= tan

(
π

2
− 2k

V

S

)
. (14)

Defining x = 2V k/S and λ = S/(2V m) the latter equation
reads

λx = cot x. (15)

Let x0 be the solution of Eq. (15) for a given value of λ. Then,
the momentum k0 that verifies Eq. (13) is given by

k0 = S

2V
x0. (16)

By using Eq. (1) the infrared cutoff on the momentum kz is
obtained from (k2

z + 2ν|qf eB|)1/2 = S
2V

x0; therefore,

�f,ν =
√

S2

4V 2
x2

0 − 2ν|qf eB|. (17)

In Table I we show the values of x0 for different quark masses
and different values of V/S.

D. Parallel surface tension

Following Eq. (14) of Ref. [34], the pressure of degenerate
particles parallel to the magnetic field lines is

P
‖
f = |qf eB|

2π2

νmax∑
ν=0

αν

∫ kzF
f,ν

0

k2
z dkz√

k2 + m2
f

, (18)

with k = (k2
z + 2ν|qf eB|)1/2. Including finite-size effects in

the expression above, we can write the parallel thermodynamic
potential of a magnetized quark-matter drop within the MRE

TABLE I. Solution of Eq. (15) for different particle masses and
different values of V/S.

Particles m [MeV] V/S [fm] x0

Electrons 0.511 10 0.225631
0.511 50 0.487927
0.511 100 0.663088
0.511 ∞ π/2

Quarks u, d 5 10 0.657008
5 50 1.14604
5 100 1.31661
5 ∞ π/2

Quarks s 150 10 1.47413
150 50 1.5504
150 100 1.56053
150 ∞ π/2

formalism as

−�
‖
f = V

|qf eB|
2π2

νmax∑
ν=0

αν

∫ kzF
f,ν

�f,ν

ρMREk2
z dkz√

k2 + m2
f

= |qf eB|
2π2

νmax∑
ν=0

αν

∫ kzF
f,ν

�f,ν

k2
z dkz√

k2 + m2
f

(
V + 2π2fS(k)

k
S

)
.

(19)

The latter expression can be written in the form

�
‖
f = −	

‖
f V + α

‖
f S, (20)

where 	
‖
f is the parallel pressure within the MRE formalism

and α
‖
f is the parallel surface tension, i.e.,

	
‖
f = |qf eB|

2π2

νmax∑
ν=0

αν

∫ kzF
f,ν

�f,ν

k2
z dkz√

k2 + m2
f

, (21)

α
‖
f = −|qf eB|

νmax∑
ν=0

αν

∫ kzF
f,ν

�f,ν

fS(k)k2
z dkz

k
√

k2 + m2
f

. (22)

In these expressions fS(k) is given by Eq. (10) and the
momentum k by Eq. (1). To obtain the total parallel surface
tension, we have to add the contribution of all particle species,
e.g., quarks u, d, s and electrons.

E. Transverse surface tension

For obtaining the transverse surface tension contribution
per flavor, the procedure is similar. In this case we start with
the pressure of degenerate particles transverse to the field lines
in bulk matter P ⊥

f , given in Eq. (15) of Ref. [34],

P ⊥
f = |qf eB|2

2π2

νmax∑
ν=0

ανν

∫ kzF
f,ν

0

dkz√
k2 + m2

f

, (23)
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FIG. 2. Surface tension for quarks s (a) in the parallel direction and (b) in the transverse direction. The results are shown for drops with
V/S = 10 fm, 100 fm and for the bulk limit with V/S = ∞. The magnetic-field intensities are eB1 = 5 × 10−4 GeV2, eB2 = 5 × 10−3 GeV2,
and eB3 = 5 × 10−2 GeV2.

and include the MRE density of states ρMRE. Then,

−�⊥
f = V |qf eB|2

2π2

νmax∑
ν=0

ανν

∫ kzF
f,ν

�f,ν

ρMREdkz√
k2 + m2

f

. (24)

Again, the latter expression has the form

�⊥
f = −	⊥

f V + α⊥
f S. (25)

Therefore, the transverse pressure 	⊥
f and the transverse

surface tension α⊥
f within the MRE formalism are given by

	⊥
f = |qf eB|2

2π2

νmax∑
ν=0

ανν

∫ kzF
f,ν

�f,ν

dkz√
k2 + m2

f

, (26)

α⊥
f = −|qf eB|2

νmax∑
ν=0

ανν

∫ kzF
f,ν

�f,ν

fS(k)dkz

k
√

k2 + m2
f

. (27)

F. Chemical equilibrium and charge neutrality

In the present work we focus in the calculation of the
surface tension of droplets of charge neutral quark matter in
equilibrium under weak interactions. Chemical equilibrium is
maintained by weak interactions among quarks, e.g., d ↔ u +
e− + ν̄e, s ↔ u + e− + ν̄e, u + d ↔ u + s, from which we
obtain the following relations between the chemical potentials:

μd = μu + μe, (28)

μs = μd. (29)

Here we consider cold deleptonized matter; i.e., neutrinos
leave freely the system. The charge neutrality condition reads

2
3nu − 1

3nd − 1
3ns − ne = 0. (30)

The number densities in the latter equation can be obtained
starting from [34]

nf = |qf eB|
2π2

νmax∑
ν=0

αν

∫ kzF
f,ν

0
dkz, (31)

and including the MRE density of states. Therefore, we obtain

nf = |qf eB|
2π2

νmax∑
ν=0

αν

∫ kzF
f,ν

�f,ν

(
1 + 2π2S

kV
fS(k)

)
dkz. (32)

III. RESULTS

In this section we calculate the surface tensions α
‖
f and

α⊥
f , as functions of the baryon number density nB = 1

3 (nu +
nd + ns) for different magnetic-field intensities and different
values of V/S. In the case of a spherical drop we would have
V/S = R/3. However, in the presence of a strong magnetic
field we expect the drop to be prolate, i.e., with a radius in the
direction parallel to the magnetic field larger than the radius in
the direction transverse to the magnetic field. The exact form
of the drop as a function of the magnetic field will be explored
in a future work. For the moment, we notice that α

‖
f and α⊥

f

do not depend on the exact geometry of the drop but only on
the ratio V/S, which is taken here as a free parameter.

In Figs. 2–4 we show the contribution of quarks u, d, s and
electrons to the surface tension in the parallel and transverse
directions for drops with V/S = 10 fm, 100 fm and for the bulk
limit with V/S = ∞. The largest contribution comes from the
strange quark which may have a surface tension in the ⊥
and ‖ directions as large as ∼20 MeV/fm2 for baryon number
densities and magnetic-field intensities typical of neutron star’s
interiors (see Fig. 2). The contribution of quarks u and d is
much smaller, with values that never exceed ∼3 MeV/fm2

(see Fig. 3) and that of electrons is negligible in quark matter,
with values below ∼0.15 MeV/fm2 (see Fig. 4).

For fixed eB and V/S, the surface tension is an increasing
function of nB . For ultrahigh values of the magnetic field
(e.g., eB = 5 × 10−2 GeV2) the curves clearly show de Haas–
van Alphen oscillations related to the filling of new Landau
levels. For lower fields, such oscillations are also apparent
for the lightest particles [see, e.g., Fig. 4(a) and the inset in
Fig. 3(a)].

For fixed nB and V/S, the surface tensions in the ⊥ and
‖ directions are almost unaffected by the magnetic field if
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FIG. 3. Surface tension for quarks u and d in the parallel direction [panels (a) and (b)] and in the transverse direction [panels (c) and (d)].
The values of eB are the same as in the previous figure.

eB is below ∼5 × 10−3 GeV2; as a consequence we have
α

‖
f ≈ α⊥

f below such eB. For higher values of eB, e.g., eB =
5 × 10−2 GeV2, there is a significant increase in α

‖
f and a

significant decrease in α⊥
f with respect to the unmagnetized

case, as can be seen in Figs. 2–4.

Finally, for fixed eB and nB , the effect of varying V/S is
negligible for heavier particles, like strange quarks (see Fig. 2).
However, for light quarks (u and d) the parallel surface tension
is significantly decreased with respect to the bulk case, but this
happens only for eB = 5 × 10−2 GeV2 [see Fig. 3(b)]. The
transverse surface tension is almost unaffected by V/S for any

FIG. 4. Parallel surface tension for electrons. The transverse surface tension is not shown because it is negligible.
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FIG. 5. Total surface tension obtained by summing the contributions of quarks u, d , s and electrons (a) in the parallel direction and (b) in
the transverse direction.

value of B. In the case of electrons, the effect of V/S is even
larger, because they are lighter.

In Fig. 5 we show the total surface tension in the ⊥ and ‖
directions:

α
‖
tot =

∑
i=u,d,s,e

α
‖
i , (33)

α⊥
tot =

∑
i=u,d,s,e

α⊥
i . (34)

Since, in practice, the surface tension of quark matter
in chemical equilibrium under weak interactions is largely
dominated by strange quarks, the results in Fig. 5 resemble
those given Fig. 2.

IV. SUMMARY AND CONCLUSIONS

In this work we study the surface tension of magnetized
quark matter within the formalism of multiple reflection
expansion (MRE). Quark matter is described as a mixture
of free Fermi gases composed by quarks u, d, s and electrons
in chemical equilibrium under weak interactions. Due to the
presence of strong magnetic fields, the transverse motion of
these particles is quantized into Landau levels and, as a conse-
quence, the surface tension has a different value in the parallel
and transverse directions with respect to the magnetic field.

We calculate the surface tension in the ⊥ and ‖ directions for
quark-matter drops with different sizes. Due to the magnetic-
field effect, such drops are expected to be prolate. However, α‖

f

and α⊥
f depend on the shape of the drop only through the ratio

V/S. Such behavior arises because the MRE density of states
is smoothed to eliminate its fluctuating part [30], and more
specific details on the shape are washed out. In the present
work, V/S is taken as a free parameter with values 10 fm,
100 fm, and ∞.

The largest contribution to the surface tension comes from
strange quarks which have a surface tension an order of
magnitude larger than the surface tension for u or d quarks and
more than two orders of magnitude larger than for electrons.
Our results show that the effect of varying V/S is negligible for

the strange quark. Therefore, although V/S has a significant
effect on the surface tension of light particles, the total surface
tension given in Eqs. (33) and (34) is insensitive to V/S and
depends mostly on the magnetic field and the baryon number
density. We also find that the surface tensions in the ⊥ and
‖ directions are almost unaffected by the magnetic field if
eB is below ∼5 × 10−3 GeV2 ≈ 0.25m2

π , with mπ being the
mass of the pion. Nevertheless, for higher values of eB, there
is a significant increase in the parallel surface tension and
a significant decrease in the transverse surface tension with
respect to the unmagnetized case (see Fig. 5).

In a recent work, Garcia and Pinto [35] considered magne-
tized two flavor quark matter within the Nambu–Jona–Lasinio
model and used a geometric approach for evaluating the
surface tension. For unmagnetized matter, they find a surface
tension ∼30 MeV/fm2, which is significantly larger than the
values found here for u and d quarks. However, this is not
surprising since calculations of the surface tension by using
the MRE formalism within the NJL model also give very
large values [22,29]; i.e., it is already known that the MIT
bag model tends to give in general a significantly smaller
surface tension than the NJL model. For magnetized matter,
the results in Ref. [35] show that the surface tension oscillates
slightly around the B = 0 value, for 0 < eB < 4m2

π . However,
for 4m2

π < eB < 6m2
π it decreases, reaching a minimum

value at eB ≈ 6m2
π which is about 30% smaller than the

B = 0 result. For larger magnetic fields, the surface tension
increases continuously, reaching a value of ∼40 MeV/fm2 for
eB ≈ 10m2

π . There are some significant differences between
the results of Ref. [35] and ours: First, we derive two surface
tensions, one parallel and another transverse to the magnetic
field, and they have a qualitatively different dependence
on B: the parallel surface tension increases with B and
the transverse one decreases. Second, our results are more
sensitive to an increase of the magnetic field. For example, for
eB3 = 5 × 10−2 GeV2 ≈ 2.5m2

π , Ref. [35] finds a variation
of a few percent in the surface tension with respect to the
B = 0 case. In our calculations, the difference with respect to
the unmagnetized case is in the range ∼20%–200% for typical
compact star densities.
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Another issue that needs some discussion is the effect of
the Coulomb interactions. Notice that we are enforcing local
charge neutrality in Eq. (30). Such an approximation is valid
for drops that are large compared with the Debye screening
length λD . However, for drops whose size is of the order of or
smaller than λD , electric fields may have a significant effect and
global charge neutrality should be taken into account properly.
Since the Debye screening length in quark matter is typically
of the order of 5 fm [25,36], we expect that our results are
reliable for the cases with V/S = 100 fm, ∞. However, the
case with V/S = 10 fm (which would correspond to a radius
R = 3V/S = 30 fm if the drop were spherical) requires a
more sophisticated analysis including the Coulomb potential
and solving consistently the Poisson equation together with
the other equations. Such an analysis is beyond the scope of
the present work but, in spite of the problem being highly
nonlinear, some approximate conclusions can be foreseen in
the light of previous works [36,37]. In Ref. [37], the Coulomb-
interaction effect is consistently taken into account in the
hadron-quark mixed phase, which consists of an equilibrium
configuration of quark drops embedded in a hadronic medium.
It is found that there is a rearrangement of the charged particles
near the drop boundary: the negatively charged particles in the
quark phase (quarks d, s and electrons) are attracted toward
the boundary and the positively charged particles (quarks u)
are repelled from the boundary [36,37]. Such an effect may
affect the surface tension indirectly because it induces a change
in the particle abundances. Since the surface tension is largely
dominated by the contribution of the strange quark, an increase

in the s quark number density near the boundary could lead to
a surface tension that is somewhat larger that the values found
here. However, such an effect is expected to be small, because
the net charge in the quark drop is shown to be small due to
screening effects [37].

Our results may have interesting consequences for neutron
star interiors. For example, according to Ref. [17], beyond
a limiting value of α ≈ 65 MeV/fm2 the structure of the
mixed quark-hadron phase that may form inside a neutron star
becomes mechanically unstable and local charge neutrality
is recovered, leading to a sharp interface. Our results show
that, although the magnetic field can change significantly
the surface tension of quark matter, its effect would not
be large enough to change the nature of the interface from
mixed to sharp. However, since quark-matter drops adopt a
prolate shape inside a strong magnetic field, we may expect
significant changes in the geometrical structure of the drops,
rods, slabs, and all the “pasta-phase” configurations that have
been conjectured to exist if global charge neutrality is allowed.
Another relevant consequence is related to the triggering of
the conversion of a hadronic star into a quark star (hybrid
or strange). The conversion is expected to begin with the
nucleation of tiny quark-matter drops at the core of the
hadronic star which thereafter may grow to a macroscopic
size and initiate a combustion front [38]. Since strong magnetic
fields modify the surface tension, we may expect changes in the
critical spectrum of fluctuations [22] and in the nucleation rate
and, probably, asymmetric combustion fronts. These effects
will be explored in future work.
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