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Variation of constants in the very early universe can generate inflation. We consider a
scenario where the strong coupling constant was changing in time and where the gluon
condensate underwent a phase transition ending the inflation.

Keywords: Variation of constants; inflation; QCD.

PACS Number(s): 98.80Cq, 98.80-k, 12.38-t

1. Introduction

Alternatives to inflationary cosmology1–4 include varying speed of light (VSL)
theories.5–8 Usually all inflationary models are based on using new fundamental
scalar fields, the “inflatons,” whose nature is still unknown. Some models change
the matter content of the universe, while others give the inflaton geometrical inter-
pretations within brane settings.9,10 VSL scenarios may solve the cosmological prob-
lems usually tackled by inflation (“horizon,” “flatness” and “structure formation”
problems) without introducing inflatons, whereas many inflationary models lead to
variation of other constants of nature.11 In this paper, we will follow the reverse
route that variation of constants in the very early universe can generate inflation.
In an earlier work,12 we considered a Bekenstein-like model for the QCD strong
coupling constant αS introducing a scalar field ε expressing the time variation of
αS . We found that experimental constraints going backward till quasar formation
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times rule out αS variability. However, when this model is implemented in the very
early universe, the scalar field ε can play the role of an inflaton, and one can real-
ize a consistent inflation scenario with a suitable value for the gluon condensate.
We find that the “time varying” QCD Lagrangian leads naturally to a monomial
quadratic potential like the chaotic scenario. However, while the large values of the
inflaton matter field plague the latter scenario, they just amount in our model to
a reduction of the strong charge by around ten times during the inflation. A way
out can be achieved if the gluon condensate suffers a phase transition, reducing its
value to its current value thus ending the inflation. We will not dwell on the possible
mechanisms for such a phase transition to occur, but instead concentrate on the
conditions our model should satisfy in order to present a consistent set up able to
accommodate the recent measurements from the Cosmic Microwave Background
(CMB)13,14 and the WMAP results.15,16

2. Analysis

We follow the notations of Ref. 12. Our starting point is the “time varying” QCD
Lagrangian:

LQCD = Lε + Lg + Lm

= − 1
2l2

ε,µε,µ

ε2
− 1

2
Tr(GµνGµν) +

∑
f

ψ̄(f)(iγµDµ − Mf )ψ(f), (1)

where l is the Bekenstein scale length, ε(x) is a scalar gauge-invariant and dimen-
sionless field, with the “variable” QCD coupling given by g(x) = g0ε(x). The
covariant derivative is Dµ = ∂µ − ig0ε(x)Aµ and the gluon tensor field is Ga

µν =
1
ε [∂µ(εAa

ν) − ∂ν(εAa
µ) + g0ε

2fabcAb
µAc

ν ].
Assuming homogeneity and isotropy for an expanding universe, we consider only

temporal variations for αS ≡ g2(t)
4π = αS0ε

2(t). One gets the following equations of
motion (

Gµν
a

ε

)
;µ

− g0f
abcGµν

b Ac
µ +

∑
f

g0ψ̄taγνψ = 0, (2)

(
a3 ε̇

ε

).

=
a3(t)l2

2
〈G2〉, (3)

where a(t) is the expansion scale factor in the R-W metric.
Subtracting the total derivative ∆T αβ = ∂ν

( − Gαν
a

ε εAaβ
)

from the canonical
energy–momentum tensor ∂L

∂(∂αφi)
∂βφi − gαβL we get the gauge-invariant energy–

momentum tensor:

T αβ = Gαν
a Gaβ

ν + i
∑

f

ψ̄(f)γ(αDβ)ψ(f) − 1
l2

∂αε∂βε

ε2

− gαβ


−1

4
Gµν

a Ga
µν +

∑
f

ψ̄(f)(iγµDµ − Mf )ψ(f) − 1
2l2

ε,µε,µ

ε2


 . (4)
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In the analysis below, we consider only the gauge fields and the scalar field, i.e.
we drop the matter fields in the radiation dominated very early era. We decompose
our energy–momentum tensor into two parts: the gauge part and the ε-scalar field
part:

Tαβ = T g
αβ + T ε

αβ

=
(

GανGν
β − gαβ

[
−1

4
Gµν

a Ga
µν

])
+
(
− 1

l2
∂αε∂βε

ε2
− gαβ

[
− 1

2l2
ε,µε,µ

ε2

])
. (5)

Here all the operators are supposed to be renormalized and it is essential in the
inflationary paradigm that quantum effects are small in order to get small fluctua-
tions in the CMB.

The contribution of the scalar field to the energy density ρε = T ε
00 and to the

pressure T ε
ij = g

(3)
ij pε are

ρε = − 1
2l2

(
ε̇

ε

)2

= pε. (6)

On the other hand, the gauge field contribution T g
αβ can be decomposed into

traceless and trace parts:

ρg = ρr
g + ρT

g , (7)

pg = pr
g + pT

g , (8)

where ρr
g, p

r
g are the density and the pressure corresponding to the “traceless” part

of the gauge field satisfying ρr
g = 3pr

g, while the trace part of the gauge field energy–
momentum tensor is proportional to gαβ and behaves like a “cosmological constant”
term:

ρT
g = −pT

g . (9)

This equation is reminiscent of “ordinary” inflationary models. However, to com-
pute the trace part of the density one needs a “trace anomaly” relation for our
“time varying” QCD. Since the energy–momentum tensor T g

αβ is identical in form
to “ordinary” QCD and since the trace anomaly which involves only gauge invari-
ant quantities should, by dimensional analysis, be proportional to G2, we take it to
be the same as in “ordinary” QCD (we have checked that changing the numerical
value of proportionality will not alter the conclusions). Thus we take, up to leading
order in the time-varying coupling “constant” αS = αS0ε

2, the relation17:

T µg
µ = ρg − 3pg = −9αS0ε

2

8π
Gµν

a Ga
µν . (10)

This leads to:

ρT
g = −9αS0

32π
ε2〈G2〉. (11)

As we said before, Eq. (9) suggests, by analogy to ordinary inflationary models,
that the QCD trace anomaly could generate the inflation. For this, let us assume
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that the “trace-anomaly” energy mass density contribution is much larger than the
other densities:

ρT
g � ρε, ρ

r
g ⇒ ρ ∼ ρT

g . (12)

Then, Eq. (11) tells us that the vacuum gluon condensate 〈G2〉 should have
a negative value, which is not unreasonable since the inflationary vacuum has
“strange” properties. In ordinary inflationary models, it is filled with repulsive-
gravity matter turning gravity on its head.18 This reversal of the vacuum properties
is reflected, in our model, by a reversal of sign for the vacuum gluon condensate.

Now we seek a consistent inflationary solution to the FRW equations in a flat
space–time:

(
ȧ

a

)2

=
8πGN

3
ρ, (13)

ä

a
= −4πGN

3
(ρ + 3p), (14)

where GN is Newton’s constant. The first FRW equation with (11) will give

H ≡ ȧ

a
= ε

√
3αS0

4
GN|〈G2〉|. (15)

On the other hand, the equation of motion (3) of the scalar field can be expressed
in the following way:

ε̈

ε
+ 3H

ε̇

ε
−
(

ε̇

ε

)2

=
l2〈G2〉

2
. (16)

This equation differs from the ordinary “matter” inflationary scenarios in the term
( ε̇

ε )
2. However, for “slow roll” solutions, we neglect the terms involving ε̈

ε and ( ε̇
ε)

2

to get

3Hε̇ =
l2〈G2〉

2
ε = −V ′(ε), (17)

which is the same as the “slow roll” equation of motion of the inflaton in ordinary
scenarios. In our model, the “slow roll” condition can be written as:

δ ≡
∣∣∣∣ ε̇

Hε

∣∣∣∣ = 2
9αS0

(
l

LP

)2 1
ε2

� 1. (18)

We set εf , the value of ε-field at the end of inflation tf , to 1 so that the time evolution
of the strong coupling terminates with the end of inflation and we expect for “slow
roll” solutions that εi, the value of ε at the initial time of inflation ti corresponding
to when the CMB modes froze out, is of order 1. If the gluon condensate value
〈G2〉 stays approximately constant during much of the inflation, the changes of the
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Hubble constant and the energy mass density are not very large. In this case, we
have

ε(t) = εi − 1
33/2(αS0)1/2

(
l

Lp

)2

G
1/2
N |〈G2〉|1/2(t − ti) (19)

and, as in chaotic scenarios, we get a simple quadratic potential:

V (ε) =
l2|〈G2〉|

4
ε2. (20)

One can make explicit the correspondence between our model with ε-scalar field
and the chaotic scenario with an φ-inflaton matter field. Comparing Eqs. (15) and
(17) with the corresponding relations in ordinary inflationary models:

H2 =
8π

3M2
pl

GNV(φ), (21)

3Hφ̇ = −V ′(φ), (22)

we find the relations between (ε, V (ε)) and (φ,V(φ)):

φ =
√

y

l
ε with y =

9αS0

8π
, (23)

y

l2
V (ε) = V(φ) =

l2|〈G2〉|
4

φ2. (24)

3. Results and Conclusion

We now check that our model is able to fix the usual problems of the standard (Big
Bang) cosmology. First, in order to solve the “horizon” and “flatness” problems, we
need an inflation a(tf )/a(ti) of order 1028 implying an inflation period ∆t = tf − ti
such that

H∆t ∼ 65. (25)

Furthermore, it should satisfy the constraint

10−40s ≤ ∆t � 10−10 s (26)

so as not to conflict with the explanation of the baryon number and not to create
too large density fluctuations.19,20 The bound 10−10 s corresponds to the time after
the Big Bang when electroweak symmetry breaking took place. Presumably, our
inflation should have ended far before this time. Thus, from Eqs. (25), (26) and
(15), we get the following bounds on |〈G2〉|:

3 × 107 GeV2 � ε|〈G2〉|1/2 ≤ 3 × 1037 GeV2 (27)
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In order to determine εi, we have

d ln a

dε
=

H

ε̇

 − 3H2

V ′(ε)

 − 8πρT

g

M2
PlV

′ ,

which gives, using Eqs. (11) and (17), the relation:

65 ∼ ln
(

a(tf )
a(ti)

)
=
(

LP

l

)2 9αS0

4
(ε2i − 1). (28)

Next comes the “formation of structure” problem and we require the fractional
density fluctuations at the end of inflation to be of the order of δM

M |tf
∼ 10−5 so

that quantum fluctuations in the de Sitter phase of the inflationary universe form
the source of perturbations providing the seeds for galaxy formation and in order to
agree with the CMB anisotropy limits. Within the relativistic theory of cosmological
perturbations,21,22 the above fractional density fluctuations represent (to linear
order) a gauge-invariant quantity and satisfy the equation

δM

M

∣∣∣∣
tf

=
δM

M

∣∣∣∣
ti

1

1 +
p

ρ

∣∣∣∣∣∣∣
ti

, (29)

where δM represents the mass perturbations and where the initial fluctuations are
generated quantum mechanically and are given by21–23

δM

M

∣∣∣∣
ti

=
V ′(Φ)H

ρ
=

√
y
V ′(ε)H

lρ
, (30)

whence

10−5 ∼
∣∣∣∣δMM

∣∣∣∣
tf

=
√

y

∣∣∣∣V ′H
l

∣∣∣∣
ti

1
|(ρ + p)|ti

. (31)

In order to evaluate (ρ + p)|ti , we use the energy conservation equation:

ρ̇ + 3(ρ + p)
ȧ

a
= 0, (32)

and after substituting ρ ∼ ρT
g , we get

|(ρ + p)|ti =
1

24π

(
l

LP

)2

|〈G2〉|. (33)

In fact, the energy conservation equation can be used to solve for ρr
g and we can

check that

ρr
g(ρ̇r

g) ∼ ρε(ρ̇ε) ∼ δ × ρT
g (δ × ρ̇T

g ), (34)

where δ ≡ | ε̇
Hε | ∼ 1

ε2 ( l
LP

)2 and so, when the “slow roll” condition (18) is satis-
fied, our solution assuming the predominance of the “trace-anomaly” energy mass
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density is self-consistent. Substituting Eq. (33) in (31) and using Eq. (17), we get

l

LP
∼ 9

√
3π

2
αS0105ε2|〈G2〉| 12 GN. (35)

Hence, taking GN ∼ 10−38 GeV−2, we obtain

l

LP
∼ |〈G2〉| 12

1034 GeV2 ε2, (36)

and combining this last result with (27), we get

10−27 � 1
ε

l

Lp
≤ 103. (37)

The “slow roll” condition (18) is consistent with the upper bound, while the lower
bound restricts εi from being too large.

On the other hand, it is possible to calculate the spectral index of the primordial
power spectrum for a quadratic potential as follows:

n − 1 = −4η where η =
M2

Pl

8π

V ′′

V =
2

9αS0

(
l

LP

)2 1
ε2

= δ (38)

and we find

n = 1 − 1
πy

(
l

Lp

)2 1
ε2i

. (39)

The inflation would end (εf = 1) when the “slow roll” parameter η = δ = 1. We
should evaluate the QCD coupling constant

αS0(µ) =
4π

β0 ln

(
µ2

Λ2
QCD

)

at an energy scale corresponding to the inflationary period. We take this to be
around the GUT scale ∼ 1015 GeV and β0 = 11 − 2

3nf = 7 (the weak logarithmic
dependence would assure the same order of magnitude for αS0 calculated at other
larger scales). With ΛQCD ∼ 0.2GeV (Ref. 24), we estimate αS0 ∼ 0.025, and so
we get (

l

LP

)2

∼ 10−1. (40)

This is in disagreement with Bekenstein assumption that LP is the shortest length
scale in any physical theory. However, it should be noted that Beckenstein’s frame-
work is very similar to the dilatonic sector of string theory and it has been pointed
out in the context of string theories25,26 that there is no need for a universal rela-
tion between the Planck and the string scale. Furthermore, determining the order
of magnitude of l

LP
is interesting in the context of these theories.

From (28), we have εi ∼ 11, and then using (39), we have n = 0.97, which is
within the range of WMAP results.15,16
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The model reproduces the results of the chaotic inflationary scenario. However,
the shape of the potential was not designed by hand, rather a gauge theory with a
changing coupling constant led naturally to it. Moreover, in typical chaotic models,
the inflaton field starts from very large values (φi ∼ 15MPl) and ends at around
1MPl. One might suspect whether field theory is reliable at such high energies.
Nonetheless, this problem is absent in our model since the large values have another
meaning in that they just refer to a reduction of the strong coupling by around ten
times during the inflation.

Furthermore, chaotic inflations get a typical reheating of order Trh ∼ 1015 GeV,
and one might need to worry about the relic problem. Similarly, Eq. (36) leads
in our model to a gluon condensate |〈G2〉|i ∼ 1062 GeV4 at the start of inflation.
From Eq. (19), we see that this corresponds to an inflation time interval ∆t ∼
10−35 s satisfying the constraint (26). If the gluon condensate stays constant, as we
assumed in our analysis, we will have the same reheating temperature as in chaotic
models (Trh ∼ ρ(tf )1/4). However, we should compare this value for 〈G2〉 with its
present value renormalized at the GUT scale ∼ 1015 GeV, which can be calculated
knowing its value at the 1GeV Ref. 12 and that the anomalous dimension of αSG2

is identically zero. We get

〈G2(now, µ ∼ 1015 GeV)〉 ∼ 1 GeV4, (41)

which represents a decrease of 62 orders of magnitude.
This can give a possible picture for an exit scenario. Lacking a clear theory

for the non-perturbative dynamics of the gluon condensate, we consider its value
|〈G2〉| depending on energy, and thus implicitly on cosmological time, as given by
the standard RGE, which turns it off logarithmically at high energy. However, we
can furthermore assume the condensate value to depend explicitly on time during
inflation:

〈G2(E, t)〉 = 〈G2
0(E(t))〉f(t),

where 〈G2
0(E)〉 is the piece determined by the RGE; the unknown function f(t)

should be such that it varies slowly during most of the inflationary era, to conform
with an approximately constant huge and negative value of 〈G2〉, while at the
end of inflation it causes a drastic drop of the condensate value 〈G2〉 to around
zero. The energy release of this helps in reheating the universe, while reaching the
value 0 leads to a minute “trace-anomaly” energy mass density (Eq. 11) ending,
thus, the inflation. The other types of energy density would contribute to give the
gluon condensate its “small” positive value of (41), and the subsequent evolution is
just the standard one given by RGE. Certainly, this phenomenological description
needs to be tested and expanded into a theory where the concept of symmetry
breaking of such a phase transition for the condensate 〈G2〉 provides the physical
basis for ending the inflation. Nonetheless, with a test function of the form f(t) =
−β2 tanh2(ε − 1) with β ∼ 1031, one can integrate analytically the equation of
motion, and in the “slow roll” regime we have ε = 1 + arcsinh(exp[−αβt]) with
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4
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8
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Fig. 1. Temporal evolution of the condensate |〈G2〉| (thick line) and the ε-field (thin line), for the
choice f(t) = −β2 tanh2(ε − 1). The 〈G2〉 scale has been adapted so as to visualize both graphs
together.

αβ ∼ 1012 GeV. The graph in Fig. 1 shows the time evolutions of the condensate
and the ε-field, which agree with the required features. This example is meant to
be just a proof of existence of such functions, and the temporal dependence of the
condensate could be of a completly different shape while the whole picture is still
self-consistent. The issue demands a detailed study for the condensate within an
underlying theory and we do not further it here. We hope this work will stimulate
interest in the subject.
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