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Abstract. The ever increasing processing capabilities of the supercomputers
available to computational scientists today, combined with the need for higher
and higher resolution computational grids, has resulted in deluges of simulation
data. Yet the computational resources and tools required to make sense of these
vast numerical outputs through subsequent analysis are often far from adequate,
making such analysis of the data a painstaking, if not a hopeless, task. In this paper,
we describe a new tool for the scientific investigation of massive computational
datasets. This tool (VAPOR) employs data reduction, advanced visualization,
and quantitative analysis operations to permit the interactive exploration of vast
datasets using only a desktop PC equipped with a commodity graphics card.
We describe VAPORs use in the study of two problems. The first, motivated
by stellar envelope convection, investigates the hydrodynamic stability of
compressible thermal starting plumes as they descend through a stratified layer
of increasing density with depth. The second looks at current sheet formation
in an incompressible helical magnetohydrodynamic flow to understand the early
spontaneous development of quasi two-dimensional (2D) structures embedded
within the 3D solution. Both of the problems were studied at sufficiently high
spatial resolution, a grid of 5042 by 2048 points for the first and 15363 points
for the second, to overwhelm the interactive capabilities of typically available
analysis resources.
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1. Introduction

Over two decades of continual advancement in microprocessor technologies have fuelled the
development of increasingly more powerful supercomputers, and computational scientists today
enjoy unprecedented computing capability. Access to systems with teraflops, and in the near
future, petaflops of performance has enabled numerical modellers to compute at extraordinary
scales.A consequence of this unparalleled computing capability is the production of vast amounts
of numerical data. Sadly, our ability to manage, analyse, and gain insight from these numerical
outputs has not kept pace with our ability to generate them. Thus for many numerical modellers the
greatest challenge in the scientific discovery process begins once the simulation has completed
and the analysis process commences. The result is that often only limited scientific return is
realized from substantial computational investment.

Many factors have contributed to this situation. Perhaps first and foremost is the contrasting
natures of numerical simulation, which is well-suited to batch job submission, and data analysis,
which is inherently interactive. This is exacerbated by the historical focus of computing centres
on the delivery of batch computing cycles to the detriment of other computing needs; seldom
are computing resources for analysis available that are on par with batch computing systems.
Disparity in the advancement of various computing technologies plays a sizeable role as well.
Microprocessor performance—the main driver behind supercomputer advancements—doubles
roughly every 18 months in accordance with ‘Moore’s law’ [1]. File input/output (IO)
interconnect bandwidth performance, key to the interactive processing of very large datasets,
is on a much more modest improvement curve. Finally, while numerical model codes are most
frequently developed by scientists themselves, or their colleagues, and are therefore amenable
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to tuning and adaptation to supercomputing architectures, analysis software often comes from
third parties, frequently commercial, who have little incentive to scale the application to meet
the needs of the small niche market of high resolution computational data analysis.

Technology curves and the makeup of computing environments are beyond our control.
Where we hope to have an impact is in the application software available for scientific data
analysis. In this paper, we describe a desktop application developed specifically for the analysis
of large computational datasets, VAPOR. Unique to VAPOR are its combination of domain
specificity, its ability to explore datasets that are terabytes in size using only a ubiquitous PC,
and its close coupling of advanced visualization with quantitative data analysis capabilities.
We present our experiences with VAPOR in the context of the investigation of two relevant
and challenging problems in geophysical and astrophysical fluid dynamics. The first example
is motivated by stellar envelope convection and investigates the hydrodynamic stability of
compressible thermal starting plumes as they descend through a stratified layer of increasing
density with depth. The second example looks at the spontaneous formation of current sheets in
a turbulent incompressible and conducting flow, and is motivated by observations of the solar
wind and the Earth’s magnetosphere. In both cases, spatial resolutions were larger than what
interactive desktop visualization and analysis tools can typically handle, and VAPOR enabled
new scientific findings that would have been impossible using standard methods in scientific
supercomputing (e.g. run-time analysis, study of global quantities, spectra, etc).

2. VAPOR

Numerous freeware and commercial applications exist for analysing and visualizing large, time-
varying gridded datasets. All suffer from pitfalls that significantly curtail their usefulness in
the exploration of high resolution simulation data. Open source visualization applications such
as Paraview [2] and Visit [3], and commercial applications such as CEI’s Ensight, support
advanced visualization algorithms appropriate for computational datasets, but these are lacking in
quantitative analysis capabilities, are, in the authors’opinion, targeted more towards visualization
experts than scientific end-users, and demand specialized parallel computing resources to handle
large datasets. High-level, fourth-generation data languages such as ITT’s IDL and Mathwork’s
Matlab were designed with the scientific end-user in mind, support a rich set of mathematical
operators suitable for quantitative data analysis, but offer only limited visualization capability
and only minimal scalability, restricting their use to moderate sized problems.

TheVAPOR software environment attempts to address both of these classes of shortcomings
while at the same time providing an intuitive user interface and feature set, the design of which is
guided by a committee of computational physicists to ensure that the tool meets the needs of the
user community. VAPOR’s advanced visualization capabilities enable the rapid identification of
features or spatial-temporal regions of interest (ROIs). Its seamless coupling to high-level analysis
languages facilitates rigorous quantitative investigation and data manipulation on the reduced
domain identified, and its hierarchical data representation scheme permits the investigator to
make effective speed/quality trade offs in order to maintain a high degree of interactivity. In
this section, we discuss each of these points and indicate how they benefit both visual and
quantitative analysis and make possible the exploration of terabyte size datasets using only
commodity hardware.
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2.1. Hierarchical data representation

Perhaps the greatest challenge posed by the analysis of high resolution simulations is the scale
of the datasets involved. Simply storing the data on rotating media where it can be randomly
accessed may not be feasible, necessitating time-consuming shuffling of data between archival
and disk-based storage. Even when sufficient on-line storage capacity exists, IO bandwidths
are generally woefully inadequate to support interactive processing without complicated and
costly parallel IO systems. Constraints on physical memory size, both for the CPU and graphics
processor (GPU), form the next bottleneck in this storage hierarchy. Even if these issues were
to be in some way addressed, the processing capabilities of the CPU and GPU place additional
limitations on the amount of data that can reasonably processed interactively.

Predicated on the assumption that, while some analysis operations may require all of the
detail present in the simulation output, a large class of useful operations are less sensitive to
information loss, we address these difficulties through the use of hierarchical data representation.
Simulation outputs are stored hierarchically with each level of the hierarchy providing a coarsened
approximation of the data at the preceding level. The original data may be accessed in their
entirety, without loss of information, or an approximation of the original field, sampled on a
coarser grid, may be retrieved. Successive coarsening results in a halving of the resolution along
each spatial axes. Thus for a three-dimensional (3D) data set each consecutive coarsening results
in a factor of eight reduction in data, and a corresponding reduction in demands on analysis
resources.

Hierarchical data representation in VAPOR is achieved using a wavelet decomposition
[4]–[7], a two-parameter linear expansion given by

f(t) =
∞∑

k=−∞
c(k)φ0,k(t) +

∞∑
j=0

∞∑
k=−∞

dj(k)ψj,k(t), (1)

where c(k) and dj(k) are real-valued coefficients, and the scaling expansion functions, φ(t), and
wavelet expansion functions, ψ(t), are given by

φj(t) =
∑

n

hφ(n)
√

2φj+1(2t − n), n ∈ Z, (2)

ψj(t) =
∑

n

hψ(n)
√

2φj+1(2t − n), n ∈ Z. (3)

This nesting of expansion function leads to a multiresolution representation of f(t) where the
first summation in equation (1) gives a low resolution, coarse approximation of f(t) and the
second summation, for increasing j, provides finer and finer detail.

Although a number of wavelet families are supported in VAPOR, for reasons of
computational efficiency we primarily employ the Haar transform [8]. The Haar scaling function
is a unit-height, unit-width box function with φ(t) defined by

φ(t) = φ(2t) + φ(2t − 1). (4)
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Figure 1. Compressible down flowing thermal plume, from the investigation of
section 3 of this paper, at progressively increasing resolution. Shown from left
to right at 632 × 256, 1262 × 512, 2522 × 1024 and 5042 × 2048, respectively.
Note how visual identification of even very fine structures is fairly insensitive to
resolution degradation.

Thus scaling coefficients cj(k) are simply pair-wise averages of cj+1(k) and cj+1(k + 1). The
corresponding Haar wavelet function ψ(t) is

ψ(t) = φ(2t) − φ(2t − 1), (5)

with dj(k) thus being the pairwise difference between neighbouring grid values.
We could have accomplished a hierarchical data representation, without the complexity of

a wavelet transform, by generating multiple copies of data at varying resolutions. This, however,
would impose additional storage requirements. Saving the wavelet coefficients eliminates the
storage penalty, and due to the aforementioned rapid advancement of microprocessor technology,
the computational cost of both the forward and inverse transform are negligible compared to the
IO involved in reading or writing the data. The data transform, in fact, costs very little. Further
details on VAPOR’s wavelet decomposition process are available from our previous work [9,10].

This data model permits the investigator to throttle the flow of data in accordance with
the resources available, and thus control the level of interactivity. Similar to the ubiquitous and
highly effective Google Earth application, which permits users to navigate terabytes of image
data using only a modestly configured PC, users can browse coarsened representations of their
global spatial-temporal domain, identifying features of interest. Once identified, the reduced
domain may be refined to any desired level of detail up to the original sampling (e.g. figure 1).
Thus massive datasets can be examined as a whole at reduced resolution and arbitrarily refined
within the chosen spatial and/or temporal ROIs. Often both visual inspection and numerical
analysis are fairly insensitive to rather dramatic data coarsening [10], allowing considerable
savings in computational overhead during the early exploratory stages of investigation when
interactivity is most crucial.

Moreover, the hierarchical data structure naturally facilitates storage and management
of potentially terabytes of simulation data. Data are organized into a multi-file collection
consisting of a single XML metadata file (viewable with any text editor or HTML browser)

New Journal of Physics 9 (2007) 301 (http://www.njp.org/)

http://www.njp.org/


6 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

and multiple machine-portable binary files containing the wavelet coefficients themselves. The
metadata file describes characteristics of the data that are constant across a single simulation
run (e.g. grid resolution, variable names, physical coordinate systems and number of time steps
output). Individual wavelet coefficient files contain a single time step, for a single variable and
a single transformation level. The primary benefit of this decomposition is that the VAPOR
Data Collection (VDC) readily supports incomplete datasets: not all time steps, variables, or
even refinement levels need be present on disk for a VDC to be valid. If disk space is limited
components of a VDC may be stored off-line (or their computation deferred) until needed.

2.2. Coupling visualization with quantitative data analysis

The understanding of massive datasets is an iterative process that can greatly benefit when highly
interactive, qualitative, visual examination is combined with quantitative numerical analysis.
Visualization can be used to identify salient features of the data, giving rise to hypotheses that can
be validated or rejected through numerical study. Conversely, notable quantitative characteristics
of the data require visualization to illuminate their associated geometric shapes and physical
properties. Combining these qualitative and quantitative techniques is most effective when the
process is seamless, enabling users to quickly transition back and forth between the two. The
challenge with massive data is to maintain a sufficient level of interactivity throughout the
analysis process. We address this difficulty by combining data culling, through a combination
of ROI isolation and hierarchical representation as described earlier, with seamless coupling to
already existing analysis packages.

Visualization within VAPOR is performed with intrinsic algorithms, while numerical
analysis operations are currently performed using ITT’s fourth-generation language, IDL. A
user can simultaneously maintain active VAPOR and IDL sessions, visually identifying ROIs
with VAPOR that may be exported to IDL for further study. Interactivity within IDL may be
maintained if the ROI is sufficiently small or if the operation is sufficiently well-behaved over
coarsened approximations of the data [10]. Newly calculated derived quantities can be imported
back into the existing VAPOR session for continued visual investigation. By repeating this
process, massive data can be interactively explored, visualized, and analysed without being
subject to the delays inherent in reading and writing large data arrays en masse. This coupling
of IDL and VAPOR is made possible by a library of data access routines, which can be invoked
directly from IDL, permitting IDL to read and write arrays or sub-arrays directly from VAPOR’s
wavelet-encoded data representation. The data access library could of course be employed by
other scientific data processing utilities as well, and so the approach is readily generalizable to
the user’s favourite analysis package.

We note that the foremost advantage of coupling visual data investigation with an array-based
data analysis language is the ability to defer the often expensive calculation of derived quantities
until needed and to compute them only over the domain of interest. The time and space required
for computing such variables in advance and across the entire domain can easily overwhelm the
resources available, delaying or preventing altogether further analysis. Moreover, some quantities
can only be computed with reference to the location of a flow structure and are therefore not in
principle a priori computable. The coupling between VAPOR and IDL facilitates the calculation
of derived quantities on-the-fly, on an as-needed basis over potentially significantly smaller sub-
regions, realizing considerable savings in storage space and processing time. This technique has
proven invaluable to both of the investigations to be described later in the paper.
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2.3. Visualization capabilities

The remainder of this section describes the more salient visualization capabilities of VAPOR,
paying particular attention to the algorithmic details that are essential for understanding the
transformation of numerical gridded data into graphical imagery and to the user interface features
that are needed for producing meaningful and informative visualizations that aid in analysis.

2.3.1. Volume rendering. Computational data generally consists of a collection of 3D arrays
of single or double precision floating point data, with each array specifying the value of one
variable at each spatial discretization point and at a single time step. The primary visualization
method for exploring scalar 3D data arrays within VAPOR is direct volume rendering (DVR)
[11]–[13]. Conceptually, DVR enables a scalar field to be visualized, by specifying a mapping
that determines how the field interacts with light; possibly absorbing, reflecting, transmitting, or
emitting radiant energy. In practice a simplified optical model is employed whereby the scalar
field mapping consists of the assignment of transparency and colour values to a discrete range
of data values. An image is generated by integrating colour and opacity along discrete lines of
sight passing through the data volume. Thanks to recent improvements in graphics hardware,
low-cost graphics cards are widely available which can quickly perform volume rendering on
large data grids. Using graphics cards typically available on today’s PCs, grids sized up to 5123

can be rendered interactively.
The mapping of data values to colour and opacity is called a transfer function. Transfer

functions in VAPOR are defined by first linearly quantizing a user-selected data interval into
8-bit integers and then mapping each of the resulting 8-bit quantities to colour and opacity.
Colour is represented as three floating-point values (red, green and blue) and opacity is a single
floating point value between 0.0 (transparent) and 1.0 (opaque).

Image generation is performed in the graphics card as follows: the volume is interpolated
(using tri-linear interpolation) at discrete locations along 2D planes orthogonal to the view
direction, generating a series of 2D images aligned orthogonal to the users viewpoint, in back-
to-front order. As these images are generated they are composited (from back to front) into a final
image that will be displayed on the user’s screen. The compositing operation used to compute
opacity and colour at each step in the integration is given by

ĉi = ĉi−1(1 − αi) + c
�x̃/�x

i , (6)

α̂i = 1 − (1 − α̂i−1)(1 − αi)
�x̃/�x, (7)

where ĉi and α̂i are the accumulated colour and opacity, respectively, and ci and αi are the
interpolated colour and opacity. The exponent �x̃/�x is a correction term that allows for varying
sampling rates. It is the ratio of the distance between the i and i − 1 sampling planes, and the
distance between uniform samples with a sampling frequency of one sample per voxel. Since
the entire rendering operation is performed in the graphics hardware, the resulting image usually
appears instantaneously.

By default, the volume rendered images in VAPOR do not take into account the physical
location of light sources. The visual effect is as if the 3D grid were illuminated by a uniformly
distributed diffuse light source. More realistic images which better convey geometric shape can
be rendered by simulating a directional light source that is reflected or absorbed as it interacts
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Figure 2. Comparison of unlighted (left) and lighted (right) volume rendering of
a current roll in a 15363 simulation of a conducting fluid (see section 4). Note how
lighting helps define the borders of and spatial relationships between structures.

with the volume. Lighting is available in VAPOR with consequent image quality improvement
and some loss of rendering speed. When lighting is enabled, a normal vector is needed for each
point in the volume. The normal is determined by approximating the gradient of the variable with
a finite difference. The lighted colour associated with the point is sensitive to both the colour
value at the point (specified by the transfer function) and the angle between the light direction
vector and the normal vector. It consists of three components (see [14]): ambient, specular and
diffuse. Ambient colour is unaffected by the light source and is a constant multiplied by the point
colour value. Diffuse colour, based on the Lambertian lighting model, multiplies the colour value
by the cosine of the angle between the light source direction and the normal vector. The specular
component, useful in indicating shiny surfaces, is calculated as cosn: the cosine of the angle
between the normal vector and the light direction vector, raised to a user-selectable exponent n.
Larger values of n result in surfaces that appear more shiny. Additional detail about the lighting
model used in VAPOR can be found in [14]. Figure 2 shows the difference between a lighted
and unlighted volume rendering of a current sheet roll (discussed in section 4 of this paper).

2.3.2. Volume rendering user interface. The construction of a transfer function that exposes and
highlights scientifically interesting features of a 3D field, displayed as a 2D image, is a nontrivial
task, and the development of new methods for transfer function generation is an active research
area [15]. Transfer function construction in VAPOR is performed with a graphical editor that
enables the user to specify a piecewise-linear mapping from data values to opacity and colour
values. Users specify the location of control points (for either colour or opacity) numerically or
interactively using the mouse. Important features in the data can be distinguished by applying
higher opacity and/or by specifying an identifying colour value at specific control points. A
histogram of the data distribution is presented in the transfer function editor so that the user can
align graphical features with data values, using the frequencies of the data values shown by the
histogram to identify important data intervals. Figure 3 illustrates a simple transfer function that
has been used to distinguish regions with strongly positive and negative vertical momentum in
a 3D simulation of turbulent compressible thermal convection.

2.3.3. Field-line integration. To aid in understanding vector field data, VAPOR provides the
capability of integrating and displaying field lines. VAPOR supports both steady (time-invariant)
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Figure 3. Histogram assisted transfer function editor. Displayed is the vertical
momentum from a simulation of fully compressible turbulent convection. Positive
and negative values have been assigned blue and orange colour tones respectively.
The range of data values displayed is limited by the opacity value assigned, with
very low data values having been eliminated from the scene by the assignment of
zero to the opacity.

and unsteady (time-varying) field-line integration. Field lines are calculated by adaptive line
integration [16] using a fourth-order Runge–Kutta scheme. The values used in the integration
are determined by a tri-linear interpolation of field values over cells in the grid; and, for time-
varying integration, the field values are linearly interpolated between time steps.As the integration
proceeds, the interval size is iteratively doubled or halved to ensure that the angular change
between successive line intervals stays between 3◦ and 15◦. Users can increase or decrease the
integration accuracy by controlling the minimum and maximum length of the integrated line
intervals. At the lowest accuracy level (0.0) the interval size lies between 4 and 10 grid cells; at
the highest accuracy level (1.0), the step size is between 0.05 and 0.25 grid cells.

2.3.4. Field line visualization user interface. The field-line integration starts at a set of seed
points. The seed points can be explicitly positioned in space and time by the user. Explicit
placement of individual seed points is facilitated with a data probe. The probe can be used to
interrogate specific locations in the domain for their data value, construct 2D images (contour
planes) of data values in the grid, and position points within such contour planes. The probe
plane can be positioned and rotated arbitrarily within the data volume. Alternatively, the spatial
positioning of seed points can be controlled by a rake, a 1D, 2D, or 3D axis-aligned box specifying
the bounds of a region within which the seeds are either randomly or uniformly distributed. The
rake is useful when seeding the region for a quick overview of the flow within it, while the probe
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Figure 4. A single vortical downflow embedded in a simulation of fully com-
pressible turbulent convection. Instantaneous (steady) flow lines are computed by
integrating the momentum field in both positive and negative directions, starting
with a set of seed points. Field line colours in this plot indicate distance along
each flow line, but can also be chosen to be constant, to differ for each individual
field line, or to display the magnitude of any field variable along the line. As
described in the text, the seed points can be placed randomly in the vortex region
using VAPOR’s rake tool (left) or explicitly inserted in a cross-section of the core
region of highest vertical vorticity using the probe tool (right).

allows precise control of seed placement. Figure 4 illustrates the use of these seeding options.
Finally, a list of seed positions can be provided in a file by the user. This further increases
the flexibility of the field line visualizer, particularly when used in combination with VAPOR’s
analysis tool coupling capabilities, by allowing seed distributions based on quantitative properties
of the solution.

3. Instabilities of compressible thermal starting plumes

The first of two sample applications of VAPOR which we consider is the visualization and
analysis of 3D compressible thermal starting plumes. The dynamics and stability of thermal
starting plumes is important to turbulent transport in a variety of settings (e.g. [17, 18]), but the
work presented here is primarily motivated by solar and stellar envelope convection. Convection
in the outer layers of stars is dominated by three physical attributes, very significant mean
stratification of the atmosphere (the density of the solar convective envelope, for example,
increases by a factor of nearly a million between the top and bottom), ionization of the principal
plasma components (two-thirds of the energy transported by convection near the top of the
solar convection zone is carried as hydrogen ionization energy), and a strongly temperature-
dependent radiative opacity (dropping by 5.5 orders of magnitude from its maximum in the
outer 3% of the solar convection zone). These characteristics lead to vigorous new downflow
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plume formation in the solar photosphere (e.g. [19]–[22]). The plumes persist with depth and,
in numerical simulations, extend to the bottom of the computational domain. This apparent
stability of the plumes with depth has inspired a number of authors to consider them essential
to the understanding of thermal and angular momentum transport in the overshoot region below
the solar convection zone, with consequent implications for the magnetic dynamo mechanisms
thought to operate there (e.g. [23]–[28]).

But do such plumes actually extend to the base of stellar convective envelopes, as suggested
by simulations? No observations, helioseismic or otherwise, are able to resolve downflow plumes
within the solar interior, and no numerical simulation of an extended convective domain is able
to resolve the secondary instabilities of the individual downflow plumes found within it. Rather
than realistically modelling a broad region of solar or stellar convection, at the expense of under-
resolving the individual downflows within, we focus here on the dynamics of a single thermal
starting plume generated by locally cooling the upper boundary of an otherwise adiabatically
stratified layer. We employ a highly nonuniform grid, concentrated around the plume, in order
to resolve any secondary instabilities of the flow which might be present.

3.1. Formulation

We consider a single thermal starting plume descending through an adiabatically stratified
polytropic [29] layer of ideal gas. The fluid is confined between stress fress, impenetrable,
and constant temperature horizontal boundaries and within a horizontally periodic domain. The
atmosphere spans 6.0 pressure and 3.6 density scale heights, with corresponding pressure and
density contrasts across the layer of 401 and 36.5. To this quiescent and neutrally stable polytropic
atmosphere we apply a Gaussian temperature perturbation. The perturbation is cool, centred in
the upper boundary plane, and ramped up in amplitude over a short time interval (two time
units, where time is measured as the upper-boundary isothermal sound crossing time over the
perturbation full width at half maximum) and subsequently held at a constant value through
the remainder of the calculation. The full domain dimensions are 20 × 20 × 40, in units of the
Gaussian perturbation’s full width at half maximum, and the solution is advanced for 140 time
units. Fluid motions develop within the domain as the thermal anomaly imposed on the boundary
spreads inward. The motions are determined by numerical solution of the fully compressible
equations of mass, momentum, and energy conservation for a medium with constant dynamic
viscosity and thermal conductivity. The exact form of the equations solved can be found in [30],
with values of the parameters corresponding to case E of that paper. Only the gridding parameters
and plume onset time have been slightly altered. The horizontal extent of the 3D domain has been
halved but 504 grid points were employed, instead of the corresponding 512 grid points used
over the same physical range in the 2D calculation, and the boundary perturbation was ramped
up over a small interval of time to its final value, as explained above, rather than being imposed
instantaneously as was done in the 2D study.

The 3D solutions to the initial value problem outlined above were computed using fully
explicit second-order finite-difference approximations to the spatial derivatives and third-
order Runge–Kutta time integration [31]. A 504 × 504 × 2048 nonuniform grid was employed
(arctan deformation), with the plume horizontally occupying only the very central portion of a
horizontally periodic domain. Horizontal and vertical grid stretching were done independently
with the two horizontal directions, x and y, treated identically. The nonuniformity of the grid
is illustrated by figure 5 which shows on the left the fully developed plume (enstophy field
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Figure 5. A fully compressible 3D thermal starting plume showing the enstrophy
field on the computational grid (left), the horizontal (solid) and vertical (dashed)
grid spacing � as a function of physical coordinates x and z (middle), and the
appearance of the plume in physical space (right).

visualized) on the computational grid, in middle the horizontal and vertical grid spacing �

as a function of physical coordinates x and z, and on the right the appearance of the plume
and domain extent in physical space (destretched). Minimum grid spacing occurs at the plume
centre in the horizontal directions (min(�x) = 0.008 in units of the applied perturbation full
width at half maximum) and at the bottom of the domain in the z-direction (min(�z) = 0.01).
The vertical boundaries of the domain are displaced a significant distance from the plume core
(10 units to either side) to minimize their effect on the solution. We shall see that these boundaries
nonetheless continue to influence the results.

3.2. Summary of previous 2D results

Similar studies have already been carried out for 2D planar plumes. In those studies the thermal
starting plume takes the form of a laminar stem flow with a leading vortex cap. The structure
is subject to two instability mechanisms (figure 6): successive pinch detachment of the leading
vortex pair and sinuous instability of the plume stem [30].

The pinch instability was identified in [30] to be the result of dynamical pressure fluctuations
behind the vortex cap structure at the head of the downflow plume. Since the medium is
compressible, as the fluid in the cap spins up positive pressure fluctuations behind the cap
impede flow into the vortex pair from the stem behind. This initiates secondary head formation
within the stem and detachment of the leading pair. The process repeats itself, with successive
detachment of vortex pairs each weaker than the preceding and travelling downward throughout
the layer at a slower rate. The instability was observed over a range of thermal Prandtl numbers
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Figure 6. 2D compressible starting plumes are subject to secondary instabilities.
In a quiescent background, the most prominent leads to successive pinch detach-
ment of the leading vortex pair (left).A sinuous shear mode of the stem flow can be
excited by weak thermal fluctuations in the background medium (right).
Images from [30].

with slight modification. Interestingly, recent laboratory experiments [32] have suggested that a
similar pinch off process occurs in the 3D thermal starting plumes in the absence of significant
compressibility. From the published work however, it is not clear how completely the leading
vortex ring detaches, nor does the process occur repeatedly as observed in the 2D compressible
plume simulations. Nonetheless, it may well be that the mechanism leading to pinch detachment
in the compressible thermal starting plume is not the only one which can cause such detachment.A
model for vortex ring formation at the front of a buoyant starting plume [33] raises the possibility
that the pinch process is sensitive to the rate of plume initiation. This may have significance for
the 3D numerical results to be discussed below, since the rate of plume initiation in these was
slower than that in the 2D studies.

The 2D plume studies were conducted both with and without random background
temperature perturbations of amplitude 10−3. When the background was quiescent (no initial
random perturbations), only the pinch instability was realized. This is because the pinch
detachment was not the result of the linear varicose mode of the stem shear flow, to which
it bears some resemblance (such a mode likely grows at a rate slower than the linear sinuous
mode to be discussed next), but instead an intrinsically nonlinear development due to Reynolds
stresses. By contrast, when the domain into which the starting plume descends is seeded with
weak random temperature fluctuations, a linear sinuous mode of the stem shear flow develops
on a timescale somewhat slower than the nonlinear pinch which already occurs before the stem
shear flow profile is fully developed. Figure 6 displays the difference between the solutions when
the background is quiescent (left) or not (right). By conducting a local analysis of the stem flow
profile, it can be shown that the sinuous instability of the thermal starting plume stem behaves
as a convective linear shear mode, modified by the stratification of the domain [30].
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Figure 7. Time series of volume renderings of the enstrophy of a 3D compressible
starting plume. Simulation parameters are nearly identical (see text) to those
used in the 2D study illustrated by figure 6, yet the behaviour is dramatically
different. The background through which the plume is descending is quiescent
in the simulation illustrated by the time series on the left and is seeded with low
amplitude temperature fluctuations in that illustrated by the series on the right.
Rather than pinch detachment of the leading vortex ring, down flowing fluid from
behind passes through the vortex torus core and disrupts it.

3.3. Summary of 3D results

The goal of the 3D compressible thermal starting plume studies presented here is to determine
whether either or both of the instabilities identified in the 2D flows occurs in 3D flows as well. For
this purpose case E of [30] was duplicated as closely as possible (in a horizontally reduced spatial
domain, as discussed above) both with and without randomly seeded background temperature
fluctuations (as above). Visualizations of the temporal development of the flows under the two
conditions are displayed in figure 7. It is immediately evident that the late time evolution of the
3D plume is fundamentally different from that of the 2D one.

The early stages of the 3D plume, by contrast, do not differ markedly from those of the 2D
plume. A leading vortex torus, analogous to the leading vortex pair in the 2D, quickly develops
after plume initiation and propagates downward through the domain ahead of the stem flow. The
pinch process initiates, as in the 2D, with secondary head formation in the stem region behind
the main vortex torus. Evidence for as many as three vortex regions, the leading torus and two
weaker embedded tori in the stem, is seen, as it was in the 2D flow. Subsequent development,
however, departs significantly from that expected. The pinch detachment never occurs, even
when the background medium is quiescent. Instead, the fluid behind the leading vortex torus
descends through it and disrupts it. The process repeats, eventually turning the head of the plume
into a mass of vortex filaments (figure 7).

This significantly altered behaviour seems to have its origin in two properties of the 3D
plume, both of which can be related to its 3D geometry. The amplitude of the vorticity within the
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Figure 8. A time series of volume renderings following the leading vortex
structure of the 3D compressible starting plume.Top row displays they component
of the horizontal vorticity (positive and negative values shown in blue and red
colour tones respectively). The front surface of the volume visualized is a plane
of constant y through the centre of the plume. Bottom row displays the vertical
velocity (downflowing blue, upflowing red) in the same volume. Pinch detachment
initiates, with secondary vortex rings developing in the plume stem behind the
leading pair, but is suddenly aborted when the leading torus pair is weakened
by mixing (last image, top row). This abruptly reduces the dynamical pressure
fluctuations behind the plume head and allows the stem fluid to descend through
the leading vortex torus and disrupt the head structure (figure 7).

leading vortex torus, and within each of the subsequent secondary tori, is much smaller than that
achieved in the analogous 2D vortex pairs. While the thermal perturbation applied to the upper
boundary of the 3D domain has the same amplitude as that applied in the 2D one, the downflow
induced is columnar rather than planar and so the return flow in the torus can be of much smaller
amplitude while still achieving mass conservation. This in turn means that the dynamical pressure
fluctuations behind the torus are much lower than those behind the 2D vortex pair. Moreover,
the overall structure of the plume head is fundamentally different in the 3D. Figure 8 displays
a time series of volume renderings of the y component of the horizontal vorticity with the front
surface of the volume being a plane of constant y through the centre of the plume. These VAPOR
renderings clearly show that, unlike for the 2D flow, the initial head structure and the subsequent
secondary vorticity structures behind it all contain a relatively strong counter rotating torus out in
front of the main vortical component. It is this torus pair that nearly detaches in the 3D solution.
Detachment fails because the main vortex component, responsible for the pressure fluctuations
behind it which stagnate the oncoming plume stem flow, is weakened by viscous interaction and
mixing with the component out front. Pressure fluctuations behind the main component decrease
in amplitude allowing the previously retarded stem flow behind to accelerate through the torus
centre. Geometry plays a critical role. While the value of the dynamic viscosity is identical in
the 2D and 3D simulations, dissipation in the 3D case is much more effective because surfaces
rather than lines of shear are generated.
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3.4. Difficulties and uncertainties

These 3D simulations raise interesting questions about the role of viscosity in compressible
plume stability. It appears that compressible thermal plume vortex ring detachment is governed
by a delicate balance between induced dynamical pressure fluctuations and vorticity dissipation.
The rapidity of plume onset, the magnitude of the thermal perturbation driving the plume, and
the viscosity of the medium all likely play a role in determining the form of the instability
realized. This is important because the structure of the consequent turbulent plume is sensitive
to the underlying instability mechanism. Coherent turbulent plumes (conical in shape when
stratification is weak) are favoured by leap-frog interactions between vortices, while the pinch
instability, in the presence of stratification, yields isolated detached vortical structures. The
limited set of 3D calculations performed so far is unable to address which of these variants is
more likely to occur in the very inviscid highly stratified solar convective envelope.

Other, fundamental difficulties arise. Adaptive grid methodologies (in contrast to the fine
but fixed grid methods used in the work presented here), when applied to the 2D compressible
plumes, tend to produce small-scale shear instabilities along the plume stem even when the
background through which the plume descends is quiescent. Whether this is a more or less
accurate representation of the actual flow which would be physically realized is currently unclear.
Additionally, the form of the 3D instability in the simulations discussed here is affected at late
times by the rectangular nature of the computational domain. Weak differences in horizontal
inflow velocity at the plume position occur depending on the distance to the domain boundary,
even when that boundary is placed many plume distances away. The far field of the flow feels
only the pressure field which varies depending on the distance between the plume centre and
the horizontally periodic boundary, that being greater in the directions of the domain corners.
This imposes a weak angular perturbation on the solution which effects its late time evolution
(figure 9).

The questions raised, and preliminarily addressed, here require mechanistic not statistical
studies for their answer. It is these types of studies for which VAPOR is a particularly useful tool.
Local flow properties, force balance, and stability can be interactively interrogated. Since the site
of instability is not a priori known, region-of-interest selection from the vast spatial-temporal
data volume is essential.

4. Visualization and analysis of small-scale structures in magnetohydrodynamic
(MHD) turbulence

4.1. Equations and numerical simulations

In this section, we use VAPOR to explore and analyse the properties of small-scale structures
in 3D MHD turbulence. The MHD equations extend the momentum equation for a neutral fluid
to include the coupling of a conducting fluid to magnetic fields [34]–[36]. This approximation
is often used in astrophysics and geophysics to study the dynamics of conducting fluids as well
as the large-scale dynamics of plasmas, e.g. in planetary cores, planetary magnetospheres, the
solar wind, the solar convective region, and in the interstellar medium.

The MHD equations are known to develop, from smooth initial conditions, thin current
and vorticity sheets. In these regions, magnetic reconnection takes place, a process in which
the connectivity of magnetic field lines changes and magnetic energy is rapidly dissipated.
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Figure 9. Time series of pressure fluctuations in the 3D compressible plume head
(positive values shown in gold, negative in blue) showing the development of
nonaxisymmetric perturbations. These are the consequence of the horizontally
periodic Cartesian domain within which the plume solution is calculated.
Horizontal flow velocities are slightly stronger in the directions of the domain
corners, imprinting the domain geometry on the solution. It is yet unclear how
important these perturbations are to the observed instability mode of the 3D plume.

In 2D [37, 38] regions of strong current density and reconnection are associated with neutral
x-points of the magnetic field, and quadrupolar structures in the vorticity. In 3D, the geometry
of these regions is more complex, and it has been shown that sheets can form without the need
of magnetic null points [39]. Moreover, at moderate Reynolds numbers these structures were
observed to render the flow locally 2D.

We consider here data stemming from a 15363 free decaying MHD simulation. The
incompressible MHD equations in dimensionless Aflvénic units [35] read

∂v
∂t

+ v · ∇v = − 1

ρ0
∇P + j × b + ν∇2v, (8)

∂b
∂t

= ∇ × (v × b) + η∇2b. (9)
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Here, v is the velocity field, b is the magnetic induction, j = ∇ × b is the current density, P is
the pressure, ρ0 is the density (assumed constant in this section), ν is the kinematic viscosity,
and η is the magnetic diffusivity.

Equation (8) is the momentum equation with the term j × b (the Lorentz force) taking into
account the force exerted by the magnetic field in the flow. For simplicity in this section, we
consider incompressible flows, and so the continuity equation reads ∇ · v = 0 (ρ0 = 1). The
pressure P is the result of a Poisson equation obtained by taking the divergence of equation (8)
and using the fact that the velocity field is divergence-free.

Equation (9) is the induction equation and derives from Maxwell’s equations for sub-
relativistic velocities (displacement currents are neglected). The equation is accompanied by
∇ · b = 0, indicating the lack of magnetic monopoles. Equation (9) expresses simple physics:
magnetic field lines in a conducting fluid behave as material lines, which are advected and
stretched by the velocity field. This fact, and the presence of the Lorentz force in the momentum
equation (8) (which acts as a restoring force for the fluid), imply the equations support waves
(known as Alfvén waves) with u = ±b. It is worth remarking that these waves are also exact
nonlinear solutions of the ideal (ν = η = 0) MHD equations. When u = ±b, all the nonlinear
terms in equations (8) and (9) cancel, and there is no nonlinear transfer of energy to smaller scales.

The MHD equations have three ideal quadratic invariants under proper boundary conditions
(e.g. periodic boundaries):

E = 1

2

∫ (
v2 + b2

)
d3x, (10)

HC = 1

2

∫
v · b d3x, (11)

HM = 1

2

∫
A · b d3x, (12)

where E is the total energy (kinetic plus magnetic), HC is the cross helicity, and HM is the
magnetic helicity. The vector potential A is defined as b = ∇ × A. While in MHD turbulence the
total energy has a direct cascade to small scales (as in hydrodynamic turbulence), the magnetic
helicity can display an inverse cascade and be transferred to the largest scales available in the
system. The cross helicity can be considered as a measure of alfvenization, since in a flow with
u = ±b the absolute value of the cross helicity is maximal for fixed amplitude of the fields.
For convenience, we can introduce the relative cross helicity ρC = 2HC(〈|v|〉 〈|b|〉)−1, and the
relative magnetic helicity ρM = 2HM(〈|A|〉 〈|b|〉)−1. With these definitions, ρC and ρM can take
values between −1 and 1. Note that while the magnetic helicity HM is gauge invariant, the relative
magnetic helicity ρM is not and we will consider the vector potential A in the Coulomb gauge.

Equations (8) and (9) are solved using a pseudospectral method [40, 41]. The MHD equations
are integrated in a cubic box of side 2π with periodic boundary conditions. The equations
are evolved in time using a second- order Runge–Kutta method, and the 2/3-rule is used for
dealiassing [42]. The initial conditions for the run are given by

v(t = 0) =
3∑

k=1

A(k)vABC(k, φv) +
kmax∑
k=4

A(k) exp
[
i
(
k · x + φv,k

)]
, (13)

b(t = 0) =
3∑

k=1

A(k)vABC(k, φb) +
kmax∑
k=4

A(k) exp
[
i
(
k · x + φb,k

)]
, (14)
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where it is assumed complex conjugate terms are added to have real fields, vABC denotes a helical
ABC flow (see e.g. [43])

vABC(k, φ) = [
B cos(ky + φ) + C sin(kz + φ)

]
x̂ + [A sin(kx + φ) + C cos(kz + φ)] ŷ

+
[
A cos(kx + φ) + B sin(ky + φ)

]
ẑ, (15)

and φv,k and φb,k are random phases with Gaussian distribution. The amplitudes A(k) are chosen
so that the kinetic and magnetic energy spectra ∼ k−3 exp [− 2(k/k0)]2 at t = 0. In practice, the
random modes have to be chosen to have divergence-free velocity and magnetic fields. Also, the
phases for the v and b fields are chosen to have negligible correlation between the two fields.
As a result of the superposition of helical and random components, the initial fields are helical
(although not maximally helical), and there are no null points in the fields.At t = 0, E = 1 (EV =
EM = 0.5 are respectively the kinetic and magnetic energy), ρC ≈ 1 × 10−4, and ρM ≈ 0.7.

The system is allowed to freely decay in time, and no external forcing is applied. The
kinematic viscosity and magnetic diffusivity are ν = η = 2 × 10−4, and these numbers can be
considered in these dimensionless units as the reciprocals of the large-scale Reynolds numbers of
the flow. The MHD equations (8) and (9) are solved on a regular grid using 15363 grid points. The
code is parallelized using MPI, and the simulation we discuss here was done using 512 processors
with 2 GB per processor on an IBM cluster with POWER5 processors. Storing in single precision
one snapshot of one Cartesian component of the fields for visualization purposes requires 13 GB.
As a result, one snapshot of the three components of the velocity and the magnetic field requires
78 GB of storage. In practice, we also store at selected times the three components of the current
density, the vorticity ω = ∇ × v, and the vector potential, to speed up the analysis. The evolution
of the system was computed up to t ≈ 2 and eight snapshots of the fields at different times were
stored, totalling 1.3 TB of data. Visualization and analysis of these outputs were performed using
VAPOR on desktop computers.

4.2. Visualization and data analysis

As previously mentioned, 3D simulations of turbulent MHD flows at moderate resolutions and
Reynolds numbers showed that thin current and vorticity sheets are spontaneously formed as
the system evolves in time. However, unlike the evolution of vorticity sheets in hydrodynamic
turbulence, these structures do not roll to create filaments or ‘tubes’. On the other hand, recent
observations in the magnetosheath [44] reported the presence of structures reminiscent of ‘Alfvén
vortices’ [45], cylindrical current tubes with the velocity and magnetic fields aligned (although
with different amplitudes). The origin of these structures is unclear, and can be either attributed
to kinetic plasma effects or to turbulence.

Recently, the spontaneous rolling of current sheets in turbulent MHD flows to create
cylindrical structures was reported in [46]. Large resolutions and Reynolds numbers were
required, since at moderate Reynolds magnetic tension tends to prevent the rolling of the sheets,
and instead structures are locally disrupted [39]. Here, we use VAPOR to study in detail the
geometrical properties of these structures, their early development, and their ensuing evolution.

Details of the global evolution of the system can be found in [46]. Here we list briefly the
features that are relevant to the following analysis. The system starts from the smooth initial
conditions at t = 0 and as time evolves small-scale current density and vorticity are produced.
From t = 0 to t ≈ 0.6, the maxima of the current density and vorticity grow exponentially.
This stage corresponds to a linear growth of unstable modes. Then, from t ≈ 0.6 to t ≈ 1.1 the
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Figure 10. 3D rendering of current density intensity in a slice of 1536 × 1536 ×
150 grid points. From left to right, visualizations at 1/32, 1/16 and 1/4 of the
total resolution are shown. The white box in the right indicates a small subregion
where rolling of current sheets is observed.

maxima of the current density and vorticity grow as a power law ∼t3. This stage corresponds to
a nonlinear self-similar process in which the current and vorticity sheets that contribute to the
maxima get thinner and more intense. Finally, the maxima of the current density and vorticity
saturate, while the global kinetic and magnetic energy dissipation rates keep increasing as more
and more structures are formed in the flow.

Figure 10 shows a rendering of the current density intensity in a slice of 1536 × 1536 × 150
grid points at t ≈ 1.6, after saturation of the maxima of the current density and vorticity takes
place. At this resolution, it is impossible to allocate the entire array in memory for visualization,
and as a result the hierarchical representation of data in VAPOR is extremely useful to explore
the data and recognize structures. From left to right, visualizations at different resolutions are
shown. At 1/32 of the resolution, a few regions of strong current density can be recognized,
and as the resolution is increased it can be seen that current sheets permeate the entire volume.
Moreover, at 1/4 of the resolution, the occurrence of folding and rolling of the current sheets
can already be observed (see e.g. the white box to the right of figure 10).

The amount of information preserved (or lost) when visualizations at lower resolution are
done can also be shown by computing probability density functions (pdfs). Figure 11(a) shows
pdfs of jz, the z-component of the current density in the region shown in figure 10 at full
resolution, 1/2, 1/4, 1/8, 1/16 and 1/32 resolution. The pdfs at full resolution, 1/2, and 1/4
resolution show the usual stretched exponential tails often associated with intermittency: strong
events in the tails of the pdfs have a large probability of occurrence (compared against a Gaussian
distribution). As the resolution is lowered further, the width and amplitude of the tails decrease
significantly and the pdf of jz at 1/32 resolution is closer to Gaussian. This is to be expected
since strong intermittent events take place in thin current sheets that cannot be resolved at the
lowest resolutions.

In the following, we focus on the structures in the region indicated by the white box in
figure 10. The evolution in time of this region at full resolution is shown both in figures 11(b)
and 12. Figure 11(b) shows pdfs of jz in the region at different times. At early times the pdf
is close to Gaussian and before t ≈ 0.6 no strong tails are observed. As the self-similar regime
starts and nonlinearities prevail, the tails in the pdf grow, and at t ≈ 1.1 the pdfs are far from
Gaussian. However, after this time the tails keep increasing and they saturate about t ≈ 1.5.
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Figure 11. (a) Pdfs of the z component of the current density (jz) in the slice
with 1536 × 1536 × 150 grid points shown in figure 10 at full resolution (black
line), 1/2 resolution (red line), 1/4 (green line), 1/8 (cyan line), 1/16 (blue
line) and 1/32 resolution (purple line). As the data is coarsened, strong gradients
are removed leaving only the smooth large-scale components of the fields. (b)
Pdfs of jz in the subregion indicated in figure 10 at full resolution at different
times: t ≈ 0.6 (blue line), 1.1 (cyan line), 1.3 (green line), 1.5 (red line) and 1.6
(black line).

Figure 12. Rendering of current density intensity at four different times as the
current sheet folds and rolls in the subregion indicated in figure 10. From left to
right and top to bottom, times are t ≈ 0.9, 1.1, 1.3 and 1.6, respectively.

The counterpart of this evolution can be seen in the visualizations of current density intensity
in figure 12. Up to t ≈ 1.1, current sheets get thinner and more intense, and the geometry of the
structures is similar to what was reported in [39] at smaller Reynolds numbers. But after t ≈ 1.1
the current sheets fold and roll. Two of these structures can be seen at t ≈ 1.6, rolling in opposite
directions.
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Figure 13. Above: visualization of current density intensity at t ≈ 1.6 (left) and
magnetic field lines superposed to the current density intensity (right). Below:
vorticity intensity at the same time (left) and velocity field lines superposed to
the vorticity intensity (right).

In 2D, the vorticity in the vicinity of current sheets has a quadrupolar structure [37]. In 3D
at moderate Reynolds numbers, it was observed that vorticity tends to form sheets with the same
geometry than the current sheets [39]. What is the geometry of regions with strong vorticity
here? Figure 13 shows visualizations of the current density and vorticity intensity. Current
and vorticity sheets have the same shape and are collocated. Regions of strong magnetic field
gradients coincide with regions of strong velocity field gradients.

Figure 13 also shows magnetic and velocity field lines, superposed to the visualizations of
current and vorticity intensity, respectively. For convenience, intensities are made transparent
using the transfer function editor in VAPOR, so velocity field lines can be seen across the
structures. Magnetic field lines are aligned with the rolls. This is to be expected since magnetic
field lines along this direction cannot exert any tension to prevent the rolling from occurring.
Velocity field lines are more complex. A large component of the velocity field can bee seen along
the direction these structures are advected. But close to the current and vorticity sheets strong
shear can be recognized. Moreover, field lines close to the roll in the centre of the region are
entangled and deformed, and a component of the velocity field along the direction of the roll
develops. This is important for the alignment of the two fields inside the current sheets, as will
be shown next.

Magnetic reconnection, easier to characterize in 2D, is more difficult to study in 3D. Several
definitions of the process for 3D flows have been attempted, e.g. as the process where plasma
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Figure 14. Left: current density intensity. Centre: visualization of relative
magnetic helicity ρM (the cosine of the angle between A and b in the Coulomb
gauge). Regions with |ρM| < 0.5 are transparent and not shown; red corresponds
to −1 and blue to 1. Right: relative cross helicity ρK (the cosine of the angle
between v and b). Regions with |ρK| < 0.5 are transparent and not shown; red
corresponds to −1 and blue to 1.

flows across a thin sheet that separates regions with different magnetic field topologies [47], or
as the process by which the connectivity of magnetic field lines changes (see e.g. [38]). In this
context, magnetic helicity is in 3D a quantity of interest. This ideal invariant is a topological
quantity proportional to the number of links in the magnetic field lines. Figure 14 shows a
visualization of the density of relative magnetic helicity ρM(x) = A · b(|A||b|)−1 where A is
in the Coulomb gauge. Only regions with |ρM(x)| > 0.5 are shown using the transfer function
editor in VAPOR, and regions with ρM(x) = ±1 (1 corresponding to blue, −1 corresponding to
red) are strongly helical. Note the two strong current sheets (in the upper left corner, and in the
centre of the region) are separating regions of opposite sign of relative magnetic helicity. It can
also be seen that in this subvolume positive ρM dominates over negative ρM, as can also be seen
from the pdf of relative magnetic helicity in figure 15(a).

Figure 14 also shows the relative cross helicity ρC(x) = v · b(|v||b|)−1. This quantity is the
cosine of the angle between the velocity and magnetic fields as a function of space. Both current
rolls show strong alignment between the two fields, and the current sheets are collocated with
the local maxima of relative cross helicity. The current roll in the centre of the image has positive
cross helicity, while the current sheet in the top left corner has negative cross helicity. However,
although aligned, the fields in the current sheets are not alfvenic (u = ±b), since the amplitudes
of the two fields are different. In this region negative cross correlation dominates over positive, as
can be seen from the pdf of ρC(x) in figure 15(b). Also, although alignment of the flows is rather
strong in the vicinity of the sheets, globally the flows remain uncorrelated and ρC ≈ 4 × 10−4 at
t ≈ 1.6.

The geometry and evolution of these structures is reminiscent of the MHD Kelvin–
Helmholtz instability [48]–[50]. This instability has been observed before in numerical
simulations and in the Earth’s magnetosphere, although in simulations it was reported only
in studies in which the initial profiles of the velocity and magnetic field were adjusted to observe
the instability, and not spontaneously occurring in a turbulent flow. The difference is crucial,
because in turbulent MHD flows it was believed magnetic tension would prevent the formation
of such structures at small scales. To the best of our knowledge, the formation of these structures
in a turbulent flow was reported for the first time in [46], and the identification of the structures
at this resolution was facilitated by VAPOR.
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Figure 15. (a) Pdf of relative magnetic helicity ρM in the region shown in
figure 14. (b) Pdf of relative cross helicity ρK in the same region.

As in the previous section, the use of VAPOR to explore and analyse huge datasets enabled
us to study geometrical properties of the small-scale structures, and their dynamical evolution.
This significantly augments the usual set of statistical and spectral tools used to analyse data
from numerical simulations of geophysical and astrophysical flows.

5. Discussion

Both of the analyses described in the preceding sections were conducted using relatively modest
computing resources. The authors each had access to a Linux workstation, equipped with a
commodity graphics card, and a high-bandwidth storage system with sufficient capacity to
contain an entire simulation output as well as any derived quantities needed. We contrast this
to the massively parallel computing clusters required to perform the initial simulations. Despite
this computing capability mismatch and the interactive processing demands inherent in analysis
work, we were able to successfully carry out our investigations.

Combining visualization with quantitative tools, in this case ITT’s IDL, was instrumental in
coping with the huge datasets. By employing visual identification to cull unessential regions of the
data, attention and computing resources were focused on pertinent structures, localized in space
and time. This was true for both the readily identifiable vortex structure of the compressible
plume head and the more difficult to detect current roll embedded in the MHD study. Once
structure identification was made and a reduced ROI chosen, the ability to selectively coarsen
or refine the computational grid further aided our work by significantly reducing the time spent
waiting for results. Full resolution volume rendering or analysis of either dataset discussed, while
possible, is frustratingly slow. Yet, as we have seen, coarse approximations of the data (which
may be far more readily explored interactively) still possess sufficient information to preserve,
and allow the identification of, small but relevant structures. Full resolution analysis needs to be
applied only to a significantly reduced sub-domain of data.

While volume rendering of scalar quantities proved to be an extremely useful way of
exploring both datasets considered, other tools, such as field-line integration and lighting
adjustment, also contributed to the identification and understanding of structures and their
evolution. In section 4, field-line integration and visualization in conjunction with volume
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rendering was used to clarify how the structures are locally aligned with the velocity and
magnetic fields. Lighting, although decreasing the overall speed of the renderer, proved useful
in identifying small perturbations in the pressure field (with as yet undetermined but perhaps
significant implications for overall stability) of the plume study in section 3. Lighting also proved
invaluable in highlighting structural borders, determining the relative positions of structures, and
producing publication-quality figures. When rendering speed is critical, lighting can be employed
intermittently as needed for clarification.

Notwithstanding the progress we have made in the investigation of high resolution numerical
simulation output, challenges still remain. The analysis model we have presented—visual
detection of ROIs that may be subsequently processed with more quantitative methods—works
well provided the features of interest are large enough to be preserved at coarsened resolutions.
For fine-scale structures such as vortex tubes in hydrodynamic turbulence or current sheets
and rolls in MHD turbulence, where features approach the grid resolution, our wavelet-based
transforms, which applies a low-pass filter to the data, may be less useful. Other transforms,
which preserve local maximum values, for example, may be more beneficial with grid cell sized
structures. The lack of scalability of our quantitative tool of choice posed another challenge.
IDL is currently limited to running on computing systems with a shared memory address space.
This places an upper bound on the size of the arrays that can be processed without investing
substantial coding efforts to develop so-called out-of-core algorithms, capable of operating on
data larger than the physical memory size.

Despite these limitations, we have found our methods to be useful in the exploration and
analysis of very large datasets. Anticipated future improvements are outlined in section 6 but
the core capabilities of VAPOR appear robust. The ability to interactively explore and analyse
flows, identify structures, follow their dynamical evolution, compute new derived quantities,
and seamlessly integrate these into an ongoing VAPOR session, all complement and expand the
set of statistical and spectral tools often used to analyse the output from large-scale numerical
simulations. In many cases a deeper physical understanding of the evolving flow requires local
analysis of the structures produced by and within it. This is a task that becomes increasingly
difficult with each advance in supercomputer capabilities. The two datasets discussed here are a
good example of this. Neither represents the largest computation currently possible on the most
advanced machines of our day, yet both presented significant hurdles to analysis efforts. VAPOR
enabled data exploration that may have been otherwise very much more difficult.

6. Future work

VAPOR’s approach to large data handling is demonstrably effective with terabyte-size datasets.
In practice, computational grids on the order of up 20483 are manageable with relatively
modest computing resources. However, pushing beyond these resolutions, as some computational
physicists already have (e.g. [51]), will require additional measures. Parallel implementations
may open the door to significantly larger datasets, but only at the cost of requiring substantially
more complex and costly computing resources. Lossy compression, readily afforded by the
wavelet data encoding scheme currently employed, may also provide incremental improvement
without the need for more hardware, particularly if the wavelet encoding process is performed in
tandem with the simulation, and provided the desired analysis tolerates a degree of information
loss. We intend to explore both of these avenues in our future work.
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In examining time-varying MHD datasets, it is useful to understand how magnetic field
lines evolve in a changing velocity field. We are implementing a field-line advection algorithm
that will enable users to visualize the motion of field lines (e.g. magnetic) under the influence
of a time-varying velocity field. The scheme works by first identifying points on steady field
lines with maximal field magnitude. These points are advected in the velocity field and their
positions at the next time step are used to calculate a new set of lines. Visualization of the field
lines advected in this way can provide useful information about the evolving field in the presence
of flow, provided that the diffusion of the field being visualized by the lines is small.

VAPOR currently limits itself to Cartesian grids with uniform sampling. Yet more general
computational meshes are widely found in computational fluid dynamics and MHDs. For
example, the data presented in section 3 was computed on a structured but highly nonuniform
grid and required resampling before investigation. Such resampling is time consuming and error
introducing. Many local domain models employ such nonuniform gridding to resolve processes
inherent to boundary layers. Spherical grids, prevalent in atmospheric research and in global solar
and other astrophysical computations, pose yet another challenge. Adaptive meshing techniques
and the use of higher-order unstructured grid elements are becoming more common place as a
means to improve computational efficiency and reduce dataset sizes. These more generalized
meshes pose challenges throughout the VAPOR pipeline, from progressive data access schemes
to visualization algorithms able to understand and efficiently operate on complex mesh elements.
VAPOR will need to evolve to seamlessly support a wider collection of data types.
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