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Abstract. Numerical solutions of the incompressible magnetohydrodynamic
(MHD) equations are reported for the interior of a rotating, perfectly-conducting,
rigid spherical shell that is insulator-coated on the inside. A previously-reported
spectral method is used which relies on a Galerkin expansion in Chandrasekhar–
Kendall vector eigenfunctions of the curl. The new ingredient in this set of
computations is the rigid rotation of the sphere. After a few purely hydrodynamic
examples are sampled (spin down, Ekman pumping, inertial waves), attention
is focused on selective decay and the MHD dynamo problem. In dynamo runs,
prescribed mechanical forcing excites a persistent velocity field, usually turbulent
at modest Reynolds numbers, which in turn amplifies a small seed magnetic
field that is introduced. A wide variety of dynamo activity is observed, all
at unit magnetic Prandtl number. The code lacks the resolution to probe high
Reynolds numbers, but nevertheless interesting dynamo regimes turn out to be
plentiful in those parts of parameter space in which the code is accurate. The key
control parameters seem to be mechanical and magnetic Reynolds numbers, the
Rossby and Ekman numbers (which in our computations are varied mostly by
varying the rate of rotation of the sphere) and the amount of mechanical helicity
injected. Magnetic energy levels and magnetic dipole behaviour are exhibited
which fluctuate strongly on a timescale of a few eddy turnover times. These seem
to stabilize as the rotation rate is increased until the limit of the code resolution
is reached.
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1. Introduction

In a previous paper, a spectral method for computing incompressible fluid and magneto-
hydrodynamic (MHD) behaviour inside a sphere was introduced ([1], hereafter referred to as
‘MM’). The emphasis in MM was on accurate computation of global flow patterns throughout
the full sphere (including the origin) with special attention to the computation of dynamo action,
whereby the kinetic energy of a turbulent conducting fluid may give rise to macroscopic magnetic
fields. The computations were limited to moderate Reynolds numbers, with boundary conditions
in which the normal components of the velocity field, magnetic field, vorticity, and electric current
density were required to vanish at a rigid, spherical, insulator-lined, perfectly-conducting shell,
and the three components of the velocity and magnetic field were regular at the origin. The feature
previously lacking that we wish to explore in the present paper is that of uniform rotation of the
sphere. We postpone to the future the investigation of insulating spherical shells which permit
the magnetic field to penetrate into a non-conducting region outside [2], though we remark later
on some considerations relevant to this modification.

In section 2, we formulate the equations to be solved for a uniform-density conducting
fluid inside a sphere in a familiar set of dimensionless (‘Alfvenic’) units. We refer to MM for
background and such of the details as remain unchanged. The main changes reported here are:
(i) the introduction of a Coriolis term in the equation of motion (the centrifugal term may be
absorbed in the pressure for incompressible flow); and (ii) the velocity field v (instead of the
vorticity ω) and magnetic field B are expanded in orthonormal Chandrasekhar–Kendall (‘C–K’)
vector eigenfunctions of the curl [1], [3]–[6]. The physical situation being simulated is again a
perfectly conducting, mechanically impenetrable sphere coated on the inside with a thin layer
of insulator, but now viewed from a coordinate system that is regarded as rigidly rotating with
the bounding spherical shell. Unsurprisingly, the dynamical phenomena resulting are markedly
different from, and richer than, they were in the case without rotation.

Section 3 describes the results of some purely hydrodynamic runs (the code may be readily
converted into a Navier–Stokes code by simply deleting the terms associated with the magnetic
field). Included are examples [7, 8] of: (i) spin down, or decay of kinetic energy in the rotating
frame due to the action of viscosity; (ii) Ekman pumping with flow patterns that result from
rotating boundaries; (iii) internal waves, three-dimensional (3D) relatives of meteorological
Rossby waves, that depend on the stabilization introduced by rotation for their oscillatory
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features; and (iv) some mechanically-forced runs with a finite angle between the symmetry
axis of the forcing and the axis of rotation. This fourth case results in columnar vortices due to
the effect of rotation [8, 9] (note convection is absent in our present formulation).

Section 4 proceeds to a consideration of the MHD case with an emphasis on selective decay
and the kinds of dynamo behaviour we have been able to resolve. The spectral method we use
involves inherently less resolution than some other methods in use, and we have been careful to
study parameter regimes only where we can resolve the relevant length scales. Selective decay is
observed to be somewhat arrested as the rotation rate is increased. A pleasant surprise has been
the wide variety of dynamo behaviour we have been able to resolve without the need to reach
parameter regimes regarded as realistic for planetary dynamos [2], [9]–[13]. In the summary,
section 5, we describe briefly some plans we have for improving the resolution of the code by
some pseudospectral modifications and some intended future diversification of the boundary
conditions.

2. Computational method

We begin from the MHD equation of motion in a rotating coordinate frame [2, 14],

∂v
∂t

= v × ω + j × B − ∇
(

P +
v2

2

)
− 2� × v + ν∇2v + f, (1)

and the MHD induction equation,

∂B
∂t

= ∇ × (v × B) + η∇2B. (2)

In the dimensionless Alfvenic units [1], v is the vector velocity field, B is the magnetic induction,
ω = ∇ × v is the vorticity, and j = ∇ × B is the electric current density. The generalized
pressure (which contains, in addition to mechanical pressure, contributions from the centrifugal
force per unit mass that result from the rotating coordinate system) is P . The velocity is
normalized by an rms value of the typical flow field, which is of O(1). The magnetic field
is in units that, using the square root of the uniform mass density, converts a magnetic field into
an Alfvén speed based upon the same rms velocity. Lengths are normalized to the radius of the
sphere, and times to the eddy turnover time based on that velocity and length. The dimensionless
radius of the sphere is taken to be unity. Dimensionless pressures are in units of the ratio of the
rms true pressures to the mass density. The dimensionless viscosity, which, in the dimensionless
variables, can be interpreted as the reciprocal of a mechanical Reynolds number, is ν, and the
magnetic diffusivity, which can be interpreted as the reciprocal of a magnetic Reynolds number,
is η. The vector field f is a solenoidal, externally-applied forcing field which is intended to
mimic the presence of mechanical sources of excitation of v. Equations (1) and (2) are to be
supplemented by the requirements that the divergences of both v and B must vanish everywhere.
Dropping equation (2) and the terms in equation (1) containing j and B leaves the forced Navier–
Stokes equation, and dropping f leaves the unforced version of the Navier–Stokes equation. �

is the (constant) rotation speed of the coordinate system, understood to be attached to a rotating
spherical shell that constitutes the boundary and is both mechanically impenetrable and perfectly
conducting, with a thin layer of insulator on the inside surface.
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The nontrivial boundary conditions imposed are that the normal components of v, B, j,
and ω shall all vanish at the radius of a unit sphere centred at the origin. The three components
of the fields v and B are also required to be regular at the origin. The vanishing of the normal
component of v at the surface of the unit sphere follows from the fact that there is no mass flux
across the surface, while the vanishing of the normal component of ω is implied by, but does not
imply, no-slip boundary conditions at that radius. Going further with an attempt to implement
fully a set of no-slip boundary conditions raises unresolved paradoxes with respect to the pressure
determination which we prefer not to confront here (see [1, 15, 16] for a discussion of these),
believing that their seriousness and intractability require consideration in the context of simpler
situations than the present one.

The spectral technique implemented involves expanding v and B in terms of C–K functions
(defined below):

v(r, t) =
∑
qlm

ξv
qlm(t)Jqlm(r), (3)

and

B(r, t) =
∑
qlm

ξB
qlm(t)Jqlm(r). (4)

The C–K functions [1], [3]–[6], Ji are defined by

Ji = λ∇ × rψi + ∇ × (∇ × rψi) , (5)

where we work with a set of spherical orthonormal unit vectors (r̂, θ̂, φ̂) and the scalar function
ψi is a solution of the Helmholtz equation, (∇2 + λ2)ψi = 0. The explicit form of ψi is

ψi(r, θ, φ) = Cqljl(|λql|r)Ylm(θ, φ), (6)

where jl(|λql|r) is a spherical Bessel function of the first kind which vanishes at r = 1 and
Ylm(θ, φ) is a spherical harmonic in the polar angle θ and the azimuthal angle φ; |λql| with
integer q are the zeros of jl. The subindex i is a shorthand notation for the three indices (q, l, m);
q = 1, 2, 3, . . . corresponds to the positive values of λ, and q = −1, −2, −3, . . . indexes the
negative values; finally l = 1, 2, 3, . . . and m runs in integer steps from −l to +l. The vectors Ji

satisfy

∇ × Ji = λiJi, (7)

and with the proper normalization constants are an orthonormal set that has been shown to be
complete [6]. The integral relation expressing the orthogonality of the Ji is:

∫
Jqlm · J∗

q′,l′, m′ dV = δq,q′δl,l′δm,m′, (8)

where the asterisk denotes complex conjugate, and with the normalization constants given by:

Cql = ∣∣λqljl+1(|λql|)
∣∣−1

[l(l + 1)]−1/2 . (9)
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The scheme for solving equations (1) and (2) is conceptually simple. We substitute the
expansions (3) and (4) into equations (1) and (2), utilize the fact that Ji are eigenfunctions of the
curl, and then take inner products one at a time with the individual Ji. Their orthogonality enables
us to pick off expressions for the time derivatives of the time-dependent expansion coefficients
ξv
i and ξB

i , and equations (1) and (2) are thereby converted into a set of ordinary differential
equations for the expansion coefficients. These appear as

∂ξv
i

∂t
=

∑
j,k

Ai
jk

(
ξv
j ξ

v
k − ξB

j ξB
k

)
+ 2

∑
j

� · Oi
jξ

v
j − νλ2

i ξ
v
i + ξ

f

i , (10)

where ξ
f

i are the expansion coefficients of the forcing f in the C–K base, and

∂ξB
i

∂t
=

∑
j,k

Bi
jkξ

v
j ξ

B
k − ηλ2

i ξ
B
i , (11)

with the coupling coefficients defined as

Ai
jk = λkI

i
jk, Bi

jk = λiI
i
jk, (12)

Ii
jk =

∫
J∗

i · Jj × Jk dV, Oi
j =

∫
J∗

i × Jj dV. (13)

The infinite set of ordinary differential equations is truncated at some level above maximum
values of |q| and l, in the usual manner of a Galerkin approximation [17]. The evaluation of
equations (10) and (11) and the storage of the resulting arrays of coupling coefficients in tables,
are the most demanding numerical tasks of the problem. Once available, they do not have to be
recomputed, and provide a method for verifying the ideal quadratic conservation laws with high
accuracy [1]. Also, since the method is purely spectral and fields are only computed in real space
for visualization purposes, there is no numerical singularity at the centre of the sphere.

The main drawback of the scheme, as with any wholly spectral one, is that the convolution
sums in equations (10) and (11) grow rapidly with increasing maximum values of |q| and l, and
limit the resolution when compared to pseudospectral computations utilizing fast transforms (in
practice, a resolution of max{|q|} = max{l} = 9 was used in all the runs). This limits us to modest
Reynolds numbers (all our computations reported here have limited themselves to resolvable
Reynolds numbers). Future plans include pseudospectral modifications to the evaluation of at
least the angular parts of the nonlinear terms in equations (1) and (2), as will be mentioned again
in the final summary (section 5).

3. Hydrodynamic examples

Some neutral-fluid effects (good introductions to all of which may be found in [7, 8]) are treated
first before proceeding to MHD. It is worth noticing here that although our boundary conditions
are implied by, but do not imply no-slip velocities, several qualitative and some quantitative
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Figure 1. (a) Time histories of the decay of mechanical energy for four
hydrodynamic runs (H1 to H4) with identical initial velocity fields but different
rotation rates �. (b) Decay rates versus the square root of � for the same four runs.

agreements are observed with previous experiments and theory. First we study simple problems
in which initially relatively rotating fluids adjust themselves to rigid rotation with the spherical
shell. We study these decays as functions of the rotation rate �. The prediction [7] is that the
decay of the non-rigid body components should be exponential, with a decay rate that varies as
�1/2. Figure 1(a) shows the time histories of the decay of mechanical energy for four runs with
identical initial velocity fields limited to a few random low mode numbers (large spatial scales).
The runs are denoted as runs H1, H2, H3 and H4. Specifically, we have as initial conditions
a random superposition of modes with |q| = 1, 2, l = 1, 2, and all allowed values of m, with
viscosity ν = 0.01 and values of � of 0, 1, 4, and 10 respectively. Each curve is approximately
exponential, and when they are fitted with exponentials, the decay rates plotted versus the square
root of � appear as in figure 1(b), and are adjudged to be in satisfactory agreement with theory [7].
The nonlinearities excite smaller spatial scales, and the decay process is progressively enhanced
by increasing the rotation rate.

A second feature of rotating spherical flows observed in our code is the development of
Ekman-like layers and the action of Ekman pumping [7, 8] (see also [18] for a detailed study
in rotating spherical shells). The flow patterns are characterized by the development of interior
vortical flows with some symmetries, and thin layers that separate the large vortices and also lie
along the wall boundary layers. These have a characteristic thickness of the order of δ ∼ E

1/2
K R,

where R = 1 is the radius of the sphere, and the Ekman number is EK = ν�−1 L−2, with L a
characteristic scale of the flow. The ability of the code to compute these layers is limited by
its resolution. Realistic values of the Ekman number are, for planetary core regimes [2, 9, 14],
beyond our range. In all the runs presented here we will limit ourselves to cases where δ can
be properly resolved with the number of modes used in the simulations. The presence of the
Ekman layers is concomitant with the development of smaller spatial scales and hence of more
rapid dissipation. Figure 2 illustrates this fact. Figure 2(a) is the integrated squared vorticity,
or enstrophy, for the four runs whose decay has just been seen to be exponential. The largest
rotation rate corresponds to the curve with the highest early peak in enstrophy spectrum, the
second highest with the second largest, and so on. Figure 2(b) shows the energy spectra at t = 1
for the four runs and figure 2(c) shows the same energy spectra at t = 6. In every case, the flatter
spectra, and hence the shorter wavelength dominances, correspond to the higher values of �.
This is the result of the formation of a thinner boundary layer as � is increased.
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Figure 2. (a) Enstrophy for runs H1 to H4 as a function of time (same labels as
in figure 1). (b) Energy spectra at t = 1 for the same runs, and (c) energy spectra
at t = 6. In all cases, solid lines are for � = 0, dotted lines for � = 1, dashed
lines for � = 4, and dash-dotted lines for � = 10.

The range of Ekman layer behaviour we have been able to observe is very wide. We
show in figure 3 the results of two simulations (labelled E1 and E2) with initially random
axisymmetric (m = 0) velocity fields which are purely azimuthal. For both runs, the initial
velocity is proportional to the difference between Jq,l,0 and J−q,l,0, which has only an azimuthal
component. For run E1, q = 1 and l = 1, and for run E2, q = 1 and l = 2. Both runs have
ν = 0.01 and � = 10. The time evolution of the runs is similar to the evolution displayed in
figures 1 and 2. However, the axisymmetric initial conditions in runs E1 and E2 make visualization
of flow patterns easier. Figure 3 shows the initial and late-time flow patterns for these runs, using
theVAPOR graphics package [19] that will be repeatedly used throughout this paper for graphical
demonstrations. The rotation generates poloidal components of the velocity field fast, and at late
times different patterns are observed depending on the initial value of l. In run E1, at late times
the flow displays a poloidal circulation on top of the initial toroidal field: the flow is directed
towards the centre of the sphere along the axis of rotation, and a return flow is observed in both
hemispheres close to the wall. In other words, the flow can be described as the superposition of
a toroidal differential rotation and a poloidal meridional circulation. This circulation is radially
outward in the meridional plane, directed towards the poles close to the wall, and redirected
toward the equatorial plane again as the flow gets close to the poles. Both hemispheres show the
same pattern. In run E2 the pattern is more complex, and vertical velocities are observed in the
vicinity of the axis of rotation, while high and at intermediate latitudes a poloidal circulation is
generated.

As a third hydrodynamic test of the code we demonstrate inertial wave motion in the small-
amplitude limit. Equations (10) and (11) can be linearized in powers of a small departure from
a uniform rotation velocity; then solutions can be sought which vary with time as ei�t. The
resulting linear homogeneous algebraic system can be solved in a Galerkin approximation by
expanding the velocity and vorticity in the C–K functions. An anti-Hermitian matrix results
whose eigenfunctions can be found numerically and whose corresponding eigenvalues i� may
be computed numerically in the process. Then any one of the oscillatory modes can be loaded
numerically into the ideal version of the code and run with the overall amplitudes chosen to be
very small. The time evolution is accurately predicted by the computation of the single modes,
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Figure 3. Above: mechanical energy density and velocity field lines in run E1,
at t = 0 (left) and at t = 6 (right). Below: idem for run E2. For convenience,
energies and field lines are always shown in pairs, with energy densities on the
left and field lines on the right. The field lines change colour according to the
distance integrated from the initial point, from red to yellow, blue, and magenta.
The red, green, and blue arrows indicate respectively the x-, y-, and z-axis. � is
in the z-direction. In both cases, the energy density is symmetric with respect to
the equator, while the flow itself is antisymmetric in run E1 (above).

which are standing waves. Figure 4 shows four equatorial cross-sections of the sphere at different
times with the axial velocity indicated by the colour codes, and the radial and azimuthal velocities
indicated by arrows (� = 10 in this run). The times are chosen to be one quarter-period apart.
The oscillation frequency � for the particular mode shown as obtained from the eigenvalue
problem is in good agreement with the results obtained from the fully nonlinear code (� ≈ 49).

In forced hydrodynamic simulations in the presence of strong rotation, we also observe the
development of columnar structures in the flow, aligned with the axis of rotation. The discussion
of these simulations will be left for the next section, where the connection between these columns
and dynamo action will be considered.

4. MHD and the dynamo

4.1. Selective decay in the sphere

Before passing to a discussion of the mechanically driven spherical dynamo, we present first
the results of two tests of 3D MHD ‘selective decay’ as affected by the presence of rotation.
Selective decay is a familiar turbulent decay process, usually incompressible, long studied in
periodic geometry [20]–[22], wherein one ideal invariant is cascaded to short wavelengths and
dissipated while another remains locked into long wavelengths and is approximately conserved.
The phenomenon, closely connected with inverse cascade processes for driven systems, leads
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Figure 4. Equatorial cross-section of the velocity field for an inertial wave in the
rotating sphere. The reference frame is fixed to the sphere. � is in the z-direction.
The axial velocity is indicated by the colours, while the radial and azimuthal
velocities are indicated by the arrows. For this mode, the frequency is � ≈ 49.

toward a state in which the ratio of the two ideal invariants involved is minimized and which
therefore is accessible to variational methods. In 3D MHD, a quantity that may be preferentially
dissipated is the total energy E = EV + EM (kinetic plus magnetic) while magnetic helicity HM

may be approximately conserved. Under other circumstances, energy may be dissipated while
cross helicity K is approximately conserved, leading to the phenomenon of ‘dynamic alignment,’
[23]–[25] in which the velocity field and magnetic fields are highly correlated. The definitions
of HM and K are

HM = 1

2

∫
A · B dV, (14)

K = 1

2

∫
u · B dV, (15)

where A is the vector potential whose curl is B, and the integrals run over the entire volume
of the fluid. What we are interested in demonstrating here is the effect that rotation has on the
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Figure 5. (a) Magnetic energy EM (solid line), kinetic energy EV (dotted line),
and magnetic helicity HM (dashed line) in the selective decay run S1. (b) Same
quantities for run S2. The two power laws are indicated in the figures only as a
reference.

development of the selective decay of total energy relative to magnetic helicity inside a sphere. It
will be useful for these and other purposes, to have a definition of the magnetic dipole moment:

µ = 1

2

∫
r × j dV. (16)

which is seen to be readily expressible in terms of the expansion coefficients for B [1].
The initially excited modes for the two runs we will present (‘S1’ and ‘S2’) are those

for q = ±3, l = 3, and all possible values of m. The initial values chosen for the expansion
coefficients are:

ξv
±3,3,0 = −u0, ξv

±3,3,0 < m�3 = u0(1 + i), (17)

ξB
3,3,0 = 10

6 ξB
−3,3,0 = b0, ξB

3,3,0 < m�3 = 10
6 ξB

−3,3,0 < m�3 = b0(1 − i), (18)

with u0 and b0 chosen so that at t = 0, the magnetic and kinetic energies are EM = EV ≈ 0.5,
K = 0, and HM ≈ 0.034. Some helicity cancellation occurs because of the two signs of λ (or q).
As a comparison, note that for the q = 3, l = 3 mode alone, HM/EM is no more than about 0.072
(this is the maximum value of |HM/EM| if only modes with |q| = 3, l = 3, and one sign of λ are
excited). In both runs, the magnetic diffusivity and kinematic viscosity are ν = η = 0.006; the
Reynolds numbers are Re ≈ Rm ≈ 170, based on the radius of the sphere. The two runs differ
by the values of � chosen, which are 2 and 12, respectively. These mean that the Rossby and
Ekman numbers of the two runs are, respectively, RO = U(�R)−1 = 0.5, EK = 0.003 for S1 and
RO = 0.083, EK = 0.0005 for S2. The decay of magnetic energy, kinetic energy, and magnetic
helicity for runs S1 and S2 are shown in figure 5. The behaviour in run S1 is not significantly
different from the non-rotating case [1]. Note that in both runs, the kinetic energy at late times
is negligible, and that magnetic and kinetic energies decay faster than the magnetic helicity.
However, the decay of all these quantities in S2 seems to be faster than in S1.
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Figure 6. Relative helicity HM/EM in selective decay runs S1 (solid) and S2
(dashed).

The relative helicity, HM/EM, is shown for runs S1 and S2 in figure 6. It will be seen that
the increased rate of rotation in S2 has somewhat arrested the selective decay, for reasons not
totally understood. It may be that the rotation has resulted in sufficient two-dimensionalization
of the flow [7]–[9] that the inherently 3D nature of the selective decay has been compromised.
But from figure 6 it can also be seen that the ratio of HM to EM has approached reasonably
closely to its maximal value of min−1{|λql|} ≈ 0.22 (the maximum value of |HM/EM| when only
modes with |q| = 1, l = 1, and one sign of λ are excited). The maximal value would indicate
a total disappearance of the non-rotational kinetic energy (i.e. a rigid rotation), and all the
magnetic energy in the largest-scale modes (smallest |λ|) allowed by the boundary conditions: a
magnetized, ‘frozen’ condition. A second possible complication to the process of selective decay
of HM/EM in spherical geometry is that there exists a second ideal constant of the motion that
has no precedent in periodic geometry: the component of angular momentum parallel to �, that
might turn out to be a competitor to HM as a better-preserved-than-energy ideal invariant under
viscous and resistive decay; this question deserves further investigation in the future.

The behaviour of the dipole moment for the two runs is shown in figure 7. The solid lines
are the traces of the projected direction of the dipole moment on the surface of the sphere as
functions of the time, and the orientation is such that the axis of rotation points upward. In the
lower parts of these two figures, the magnitude of the dipole moment is plotted versus time. In
both cases, it will be seen that the dipole’s orientation initially wanders erratically near its initial
position, and finally ends at a ‘mid-latitude’ direction not far from where it began. This was
something of a surprise to us, since we had expected it to line up with the axis of rotation or at
least close to it. Figure 8 shows VAPOR plots with the energy densities, velocity and magnetic
field line structure for the initial conditions in runs S1 and S2, as well as the late stages of both
runs (t = 14) when the selective decay process has saturated and all the nonlinear terms are small,
preventing any further evolution of the system except for dissipation. For strong rotation (run
S2), the velocity field is quasi-2D and develops column-like structures at late times, while the
magnetic field is highly anisotropic (although the dipole moment is not aligned with the axis of
rotation). Note magnetic field lines in this case are aligned with the z-axis (the axis of rotation),
and velocity field lines are mostly toroidal. Actually, the ratio |vφ/vz| at t = 14 averaged over
the whole volume for this run at t = 14 is ≈ 13.
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Figure 7. (a) Trace of the dipole moment on the surface of the unit sphere (above)
and amplitude of the dipole moment as a function of time (below) for the selective
decay run S1. (b) Same quantities for run S2.

4.2. Dynamos

We turn now to the case of the forced spherical dynamo computations, in which specified nonzero
forcing functions f are added to the right-hand side of equation (1) or (10) to provide a persistently-
active, non-decaying velocity field.After a purely hydrodynamic run to reach a statistically steady
state, very small magnetic fields are introduced to see if the velocity fields will cause them to
amplify, and attention focuses on questions like the orientation of the resulting magnetic dipole
moment relative to the axis of rotation and the dipole moment’s magnitude. We are also interested
in the kinetic and magnetic energy spectra that result, and how the eponymous dimensionless
numbers of the rotating fluid (Reynolds, magnetic Reynolds, Rossby and Ekman) influence
the magnetic quantities. These appear to be essential control parameters of the problem. The
range of possibilities is clearly very wide, and we have not begun to explore the entire space of
possible parameters. Rather, we content ourselves with showing samples of different behaviour
that have emerged for different combinations that lead to regimes which the code will resolve
satisfactorily. Our efforts should not be compared with explorations of the space of parameters in
realistic geodynamo simulations (see e.g. [26]) but rather as an extension of dynamo simulations
of incompressible MHD flows (often done using periodic boundary conditions [27]–[30]) to
include the effect of boundaries and rotation.

Several of the forcing functions used in the runs we will display are axisymmetric, but their
axes of symmetry are not aligned with the axis of rotation. The resulting overall asymmetry
quickly excites all the available retained modes, to some degree. The general form of the
axisymmetric forcing function used is

f =
∑

ql

ξ
f

q,l,0

(
AJq,l,0 − BJ−q,l,0

)
. (19)

For any value of A and B, this superposition of C–K functions gives an axisymmetric forcing f .
For A = B = 1, there will be no net helicity involved in the forcing (the curl of f is perpendicular
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Figure 8. Above: kinetic energy density and velocity field lines (left) and
magnetic energy density and magnetic field lines (right) in the initial conditions
of selective decay runs S1 and S2. Middle: same fields at t = 14 in run S1. Below:
same fields at t = 14 in run S2. Colours and labels are as in figure 3.

to f), and the only non-vanishing component of velocity that is forced is the φ component (the
azimuthal component with respect to the axis of symmetry of the forcing, the z-axis). This
forcing can be considered as a simple differential rotation, where the number of nodes in vφ(r, θ)

is controlled by the values of q and l. The axis of rotation is typically oriented at some specified
angle α (often 30◦) to the forcing function’s axis of symmetry (the polar axis, in spherical
coordinates). Thus the rotational motion and the forcing have no shared symmetry, and the
resulting mechanical motion is totally asymmetrical.

Non-axisymmetric forcing functions are obtained by superposing C–K modes with
m �= 0, i.e.

f =
∑
qlm

ξ
f

qlmJqlm, (20)

and when ξ
f

qlm = ξ
f

−q,l,m the forcing is non-helical. In any other case the curl of f has a
projection into f , and the forcing injects mechanical helicity into the flow.

In an effort to systematize the runs we have done and the reasons we have done them, we have
assembled the important parameters for the dynamo runs (labelled D1 through D12) in table 1.
Listed in table 1 are: the q and l values where the forcing was concentrated (determining its
characteristic length scale); the rigid rotation rate; the kinematic viscosity (reciprocal Reynolds
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Table 1. Dynamo runs: q and l give the scales where mechanical energy is
injected by the forcing, � is the rotation rate, and ν and η are respectively
the kinematic viscosity and magnetic diffusivity. ‘Helical’ indicates whether the
forcing injects mechanical helicity, and ‘Axisym.’ indicates whether the forcing
is axisymmetric. α is the angle between � and the z-axis (the axis of symmetry
in axisymmetric forcings). Finally, RO, EK, and Re are respectively the Rossby,
Ekman, and Reynolds numbers, all based on the radius of the sphere. A resolution
of max{|q|} = max{l} = 9 was used in all the runs.

Runs q l � ν = η Helical Axisym. α RO EK Re

D1 1 1 2 2 × 10−3 No Yes 30◦ 0.5 1 × 10−3 500
D2 2 2 2 2 × 10−3 No Yes 30◦ 0.5 1 × 10−3 500
D3 3 3 2 2 × 10−3 No Yes 30◦ 0.5 1 × 10−3 500
D4 3 3 4 2 × 10−3 No Yes 30◦ 0.25 5 × 10−4 500
D5 3 3 8 2 × 10−3 No Yes 30◦ 0.125 2.5 × 10−4 500
D6 3 3 8 4 × 10−3 No Yes 30◦ 0.125 5 × 10−4 250
D7 3 3 16 4 × 10−3 No Yes 30◦ 0.0625 2.5 × 10−4 250
D8 3 3 8 2 × 10−3 No Yes 30◦ 0.125 2.5 × 10−4 500
D9 3 3 16 4 × 10−3 No Yes 20◦ 0.125 5 × 10−4 250
D10 3 3 16 4 × 10−3 No No 0◦ 0.125 5 × 10−4 250
D11 3 3 16 4 × 10−3 Yes No 0◦ 0.125 5 × 10−4 250
D12 3 3 16 4 × 10−3 Yes No 90◦ 0.125 5 × 10−4 250

number, if the kinetic energy is close to unity) and magnetic diffusivity (this study is restricted
to the magnetic Prandtl number PM = ν/η = 1 case); an indication of whether the forcing was
axisymmetric or not; the angle between the axis of rotation and the axis of symmetry of the
forcing, when the forcing function has an internal symmetry; the Rossby and Ekman numbers of
the flow into which the seed magnetic field is introduced; and whether or not the forcing injected
net mechanical helicity.

It is perhaps worthwhile to say a word about the motivation for the progression of runs
shown in table 1. The first remark is that it seems to be relatively easy to excite a dynamo and
generate a dipole moment, but relatively difficult to generate one that behaves according to our
predispositions and hopes: a dipole moment with some alignment with the axis of rotation, and
that reverses periodically or randomly with long times between reversals (compared with the
turbulent turnover time). We have found wild oscillations in both magnitude and direction that
seem to decrease with decreasing Rossby and Ekman numbers. Since the Reynolds numbers
are limited by the resolution, the principal means of decreasing both the Rossby and Ekman
numbers is by increasing the rotation rate �. This, however, eventually decreases the thickness
of the boundary layer below the resolution of the code, and beyond that point, the accuracy of
the computations becomes suspect. The lowest Rossby and Ekman numbers that appear in the
entries of table 1 represent those below which the resolution limitations are encountered. It will
be seen below that as we progress toward them, the dipolar behaviour looks gradually more
like what we might expect, the dipole moment gets stronger and more aligned with the axis of
rotation, and the time between reversals gets larger.
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Figure 9. Left: kinetic energy density and velocity field lines at late times in run
D1, when the dynamo has saturated. Right: magnetic energy density and magnetic
field lines at the same time. Colours and labels are as in figure 3.

Figure 10. Left: kinetic (dashed black line) and magnetic (solid blue line) energy
as a function of time in run D1. Right: cosine of the angle between � and µ in
the same run.

We begin by showing some results for a weak dynamo situation, run D1, where the magnetic
energy EM remains always much smaller than the kinetic energy EV. In the forcing function
(19), the driven modes have q = l = 1, A = B = 1, ν = η = 0.002, α = 30◦ and � = 2. The
amplitude of the forced modes is |ξf

q,l,0| = 0.4. The two Reynolds numbers, Re and Rm, based on
the measured rms velocity before the magnetic seed is introduced and the radius of the sphere,
are both about 500. The Rossby number is RO = 0.5, and the Ekman number also based on the
radius of the sphere is EK = 1 × 10−3. Figure 9 shows the streamlines of the flow, magnetic
field lines, and the energy densities at late times, once the dipole is established (t ≈ 80). In the
steady state, the magnetic dipole moment |µ| is of the order of 0.001 and the ratio of magnetic
to kinetic energies is EM/EV ≈ 0.0005. The magnetic energy rises to a characteristic value and
oscillates somewhat irregularly as shown in figure 10, while the cosine of γ (the angle between
the axis of rotation and the orientation of µ) oscillates with roughly the same periodicity (see
also figure 10) with almost a 180◦ variation in some cases, and with an average orientation almost
perpendicular to �. In this weak case D1, the hydrodynamic flow remains laminar, stable, and
almost time-independent.

The global evolution of the system is similar to what we will show in the remaining runs.
Once the magnetic field is introduced at t = 0, and if Rm is large enough, the magnetic field
is amplified exponentially (this stage is often called the ‘kinematic dynamo’ regime) until the
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Lorentz force modifies the flow and nonlinear saturation is reached. At late times, an MHD state
is reached in which magnetic energy is sustained against Ohmic dissipation by dynamo action.
In run D1, the flow is reminiscent of the hydrodynamic flow previously described in figure 3.
Although the forcing is axisymmetric and purely toroidal, rotation generates a poloidal circulation
and as a result the flow points outwards in the equatorial plane, and inwards along the axis of
rotation. Each hemisphere has mechanical helicity of opposite signs, while the net mechanical
helicity of the system fluctuates around zero. The magnetic field seems to be sustained by an
α–� mechanism, where the differential rotation is sustained by the mechanical forcing and the
α-effect is given by the Ekman-like circulation. Magnetic energy is concentrated in the centre of
the sphere, where the flow has a stagnation point.

A considerably stronger dynamo than D1 is represented in run D2, where in the excitation
function (19) we choose q = l = 2 and |ξf

q,l,0| = 1.1. Again, A = B = 1, ν = η = 0.002 and
� = 2. The magnetic moment rises from zero, and attains a typical magnitude of |µ| ≈ 0.5,
about 100 times larger than in D1. The Reynolds numbers are Re = Rm ≈ 500, and the ratio of
magnetic to kinetic energy oscillates around 0.15. The cosine of γ (the angle between µ and
�) oscillates wildly in time, and the orientation of the dipole shows no preferred direction. The
only differences between run D1 and D2 are the change in the forcing scale and strength, and
the result seems to indicate a separation of scales between the forcing and the largest scale in the
system helps the dynamo, as indicated by the larger ratio EM/EV in run D2, and as also reported
before in simulations with periodic boundary conditions [28, 31, 32]. In all these runs, the largest
available scale is fixed and given by the inverse of the smallest |λ| (corresponding to λ±1,1) and
determined by the radius of the sphere (R = 1), while the separation between this scale and the
forcing scale is controlled by the values of q and l in the forcing function (see table 1). The larger
the values of |q| and l, the smaller the scale where mechanical energy is injected.

Several runs were done (see e.g. the runs D1 to D5 in table 1) in which the forcing was
gradually moved to smaller scales (from q = l = 1 in D1 to q = l = 3 in D3), and in which
the rotation rate was progressively increased (from � = 2 in runs D1–D3 to � = 8 in D5). As
these changes were made, the amplitude of the forced modes |ξf

q,l,m| in equation (19) had to be
increased in order to reach a statistically steady state with rms velocities of order one before the
magnetic field was introduced (their amplitudes were 0.4, 1.1, 1.6, 2.2 and 3.6, from run D1 to
D5). The reason for this can be understood as follows: the Coriolis force in equation (1) acts
as a restoring force that opposes the growth of perturbations. This is also the reason why this
system can sustain waves, as was shown in section 3. In all these runs, A, B, ν, η, and the angle
of inclination α were kept the same. As will be seen from table 1, all the forcing was non-helical.

All five runs are considered to have been able to resolve the Ekman layers that developed, but
they would likely not have been resolved at higher values of �. Figure 11 shows the general trend
resulting from the smaller scale forcing and increased rotation. Figure 11(a) shows a logarithmic-
linear plot of the total magnetic energy versus time for runs D1 to D5. The five runs showed
increasingly large growth rate, a higher saturation level of EM/EV, and increasing |µ|. In run
D5, the ultimate ratio of EM to EV was about 0.4 and |µ| was close to unity. Figure 11(b) shows
magnetic energy spectra for runs D1 to D5, with decreasing Rossby number RO (based on the
radius of the sphere) of 0.5 (runs D1 to D3), 0.25 (D4) and 0.125 (D5). It will be seen that there
develops a small excess of magnetic energy in scales larger than the forcing scale with decreasing
Rossby numbers. Note the development of a ‘bump’ in the magnetic energy spectrum at λ ≈ 9
in runs D4 and D5.
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Figure 11. (a) Magnetic energy in dynamo runs D1 (solid), D2 (dotted),
D3 (dashed), D4 (dash-dotted) and D5 (dash-triple dotted). (b) Magnetic energy
spectrum for the same runs at late times, after nonlinear saturation of the dynamo
takes place. The arrows on top indicate the scale where mechanical energy is
injected in each run; from left to right: D1, D2, and D3–D5. The magnetic energy
spectrum corresponding to run D1 has been multiplied by a factor of 100.

Figure 12. Left: (a) trace of the dipole moment on the surface of the unit sphere
(above), amplitude of the dipole moment (middle), and cosine of the angle
between the dipole moment and the axis of rotation as a function of time, for
run D3. (b) Same quantities for run D5. (c) Same quantities for run D7.

A second trend is indicated in figure 12: namely the trace of the dipole moment in the unit
sphere as a function of time seems less erratic with decreasing Rossby and Ekman numbers. By
this, we mean that the reversals of the orientation of the dipole moment become less frequent
as these numbers are increased. That is, there are more eddy turnover times (in units of R/U)
between the near reversals as RO and EK are decreased, and the projection of the dipole moment
on the unit sphere gets more localized around the two ‘poles’ defined by the axis of rotation.
We borrow here the term ‘reversal’ from the palaeomagnetic record, where during a reversal the
orientation of the dipole moment changes about 180◦ and its amplitude decreases, in opposition
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Figure 13. Magnetic energy in dynamo runs D1 (solid), D2 (dotted), D3 (dashed),
D5 (dash-dotted) and D7 (dash-triple dotted). Note the intermittent growth of
magnetic energy at early times in run D7.

to an ‘excursion’ in which the direction and the orientation of the dipole moment changes in a
short period of time without resulting in a full reversal [33].

To verify this behaviour, in runs D6, D7, and D8 we successively decreased RO and EK

while keeping the other parameters constant. At the present resolution, we could not decrease the
values of RO and EK below the values for run D8 while keeping the boundary layer well resolved.
In geodynamo simulations, a similar effect was reported, and it was noted that the behaviour of
the dipole moment was controlled by the amplitude of the Rossby number, independently of the
values of the Ekman and Rayleigh numbers [26].

Figure 12 shows the trace of the dipole moment µ on the surface of the unit sphere, its
amplitude, and the cosine of the angle between µ and � for runs D3, D5 and D7. While in run
D3 the trace of µ fills the entire surface of the sphere, as RO and EK are decreased µ seems to
fluctuate around two regions in opposite sides of the sphere. These regions get more localized
with decreasing RO and EK. Also, the time between excursions of µ outside these regions gets
larger, as shown by cos(γ). In run D7, after a transient that finishes at t ≈ 80, cos(γ) stays at 1 or
−1 for ≈ 20 turnover times before changing sign rapidly. It is also worth noticing that as RO and
EK decrease, the time it takes the system to develop a dipole moment of order one gets larger (see
the evolution of µ at early times in figure 12). This is also observed in the time evolution of the
magnetic energy (see figure 13). Instead of having an exponential growth of EM at early times
as in runs D1 to D5, runs D6 to D8 show a more intermittent behaviour: magnetic energy grows
in rapid ‘bursts’ and stays around that value until a new burst increases the magnetic energy
again. In run D7, this process saturates around t ≈ 80 and no further change in the average value
of EM is observed. It is possible that the slow-down during the kinematic dynamo regime is a
consequence of a quasi-two-dimensionalization of the flow by the high rotation rate; this remains
to be investigated fully.

Figure 14 shows visualizations of energy densities and field lines at late times in runs D5
and D7. The development of anisotropies in the velocity and magnetic fields can be observed
in run D7, which has the highest rotation rate attained of � = 16. Indeed, as � is increased
the velocity field shows a tendency to develop columns, with mechanical energy concentrated
in cylindrical structures aligned along � and with a larger component of vφ than of vz.
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Figure 14. Above: kinetic energy density and velocity field lines at late times in
run D5 (left), and magnetic energy density and magnetic field files at the same
time for the same run. Below: same quantities for run D7. Note the development
of anisotropies in the presence of large � in this run.

Figure 15. Kinetic energy density (left), velocity field lines (middle), and view
from top of the kinetic energy density superposed with velocity field lines (right)
in run D10, before magnetic energy is introduced. Note the columnar structures
in the velocity field aligned along � (in the z-direction).

The velocity field in these column is helical, although in general the total mechanical helicity of
the flow fluctuates in time around zero. These structures are observed before the magnetic field
is introduced (although they persist as the magnetic energy grows) and seem to be the result of
the Taylor–Proudman effect (see e.g. [34, 35]). It is a trend observed through runs D5 to D10
(see figure 15 for an example).

Run D9 experiments with lowering the angle between the forcing’s axis of symmetry and
the axis of rotation to α = 20◦, and the dipole becomes more difficult to excite (as evidenced
by a smaller growth rate in the kinematic dynamo regime). Indeed, dynamo action could not
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be excited below 15◦ for the values of Reynolds numbers explored, as the resulting driven flow
approaches axisymmetry.

Run D10 is actually part of a set of experiments (runs D10 to D12; again, see table 1)
with forcing functions that are non-axisymmetric, and which may also inject mechanical helicity
(runs D11 and D12). Run D10, having no net mechanical helicity, shows no big differences in
the evolution of global quantities from the previously discussed runs. The dipole develops but
its orientation wanders randomly, with some preferred orientation perpendicular to �. In this
case, axisymmetry is broken by the forcing directly instead of by a nonzero angle between an
axisymmetry forcing and the axis of rotation.

Runs D11 and D12 have non-axisymmetric forcing that injects mechanical helicity. The
forcing for these runs is given by equation (20) with coefficients

ξ
f

3,3,0 = 5ξ
f

−3,3,0 = F0, ξ
f

3,3,0 < m�3 = 5ξ
f

−3,3,0 < m�3 = F0(1 + i), (21)

with F0 = 1.7. In the presence of net helicity, dynamo excitation suddenly becomes much easier
(as evidenced by a much larger growth rate of magnetic energy during the kinematic regime),
and the ultimate saturation occurs at EM/EV ≈ 2: more magnetic than kinetic, with magnetic
helicity, having sign opposite that of the mechanical helicity inversely cascading to the large
scales. As a result, the system is dominated by a helical magnetic field at the largest available
scale.

An interesting qualitative argument from mean field theory [36, 37] (which assumes large-
scale separations and often some form of periodic boundary conditions, as do all ‘α-effect’
calculations) can be seen to anticipate this result as follows. From mean field theory, the induction
equation for the mean magnetic field B̄ (assuming there is no mean flow U) is

∂B̄
∂t

= α∇ × B̄ + β∇2B̄. (22)

Here, α is proportional to minus the kinetic helicity of the flow [36]–[38], and β is a turbulent
magnetic diffusivity. Taking the dot product of equation (22) with the mean vector potential A
(such as B = ∇ × A) and integrating over volume, an equation for the evolution of the mean
magnetic helicity HM is obtained,

dHM

dt
= αEM + β∇2HJ, (23)

where EM is the mean magnetic energy and HJ is the mean current helicity. As a result, if
magnetic diffusion is neglected, the dynamo process injects into the mean (large) scales magnetic
helicity of opposite sign than the kinetic helicity, and in the small scales magnetic helicity of the
same sign. This effect has been observed before in numerical dynamo simulations with periodic
boundary conditions [28, 31]. The large-scale magnetic helicity then inverse-cascades to the
largest available scale in the system, while the small-scale magnetic helicity is transferred to
smaller scales where it is dissipated [39]. As a result, at late times the system is dominated by a
large-scale magnetic field with magnetic helicity of opposite sign to that of the kinetic helicity
injected by the forcing.

As seen in figure 16, the dipolar orientation in D11 seems to have a preference for being
perpendicular to �. For run D12, whose forcing function differs in its orientation to � by 90◦,
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(a) (b)

Figure 16. (a) Trace of the dipole moment on the surface of the unit sphere
(above) and amplitude of the dipole moment as a function of time (below) for run
D11. (b) Same quantities for run D12.

Figure 17. Kinetic energy density and velocity field lines (left), and magnetic
energy density and magnetic field lines (right) at the same time in the saturated
state of run D12. The axes are aligned as in figure 16.

the dipole orientation seems to remain in a single hemisphere (see figure 16) and its tip precesses
about �. The observed systematic precession of the dipole moment around the axis of rotation
seen in figure 16(b) can be seen to differ significantly from the other dipolar behaviours seen
in, e.g. figures 12 and 16(a), suggesting further future investigations of the relation between the
orientation of the forcing functions and the axis of rotation. Figure 17 shows energy density and
field lines in the saturated steady state of run D12. The axes are aligned as in figure 16. As is often
the case with helical flows, the geometry of the flow is more complex than in the non-helical
runs. These runs in which a net sign of mechanical helicity is sustained by the mechanical forcing
were continued for several thousand turnover times, and no reversals of the dipole moment were
observed. The dipole moment seems to fluctuate around a preferred orientation with only short
excursions of the dipole to the opposite hemisphere.
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5. Discussion and future directions

By solving the mechanically-forced MHD equations inside a rotating conducting spherical
boundary, we have found that a bewilderingly wide variety of dynamo behaviour is possible
for a magnetic Prandtl number of unity. The behaviour is sensitive to mechanical and magnetic
Reynolds numbers, to rotation rate, and more indirectly to the Ekman number. It is also sensitive
to the geometry and strength of the forcing functions and their relation to the axis of rotation.
We have only begun to explore this multidimensional parameter space. Note we have not made
much effort to tailor the forcing functions we have chosen to model what the mechanical flows in
planetary cores or stellar convective regions might be. Rather, we have been exploring dynamo
behaviour in the abstract, and feel somewhat overwhelmed by the variety of dynamo behaviour
that has been found. In this light, our attempt should be consider as an extension of dynamo
simulations in periodic boundary conditions [27]–[31], [40] to consider the effect of boundaries
and rotation, and not be compared with explorations of the space of parameters in realistic
geodynamo simulations [2, 9, 10, 13, 26].

What has become clear is that the wholly spectral methods we are using, while accurate,
do not scale well into the parameter regimes of planetary and astrophysical dynamos, which
involve many orders of magnitude between the largest length scales in the flows and the Ekman
or dissipation scales that also play a role in the process. This limitation afflicts all numerical
attempts to explore planetary and stellar dynamos, particularly in view of the low magnetic
Prandtl numbers that are expected to prevail there, in simulations [29, 30], and in liquid-sodium
experiments [41]–[45]. But the rapid multiplication of the number of terms to compute in
the convolution sums in equations (10) and (11) provides a rather intractable limitation on
efforts to use our code without modification at higher Reynolds numbers than the few hundred
we have explored here. What seems to be called for is an exploration of the possibilities
of using fast transforms (for spherical harmonics [46, 47] and possibly for spherical Bessel
functions [48, 49]) to turn the code into a pseudospectral one in which the nonlinear terms are
computed in configuration space rather than spectral space, as is commonly done for rectangular
periodic boundary conditions [17] which would increase available resolution by many orders of
magnitude. Our future investigations will explore this possibility.

We also intend to replace the conducting boundary by an insulating but mechanically-
impenetrable one that will permit protrusion of the magnetic field into the vacuum region
surrounding the shell (see e.g. [2]). It may be that forcing the magnetic field lines to return
to the interior each time they get near the shell that is now playing a dynamical role in what
we are seeing would be different in the case of an insulating shell. This raises some conceptual
difficulties, since the problem of matching MHD fields on to vacuum electromagnetic ones has
not been thoroughly solved. For example, one approximation that has been used has been to
match magnetic fields at a spherical surface to magnetostatic ones outside, which involve a
magnetic field that is derivable from a scalar potential and for which there is no electric field.
However, Maxwell’s equations tell us that the tangential electric field must be continuous at any
interface, and there is no reason why this tangential electric field should vanish or even be ‘small’
immediately inside an insulating boundary of a conducting magnetofluid. The magnetostatic
approximation may be the best we can do, but it would be desirable to have more justification
for it than we presently have.

Finally, we need to devote attention to the geometry and strength of the forcing functions
that are being employed and to study the effect of different forcing functions in dynamo action.
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Mechanical processes, convective and otherwise, are believed to power the dynamo in cases of
geophysical or astrophysical interest. In the simulations discussed, we have no explanation, for
example, why the ‘columns’ or columnar vortices aligned along � form in the velocity field in
runs toward the end of table 1. It is clear the physical effect that is triggering their formation is the
rotation alone, perhaps through a two-dimensionalization of the flow via the Taylor–Proudman
effect [8, 34, 35]. This is a different process to the conventional explanation for the formation of
columns in planetary interiors, which involves both thermal convection and rotation [50], since
thermal convection is completely absent in our incompressible MHD formulation.
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