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Scientists and engineers need computational power to satisfy the increasing resource
intensive nature of their simulations. For example, running Parameter Sweep Experiments
(PSE) involve processing many independent jobs, given by multiple initial configurations
(input parameter values) against the same program code. Hence, paradigms like Grid
Computing and Cloud Computing are employed for gaining scalability. However, job sched-
uling in Grid and Cloud environments represents a difficult issue since it is basically
NP-complete. Thus, many variants based on approximation techniques, specially those
from Swarm Intelligence (SI), have been proposed. These techniques have the ability of
searching for problem solutions in a very efficient way. This paper surveys SI-based job
scheduling algorithms for bag-of-tasks applications (such as PSEs) on distributed comput-
ing environments, and uniformly compares them based on a derived comparison frame-
work. We also discuss open problems and future research in the area.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction and problem definition

Scientists and engineers, who usually rely on CPU-intensive simulations to perform their experiments, require a comput-
ing infrastructure – a High-Throughput Computing (HTC) environment – delivering large amounts of computational power.
In HTC, jobs are dispatched to run independently on multiple computers in parallel, whose sub-results are joined later to
obtain a general simulation result. In terms of their anatomy, these simulation are often organized as bag-of-tasks
applications.

For example, PSEs are a popular way of conducting such simulations through which the same application code is run sev-
eral times with different input parameters, which results in different output data. Running PSEs involves managing many
independent jobs, since the experiments are executed under multiple initial configurations (input parameter values) many
times, to locate points in the parameter space fulfilling some user-provided criteria. However, to deal with these problems, it
is necessary large amounts of CPU cycles, and to have efficient scheduling strategies to appropriately allocate the workload
and reduce the associated computation time. Here, the term ‘‘scheduling’’ represents the mechanism by which jobs are allo-
cated to run on the machines of a distributed environment, since typically, there are many more running jobs than available
machines. However, job scheduling is known to be NP-complete.

When scheduling bag-of-tasks applications, to minimize makespan it is essential to assign jobs correctly so that computer
loads and communication overheads will be well balanced. Makespan is the finishing time of the last job in the system. On
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the other hand, load balancing refers to distributing workload between several machines to obtain as good throughput and
resource utilization as possible.

Recently, SI, which refers to the collective behavior that emerges from social insects swarms [1], has been receiving atten-
tion among researchers. Swarms are able to solve complex problems that exceed the capabilities of their individual insects
without central supervision. Then, researchers have proposed algorithms exploiting this idea for solving combinatorial opti-
mization problems. As job scheduling is also a combinatorial optimization problem, many SI-based schedulers have been
proposed.

We have conducted a literature review of SI-based works aiming at making job scheduling more efficient at a higher level
of abstraction, according to several objective functions such as makespan and load balancing levels. Then, our focus is on
how the proposed works enhanced/combined existing SI and traditional optimization techniques to derive distributed job
schedulers, without paying attention to deployment and implementation issues, mostly because the number of available
implementation technologies and platforms for Grids and Clouds is vast.

This work is organized as follows. Section 2 lists related surveys and explains how our work differs from them. Section 3
gives an overview of distributed computing infrastructures, particularly Grids and Clouds, and explains the job scheduling
problem in distributed environments in the context of SI. Section 4 reviews these job schedulers. Section 5 identifies com-
mon characteristics and open issues. Appendix A explains the SI techniques exploited by the surveyed job schedulers.
2. Related work

The last decade has witnessed an astonishing amount of research in SI from both a theoretical and a practical perspective.
As a consequence, many works have been proposed, which have been at the same time summarized in a number of surveys
that can be considered as related to our survey. It is worth noting that we do not aim here at considering all possible SI sur-
veys in the literature, but only those that are somewhat recent and relate to our work the most. These surveys can be used as
a starting point to get insight into related issues and solutions in the area not covered in this paper.

Certainly, SI techniques have been extensively applied in optimization problems from several domains. For example, [2]
reviews several algorithms exploiting Ant Colony Optimization (ACO) to solve diverse engineering problems. The areas
covered are classical combinatorial problems (e.g., traveling salesman), network-related algorithms (e.g., [3]) and electrical
engineering (e.g., efficient power dispatch). Another survey [4] discusses ACO-based approaches for classical industrial
scheduling problems. In contrast, we are concerned with distributed job scheduling, in which jobs are executed in a Grid,
Cloud or a computer cluster. However, job scheduling benefits PSEs, which are used to approximate problems from diverse
disciplines and domains of Science and Engineering.

With regard to surveys analyzing existing job schedulers based on metaheuristics, a survey that deserves mention is [5],
which covers job schedulers roughly grouped into three main categories, i.e., those exploiting Hill Climbing, Simulated
Annealing (SA) and Tabu Search (TS); those exploiting Evolutionary Algorithms, ACO and Particle Swarm Optimization
(PSO); and hybrid heuristic approaches. The survey is not completely focused on SI-based schedulers and does not consider
newer SI techniques such as Artificial Bee Colony (ABC) and Artificial Fish Swarm Algorithm (AFSA). The same applies to [6],
which reviews job schedulers based on traditional direct acyclic graphs and metaheuristics algorithms. Both surveys analyze
efforts addressing job scheduling in Grids only, but we also consider computer clusters and Clouds.

Likewise, as SI algorithms are usually used to approximate difficult problems with medium to large-sized inputs, the
resulting running times represent a threat to applicability. [7] analyzes solutions to increase the performance of such algo-
rithms when dealing with large input data, for example when solving job scheduling problems in the presence of a sheer
number of jobs or machines. Unlike our work, which reviews SI-based algorithms to make job scheduling more effective
in terms of common scheduling metrics, [7] reviews approaches to boost the performance of the SI algorithms themselves
to gain scalability. Besides, [7] reviews ACO-based approaches only, but we cover more SI techniques (PSO, ABC and AFSA).

Finally, building SI algorithms for minimizing or maximizing a set of metrics when solving an optimization problem, or
multiobjectivity, is a hot topic in the area. In other words, multiobjectivity is the ability of an optimization technique of coping
with several objectives simultaneously. Particularly, we are interested in SI-based schedulers dealing with the optimization
of one or more scheduling metrics common in distributed environments, such as makespan and load balancing.
3. Background

Due to the fact that Grid Computing and Cloud Computing are nowadays the most used infrastructures to execute scien-
tific applications compared to mainframes and conventional supercomputers, an overview of each one is provided next.
3.1. Grid Computing

Grid Computing [8] can be defined as a type of parallel and distributed infrastructure that enables the sharing, selection
and aggregation of geographically distributed autonomous and heterogeneous resources dynamically depending on their
availability, capability, performance, cost, and user’s quality-of-service requirements.
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A Grid, is a form of distributed computing whereby a ‘‘super virtual computer’’ is composed of many networked, loosely
coupled computers acting together to execute very large jobs. As such, a Grid is a shared environment implemented via the
deployment of a persistent, standards-based service infrastructure that supports the creation of, and resource sharing within,
distributed communities. Resources can be computers, storage space, instruments, software applications, network interfaces
and data, all connected to a network (private/public or local/the Internet) through a middleware that provides basic services
for security, monitoring, resource management, and so forth. Resources owned by various administrative organizations are
shared under locally defined policies that specify what is shared, who is allowed to access what, and under what conditions.

Grids provide the means for offering information technology as an utility for users, with those users paying only for what
they use, as with electricity or water. Despite the widespread use of Grid technologies in scientific computing, some issues
still make the access to this technology not easy for disciplinary or domain users. For example, operationally, some Grids are
bureaucratic, since researchers groups have to submit a proposal describing the type of research they want to carry out to a
central coordinator prior to executing their experiments.
3.2. Cloud Computing

While the bureaucratic issues of Grid can be a minor problem, the technical ones could constitute a fundamental obstacle
for scientific computing. Cloud Computing [8] has been proposed to address the aforementioned problems. By means of vir-
tualization technologies, Cloud Computing offers to end-users a variety of services covering the entire computing stack, from
the hardware to the application level, by charging them on a pay per use basis, i.e., cycles consumed and bytes transferred
during computations. The term ‘‘Cloud’’ is used to denote the infrastructure in which these services are hosted, which are
commonly accessed by users from anywhere in the world on demand. Within a Cloud, services that represent computing
resources, platforms or applications are provided across (sometimes geographically dispersed) organizations. This makes
the spectrum of options available to scientists wide enough to cover any specific need from their research. Another impor-
tant feature, is the ability to scale up and down the computing infrastructure according to the application requirements and
the user’s budgets.

As suggested, central to any Cloud is the concept of virtualization, i.e., the capability of a software system of emulating
various operating systems on a single machine. By means of this support, users exploit Clouds by requesting them Virtual
Machines (VM) that emulate any operating system on top of several physical machines, which in turn run a host operating
system. Particularly, for scientific applications, the use of virtualization has shown to provide many useful benefits, including
user-customization of system software and services, check-pointing and migration, better reproducibility of scientific ana-
lyzes, and enhanced support for legacy applications.
3.3. Job scheduling basics

In the aforementioned environments, job management is a key concern that must be addressed. Particularly, scheduling
algorithms for distributed environments have the goal of managing a single computation as several jobs and submitting
these latter to many resources, while maximizing resources utilization and minimizing the makespan. Considering that
job scheduling is NP-complete, many heuristics have already entered the scene.

In distributed scheduling, from the point of view of solution quality, any scheduling algorithm can be classified into opti-
mal or sub-optimal. The former characterizes scheduling algorithms that, based on complete information regarding the state
of the distributed environment (e.g., hardware capabilities and load) and resource needs (e.g., job length), carry out optimal
job-resource mappings. When this information is not available, or the time to compute a solution is unfeasible, sub-optimal
algorithms are used instead. Sub-optimal algorithms are further classified into heuristic or approximate. First, heuristic
algorithms are those that make as few assumptions as possible about resource load or job duration prior to perform sched-
uling. Approximate schedulers are based on the same input information and formal computational model as optimal sched-
ulers but they try to reduce the solution space to cope with the NP-completeness of optimal scheduling algorithms. However,
having this information again presents problems in practice.

All in all, in general heuristic algorithms are preferred in practice. One of the aspects that particularly makes SI techniques
interesting for distributed scheduling is that they perform well in approximating optimization problems without requiring
too much information on the problem beforehand. From the scheduling perspective, SI-based job schedulers can be concep-
tually viewed as hybrid scheduling algorithms, i.e., heuristic schedulers that partially behave as approximate ones.
4. Job scheduling based on Swarm Intelligence

SI finds its niche in routing applications and in specialized job scheduling algorithms. Not surprisingly, these two appli-
cations correlate very well with two fundamental traits of SI, i.e., positive feedback or reinforcing good solutions present in
the system, and labor division. Moreover, social insects collectively solve complex problems, which are beyond their individ-
ual capabilities, in an intelligent and decentralized way. As a result, these collective, intelligent and decentralized behaviors
of insects have become a model for solving job scheduling problems.
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In recent years, several researchers have proposed algorithms based on ACO (Section 4.1), PSO (Section 4.2), ABC (Section
4.3) and AFSA (Section 4.4) for job scheduling problems in distributed environments, particularly Grids and Clouds. In turn,
within each algorithm group, the associated job scheduling techniques are organized according to the main objective they
are designed for. Finally, paragraphs associated to reviewed works have been built by digesting the associated paper(s) and
contain the necessary details to understand the scheduling policy proposed by the authors from an algorithmic standpoint.
Technical and implementation issues are left out of the scope of the paper.

4.1. Job Scheduling based on ACO

In this Section, approaches for job scheduling based on ACO are discussed. To date, the ACO algorithm has been applied to
minimize the makespan, achieve a good load balancing in resources, minimize flowtime, minimize monetary cost, or differ-
ent combinations of these.

4.1.1. Approaches minimizing makespan
In [9] have proposed an ACO-based scheduler for dynamic job scheduling in Grids where the availability of resources is

constantly changing and jobs arrive to be executed at different times. Each processor executes only one job per unit time and
each job is independent of each other. The authors have defined the Completion Time (CT) in which a machine finishes exe-
cuting each job, measured as clock time. The CT of a job is computed by relating its arrival and release time, and the time the
job spends in a machine. The scheduler includes four steps. First, pheromone initialization: the algorithm creates a number
of artificial ants that start to work with a job. Second, state transition rule: each ant performs a move according to the pher-
omone trails and a heuristic that is used to determine the desirability of moving a job from one machine to another. Third, a
local update rule is used by ants while constructing solutions to modify the pheromone level. Finally, a global update rule is
applied and only the ant holding the best solution can leave pheromone on the path. At the end of each iteration, jobs will be
moved among machines in the global best schedule.

In the ACO algorithm proposed in [10] a modified pheromone updating rule has been developed, which handles sched-
uling in Grids more effectively. The basic pheromone updating rule sijðtÞnew  q � sijðtÞold þ DsijðtÞ of the original ACO algo-
rithm [1] has been changed to sij tð Þnew ¼ ðq � sij tð ÞoldÞ þ ðq=ðqþ 1Þ. DsijðtÞÞ, where sij is the trail intensity of the path ði; jÞ (j
is a job and i is the machine assigned to the job j), q is a pheromone evaporation rate and Dsij is an additional pheromone
that is added by the scheduler when a job is moved to a machine. The modifications introduced to the pheromone update
rule have improved the algorithm making it to perform more efficiently compared to the original ACO in terms of makespan.

Moreover, in [11] an ACO scheduler was introduced to address job scheduling within a Cloud. The proposed method is
aimed to maximize scheduling throughput to handle all the diversified job requests according to different resources avail-
able in a Cloud, and minimize the makespan of a pool of jobs. In the algorithm each path between machines ðr; sÞ has an
associated distance or cost dðr; sÞ and a pheromone concentration level sðr; sÞ. The pheromone updating rule is calculated
considering a pheromone evaporation factor, and the cost (Dskðr; sÞ) incurred by ant k when ðr; sÞ is its path. Then, every time
a job request is processed on a machine, the pheromone concentration is updated for all the paths between machines by
adding an evaporation factor within all machines. The whole heuristic is divided in two operation modes: online and batch
modes. When the online mode is used, an arriving job request is immediately allocated to the first free resource. In batch
mode, all jobs requests are first collected and the scheduler considers the approximate execution time for each job before
making scheduling decisions.

The work proposed in [12] describes an ACO algorithm that has been complemented with Local Search (LS) and Tabu
Search (TS), to find better schedules than other similar techniques. In this algorithm the authors have assumed that the ex-
pected execution time of the jobs on each machine is available beforehand. This information is held in an nxm matrix where a
row represents the execution time on each available machine of each input job.

The authors have defined different types of matrices for simulating several heterogeneous scheduling scenarios in a real-
istic way based on three metrics: job heterogeneity, machine heterogeneity and consistency. Due to the fact that each job
executes at a different speed on a different processor, this information is used to save information about which processors
are suitable for each job. Therefore, the pheromone value is used by the scheduler in order to determine how desirable
assigning a particular job into a particular processor is. The information encoded in the pheromone trail is used by an ant
through a heuristic to build a solution. Furthermore, to leave a pheromone trail the authors have used the Max–Min Ant
System (MMAS) described in [13]. Finally, the authors have applied a LS technique to exhaustively search jobs in the neigh-
borhood and choose the swap that best reduces the schedule length.

4.1.2. Approaches maximizing load balancing
The work proposed in [14] focuses on an improved ACO for job scheduling in Grids. To work properly, the scheduler needs

to have some initial information about resources in the Grid, i.e., the processors number, processing capability, communica-
tion ability, etc. These parameters are used to initialize the pheromone trail intensity. The way in which the pheromone trail
is updated with respect to the classical ACO was modified by adding a load balancing factor. This factor indicates the finish-
ing rate of a job in a resource, which makes the finishing rate of jobs in different resources similar, enhancing in turn the
overall load balancing levels. The more the jobs completed, the greater the intensity of the pheromone trail. Contrarily, if
the jobs are not finished then the pheromone trail decreases.
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In [15] have proposed a job scheduling algorithm for Grids that uses a function freeðiÞ to report when a machine i is
released. When another job is assigned to machine i the new value of free is the release time associated to i plus the expected
execution time of the submitted job. This algorithm uses a heuristic that allows to determine when a machine is released
before. If the machine is released earlier, it will be more desirable in SI terms. The objective function is computed as the max-
imum value of the free function on the solution that each ant constructs. Furthermore, the additional pheromone value
added to a trail by an ant includes an evaporation factor.

Furthermore, in [16] have proposed an algorithm that includes a mechanism for load balancing based on ACO and com-
plex network theory. The algorithm was designed for Open Cloud Computing Federation (OCCF). A OCCF includes multiple
Cloud providers devoted to create a uniform resource interface to users. A complex network is defined as a graph, which has
topological characteristics that are not present in simple networks, i.e., lattices or random graphs that often can occur in real
graphs. In the algorithm four steps are carried out. First, an ant is periodically sent from an underloaded machine to load
balance the OCCF and update the pheromone on each machine. Second, an ant is sent out by a machine when this latter
cannot properly handle its current workload. Then, the algorithm executes the previous step except when the machine of
the ant is the machine with maximum workload. Third, once load balancing is performed the ant goes backward throughout
the road that has followed and updates the pheromone on it. Each machine has a table that contains the pheromone trails
with links to its neighbor machines, and stores values that represent the pheromone on the paths. Pheromone update in-
cludes both increase and evaporation. Finally, the complex network structure evolves to adapt to the changes in the work-
load after the pheromone has been updated. A complex network with the aforementioned characteristics is obtained through
local behaviors of ants, since these characteristics are useful for the load balancing process in the proposed ACO algorithm.

4.1.3. Approaches minimizing makespan and maximizing load balancing
In the work proposed in [17] the authors have modified the classical ACO algorithm to address job scheduling in Grids.

The modified ACO exploits LS and considers the available time of machines and the running time of jobs to improve machine
usage and increase scheduler efficiency. The used LS technique is useful to define a solution neighborhood.

In the algorithm authors use a matrix of NxM entries, being N the input independent jobs and M the available resources.
Each row represents the estimated execution time on each resource for each job. In this proposal, the free function intro-
duced in [15] is exploited by a heuristic to find out the resource that is freed earlier. The pheromone level is updated by add-
ing an evaporation factor and an additional pheromone value. To move a job among resources the algorithm calculates a
probability to make the move. The probability takes into account the attractiveness computed by some heuristic, the level
of pheromone trail of the moving and a new variable that represents the time a job takes to execute in a machine. An indi-
vidual scheduling result in the modified ACO algorithm has four values (job, machine, starting time, completion time). These
values are added to an output list which is then passed to an algorithm that uses the LS technique to further reduce the over-
all makespan.

In [18] have proposed the Balanced ACO (BACO) algorithm for job scheduling in Grids. In the proposal the pheromone
level on a path stands for the weight of a machine. When a machine has the highest weight value means that the machine
has the best processing power. For materializing the BACO algorithm the authors assume that each ant represents a job and
the algorithm submits the ants to look for machines. BACO considers the load of each machine and modifies the pheromone
in accordance to load across resources through local and global update functions. The local function modifies the status of
resources after each job assignment round. The global update function, conversely, changes the status of resources upon any
job finalization. The pheromone value in each resource is determined by adding the estimated job transfer and execution
times upon sending a job to a resource for all jobs. The greater the pheromone level, the greater the efficiency of the resource
for executing a job.

In the work presented in [19], the authors propose an extended ACO algorithm that exploits historical information regard-
ing job execution within a Grid. Once the authors have results for n machines, they can compute the results for n + m or
n �m machines very quickly by basing on the former results, being both n and m integer values representing a certain num-
ber of machines. When a resource enters the Grid, it submits its performance parameters, i.e., the number of CPUs, process-
ing power, etc. These parameters are used for validating and initializing pheromone links. Later, the pheromone value
changes every time a resource fails, or a job is assigned or there is some job results available/returned. Finally, the probability
of assigning a job to a machine is calculated taking into account the pheromone intensity on the path to the resource, the
initial pheromone value, and two parameter values that correspond to the pheromone importance and the innate attributes
importance of the machine.

In the work proposed in [20], two distributed algorithms, one based on ACO (AntZ) and another one based on PSO, are
presented. In the algorithm the jobs and ants are strongly linked. Each time a job is submitted for execution, an ant is created
for finding the best machine to assign the job. Once this is done, the assigning ant stores information of the machines that
has visited – load information – as a trail of pheromone in a load information table. The load information table contains
information of load across all machines. Loads are stored in the table each time ants visit the machines with the aim of guid-
ing other ants to select better paths. Authors have added to the proposed algorithm two rates: Decay Rate (DR) and Mutation
Rate (MR). These rates are used when an ant moves from one machine to another. In this context, an ant can choose one of
two possibilities. One possibility is to move towards a random machine according to the probability given by MR. Another
alternative is to use the load information table in the machine to select the next destination. As time passes MR is decreased
based on DR so the ant is more dependent on the load information table and not on random choice.
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4.1.4. Approaches minimizing makespan, maximizing load balancing and minimizing monetary cost
In [21], the authors have presented a dynamic scheduling strategy that enhances [19] by considering the processing

requirements of jobs, the capacity and the current load of the available resources, and the processing cost of those resources.
The possibility of allocating a job to a resource is determined by calculating pheromone intensity on the path to the resource.
Possibility refers to a numeric value that indicates how good a resource is for a given job. The pheromone intensity is more-
over computed via a simple formula that combines two factors representing pheromone weight and resource weight,
respectively.

The proposed algorithm arose in an attempt to improve the algorithm published in [19] where a job can be scheduled to a
resource with low possibility even if the resources with high possibility are free. To avoid this problem, Sathish and Reddy
have proposed that if the difference between the possibility of the resource selected for executing a job using the ant algo-
rithm proposed in [19] and the possibility of the resource with the highest possibility is less than a certain threshold, then
the job will be scheduled to the resource selected according to [19]. Otherwise, the scheduler selects another resource and
the above procedure is repeated.

4.1.5. Approaches minimizing makespan, maximizing load balancing and minimizing flowtime
The work presented in [22] proposes a mechanism based on ACO to carry out efficient resource management on Grids. In

this algorithm each job is carried by an ant that searches the less loaded machines and transfers the jobs to these machines
for execution. When an ant assigns the job, the ant leaves some pheromone to tag a detected solution in a matrix. For each
job-machine pair, the matrix has a single entry. Moreover, a parameter to define the pheromone evaporation rate is used.
Then, to build a solution each ant uses heuristic information to guide its search. The heuristic value is an inverse lineal func-
tion of the minimum makespan for each job on the best available machine. Finally, the fitness function used for allocating
and dealing with load balancing is the inverse of the makespan plus the mean flowtime of a solution. A factor is also used to
weight and prioritize makespan, since it is the variable of utmost importance according to the authors’ goal.

4.2. Job Scheduling based on PSO

In this section, the most representative approaches for job scheduling exploiting PSO are discussed. The goals pursued by
the authors have been basically minimizing the makespan or the monetary cost of running jobs, or alternatively, minimizing
the makespan while achieving good load balancing or low flowtime. Finally, another line aims at dealing with load balancing
and monetary cost.

4.2.1. Approaches minimizing makespan
A heuristic approach proposed in [23] relying on the PSO technique was built for dealing with job scheduling in Grid envi-

ronments. The authors have modified the classical PSO algorithm by varying the inertia weight used in the inertia term of the
velocity equation. The inertia weight is varied by applying a scheme where the weight decreases over the whole run. The
decrease rate depends on a start value and an end value of the weight given. The inertia term decreases linearly in order
to facilitate exploitation over exploration in later phases of the search. Exploration is a wider search among alternatives,
and exploitation is the refinement of a chosen alternative. In this algorithm each particle holds a potential solution. The
dimension of a particle is associated to the number of jobs, while each dimension represents a job. The position vectors asso-
ciated to particles are periodically transformed in order to appropriately change the continuous particle positions. To this
end, a smallest position value approach helps in the process of finding a fitting permutation of the continuous positions.

Another heuristic approach proposed in [24] based on PSO was adapted to solve job scheduling problems in Grids. Again,
each particle is encoded as in the previous algorithm [23]. Also, similar to [23], the authors have also employed a small posi-
tion value approach. Each particle and its elements – position, velocity, fitness value – represent a possible solution. Further-
more, a sequence of jobs represents the order in which jobs are executed. In the proposed PSO, an LS algorithm is applied for
permutation purposes. Moreover, this scheduling heuristic starts by considering a feasible initial solution and iteratively
moving to a neighbor one. Usually, candidate solutions have many neighbor solutions. The neighbor solution chosen to move
to in each step depends only on information extracted from the neighborhood of the current solution.

In [25] the authors propose a novel approach to PSO-based job scheduling in Grid environments. The way the position and
velocity are represented in the conventional PSO is extended so as to move from vectors to fuzzy matrices. In this way, a
brand new model for particles is constructed. Given a set G comprising machines and a set J of jobs to be executed, a generic
fuzzy relation S between each machine and each job is established. For each cell in the matrix S, a membership function is
applied and each cell of S represents the degree of membership exhibited by a machine in a feasible schedule when process-
ing a job. To map the problem solution into particles, the authors have assumed that jobs and machines are arranged and
ordered based on job lengths and machine processing speeds. Since the fuzzy matrix S represents the potential scheduling
solution, the matrix should be decoded to get a feasible solution.

Further, to optimize makespan, the authors have proposed to swap alternatively the usage of two heuristics. When the
overall job count does not exceed the number of machines, job allocation is carried out with a first come, first served policy
and by complementary using an heuristic called Longest Job on the Fastest Node. Moreover, in the case of having more jobs
to execute than available machines, jobs are assigned to machines via a heuristic called Shortest Job on the Fastest Node. In
this way the machines will be released more quickly for each job.
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The work in [26] introduced a PSO-based scheduler to assign jobs in heterogeneous computing systems and Grids. The
algorithm updates particles in a discrete domain, and specifically the authors proposed a position update mechanism that
takes into account the characteristics of discrete variables. The proposed PSO algorithm iteratively performs the following
steps: First, each particle is associated to a vector containing N items (i.e., jobs), where each item is an integer number indi-
cating the unique identifier of the machine to which a job is assigned. Second, the fitness value of a particle, i.e., makespan, is
calculated. Smaller fitness values mean better particle quality. Third, to update the position of a particle the authors have
defined a Perturbation Factor which decreases as iterations increase. Four, a Variable Neighborhood Search (VND) technique
is used to complement the whole scheduling algorithm so as to increase convergence. Finally, a migration phase is used in
the algorithm to rebuild a new population of individuals to more exhaustively explore the search space and prevent the algo-
rithm as much as possible from selecting moderately-sized or small populations. The new individuals are obtained by using
non-uniform random choices and by basing on the best individual. This steps are applied iteratively until a marginal
improvement in the current best fitness value or an upper bound for the iterations is reached.

In the work presented in [27] the authors have introduced a discrete PSO for executing jobs in computer clusters. In the
algorithm, a particle is defined as an array with as many elements as jobs to execute exist, and each dimension can be viewed
as the machine where a job is allocated. Moreover, the process of updating velocities and positions has been modified intro-
ducing three new operators. A Subtract operator checks two position arrays and returns a new array where each value indi-
cates whether the former array (current position) differs from the second one (desired position) or not. A Multiply operator
generates binary vectors from two vectors and carrying out their multiplication. Finally, an Add operator represents a cross-
over operator usually employed in Genetic Algorithms (GAs). It interchanges structural information built during the search.
To augment the effectiveness of the discrete PSO scheduler, [27] has been ‘‘hybridized’’ with a modified efficient LS
algorithm. Based on a scheduling solution obtained from the discrete PSO, the LS algorithm reduces the makespan through
suitable pairwise swapping of jobs between machines.

4.2.2. Approaches minimizing monetary cost
In [28] have proposed a heuristic based on PSO to schedule jobs to resources in a Cloud that considers both job compu-

tation costs and job data transfer costs. [28] dynamically optimizes the monetary cost of a job-resource mapping combina-
tion by basing on the solution obtained via the classical PSO algorithm. The optimization method relies on two components,
namely the scheduling heuristic itself and the standard PSO steps for obtaining optimal job-resource combinations. In this
context, one particle represents a resource-job mapping. The initial step of the heuristic computes the mapping for all jobs,
which may have dependencies between them. The algorithm, to validate the various job dependencies, allocates the ready
jobs to resources based on the output pairs as suggested by PSO. Ready jobs are those jobs whose parent jobs have already
finished their execution and computed the input data for executing the child job. As jobs finish their execution, the ready list
is updated. Then, the average latencies and bandwidth for transferring data between machines according to the current
network usage are updated. In other words, since communication costs change over time, the PSO mapping is recomputed.
Precisely, this periodic re-computation makes the heuristic to consider at runtime alternative mappings for jobs (online
scheduling). This process repeats until all the jobs in the application are scheduled.

4.2.3. Approaches minimizing makespan and maximizing load balancing
In [29] the authors present a PSO algorithm for handling job scheduling in Grids. Specifically, a discrete variant of the PSO

algorithm (i.e., DPSO) is proposed. The main difference introduced by DPSO with respect to the classical PSO algorithm is that
the former deals with discrete variables and as such every component of a particle is represented as an integer number.
Particularly, particle velocity and position are updated using the update rules from the conventional PSO algorithm. The re-
sults from the conventional position and velocity update rules are fixed to maximum values, so the current solution falls
within a certain range in which it has a correct meaning in terms of job scheduling. This forces particles to move towards
suitable areas in the search space, which means ensuring that each position is greater or equal than 1 and less or equal than
the number of executing machines.

Finally, in the work proposed in [20] a distributed algorithm exploiting PSO (ParticleZ) for scheduling in Grids has been
presented. In the ParticleZ algorithm, each machine is considered as a particle in a flock (i.e., the environment). The position
of each machine in the flock is determined by its load. Particle velocity and position are defined in terms of the load differ-
ence that a machine registers with respect to its surrounding machines. Since particles try to balance the overall load, they
move towards each other based on their position changes (i.e., load). These changes are achieved by exchanging jobs
between machines. This is done locally in each machine, and gradually results in moving towards the global optimal load.

4.2.4. Approaches maximizing load balancing and minimizing monetary cost
In the work presented in [30] the authors model a scheduling problem for applications with dependencies between jobs

by formulating and modeling the problem through a PSO-based approach. The authors base on a search space comprising n
dimensions where every dimension of a particle position is mapped to one job, while the position value indicates a machine
to which a job is allocated. Due to the fact that the particle position represents a potential schedule, it must be decipher back
to obtain a solution. To minimize the monetary cost authors have introduced a function that optimizes both the makespan
and the overall sum of the completion times, weighted by two non-negative weights whose sum is equal to 1.
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4.2.5. Approaches minimizing makespan and minimizing flowtime
In [31] a version of a discrete PSO is introduced for addressing job scheduling in Grids. Under this algorithm, the particles

are modeled to represent the order in which jobs are assigned to available machines. Moreover, the solutions are held in an
m� n position matrix, being m the number of machines and n the number of jobs. All cells in the matrix of each particle have
the value of 0 or 1, and in each column only one cell is set to 1. Columns then represent job assignations and rows represent
assigned jobs within a machine. In the proposed PSO, the particle velocity, and the most suitable (or best) individual and
global positions are also redefined as a matrix of m� n dimension. Here, the individual most suitable position is the best
position that a particle has ever visited. The global best position is on the other hand the best position that all particles have
ever visited.

4.3. Job Scheduling based on ABC

In this section, the most representative job scheduling approaches exploiting ABC are discussed. The goals pursued by the
authors have been minimizing makespan, achieve a good load balancing in resources, minimize monetary cost, or combina-
tions of these.

4.3.1. Approaches minimizing makespan
Ref. [32] proposes an Efficient Binary Artificial Bee Colony (EBABC), an extension of BABC [33]. The algorithm was pro-

posed for solving job scheduling problems in Grids.
A weakness of the BABC algorithm is that the new randomly generated solutions by the scout bees in general have poorer

quality compared with existing solution groups identified by the employee and onlooker bees. To solve this problem and to
generate new solutions whose quality is not significantly different from existing solutions the authors have modified BABC
by incorporating a Flexible Ranking Strategy (FRS), which is used to generate and employ new solutions for diversified search
in early generations and to speed up convergence in latter generations. FRS step is introduced between the steps performed
by onlooker bees and scout bees. In the FRS step the food sources of the employed bee population are arranged in order of
ascending nectar value (makespan). Then the worst solution in the population is removed and a new solution is generated
probabilistically as a combination of the best N solutions in the population. Moreover, two variants are introduced to min-
imize the makespan. In the first variant – called EBABC1 – a fixed number of best solutions is employed with the FRS, while in
the second variant – EBABC2 – the number of the best solutions is reduced with each new generation. The advantage of
EBABC2 is that in early generations the new food source is generated using all food sources in the swarm thereby improving
the diversity of the search, while in later generations only the few best solutions are used improving the convergence of the
algorithm.

4.3.2. Approaches minimizing makespan and maximizing load balancing
In [34], the authors have presented an ABC algorithm named Honey Bee Behavior inspired Load Balancing (HBB-LB),

which aims to achieve well balanced load across VMs and minimize the makespan in a Cloud infrastructure. In the algorithm
the VMs are grouped based on their loads in three sets: overloaded VMs, underloaded VMs and balanced VMs. Each set con-
tains the number of VMs. Jobs removed from an overloaded VM have to a make decision to get placed in one of the under-
loaded VMs. A job is considered as a honey bee and the VMs with low load are considered as the destination of the honey
bees. The information that bees update are load on a VM, load on all VMs, number of jobs in each VM, and the number of VMs
in each set. Once the jobs switching process is over, the balanced VMs are included into the balanced VM set. Once this set
has all the VMs, the load balancing process ends.

In [35], the authors have extended the classical ABC algorithm adding an additional step including a mutation operator
after the process performed by the employed bees in ABC. The mutation operator is applied after the employed bees have
explored the solution space. The selection of the food source is done in a random manner and the mutation operator is per-
formed if a mutation probability is satisfied. Through mutation, there is a chance of changing the local best position, and the
algorithm may not be trapped into local optima. When applying the mutation operator new food sources are produced.
Accordingly, the new generated FSs replace the older if their fitness value are better.

4.3.3. Approaches minimizing makespan and minimizing monetary cost
In [36] the authors propose a modified ABC algorithm to deal with job scheduling in Grids. The algorithm was modified to

implement a multi-objective version, called Multi-Objective Artificial Bee Colony (MOABC), that optimizes time and cost
requirements. MOABC only requires two parameters: population size and mutation probability. Population size indicates
the number of bees that are going to be maintained in each iteration or the number of food sources. Bees are represented
by two vectors called allocation and order vector. The allocation vector denotes the current job allocation in the available
Grid resources. The order vector indicates the order for the jobs execution.

In the multi-objective exploitation process, employed bees and onlookers search the best solutions from their last expe-
rience and the experience of their fellows. The employed bees generate a neighbor regarding to the mutation probability
parameter per each vector. There are two types of mutations regarding to the two vectors: replacing mutation and reorder-
ing mutation. Moreover, in the exploration process, scout bees generate their allocation and order vectors from a random
basis using information from the problem but without the experience of their fellow bees. Solutions selection is made when
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the three types of bees are in the population. The solution of the previous iteration with the current are compared by means
of a classification operator again. The new solution is saved as the solution for the current iteration and it will be compared
with the solution from the next iteration. The new population is selected by the classification operator too, keeping the num-
ber of employed bees beginning from the first solution.

The work presented by [37] proposes an algorithm to schedule jobs on Grids via various additional techniques. In the pro-
posed method three techniques are applied: Single Shift Neighborhood (SSN), Double Shift Neighborhood (DSN) and Ejection
Chain Neighborhood (ECN). These techniques consist of moving jobs (nectar amount) between resources (food sources) in
order to minimize the makespan and cost. The algorithm performs the following procedure: first, the employed bees are con-
structed guided by fitness values based on makespan and cost, i.e., makespan and cost represent the nectar amount in the
food sources. Moreover, a food source with minimal makespan and cost has the greater probability to be chosen by a bee.
Then, SSN and DSN are applied for each employed bee according to the fitness value of their food sources. SSN is a type
of neighbor obtained from an original solution – food source – by moving the assignment of one job. Moreover, with DSN
two jobs are moved. Second, when constructing a solution, the onlooker bees are assigned to employed bees according to
a probability value associated with the food source. Third, ECN is applied for each employed bee based on the probability
value. To apply ECN a new food source is obtained by performing multiple moves of jobs, where the number of moves is
specified as length chain.

4.4. Job Scheduling based on AFSA

Due to the fact that AFSA is more difficult to implement, there are fewer studies using AFSA to job scheduling. The AFSA
algorithm has been applied to maximize load balancing in resources and minimize the makespan and flowtime.

4.4.1. Approaches maximizing load balancing
In the work proposed in [38], the authors have presented an algorithm based on AFSA and GA for distributed job

scheduling in wireless clusters named Fish Swarm Genetic with Survival Mechanism Algorithm (FSGSMA). FSGSMA is
essentially a classical AFSA algorithm (see Appendix A) that includes a survival index comprising a food energy value
related to an AF’s current position, a consumption factor k representing the energy consumed per unit time, and the life
cycle of the AF. The optimization efficiency of the algorithm is enhanced using these survival information. A GA also
operates upon each iteration of AFSA with the survival mechanism. In the algorithm, an iteration of the fish swarm rep-
resents a population in GA terms. In the solution set of the GA, AFs which can remain alive will be selected by analyzing
their survival index.

4.4.2. Approaches minimizing makespan and minimizing flowtime
In [39] a Modified AFSA (MAFSA) algorithm for addressing job scheduling was proposed. The optimization criteria are

stored by their importance, i.e., makespan first and flowtime second. In the structure of an AF, achievable solutions are stored
in a vector where each element value represents the resource in which the scheduler assigns a job. AFSA bases on the idea of
imitating the basic behavior of fishes (i.e., prey, swarm, follow) usually with LS of fish individuals, in order to reach a global
optimum. Moreover, in AFSA, several parameters impact on the optimization result. With the objective of achieving higher
levels of global convergence, the author has modified the conventional AFSA from two angles. First, the swarm behavior and
the following behavior, in some degree, are local behaviors. When in AFSA the value of the objective function does not
change after some iterations, the algorithm may converge to a local minimum. If the algorithm keeps iterating, each AF result
will be similar and the probability to leap out of a local optimum becomes increasingly smaller. Precisely, avoiding local opti-
mum and achieving a global optimum in MAFSA are ensured by means of a new leaping behavior added to AFs, which helps
in properly balancing convergence rate and solution precision.

4.5. Analysis of the reviewed scheduling approaches

Table 2 summarizes the reviewed schedulers. Its columns are described below (a ‘‘–’’ cell value means that either a col-
umn does not apply to the work or the authors did not provide information):

� Algorithm type/environment: Is the base SI technique and the kind of distributed environment supported. SI technique
may be ‘‘ACO’’, ‘‘PSO’’, ‘‘ABC’’ o ‘‘AFSA’’. On the other hand, ‘‘Grid’’ is an abbreviation for ‘‘Grid Computing’’ and ‘‘Cloud’’
refers to ‘‘Cloud Computing’’. Likewise, ‘‘Cluster’’ refers to conventional computer clusters.
� Objectives: Lists the objective variables to be minimized and/or maximized by the scheduler.
� Paper: Contains a reference to the paper in which the authors describe the proposed work.
� Additional technique: Indicates whether the authors have combined the proposed SI technique with another technique

not strictly belonging to the SI area.
� Algorithm evaluation: Refers to the type of environment in which the scheduler was evaluated. Possible values for the

environment are a real execution platform or middleware, a simulated environment (when details about the simulation
tools are not given in the paper), or a specific ad-hoc or third-party simulation toolkit.



Table 1
Reference variables used across surveyed SI-based algorithms.

ACO PSO

– a [0.1–50], importance of trail intensity – Swarm [10–41], number of particles in a swarm
– b [0.5–50], importance of resource – c1 [0–2], self-recognition factor
– q [0.5–0.8], permanence of pheromone trail – c2 [1,2], social factor
– P [0.1–0.99], overhead incurred in resource – w [0–1.5], inertia factor
– s0 {0.01}, initial pheromone – minVel {�0.4}, minimum velocity reached by the particles
– ce [0.003–1.1], encouragement factor – maxVel [0.4–100], maximum velocity reached by the particles
– cp [0.002–0.8], punishment factor – cost p/hs [1.1–1.3], the processing cost per hour of machines
– c {0.4}, factor for load balancing – link {149}, number of connections between machines
– Ants [1–30], number of ants in the colony – k [0–1] fitness function factor to prioritize makespan over flowtime
– Cost p/sec [1–7], the processing cost per second of machines
– Mutation {0.5}, probability to move an ant to a random machine
– Decay [0–0.5], factor that causes mutation rate to decrease
– Steps [1–10], maximum number of steps that performs an ant
– Threshold [0.1–0.5], tells whether to assign a job to a resource

ABC AFSA

– FS [20–40], number of food sources – Visual {3}, visual distance of a fish
– Limit [100–20000], number of trials after which a food source

is assumed to be abandoned
– Step {2.6}, moving step length

– Fishes {200}, number of fishes in a swarm
– d {0.8}, crowd factor
– g {0.9}, priority factor
– en [168–438], computing energy
– cc [7–25], communication cost
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� Input variables: Here are the SI-specific variables used in the algorithms. Table 1 lists variable names and summarizes the
ranges in which the control variable values lie across surveyed works. {v} means that a fixed value was used, whereas
[va–vb] means a range was used. For example, in Table 1, the range of values [20–40] for the food source variable in
ABC represents the lowest food source value among all ABC related works, which comes from the work proposed in
[32], and the highest value, which was used in the work proposed in [35]. A second example is the range of values
[0.1–50] for the a variable in ACO. These values arise from the lowest a value from the proposed work in [9] and the high-
est a value, which was used in the work [12]. On the other hand, not all works rely on the same set of variables, as evi-
denced from Table 2.
� Experiment size: Describes the number of jobs and machines used in the performed experiments. This gives a hint on the

extent to which scalability was assessed.
� Reproducibility: Indicates whether the authors have provided all the information needed to reproduce the experiments,

which broadly includes variables (the values of all SI-related variables used in the algorithm), jobs (# of executed jobs, #
of instructions in each case, and the input/output file sizes), and machines (the number of machines and processing cores,
the processing power of each core, storage capacity, memory, and bandwidth). We have used three categories – high,
medium and low – depending on the amount of information provided in each work to reproduce the experiments. For
example, when all the information listed above is provided the category is considered ‘‘high’’. Reproducibility ‘‘medium’’
is considered when no more than two elements in each item from the list are missing. Finally, jobs are categorized as
‘‘low’’ when the authors do not provide enough information to reproduce the experiments.
� Resource allocation: Is the time at which jobs are allocated to resources. Static means that when the allocation takes place,

the scheduler has complete information in advance of both the jobs and the resources. Dynamic supports scheduling of
jobs arriving at different times, and moreover operates well even when resource availability changes over time. A hybrid
resource allocation is when some of the jobs are known in advance, and other jobs arrive at different times to be sched-
uled for execution and/or details of them are not available until they are received.
� Application awareness: Tells whether the proposed works have considered in the algorithm both the computational bur-

den of moving the data – i.e., input data and code – associated to the jobs to be processed and executed (aware-
ness = ‘‘full’’), or only the computational cycles of the job (awareness = ‘‘partial’’). For example, works in the former
category manage job allocation based on the underlying network as well as processing capabilities, whereas proposals
in the latter typically consider processing power only.
� Compared with: Refers to the algorithms and techniques against which the authors have compared their work in their

experiments. Scheduling algorithms found include:
– Simple algorithms such as Random, Min–Min, Max–Min, FCFS (First Come First Served), FPLTF (Fastest Processor to

Largest Task First) and RR (Round Robin) in which time slices are assigned to each job in equal portions in a circular
order.



Table 2
Summary of the analyzed approaches.

Algorithm
type/
environment

Objective
variables

Paper Additional
technique

Algorithm evaluation Values of variables Experiment size Reproducibility Resource
allocation

App.
awareness

Compared with

ACO/Grid Makespan [9] – GridSim toolkit < ðants;30Þ; ða;0:1Þ,ðb;2:0Þ; ðP;0:1Þ > 3000 jobs10–20
machines

High Dynamic Partial MTEDD, MTERD,
FCFS

[10] – GridSim toolkit – 10–100 jobs 5
machines

Low Static Partial Classical ACO

[12] LS and TS Simulated Grid < ðants;10Þ, (a, [1–50]), (b, [1–50]),
ðq;0:75Þ; ðs0;0:01Þ >

512 jobs 16
machines

Medium Static Partial GA, Min–Min

Load bal. [14] – Simulated Grid < ðq;0:99Þ; ða;0:5Þ,
ðb;0:5Þ; ðce;0:003Þ,
ðcp ;0:002Þ; ðc;0:4Þ >

1000 jobs 10
machines

High Dynamic Partial Classical ACO

[15] – Simulated Grid < ðs0;0:01Þ; ðq;0:5Þ, ðants;1Þ > 20 jobs 5
machines

Medium Hybrid Partial FFM

Makespan,
load bal.

[17] LS Simulated Grid – 512 jobs 16
machines

Medium Dynamic Partial Min–Min

[18] – Real Grid (Taiwan
UniGrid + GT4 Globus
toolkit)

< ðP;0:99Þ; ða;0:5Þ,
ðb;0:5Þ; ðce;0:003Þ,
ðcp ;0:002Þ; ðc;0:4Þ >

1000 jobs 25
machines

High Dynamic Full ACO [14], FPLTF,
Random

[19] – Simulated Grid < ðq;0:8Þ; ða;0:5Þ, ðb;0:5Þ; ðce;1:1Þ,
ðcp ;0:8Þ >

20 jobs 10
machines

High Dynamic Partial Classical ACO

[20] – GridSim toolkit <(mutation,0.5), (decay,0-0.5),
(Steps,[1–10])>

1000 jobs 100
machines

High Dynamic Full SBA, Random,
PSO (ParticleZ)
[20]

ACO/Grid Makespan,
load bal.

[22] – Simulated Grid < ðq;0:8Þ; ða;15Þ,ðb;10Þ > 512–4096 jobs
32–256
machines

Medium Dynamic Partial TS

Makespan,
load bal., cost
($)

[21] – GridSim toolkit <(cost p/sec, [1–7]), (threshold, [0.1–
0.5])>

40 jobs 20
machines

High Dynamic Partial Classical ACO

ACO/Cloud Makespan [11] – Simulated Cloud < ðants;25Þ; ðs0;0:01Þ, ðq;0:5Þ > 25 service
requests 5
machines

Medium Dynamic Full Classical ACO

Load bal. [16] – Third-party Java
simulation toolkit

– 1000 jobs 100
machines

Medium Dynamic Partial Messor
algorithm

PSO/Grid Makespan [23] – Alea toolkit <(minVel, -0.4), (maxVel, 0.4),
(w, [0.3–1.5])>

9 jobs 3
machines

High Dynamic Partial Classical PSO

[24] LS Simulated Grid <(swarm, 30), ðc1;2Þ,
ðc2;2Þ; ðw; ½0:4� 0:9�Þ, (maxVel, 100)>

100–200 jobs 5–
20 machines

High Dynamic Partial GA

[25] – Simulated Grid <(swarm, 20), ðc1;1:49Þ, ðc2;1:49Þ,
ðw; ½0:1� 0:9�Þ >

13–100 jobs 3–
10 machines

High Dynamic Partial GA, SA

[26] VND Mathlab < ðswarm;32Þ, ðw; ½0� 0:3�Þ > 512 jobs 16
machines

High Dynamic Partial GA, SA, TS

Makespan,
load bal.

[29] – Mathlab < ðswarm;60Þ; ðc1;2Þ,
ðc2;2Þ; ðw; ½0��1�Þ >

60–80 jobs 10–
20 machines

Medium Dynamic Partial Max–Min

[20] – GridSim toolkit < ðlink;149Þ; ðc1;0Þ, ðc2;1Þ; ðw;0Þ > 1000 jobs 100
machines

High Dynamic Full SBA, Random,
ACO (AntZ) [20]

PSO/Grid Load bal., cost
($)

[30] – Simulated Grid <(swarm, 20), ðc1;1:49Þ,
ðc2;1:49Þ; ðw; ½0:1� 0:9�Þ >

7 jobs 3
machines

High Static Partial GA
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Makespan,
flowtime

[31] – Ad-hoc VC++ toolkit <(swarm, 50), ðc1;1:5Þ,
ðc2;1:5Þ; ðw; ½0:1��0:9�Þ, ðk; ½0� 1�Þ,
(maxVel, 30)>

512 jobs 16
machines

Medium Dynamic Partial Min–Min, GA,
ACO [12], PSO
[25]

PSO/Cluster Makespan [27] LS Mathlab <(swarm, 10)> 10–100 jobs 2–
10 machines

High Static Partial SA

PSO/Cloud Cost ($) [28] – Jswarm toolkit <(swarm, 25), (cost p/hs, [1.1–1.3])> 5 jobs 3
machines

Medium Static Full BRS

ABC/Grid Makespan [32] FRS Simulated Grid <(FS, 20),(Limit, [100–8000])> 13–1000 jobs 3–
100 machines

Medium Dynamic Partial BABC

Makespan,
load bal.

[35] – Simulated Grid <(FS, 40), (Limit, 20,000)> 17–30 jobs 5–12
machines

Low Dynamic Partial GA

Makespan,
cost ($)

[36] – GridSim toolkit – 60 jobs 11
machines

Low Dynamic Partial DBC WMS

[37] SSN, DSN,
ECN

Simulated Grid – 128–1024 jobs
8–64 machines

Medium Dynamic Partial ACO

ABC/Cloud Makespan,
load bal.

[34] – CloudSim toolkit – 10–40 jobs 3–7
machines

Low Dynamic Partial FCFS. RR,DLB

AFSA/Grid Makespan,
flowtime

[39] – Simulated Grid <(visual, 3), (step, 2.6), (fishes, 200),
ðd;0:8Þ, ðg;0:9Þ >

13 jobs 3
machines

Medium Dynamic Partial GA, SA

AFSA/Cluster Load bal. [38] GA Mathlab <(en, [168–438]), (cc, [7–25])> 7 jobs 4
machines

Medium Static Full Classical AFSA
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– Time-based heuristics, particularly MTEDD (Minimum Time Earliest Due Date), MTEDD (Minimum Time Earliest
Release Date), DBC (Deadline Budget Constraint) and WMS (Workload Management System). MTEDD orders the
sequence of jobs to be serviced from the job with the earliest due date to the job with the latest due date. MTEDD pri-
oritizes jobs with earliest release dates. DBC tries to keep the deadline and budget (cost) of a specific experiment
within certain limits. Finally, WMS considers hardware or software requirements, such as storage capacity, processing
performance or operating system.

– Greedy algorithms, particularly First free machine (self-described), BRS (Best Resource Selection) and DBL (Dynamic
Load Balancing). BRS maps a job to the resource that is able to deliver the minimum finish time, i.e., a resource with
good computing power and low load. DBL allocates/reallocates resources at runtime based on no-a-priori job informa-
tion, which may determine when and which of their jobs can be migrated.

– Algorithms based on traditional metaheuristics, i.e., approaches exploiting GAs, techniques based on SA, or TS.
– Algorithms either based on modified versions of any of the previous algorithms, or miscellaneous algorithms. The

latter group includes the Messor algorithm and SBA (State Broadcast Algorithm). Messor is an ant-inspired algorithm
that is based on two complementary processes: SearchMax and SearchMin (an ant explores the network to find an
overloaded and an underloaded machine, respectively). Under SBA, whenever a job arrives to or departs from a
resource, i.e., this latter broadcasts a status message informing the situation.

– Algorithms strictly based on unmodified (classical) versions of the SI techniques.

In the ACO algorithms included in Table 2, pheromone trail modeling and modification has been subject of great attention
to achieve the proposed objectives. For example, in [14,18] a load balancing factor has been added to the pheromone trail.
With this factor the resources have similar completion rates, and thus the ability of load balancing the overall system is
improved. Many authors [9–11,22] included in the pheromone update rules a pheromone evaporation rate or a pheromone
permanence rate. The pheromone evaporation rate is used to prevent that other ants choose those paths. The pheromone
permanence rate strengthens the more interesting paths, i.e., the paths more frequently used by ants.

Specifically, [18] changes the pheromone update rules (local and global) to achieve better load balancing. The local update
rule refreshes a selected resource status after job allocation. Moreover, the global update rule refreshes the status of
resources after each job finishes. Thus, the scheduler keeps updated information of all resources in every allocation step.
Moreover, in [12,17] the authors have combined the classical ACO algorithm with other techniques or algorithms, such as
LS or TS. These algorithms have been helpful for researchers to obtain better results than classical (raw) SI approaches. How-
ever, just by looking at the Table 2 it seems that the community is still influenced by the idea of developing pure SI-based
approaches.

Within the surveyed PSO algorithms, some authors have proposed to modify the way in which particle position and
particle velocity are represented. Some of these modifications involved the discretization of the vectors associated to these
two variables [24,29,31] and the application of fuzzy logic [25]. Other authors [20] added or modified some terms used to
calculate the position or velocity of a particle. In [28] have used two matrices to incorporate the computation and network
communication costs that are then minimized. Instead, in [23] have modified an inertia parameter that causes a particle to
move always in the same direction.

From the studied literature follows that most of the works do not take into account jobs dependencies, with the exception
of [28,30]. In most simulation-based experiments, job dependency is not nevertheless a necessary feature as they are based
most of the time on independent jobs.

In the works based on ABC, authors have introduced different changes to the classical ABC to improve performance. For
example, in the works [32,37] the authors have combined the ABC with other techniques. In [32] authors have incorporated a
FRS strategy with the aim to generate and use new solutions for diversified search in early generations and to speed up con-
vergence in latter generations. On the other hand, in [37] the authors have applied different neighborhood techniques (SSN,
DSN and ECN). In [34], the authors have presented an ABC algorithm in which machines are grouped according to their loads
in order to achieve a good balance among them. In the algorithm each job is considered as a honey bee and the machines
with low load are considered as the destination of these bees. Moreover, in [35,36] the authors have modified the classical
ABC by adding additional steps using a mutation operator to explore new areas of the solution space.

With respect to AFSA, in [39] the MAFSA has been proposed, through which the authors calculate food concentration and
model the structure of an artificial fish in a novel way. On the other hand, in [38] have proposed to include in the conven-
tional AFSA algorithm a survival index to improve efficiency. Here, the modified AFSA algorithm is combined with GA to
achieve faster convergence and good load balancing.

A general remark is that most works have been validated in simulated environments, with a number of used jobs that do
not exceed 1000 jobs. As an evaluation approach, many works rely on simulation and particularly using the GridSim
simulation toolkit (http://www.buyya.com/gridsim). Within the distributed computing community, it is broadly accepted
to establish simulated experimental scenarios due to the inherent difficulty of performing tests in real environments. Nev-
ertheless, in real scientific experiments, the number of jobs can far exceed that amount. It would then be interesting to con-
sider how these algorithms respond to situations of greater stress on the machines, at least in simulated scenarios.

Regarding the reproducibility of the experiments, not all the works surveyed can be completely replicated. The authors
have not always provided the information necessary to reproduce the experiments they performed. It is desirable, however,
to provide complete information of all experiments settings to corroborate through their replication the efficiency of the

http://www.buyya.com/gridsim
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algorithms. This is important on an area like SI, where many algorithms and combinations of these are useful to approach a
given optimization problem.

A crucial issue to achieve good performance in distributed environments is resource allocation, which can be either static
or dynamic. Table 2 shows that some researchers [10,12] have proposed static job scheduling algorithms. Since both Grids
and Clouds are environments where the availability of resources is by nature highly dynamic and jobs arrive over time,
applying static resource allocation is unrealistic in practice. On the other hand, in real systems available today it is difficult
to obtain complete information about the jobs and resources in advance. Then, hybrid resource allocation schemes have been
also proposed to provide a balance to this trade-off.

Another feature among the works is the application awareness considered. Table 2 evidences that most authors have con-
sidered in their experiments only the computational cycles for executing jobs, i.e., partial ‘‘awareness’’, while only six
authors have also considered the computational burden of moving the data of jobs to be processed, i.e., ‘‘full awareness’’.
Although it is important to consider in a real application the extra time that demands the computational load due to data
transfer, in some applications input and output parameter sizes (e.g., data files) are not large enough to alter the execution
time. The presence of data-intensive scientific applications, conversely, renders partial awareness algorithms not applicable.

On the upside, each one of the changes introduced by the authors to the raw SI algorithms has made the resulting algo-
rithms more efficient according to their objectives. Table 2 evidences, however, that most of these algorithms are focused on
minimizing makespan and achieve a proper load balancing, but they do not deal with other interesting and important met-
rics such as energy use. Precisely, efforts in distributed and parallel computing have traditionally focused on improving
speedup, i.e., minimizing execution times of the applications. Due to the large growth of scientific applications, more and
more resources are necessary for processing, and energy consumption has become a crucial problem due to high electricity
costs and CO2 emissions. This has gave birth to a new field called Green Computing. It is then important to minimize energy
consumption within a distributed environment as well as the energy consumed to move data to/from the environment. We
believe that since ACO-based job scheduling techniques are highly efficient in optimization problems they are also good can-
didates to address this problem. Energy consumption could be then a variable within the objectives of a new algorithm. In-
deed, a search for recent journal papers regarding distributed SI-based job schedulers that consider energy consumption,
performed at the time of writing this work, resulted in few papers, which shows the undeveloped nature of the topic.

Another feature among the works is the type of environment in which experiments have been performed. For job
schedulers for Grids and traditional clusters, the machines used to run the experiments were always heterogeneous, i.e.,
the machines had different number of processing elements and computing power. In works focused on Cloud Computing,
the authors have used homogeneous machines, i.e., each machine has the same processing power. This fact occurs because
in Clouds is the user who decides the number and type of resources that need to run applications, as the infrastructure is
much more tailorable, and hence homogeneity is often preferred. For this reason, resources are homogeneous and have
the same or similar specifications, i.e., the same computing power, available memory, and so on. This eliminates the
necessity of elaborated SI schedulers, but as Clouds evolve from location-centric computing environments to federated Clouds
arranging several local Clouds, resource heterogeneity will increase, thus requiring more complex SI-based solutions.

Finally, a distinctive feature of the surveyed works not shown in Table 2 is that they do not consider job priority. Partic-
ularly, for running PSEs, this is a very important aspect. For example, when designing a PSE as sets of Ns jobs, where every job
in a set s is associated a particular value for the ith variable of the model being simulated by the PSE, job running times be-
tween sets can be very different. This is since running the same PSE code or solver (i.e., job) varies according to the variable
and mathematical model being explored and executed. Sometimes important variations may occur between jobs in the same
set as well. These situations are very undesirable since the user can not process/visualize the outputs until all jobs within a
PSE finish. Therefore, giving higher priority to individuals carrying jobs that are supposed to take longer to finish may help in
reducing makespan, and hence improve output processing at the user end.
5. Conclusions

From the 30 analyzed works summarized in Table 2, it seems there are shortcomings concerning aspects such as
algorithm evaluation, experiment size, reproducibility and comparison. Only one work was evaluated on a real distributed
environment. Moreover, just a 48% of the works have been evaluated with a number of jobs in the order of 100 or 1000 jobs
(18% and 30%, respectively), and only 5 works have used � 100 machines. This does not mean the techniques cannot scale,
but this should be assessed. Likewise, the entire set of experiments in each work can be fully reproduced in the 43.3% of the
cases. At the exception of few works, cross-comparison of the proposed extended techniques has not been carried out yet.
This reveals the immature nature of the area and evidence many future research opportunities.

Most efforts target Grid Computing, while few target Cloud Computing. This latter essentially offers the means for build-
ing easy-to-use parallel computing infrastructures. Although the use of Clouds finds its roots in IT environments, the idea is
entering scientific and academic ones. Consequently, in general, few researchers have deeply evaluated the benefits of
Clouds for scheduling and processing resource intensive scientific applications. In fact, most Cloud schedulers come from
mere adaptations of job schedulers for Grids. Some efforts however have employed Clouds to run simulations using pure
scheduling policies for Clouds [41]. Then, the line of research underneath such studies could greatly benefit from SI-based
scheduling approaches. All in all, since there are less efforts devoted to job scheduling in Clouds, we aim at designing a



266 E. Pacini et al. / Computers and Electrical Engineering 40 (2014) 252–269
new SI-based scheduler to efficiently running scientific simulations in Clouds while addressing aspects not fully considered
by existing efforts such as energy consumption, and job priorities [41]. Eventually, we will implement the scheduler on top of
a real Cloud platform.
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Appendix A. Swarm Intelligence techniques

SI [1] is based on studying collective behaviors that emerge from interactions between individuals and the environment
which they live to solve optimization problems. Examples of systems in which SI is inspired are ants colonies, fish schools,
birds flocks, and herds of land animals, where the whole group of individuals perform a desired task (i.e., feeding), which
may not be made individually. For example, an ant is relatively unintelligent, but when it is part of a colony, some behaviors
emerge from the interactions between ants, such as searching for food.

According to Dorigo and Birattari [1], an SI system (a) it is composed of many individuals, (b) the individuals are relatively
homogeneous, i.e., they are either all identical or they belong to a few typologies, (c) the interactions among the individuals
are based on simple behavioral rules that exploit only local information that the individuals exchange directly or via the
environment, and (d) the overall behavior of the system results from the interactions of individuals with each other and with
their environment, i.e., the group behavior is self-organizes.

The following subsections briefly describe three SI techniques that are currently widely used in job scheduling problems
described in this survey. The techniques are ACO, PSO, ABC and AFSA.
A.1. Ant colony optimization

The ACO algorithm [1] arises from the way real ants behave in nature. An interesting aspect of this behavior is how ants
manage to locate short paths to reach a food source from their nest. The ACO algorithm can solve computational problems
since the algorithm has the ability to reduce paths and precisely to find the shortest paths. In nature, ants move randomly
from one place to another to search for food. On the return to its nest each ant leaves an hormone that lures other working
ants to the same course. When more and more ants choose the same path, the pheromone trail is intensified and even more
ants will further choose it. Over time, the shortest paths will be intensified by the pheromone faster. That is because the ants
will both reach the food source and travel back to their nest at a faster rate. Furthermore, if over time ants do not follow a
certain path, its pheromone trail evaporates. From an algorithmic point of view, the pheromone evaporation process is useful
for preventing the convergence to a local optimum solution.

Fig. 1 shows two possible nest-food source paths. Fig. 1(a) shows that ants will move randomly at the beginning and
choose one of the two paths. The ants that follow the faster path will naturally get to the objective before other ants, and
in doing so the former group of ants will leave a pheromone trail. Moreover, the ants that perform the round-trip faster,
strengthen more quickly the quantity of pheromone in the shorter path (see Fig. 1(b)). The ants that reach the food source
through the slower path will find attractive to return to the nest using the faster path. Eventually, most ants will choose the
left path as shown in Fig. 1(c).

ACO employs artificial pheromone trails that play the role of information that is dynamically updated by ants to reflect
their accumulated experience in contributing to solve an entire problem. In practice, to optimize job scheduling problems,
the ACO algorithm is mapped to graphical representations, usually graphs. A graph for example may include jobs and
executing physical machines (nodes) and scheduling decisions (arcs). Each job can be carried out by an ant to search for
machines with available computing resources.
Fig. 1. Adaptive behavior of ants.
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A.2. Particle swarm optimization

PSO [1] mimics the behavior of animals such as birds and insects such as bees. The general term ‘‘particle’’ is used to rep-
resent birds, bees or any other individuals who exhibit social and group behavior. Suppose a group of bees flies over the
countryside looking for flowers. Their goal is to find as many flowers as possible. At the beginning, bees do not have knowl-
edge of the field and fly to random locations with random velocities looking for flowers. Each bee has the capability of
remember the places where it saw more flowers, and moreover, somehow knows the places where other bees have found
a high density of flowers. These two pieces of information – nostalgia and social knowledge – are used by the bees to contin-
ually modify their trajectory, i.e., each bee alters its path between the two directions to fly somewhere between the two
points and find a greater density of flowers. Occasionally, a bee may fly over a place with more flowers than any other place
found. If this happens then the whole swarm is attracted towards this new direction. The process leads to having all bees in
one single place of the field where the highest density of flowers is found.

To model job scheduling, PSO is instantiated with particles, each maintaining one potential solution to the entire sched-
uling problem. The design of the representation of a particle is different for each type of problem. An example of how to rep-
resent particles when modeling the job scheduling problem is placing the position of a particle in an n-dimensional search
space. Each dimension i is the job to schedule, and the corresponding value represents the machine in which a job can be
allocated. Furthermore, the global best position will indicate the best possible schedule.
A.3. Artificial bee colony

ABC is inspired by the intelligent foraging behavior of honey bees when searching for food (nectar), which operate by
sharing the food sources (FSs) information between the bees in the nest. Each FS position is a solution. Bees are classified
according to how they select the FS to exploit.

There are three types of bees in the foraging process: employed bees, onlookers bees and scouts bees. Employed bees are
associated with a particular FS which they are currently exploiting and share this information with a certain probability by a
waggle dance. Scout bees search the environment for new FS without any guidance. Onlookers bees observe the waggle
dance and so are placed on the FS by using a probability based selection process. As the nectar amount of a FS increases,
the probability value with which the FS is preferred by onlookers increases too.

In the initial population, a number of employed bees is generated. At the initialization stage, a set of FS positions are ran-
domly selected by the employed bees and their nectar amounts are determined. The FS represents a candidate solution to the
optimization problem, and the nectar amount – fitness value – is used to assign a quality to the FS regarding the associated
solution in ABC algorithm. After initialization of random solutions, employed bees start their searching initially. Employed
bees search new FS near to the current FS. If the generated new solution is better than the current solution then the new
solution replaces the old one. The comparison of FS is done on the basis of fitness value or nectar amount in the FS.

After all employed bees complete the search process, they share the nectar information of FS (solutions) and their position
information with onlooker bees waiting in the hive. The most profitable the FS, the longer the duration of the waggle dance.
Onlookers watch the dances and choose FS depending on dances. After selecting its FS each onlooker bee seeks out one new
FS within its neighborhood and moves to this FS if it has a higher nectar value. If a solution cannot be improved during a
number of cycles, that source is abandoned, and its employed bee becomes a scout bee. A scout bee finds a new random solu-
tion to be replaced with the abandoned source. When a termination criteria is satisfied, the algorithm terminates.
A.4. Artificial fish swarm algorithm

AFSA essentially imitates the behavior of fishes in nature and allows to find a global optimum. In the water fishes can find
the most nutritional area in two ways, i.e., by themselves or by following other fishes. Thus, the area in the water with the
highest number of fishes is in general the one with the highest amount of food. According to this behavior, the AFSA algo-
rithm relies on the concept of Artificial Fish (AF), and uses several AFs imitate the behavior of fish schools and perform the
search of an optimal solution.

Each AF has its own behaviors and data. All AFs perceive information from the environment via their sense organs. In the
algorithm the environment of an AF is the solution space. The basic behaviors that an AF can perform are Prey, Swarm and
Follow. Through the Prey behavior an AF seeks water areas with high concentration of food and decides to move in that
direction. The Swarm behavior allows fishes to join in groups to avoid dangers and assure the existence of the school. The
Follow behavior is used to follow one or more fishes when they have found food. Moreover, there are two states for each
AF – current and environmental – that define the next behavior of an AF. A state includes the solution quality of a fish ob-
tained so far and the states of other fishes, i.e., the environmental state. Therefore, a behavior is influenced by the environ-
ment both by the own fish activities towards building a solution and the other fishes activities.

An AF (center of Fig. 2) can perceive the environment through its vision. Its visual reach is represented by Xv and its
current state by X. If Xv is better than X, then the AF advances a Step towards that direction, and enters another state, i.e.,
Xnext . Otherwise, the AF continues exploring within its vision area. The greater the exploring area, the more the knowledge
the AF has about all possible next states to obtain a better location.
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Fig. 2. Vision concept of an Artificial Fish.
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In practice, to address job scheduling with AFSA, the structure of an AF and the food are the key issues to model. An
important consideration is how to encode the scheduling solutions into AFs. While the way to encode the solutions depends
on the specific design decisions of the algorithm, one possibility is to encode feasible solutions in a fish vector. The fish vector
has a size of N fishes (or jobs) and each fish in the vector represents the machine to which a job is assigned by scheduler.
Finally, the food concentration is a guide to search for the global optimal solution.
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