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We present a numerical analysis of an incompressible decaying magnetohydrodynamic turbulence run
on a grid of 15363 points. The Taylor Reynolds number at the maximum of dissipation is �1100, and the
initial condition is a superposition of large-scale Arn’old-Beltrami-Childress flows and random noise at
small scales, with no uniform magnetic field. The initial kinetic and magnetic energies are equal, with negli-
gible correlation. The resulting energy spectrum is a combination of two components, each moderately re-
solved. Isotropy obtains in the large scales, with a spectral law compatible with the Iroshnikov-Kraichnan
theory stemming from theweakening of nonlinear interactions due to Alfvénwaves; scaling of structure func-
tions confirms the non-Kolmogorovian nature of the flow in this range. At small scales, weak turbulence
emerges with a k�2

? spectrum, the perpendicular direction referring to the local quasiuniform magnetic field.
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Magnetic fields permeate the Universe, and with the
increased resolving capabilities of instruments, a flurry of
details on highly complex flows emerge. The origin of such
magnetic fields, the dynamo problem, is still not fully
understood, in particular, when the magnetic Prandtl num-
ber PM—the ratio of kinematic viscosity � to magnetic
diffusivity�—differs substantially from unity, as it does in
the interstellar medium (PM � 1) or in convective regions
of stars and liquid cores of planets (PM � 1). Numerous
theoretical and numerical studies have been written (see
[1] ), and recent laboratory experiments address this fun-
damental problem as well. Here, we take a different ap-
proach by assuming that a dynamo mechanism works,
presumably leading to approximate equipartition of the
magnetic and kinetic energies, as observed, for example,
in the solar wind. We then ask questions about the nature of
the nonlinear dynamics of such a flow. The complete
problem (a dynamo taken all the way to the nonlinear stage
at a high Reynolds number as encountered in nature, and
for PM differing substantially from unity) is still out of
reach, but it might be among the key outcomes of petascale
computing facilities and experimental devices currently
being developed. We specifically address in this Letter
the nature of the energy spectra that arise in such condi-
tions. A more detailed account of the development and
evolution (up to the peak of enstrophy) of structures and
correlations of the flow will be presented elsewhere.

The magnetohydrodynamic (MHD) equations read:

 

@v
@t
� v � rv � �

1

�0
rP � j� b� �r2v; (1)

 

@b
@t
� r� 	v� b
 � �r2b; (2)

v is the velocity, b is the magnetic field, j � r� b is the
current density, P is the pressure, �0 � 1 the density, � �

� � 2� 10�4, and r � v � r � b � 0. One can also write
these equations in terms of the Elsässer variables z� �
v� b, of energy E� and flux ��. We solve Eqs. (1) and (2)
in a three-dimensional box of length L0 � 2� using peri-
odic boundary conditions and a pseudospectral method,
dealiased by the standard 2=3 rule; minimum and maxi-
mum wave numbers are kmin � 1 and kmax � N1=3=3, with
N � 15363 grid points. At all times kD=kmax < 1, where
kD is the dissipation wave number. The initial conditions
for the velocity and magnetic fields are constructed from a
superposition of three Beltrami (helical) flows to which
smaller-scale random fluctuations are added with initial
kinetic and magnetic energy EV � EM � 0:5 [with respec-
tive spectra EV	k
 and EM	k
]; magnetic helicity HM �
ha � bi � 0:45 (b � r� a, where a is the vector potential,
and the brackets denote volume average), and cos	v;b
 �
hv � bihjvjjbji�1 � 10�4 (see [2] for details). The compu-
tation is stopped when the growth of the total dissipation
saturates (t � 3:7), at which time the Reynolds number
based on the mechanical integral scale is Re � ULV=� �
9200, and that based on the mechanical Taylor scale is
R� � U�V=� � 1100; U is the rms velocity, the integral
scales are defined as Li � 2�E�1

i

R
k�1Ei	k
dk, the Taylor

scales are �i � 2��Ei=
R
k2Ei	k
dk

1=2, and i is either V or
M. These scales at t � 3:7 are LV � 2:6, �V � 0:31,
LM � 3:1, and �M � 0:39. It was shown in [2] that at early
times, current and vorticity sheets form, and further roll up,
fold, or pile up. Here we focus on the fully developed
regime close to the peak of enstrophy.

The total energy flux �	k
 as a function of wave number
at t � 3:7 is shown in Fig. 1 (inset), together with the total,
kinetic, and magnetic energy spectra [E	k
 � EV	k
 �
EM	k
], compensated by either k�5=3 (Kolmogorov spec-
trum, hereafter K41) or k�3=2 (Iroshnikov-Kraichnan, or IK
[3] ); the latter takes into account the slowing down of
nonlinear transfer because of Alfvén waves. The scaling
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of E	k
 and EM	k
 is close to k�3=2 in a range of scales
covering almost a decade. Energy spectra in MHD have
been reported in the literature, both for decaying and
forced flows, for data stemming from either numerical
simulations or observations (mostly in the solar wind). In
most cases, a spectrum close to K41 is found [4], although
there are times when the IK solution is preferred [5], and in
some cases both scalings may be observed [6]. It is not
clear whether universality obtains (in which case, for very
large Reynolds numbers it might either be K41 or IK), or
whether there are different behaviors, the boundaries to
which are not necessarily known. Different spectra have
already been observed for different forcings in reduced
MHD (RMHD, an approximation valid in the presence of
a strong magnetic field) [7], and recently reported for MHD
runs with a strong imposed magnetic field [8]. Note that the
flow in our run has the largest R� obtained in a direct
numerical simulation, at the expense, though, of not being
stationary.

To clarify the issue of which spectra should arise in
MHD turbulence, at least two things can be done. On one
hand, one computes isotropic high-order structure func-
tions, in which case the differentiation between K41 and IK
is enhanced, as already found in [9]. On the other hand, one
can quantify the degree of anisotropy in the flow, some-
thing that will be discussed later. We define the longitudi-
nal (parallel to the displacement l) structure function of
order p for the quantity f as Sf

p	‘
 � h��fL	l

pi �

hf�f	x
 � f	x� l
 � l=‘gpi. If the field is self-similar we
expect a scaling Sf

p	‘
 � ‘�
f
p in the inertial range, where �f

p

are the scaling exponents. In hydrodynamic turbulence,
K41 theory predicts �p � p=3, and in MHD the IK theory
leads to �p � p=4. In practice, these relations are modified
by intermittency corrections due to extreme events at the
small scales. The exact scaling laws for MHD turbulence
derived in [10], h�z�L 	l
j�z�	l
j2i � �4��‘=3, can be
used to define the inertial range and to improve the esti-
mate of the scaling exponents, as is often done in hydro-

dynamics when the extended self-similarity (ESS) hy-
pothesis is used [11]. These scaling laws, and structure
functions up to order 8, were computed at t � 3:7 for
increments in the x̂, ŷ, and ẑ directions, and averaged.
Figure 2 shows the resulting scaling exponents ��p for the
Elsässer fields z�, computed in the range in which the
exact scaling laws hold.

Consistent with the computation of the energy spectra,
the scaling of z� is closer to the IK prediction, with ��3 �
0:831� 0:006, ��3 � 0:806� 0:005, ��4 � 0:985�
0:008, and ��4 � 0:958� 0:007 (for higher orders, devia-
tions from K41 and IK are larger because of intermittency
corrections). The values of ��3 are not consistent with the
exact scaling law for hydrodynamic turbulence. As stated
in [10], the exact scaling laws in MHD involve correlations
between the velocity and magnetic fields (or equivalently
between z�), and such correlations play a role in the
dynamics of the flow. In particular, they can induce a shift
from a standard K41 coupling; this effect has been mod-
eled in [12] as a scale variation of the angle between the
velocity and magnetic field, i.e., in the relative cross he-
licity cos	v;b
. Also, from the values of ��3 and ��4 , the
possibility of a Kolmogorov scaling hidden by a bottleneck
(as reported in [13] ) can be ruled out for this simulation.
However, even when the scaling exponents in the inertial
range for p � 3 and 4 are closer to the IK prediction (with
strong corrections due to intermittency), it is worth men-
tioning that the structure functions after using ESS do not
show the same scaling at all scales. This is different from
the hydrodynamic case where, after using the ESS hy-
pothesis, a unique scaling at all scales is observed, even
in the dissipative range. This brings us to our second point,
linked to anisotropy.

Indeed, it is known that in MHD anisotropy develops at
small scales under the influence of a large-scale magnetic
field. Several models have been written to explain how this

FIG. 2. Scaling exponents ��p for z� � v� b. The K41
(dotted line) and IK (dashed line) predictions are indicated. As
a reference, the scaling exponents in a 10243 hydrodynamic
(HD) simulation are also shown [21]. Note ��4 � 1, while for
HD �3 � 1.

FIG. 1. Energy spectra E	k
 (solid line), EM	k
 (dashed line),
and EV	k
 (dotted line) compensated by k�3=2; E	k
 compen-
sated by k�5=3 is also shown (dash-dotted line). In the inset is the
total energy flux �	k
, indicating the extent of the inertial range.
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might affect the small-scale dynamics. The weak turbu-
lence (WT) theory [14] leads to an exact spectrum
�k�2
? f	kk
, where kk and k? are the amplitudes of the

wave vectors in the directions parallel and perpendicular to
a uniform magnetic field B0. It has long been argued that at
high Reynolds number, leading to a large-scale separation,
the large-scale magnetic field BLS plays the same dynami-
cal role as B0. As a result, we can expect the small scales to
be anisotropic with respect to BLS. However, since BLS

evolves in time with a characteristic correlation time 	LS

and has a curvature proportional to the Taylor scale �M, in
the absence of B0 and for isotropic initial conditions, one
may assume that isotropy is still preserved in the large and
intermediate scales (‘ * �M).

To illustrate this, we follow the procedure given in [15].
A local mean field BLS	x
 is computed as the average of
the magnetic field b in a box of size LM with center on x,
such as BLS � hbibox	LM;x
. Then, unit vectors lk and l?
(k and ? with respect to BLS) are defined, and the two
following longitudinal magnetic structure functions

 Sb
2?	‘
 � Sb

2 	‘l?
; Sb
2k	‘
 � Sb

2 	‘lk
; (3)

are computed for all points in the vicinity of x and for ‘ 2
�2�k�1

max; LM=2. The process is repeated for several values
of x, and Sb

2? and Sb
2k are averaged over all the boxes (the

results shown are the average over �107 points). Figure 3
gives the resulting Sb

2? and Sb
2k, as well as their ratio. In the

limit ‘! 0, this ratio can be associated with one of the so-
called Shebalin angles [16]

 tan 2	

 � 2lim
‘!0

Sb
2?	‘


Sb
2k	‘


; (4)

which measures the anisotropy of b with respect to BLS.
We see that scales smaller than ‘ � 0:4 are anisotropic,

in agreement with [15]; Sb
2?	‘
>S

b
2k	‘
 in this range. How-

ever, isotropy obtains in an intermediate range of scales
corresponding roughly to the �3=2 range in Fig. 1. For
very small increments (‘ � 0:02 � 2�k�1

D ), both structure

functions follow�‘2 scaling, as expected for smooth fields
in the dissipative range. At scales larger than the dissipa-
tion scale, but smaller than ‘ � 0:4 � �M, a range with
Sb

2? � ‘ is observed, consistent with a k�2
? scaling in the

spectrum as predicted by WT theory [14]. In the range ‘ �
�0:4; 1:2, where fluctuations are roughly isotropic, Sb

2? �

Sb
2k � ‘

1=2. Figure 4 shows the structure functions compen-

sated by ‘1=2 (IK scaling) and ‘2=3 (K41). The �‘1=2

scaling is again consistent with the isotropic energy spec-
trum and scaling of the isotropic (p � 3 and 4) structure
functions discussed previously.

The recovery of isotropy observed at intermediate scales
should not be associated with the small-scale fluctuations
but rather with the fluctuations of the large-scale magnetic
field, and thus may not always take place. Note that
tan2	

> 1, and for very small ‘, we have Sb

2? � S
b
2k �

‘2. If BLS is strong, and there is enough scale separation for
the local mean field to look as a uniform field for the small
scales, WT theory is consistent with S2k	‘
 � ‘1=2. For
S2?	‘
 � ‘

� with � � 1=2, the structure functions satisfy
S2?=S2k � 1 at all scales.

Let �M be the largest scale for the fluctuations to see the
mean magnetic field as a uniform field; for ‘ � �M, the
curvature of the large-scale magnetic field cannot be ne-
glected, and fluctuations become more isotropic. At scales
larger than �M, we thus have isotropic fluctuations with a
local mean magnetic field BLS. Assuming for simplicity
equipartition (see, e.g., [17] for extensions of the phenome-
nology to the nonequipartition case), and constant energy
flux "� u2

‘	A;‘=	2
NL;‘ [where 	NL;‘ � ‘=v‘ is the nonlinear

turnover time, and 	A;‘ � ‘=BLS is the Alfvén crossing
time (see [18] for a review of the relevant time scales in
MHD)], we obtain b‘ � v‘ � ‘1=2 and the IK energy spec-
trum E	k
 � k�3=2. At scales smaller than �M, the fluctua-
tions are anisotropic and several phenomenologies have
been put forward [12,14,19]. Assuming vl and bl are
mostly in the direction perpendicular to BLS, 	NL;l �
‘?=vl. The anisotropic extension of IK takes the Alfvén
time as 	A;l � ‘k=BLS, which results in vl � bl � ‘?‘

�1=2
k

FIG. 3. Second order structure functions Sb
2?	‘
 (solid line)

and Sb
2k	‘
 (dotted line). Several slopes are given as a reference.

The inset shows the ratio Sb
2?	‘
=S

b
2k	‘
 in linear coordinates.

FIG. 4. Sb
2? (solid line) and Sb

2k (dotted line) compensated by
‘1=2. The inset shows the same quantities compensated by ‘2=3.
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and the spectrum E	k
 � k�2
? k

1=2
k

. In the context of this run,
where the correlation length of the large-scale magnetic
field is LM, we can assume 	A;l � LM=BLS, which leads to
the same �‘? and �k�2

? scaling. Note that this ? spec-
trum is what WT theory predicts, and that for the isotropic
case (k? � kk), E	k
 � k�2

? k
1=2
k

turns into the IK spectrum.
In this light, it is not surprising that the IK spectrum at large
scales can be followed, in the same dynamical vein, by its
wave turbulence anisotropic counterpart at small scales.

A different MHD spectrum has been advocated in [19],
whereby the anisotropy of the flow induces a Kolmogorov
spectrum. In the anisotropic range, this implies Sb

2? � ‘
2=3.

Another anisotropic model based on dynamic alignment of
the velocity and magnetic fields [12] implies Sb

2? � ‘
1=2.

Such scalings are not observed in our computation, and the
results in Fig. 4 suggest Sb

2? � ‘ is a better fit in the
anisotropic range of our run.

In conclusion, we presented evidence of energy scaling
compatible with IK phenomenology in data stemming
from a high resolution simulation of a freely decaying
MHD flow. This scaling is observed at intermediate scales
where the turbulent fluctuations are approximately iso-
tropic. By decomposing the fields into their components
parallel and perpendicular to the local mean magnetic field,
we confirmed the scaling and showed the emergence of a
k�2
? spectrum at smaller scales. This is consistent with

anisotropic extensions of the IK spectrum and with pre-
dictions from weak turbulence theory. The behavior differs
from scaling laws observed in previous numerical simula-
tions or predicted by some theories of MHD turbulence.
However, other scaling laws cannot be ruled out com-
pletely for the following reasons. The various scaling ex-
ponents discussed result from the relevant time scales
associated with the energy transfer [18]. MHD turbulence
transfer is nonlocal [20], with time scales associated with
the large and the small scales, and a breakdown of univer-
sality can be a candidate to explain the variety of solutions
reported in the literature. As an example, it is useful to
compare the present results with simulations of forced
MHD turbulence. In our simulations we can associate the
scale where the transition from the isotropic to anisotropic
field takes place with �M, and the correlation time of the
local mean field 	LS with LM=BLS. In a forced simulation,
the correlation time of the large-scale magnetic field is
proportional to the correlation of the external forcing 	F. If
	F � 	A;‘, the local mean field changes faster than the
Alfvén wave crossing time at ‘, and we should not expect
anisotropy to develop or wave interactions to be relevant.
The scale where the transition takes place would change
accordingly. Such a dependence would be consistent

with results from forced RMHD [7] and MHD simula-
tions [8].
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