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We explore the family of fixed points of T-duality transformations in three dimensions. For the simplest
nontrivial self-duality conditions it is possible to show that, in addition to the spacelike isometry in which
the T-duality transformation is performed, these backgrounds must be necessarily stationary. This allows
us to prove that, for nontrivial string coupling, the low energy bosonic string backgrounds, which are
additionally self-T-dual along an isometry direction generated by a constant norm Killing vector, are
uniquely described by a two-parametric class, including only three nonsingular cases: the charged black
string, the exact gravitational wave propagating along the extremal black string, and the flat space with a
linear dilaton. Besides, for constant string coupling, the only self-T-dual lower energy string background
under the same assumptions corresponds to the Coussaert-Henneaux spacetime. Thus, we identify
minimum criteria that yield a classification of these quoted examples and only these. All these T-dual
fixed points describe exact backgrounds of string theory.
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I. INTRODUCTION

One of the most fascinating aspects of string theory is
the existence of the duality symmetries, which turn out to
relate different regimes of the theory that, a priori, would
seem to be substantially distinct. The catalog of duality
symmetries playing an important role in string theory
includes the quoted T-duality, which relates different
spacetime configurations, suggesting that a more satisfac-
tory picture is achieved when one considers those space-
times as describing diverse sectors of the same string
model. For instance, duality transformations may map
flat backgrounds in curved ones, with the cost of generating
a nontrivial antisymmetric tensor. Moreover, even the to-
pological aspects of the space may abdicate in the presence
of T-duality transformations. Consequently, such duality
symmetry can be thought of as manifesting a deeper rela-
tion existing between all the fields arising in the formula-
tion of the theory. In general, the understanding of such a
duality between two backgrounds is that both are, actually,
two spacetime interpretations of the same string solution.
A particular realization of this idea is the fact that, even
though a given low energy string solution and its dual can
correspond to a pair of distinct background configurations,
the conformal field theory description of both models is
indeed the same [1] and, thus, both are equivalent from the
string theory point of view [2].

The interpretation of T-duality as a symmetry manifest-
ing such a deep aspect of string theory can be found with
particular conciseness in Refs. [3,4]. This perspective es-
tablishes that the spacetime metric provides just a crude
description of what string geometry actually is. Then, the

metric would not be a proper characterization of the string
geometry since it is not enough to fully realize the symme-
tries of the string theory. To be precise, fundamental prop-
erties of the metric as its curvature, its causal structure, or
its asymptotic behavior are not, in general, invariant under
duality transformations [4]. Furthermore, it is currently
suggested that the existence of T-duality could be seen as
a manifestation of the fact that the spacetime itself is
merely an emergent notion rather than a fundamental
element in string theory [5]. Then, this point can be re-
garded as one of the motivations to study the properties
remaining invariant in the space of solutions under duality
and, in particular, to study the fixed points of it. The
physics at the fixed points of T-duality manifests important
properties of the string theory that, in other regimes, could
remain hidden. Such aspects include the well known en-
hancement of the symmetries of the theory, with which we
are familiarized due to the well known case of string theory
on flat space compactified on the self-dual radius R ���������

2�0
p

. Besides, the thermodynamics of the self-dual solu-
tions presenting event horizons also exhibits particular
properties [6], and it can be also thought of as an additional
motivation to study it within the context of string theory in
curved spacetime. More importantly, self-T-dual back-
grounds are believed to play an important role in the search
for string theory vacua [7].

Here we will analyze T-duality within the context of the
three-dimensional low energy effective theory coming
from the bosonic string theory. A particular property of
three dimensions is that all the low energy solutions with
constant string coupling, i.e. constant dilaton, turn out to be
exact solutions to the string theory beyond the field theory
approximation. This is related to the fact that, in three
dimensions, the Weyl tensor is identically zero and thus
the Riemann tensor is completely determined by the Ricci
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tensor through R���� � g��R�� � g��R�� � g��R�� �
g��R�� �

1
2 �g��g�� � g��g���R. Besides, in three di-

mensions the second order Gauss-Bonnet term vanishes,
R����R

���� � R2 � 4R��R
�� � 0, and the antisymmet-

ric Kalb-Ramond field strength H��� turns out to be pro-
portional to the volume threeform ����. All these
conditions enable one to make use of the field redefinition
freedom and eventually show that a picture in which the
D � 3 effective action has all �0 corrections depending
only on the derivatives of the dilaton exists. [4]. Then,
those solutions of the three-dimensional low energy effec-
tive theory for which the dilaton results to be constant
remain exact to all orders. Moreover, all the solutions to
Einstein theory with negative cosmological constant,
�< 0, can be actually embedded in the three-dimensional
string theory. In fact, the leading order solution with con-
stant string coupling, i.e. constant dilaton, in three dimen-
sions turns out to be the three-dimensional anti–de Sitter
space, or its cosets over discrete subgroups. This includes,
of course, the case of the Bañados-Teitelboim-Zanelli
black hole [8,9] and the Coussaert-Henneaux [10] geome-
try (see also [11]). The last case is specially remarkable by
its self-T-dual character [10]. For the case of nonconstant
dilaton, solutions which do not receive corrections do exist
as well; the charged black string is perhaps the most
celebrated example of this [12]. Thus, the catalog of solu-
tions of three-dimensional string theory is rich enough to
consider it as an interesting toy model to study the physical
content of the theory.

In the next section we review the T-duality transforma-
tions and analyze the simplest properties that a nontrivial
string background must satisfy in order to be a fixed point
of these transformations; the possibility of having more
general self-dual backgrounds is discussed in Appendix C.
In Sec. III we establish a Birkhoff’s theorem for such
spacetimes of the simplest nontrivial class satisfying the
low energy string equations. In doing this, we find two
stationary branches depending on whether a nontrivial
string coupling is allowed or not. For a trivial string cou-
pling, we show that the only self-T-dual background with a
constant dilaton is precisely the previously quoted
Coussaert-Henneaux spacetime [10]. This is actually re-
lated to the fact that the leading order three-dimensional
solutions to the effective equations with constant dilaton
must be constant negative curvature spacetimes as was
mentioned before, i.e. they are locally AdS3. In the other
branch, corresponding to backgrounds exhibiting a non-
constant dilaton, it is proven that the simplest nontrivial
self-T-duality configurations are uniquely described by a
two-parametric family. This class is analyzed separately in
Sec. IV using as guide the existence of hypersurface-
orthogonal Killing fields. The above allows a classification
depending on the values of the integration constants and
containing just three self-T-dual backgrounds which are
regular or at least contain no naked singularities. For

generic values of the integration constants the backgrounds
correspond to the charged black string [13]; for an extremal
case they become an exact gravitational wave propagating
along the extremal black string [14], and for vanishing
constants we recover flat space with a linear dilaton.
Some relevant information is included as Appendices.
The first Appendix contains the explicit form of the lower
energy string equations for the self-T-dual configurations
under study. A second one is devoted to justifying the
gauge elections made on the dilaton in Sec. III. As it was
mentioned, a third Appendix explores the possibility of
constructing more general self-dual backgrounds besides
the ones analyzed in the main part of the paper.

II. ON SELF-T-DUALITY

The low energy effective action, describing the particle
limit of the bosonic string dynamics in 2� 1 dimensions,
is given by

 S �
Z
d3x

�������
�g
p

e�2�

�
4

k
� R� 4r��r��

�
1

12
H���H

���
�
; (1)

where � is the dilaton field, H��� � @��B��� is the field
strength of the Kalb-Ramond field B��, and the constant k
turns out to be related with the central charge of the sigma
model. For those cases where a given background has been
recognized as an exact conformal one, the value of k
typically corresponds to the level of the WZNW model
involved. The equations of motion yielding from the action
above read
 

R�� � 2r�r���
1

4
H���H�

�� � 0; (2a)

r��e�2�H���� � 0; (2b)

��� 2r��r���
2

k
�

1

12
H���H��� � 0: (2c)

A very interesting property of string theory is the fact
that the above low energy string equations turn out to be
invariant under the often called T-duality transformations.
This is a symmetry of the theory that maps any given
solution �g��; B��;�� with a translational symmetry, lets
say along the direction @x, to another solution
(~g��; ~B��; ~�) given by the Buscher rules [15]
 

~gxx � 1=gxx; ~gxb � Bxb=gxx;

~gbc � gbc � �gxbgxc � BxbBxc�=gxx; ~Bxb � gxb=gxx;

~Bbc � Bbc � 2gx�bBc�x=gxx; ~� � ��
1

2
lngxx; (3)

where the subindexes b, c label the components along the
other directions, different from x.
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Within this context, a natural question arises as to
whether the previous system allows the existence of
self-T-dual configurations, i.e. the existence of string back-
grounds, which result to be fixed points of the above
T-duality transformations. In fact, it is well known that
this is actually the case, as the study of the Coussaert-
Henneaux spacetime shows [10], and what we want to
analyze here is the existence of other relevant examples.
These self-dual configurations are to be defined as those
having a special symmetric direction such that they coin-
cide with the corresponding T-dual modulo diffeomor-
phisms and gauge transformations.

The simplest way to obtain a self-dual configuration is to
fix gxx � 1 and additionally to impose gxb � 0 and B � 0.
Under these conditions the background is manifestly
self-T-dual. However, we are interested in less trivial
examples. That is why here we will focus our attention
on all the particular cases of self-T-dual configurations that
present a Killing vector m � @’ with constant norm
g�m;m� � a2 � const; in this way the special direction
is given by an appropriated normalization @x � a�1@’.
Having gxx � 1 leaves invariant the dilaton and the com-
ponent gxx itself in the transformations (3). A remaining
condition in order to obtain self-T-duality would be then
Bxb � gxb. Notice that this last condition has to be under-
stood as holding up to gauge transformations and coordi-
nate transformations preserving the Killing direction @x.
Further, we will use this condition as a gauge fixing ac-
tually. Summarizing, demanding the existence of a con-
stant norm Killing field is the simplest way to obtain
nontrivial self-dual backgrounds. This is not a necessary
requirement, which is why we study in Appendix C a
possibility of constructing backgrounds without such prop-
erty. Nevertheless, straightforward attempts to find an ex-
plicit example do not succeed.

The above considerations motivate the study of those
string backgrounds for which the metric exhibits the ge-
neric form

 g � g�2� � a2�d’�Wb�x
c�dxb�2; (4)

where g�2� � g�2�bc �x
b�dxbdxc �b; c � 0; 1� is the metric of a

two-dimensional spacetime. In the case of stationary con-
figurations we have an additional timelike Killing field k �
@t, and the two-dimensional metric can be written as

 g �2� � �N�r�2F�r�dt2 �
dr2

F�r�
; (5)

where a gauge election still remains to be fixed.
A particular example of the previous class is the metric

of the Coussaert-Henneaux spacetime, which is given by
[10,16]

 

F�r� � 1; (6a)

N�r� � cosh�2r=l�; (6b)

Wb�r� �
1

a
sinh�2r=l�	tb; (6c)

and where ’ is periodically identified with ’� 2
. This
example describes a spacetime with constant negative
curvature R � �6=l2 and isometry group SO�2� �
SO�2; 1�. This background is also a solution to low energy
string theory Eqs. (2) with � � const and H��� given by
the volume threeform modulo a constant [10]. This is
because, for a constant dilaton, the low energy string action
(1) becomes the Einstein-Hilbert action with an effective
cosmological constant � � �1=l2 � �1=k. This is what
allows embedding of any three-dimensional constant nega-
tive curvature spacetime within low energy string theory, as
it has been explicitly shown in Refs. [10,17] for the BTZ
black hole [8,9] and the Coussaert-Henneaux spacetime
[10], respectively; see also [4,18]. These constant curva-
ture solutions could seem to be uninteresting from the
string theory point of view since they solve the equations
of motions in a regime where string theory just mimics
general relativity. Nevertheless, it is worth noticing that
such a regime can be, in some cases, related to a nontrivial
one by T-duality, e.g. the BTZ black hole turns out to be
T-dual to the charged black string solution, which presents
a nontrivial dilaton configuration [17].

III. BIRKHOFF’S THEOREM FOR A CLASS OF
SELF-T-DUAL BACKGROUNDS

In this section we present a Birkhoff’s theorem for the
class of three-dimensional string backgrounds which re-
main invariant under T-duality transformations generated
by constant norm directions. In fact, we prove that in
addition to the constant norm spacelike Killing field m
realizing T-duality, there exists another Killing field k
which turns out to be timelike, so that the resulting three-
dimensional self-T-dual configurations must be necessarily
stationary. This will allow us to identify an important set of
quoted self-T-dual examples within the class considered
here.

In order to prove this result we will make use of the
following explicit form for the metric
 

g � �N�t; r�2F�t; r�dt2 �
dr2

F�t; r�
� a2�d’�W�t; r�dt�2;

(7)

where we have already used part of the diffeomorphism
invariance in order to fix the components gtr � 0 � g’r.
The low energy string equations (2), once evaluated for the
ansatz (7), assuming that the dilaton and the Kalb-Ramond
field are also ’-independent, are explicitly written down in
Appendix A. Their integration depends on a remaining
gauge election. Such gauge election and the resulting local
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solutions depend on the nature of the surfaces e�� �
const, defined by the string coupling; these surfaces can
be timelike, spacelike or null, or they can be not defined at
all if the string coupling turns out to be a constant. Hence,
the corresponding open neighborhoods can be classified
according to the three possible signs of the following norm:

 �2 	 r�e��r�e�� � Fe�2�

�
��0�2 �

� _��2

N2F2

�
: (8)

For each sign we make a separate analysis employing a
different choice of coordinates, which also make easier the
integration of the field equations. Notice that it is sufficient
to analyze the case of positive F only, since changing the
sign of F just corresponds to changing the sign of �2.

A. Case �2 > 0: regions r < r� or r > r�
For open neighborhoods where r�e��r�e�� > 0 the

surfaces e�� � const are timelike and we can fix the gauge
such that

 e���t;r� �
r
a
; (9)

i.e. in this coordinate the string coupling e� vanishes when
r goes to infinity. We provide a complete justification for
this election in Appendix B. With this choice, the low
energy string equations (see Appendix A) can be easily
integrated, yielding the following metric functions:
 

F�t; r� �
r2

k
�M�

J2

4r2 ; (10a)

N�t; r� �
a
r
N0�t�; (10b)

W�t; r� � �
J

2r2 N0�t� �W0�t�; (10c)

where N0 and W0 are arbitrary functions of t, and where M
and J are two integration constants. Additionally, we ob-
tain the self-duality condition

 c2 �
J2

a4 ; (11)

where the constant c is related to the axion charge per unit
length, see Eq. (A1) in the Appendix A.

Moreover, functions N0 andW0 above can be eliminated
by the following coordinate transformation

 �t; r; ’��
�Z

N0�t�dt; r; ’�
Z
W0�t�dt

�
; (12)

which makes evident that there is no time dependence.
Next, we have to integrate the Kalb-Ramond field from

H � dB and Eq. (A1), considering that the antisymmetric
field can be determined only up to gauge transformations
B! B� dA, where A is an arbitrary vector field. Then,
we end up with the following stationary configuration:

 

g � �
a2

r2

�
r2

k
�M�

J2

4r2

�
dt2 �

�
r2

k
�M�

J2

4r2

�
�1
dr2

� a2

�
d’�

J

2r2 dt

�
2
; (13a)

� � � ln
�
r
a

�
; (13b)

B �
Ja2

2r2 dt ^ d’: (13c)

According to our gauge election, this solution is valid only
in the regions where F > 0. For values of the integration
constants such that jJj 
 M

���
k
p

the function F turns out to
be positive for r < r� or r > r�, where r� are the positive
roots of the equation F � 0, and these are defined by

 M �
r2
� � r

2
�

k
; jJj �

2r�r����
k
p : (14)

On the other hand, for values of the integration constants
obeying jJj>M

���
k
p

the function F turns out to be positive
everywhere. Accordingly, the coordinate r is restricted to
be defined within the region fr < r�g [ fr > r�g for jJj 

M

���
k
p

and has no restriction at all when jJj>M
���
k
p

.
It is easy to check that in the special direction @x �

a�1@’ not only gxx � 1 but additionally

 Bxb � gxb � �
Ja

2r2 	
t
b; (15)

and, as was mentioned at the beginning, this guarantees the
self-T-duality of the previous string background.

B. Case �2 < 0: region r� < r < r�
Now, let us move to the open neighborhoods where �2

takes negative values. In these regions the surfaces e�� �
const are spacelike and the time coordinate can be identi-
fied as (see Appendix B),

 e���t;r� �
t
a
: (16)

In this gauge the string coupling does decay in time. Then,
as it can be deduced from the equations in Appendix A, this
fact implies the following form for the metric functions,
 

F�t; r� �
t2

a2N0�r�
2f�t�

; (17a)

N�t; r� � �
a
t
N0�r�; (17b)

W�t; r� � �
J
R
N0�r�dr

t3
�W0�t�; (17c)

where N0 and W0 are arbitrary functions of r and t,
respectively, and where

 f�t� � �
t2

k
�M�

J2

4t2
; (18)
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with M and J being two integration constants. In this case
the self-duality condition (11) is again fulfilled.

In order to preserve the condition F > 0, the function f
must be positive as well. Hence, the above solution turns
out to be valid only for jJj 
 M

���
k
p

within the range t� <
t < t�, where t� are the positive roots of the equation
f�t� � 0.

Once again, the functions N0 and W0 can be eliminated
by rescaling the coordinate r and shifting the coordinate ’
appropriately. However, making the following coordinate
transformation:
 

�t; r; ’��
�Z

N0�r�dr; t; ’�
Z
W0�t�dt

�
J

2t2
Z
N0�r�dr

�
; (19)

which additionally interchanges the resulting coordinates t
and r, the solution takes the same form as the background
(13), but now restricted to satisfy the condition r2=k�
M� J2=4r2 < 0. This is obeyed only when jJj 
 M

���
k
p

for
r� < r < r�. The open regions analyzed here for jJj 

M

���
k
p

are naturally glued with the corresponding ones of
the previous section at the points r�, where �2 changes its
sign due to the vanishing of the function F, see definition
(8).

Taking into account the discussion of this subsection and
that of the previous one, we can conclude that the union of
the different cases studied up to now gives rise to all the
different patches of the background (13) for any value of its
integration constants M and J. It remains to study now the
case for which �2 vanishes in an open region.

C. Case �2 � 0: Coussaert-Henneaux spacetime

Then, let us close this section discussing the case for
which � vanishes in an open neighborhood. The fact that
the surfaces e�� � const. are null surfaces implies

 

_� � FN�0: (20)

Inserting this condition in the dilaton Eq. (A2g) we obtain

 c2e4� �
4

k
; (21)

i.e. the dilaton must take a constant value � � �0. This
implies that we must take a different gauge election in this
case. Then, we choose one for which the coordinate r is a
proper distance: F�t; r� � 1. The remaining metric func-
tions are easily determined from the nontrivial field equa-
tions (see Appendix A) leading to the expressions
 

N�t; r� � N0�t� cosh
�

2r���
k
p �H0�t�

�
; (22a)

W�t; r� �
N0�t�
a

sinh
�

2r���
k
p �H0�t�

�
�W0�t�; (22b)

where N0, W0, and H0 are time dependent integration
functions.

The functions N0 and W0 can be again eliminated by an
appropriate rescaling of the time t and a shifting of the
coordinate ’, similarly as the ones used in the transforma-
tion (12). This is equivalent to choose N0 � 1 andW0 � 0.
The conditions for making the function H0 to vanish turns
out to be more subtle. In Ref. [16] a Birkhoff’s theorem
was proven for the class of metrics (7) described by gravity
in presence of a negative cosmological constant. In par-
ticular, it was proven that for a metric determined by the
functions above there exists a coordinate system in which
H0 � 0. The involved transformation is highly nontrivial,
however, it can be found for any nontrivial functionH0, see
the last Appendix of Ref. [16]. In terms of these coordi-
nates the final configuration reads

 

g � �cosh2

�
2r���
k
p

�
dt2 � dr2 � a2

�
d’�

1

a
sinh

�
2r���
k
p

�
dt

�
2
;

(23a)

� � �0; (23b)

B � �a sinh
�

2r���
k
p

�
dt ^ d’; (23c)

where the metric (23a) corresponds to the one of the
Coussaert-Henneaux spacetime with constant negative cur-
vature R � �6=k [10], if one imposes the identification
’ � ’� 2
. The connection between the results of this
subsection and those of Ref. [16] is not a mere coincidence,
it is due to the fact that, for a constant dilaton, the three-
dimensional low energy string effective action becomes the
Einstein-Hilbert term plus a negative cosmological con-
stant. Again, in the special direction @x � a�1@’ the
above background satisfies gxx � 1 and

 Bxb � gxb � sinh
�

2r���
k
p

�
	tb; (24)

which manifestly shows its self-T-dual character.

IV. CLASSIFYING BACKGROUNDS WITH
NONTRIVIAL STRING COUPLING

In the previous section it was shown that there are two
distinguishable branches of self-T-dual backgrounds with
constant norm self-dual direction, depending on whether
the string coupling is constant or is not. For a constant
dilaton, the Coussaert-Henneaux spacetime (23) was iden-
tified as being the only possibility. On the other hand, for a
nonconstant dilaton, we obtained the general two-
parameter solutions (13). In this section we will study these
last solutions in order to completely identify the different
string backgrounds contained within this class.

First, we notice that for J � 0, M> 0, the configuration
(13) reduces to the uncharged black string [13],
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g � �

�
1�

M

r̂

�
d �t2 �

�
1�

M

r̂

�
�1 kdr̂2

4r̂2 � dx
2; (25a)

� � �
1

2
ln
� ���
k
p
r̂

a2

�
; (25b)

with B � 0 and mass (per unit length) M � r2
�=

���
k
p

,
where we used the coordinate change

 �t; r; ’�� ��t � at=
���
k
p
; r̂ � r2=

���
k
p
; x � a’�: (26)

It is known that this background corresponds to the direct
product of the two-dimensional Witten black hole [19,20]
and the line, which is evident making the redefinition r̂ �
Mcosh2��=

���
k
p
�,

 

g � �tanh2

�
����
k
p

�
d �t2 � d�2 � dx2; (27a)

� � � ln
� ���������������
k1=2M
p

a
cosh

�
����
k
p

��
: (27b)

This background is also known to be T-dual to the static
BTZ black hole [17], which is an orbifold of the SL�2;R�k
WZNW model.

We will argue here that a similar situation occurs for J �

0, i.e. we will show that the configuration (13) coincides
with the charged black string [13], except for special values
of the integration constants. However, one may be puzzled
about the fact that both the uncharged black string solution
described above and the charged one turns out to be static
spacetimes, while the background (13) does not seem to be
so. In order to clarify this point, we will make a classifi-
cation of the different spacetimes contained within the
class (13) in terms of their properties concerning the ex-
istence of hypersurface-orthogonal Killing fields ks. This is
equivalent to demand the fulfillment of the Frobenius
integrability condition

 k s ^ dks � 0; (28)

for a given combination ks of the Killing fields.
On the one hand, for values such that jJj 
 M

���
k
p

we
observe that when r� > r� the only combinations of the
Killing fields which are hypersurface-orthogonal and time-
like in the exterior region r > r� must be proportional to

 k s � @t �
r�
r�

���
k
p @’: (29)

For the extremal case r� � r� � 0 the hypersurface-
orthogonal Killing fields are also given by the previous
expression, but they become null in this limit. Finally, for
r� � 0 � r�, any Killing combination is hypersurface-
orthogonal.

On the other hand, for jJj � M
���
k
p

there are no
hypersurface-orthogonal Killing fields if J � 0, and the
case of vanishing J allows both Killing fields to be
hypersurface-orthogonal. We will analyze each of these
cases separately in the following subsections, and we will

show that they actually describe spacetimes with different
properties.

A. Case r� > r�: The charged black string

For r� > r� the existence of the stationary and
hypersurface-orthogonal Killing field (29) in the exterior
region r > r� guarantees that this region is actually static,
i.e. the off-diagonal terms in metric (13a) are just an
artifact of the gauge that has been chosen. Then, we find
it convenient to change to a new coordinate system adapted
to ks and where the staticity turns out to be explicit; namely
 

�t; r; ’��
�
t̂ �

a���
k
p
�r�t� r�

���
k
p
’�

�r2
� � r

2
��

1=2
;

r̂ �
r2���
k
p ;

x̂ �
a���
k
p
�r�

���
k
p
’� r�t�

�r2
� � r

2
��

1=2

�
: (30)

In these coordinates the string background (13) takes the
form
 

g � �

�
1�

M

r̂

�
dt̂2 �

�
1�

Q2

Mr̂

�
dx̂2 �

�
1�

M

r̂

�
�1

�

�
1�

Q2

Mr̂

�
�1 kdr̂2

4r̂2 ; (31a)

� � �
1

2
ln
� ���
k
p
r̂

a2

�
; (31b)

B �
Q

r̂
dt̂ ^ dx̂; (31c)

where M � r2
�=

���
k
p

and jQj � r�r�=
���
k
p

. This corre-
sponds to the three-dimensional charged black string [13]
with mass (per unit length) M and axion charge (per unit
length) Q. This nonlinear sigma model corresponds to the
WZNW model formulated on SL�2;R� � R=R.

The T-dual properties of the charged black string were
explored in Refs. [12,17]. Its dualization along x̂ gives a
boosted uncharged black string [12]. Dualizing along a
more general spacelike direction both the BTZ black
hole and another charged black strings can be obtained
[17]. As it has been seen here, the charged black string is
also a fixed point of the T-duality transformation where the
self-T-dual direction is given by

 @ x �
1

�M2 �Q2�1=2
�M@x̂ � jQj@t̂�: (32)

Next, let us move to consider the extremal case.

B. Case r� � r� � 0: Gravitational wave propagating
along the extremal black string

For the extremal case r� � r� � 0 the hypersurface-
orthogonal Killing field (29) turns out to be null. Such kind
of null symmetries are usually associated to the existence
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of gravitational waves, and we will explicitly show that this
is actually the case. Using the following coordinates
adapted to the null vector,
 

�t; r; ’��
�
v �

a

2
���
k
p �t�

���
k
p
’�;

r̂ �
r2���
k
p ;

u �
a���
k
p �t�

���
k
p
’�
�
; (33)

it is possible to express the configuration (13) as
 

g � �

�
1�

M

r̂

�
2dudv�

�
1�

M

r̂

�
�2 kdr̂2

4r̂2 �
M

r̂
du2;

(34a)

� � �
1

2
ln
� ���
k
p
r̂

a2

�
; (34b)

B �
M

r̂
dv ^ du; (34c)

where, again, M � r2
�=

���
k
p

. The first two terms of metric
(34a) describe the extremal black string, Q2 �M2, in
null coordinates v � �t̂� x̂�=2, u � t̂� x̂. In fact, using
an appropriate parametrization for ks the above metric
allows the following representation:

 g�� � ge
�� �

M

r̂

�
1�

M

r̂

�
�2
ks
�k

s
�; (35)

where ge is the metric of the extremal black string. Since ks

is a null Killing field it is also geodesic, hence the above
expression represents a generalized Kerr-Schild transfor-
mation of the extremal black string. In other words, the
string background (34) describes an exact gravitational
wave propagating along the extremal black string [14].

In Ref. [17] it was shown that the extremal BTZ black
hole is T-dual to this gravitational wave (see also [21,22]).
Here we have made the self-T-duality of this wavelike
solution explicit, and showed that this is realized along
the direction

 @ x �
1

2
@v � @u: (36)

The next case that requires to be studied would be that for
which all integration constants vanish.

C. Case r� � 0 � r�: Flat space with linear dilaton

This case turns out to be the simplest one. By using the
following coordinates,

 �t; r; ’�� ��t � at=
���
k
p
; �r �

���
k
p

ln�r=a�; x � a’�; (37)

the background (13) simply becomes flat space with a
linear dilaton and vanishing axion; namely

 

g � �d �t2 � d �r2 � dx2; (38a)

� � �
�r���
k
p : (38b)

In this case the self-T-duality along the direction @x is
explicitly manifest. It is interesting to remark that this
background is the asymptotic geometry of the two previ-
ously studied cases when their coordinate r̂ goes to infinity.

Finally, let us briefly discuss the cases where jJj>
M

���
k
p

.

D. Case jJj >M
���
k
p

So far, we have examined those cases for which the
horizon radius r� turns out to be defined, and this actually
occurs for values such that jJj 
 M

���
k
p

. The reason for this
is that for jJj>M

���
k
p

the geometry (31a) presents a naked
singularity at r � 0. This is similar to the case of the BTZ
geometry. However, even though we focus our attention on
those geometries where no such singularities exist, we find
illustrative to discuss one particular case of that sort here.
As it was previously pointed out, for these values of the
integration constants the case with J � 0 is special since it
allows the existence of hypersurface-orthogonal Killing
fields in contrast to the case J � 0 where the existence of
these fields is forbidden. Let us describe this case in some
detail. For vanishing J the condition jJj>M

���
k
p

implies
that M is negative. Then, by choosing the following coor-
dinates:
 

�t; r;’�� ��t� at=
���
k
p
;��

���
k
p

arcsinh�r=
������������
�Mk
p

�; x� a’�;

(39)

the background (13) takes the form
 

g � �coth2

�
����
k
p

�
d �t2 � d�2 � dx2; (40a)

� � � ln
� ������������
�Mk
p

a
sinh

�
����
k
p

��
; (40b)

with a vanishing Kalb-Ramond field. This geometry turns
out to be dual to the Witten 2D black hole times the real
line (27), if the duality transformation is thought to be
performed along the timelike direction �t. Timelike
T-duality was discussed in Ref. [23] within the context
of three-dimensional string theory, and it was shown to
relate positive mass solutions to singular analogs of nega-
tive mass. Here, we are only considering standard space-
like duality transformations instead. Actually, applying
T-duality in the spacelike x-direction one verifies that the
background above remains invariant. It does represent a
self-dual background describing a naked singularity.

Let us also notice here that a double Wick rotation can
be performed, namely �t! i�, x! i�, and then used to
show that the metric takes the form
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 g t � �d�2 � d�2 � coth2

�
����
k
p

�
d�2: (41)

This geometry is also a solution of the low energy string
equations, and corresponds to the product between the time
direction � and the often called trumpet geometry, which
turns out to be the T-dual to the Witten cigar [2], i.e. this is
dual of the Euclidean version of the two-dimensional black
hole. In fact, by performing T-duality in the �-direction
one gets

 

~g t � �d�2 � d�2 � tanh2

�
����
k
p

�
d�2; (42)

which is the product between the time direction � and the
Witten cigar. Since the function tanh2��=

���
k
p
� vanishes at

� � 0, the �-direction finds a fixed point at the origin,
where its T-duality transformation is not actually defined;
this explains the divergence that its dual (41) develops at
� � 0. Notice that this is analog to the quoted example of
the three-dimensional Minkowski space � expressed in
polar coordinates ��; �; ��, which, once dualized along
the �-direction, yields a dual ~� that develops a singularity
at the origin � � 0 [4]. It is clear from Eq. (42) that
performing the double Wick rotation backwards one ends
up with the Witten black hole times the line (27). The
trumpet geometry (41) is also T-dual to AdS3 space, as it
was studied in [17] as a particular case of the BTZ geome-
try; and more important for us is that (40) results self-dual
as well. All this cascade of dualities turns out to be
interesting and, indeed, suggestive. First, we should point
out that, from the viewpoint of the CFT world sheet for-
mulation of string theory, both backgrounds (41) and (42)
are completely equivalent. The CFT involved turns out to
be the SL�2;R�k=U�1� WZNW model, which presents a
SL�2;R�k � SL�2;R�k symmetry group, and the duality
transformation that translates one target-space picture
into the other simply corresponds to changing the sign in
one of the currents Ja that generate one of the two
SL�2;R�’s factors (let us say the right-handed factor).
This also resembles the symmetry under dualizing the
radius as R! R�1 in the compactification of the free
boson, which represents the prototypical example to dis-
cuss the T-duality. Regarding the CFT description of the
T-duality, it would be certainly interesting to fully under-
stand how the duality symmetry connecting both (41) and
(42), and the fact that T-duality (though in a different
direction) also connects the trumpet geometry to the
AdS3 space. Actually, the CFT description of AdS3 strings
is closely related to that of the theory formulated on the
manifold (42) which, as mentioned, is the product of time
and the Euclidean 2D black hole. Algebraically, such
relation regards a natural realization of the symmetries
that the worldsheet theory presents; and having a geomet-
rical picture of it provides a way for working out the details
of the connection existing between both realizations.

V. CONCLUSIONS

In this paper, we studied the T-duality in three-
dimensional bosonic string theory from the viewpoint of
the low energy effective action. Such duality symmetry is
known to manifest that different spacetime configurations
can be interpreted as two different regimes of the same
string background. Within the framework of the CFT de-
scription of the theory, two models that are connected by
T-duality are indeed completely equivalent and conse-
quently the two target-space interpretations are equally
valid. More generally, if the isometry with respect to which
one performs a given T-duality transformation corresponds
to a spacelike compact direction, then the original solution
and its dual correspond to the same conformal field theory
[1]. More concisely, the CFT description of both sides of
the duality map are equivalent and, in terms of the stringy
description, this is typically realized by the interchange
between winding and Kaluza-Klein momenta in the com-
pact direction. According to this picture, those configura-
tions that result to be self-dual are such that this
interchange of quantum numbers can be realized on the
same spacetime. These configurations are thought of as
gathering important properties of the string theory, in
particular in what respects to its symmetries.

Here, we investigated the simplest case of nontrivial
self-T-dual configurations and identified minimum criteria
that yield a classification of previously known exact solu-
tions of three-dimensional string theory. This amounts in
imposing stringent self-duality conditions, so that the dual-
ity transformation was thought to be performed along an
isometry direction generated by a Killing vector with
constant norm. It is highly remarkable that the pdes system,
resulting from the low energy string equations, become
fully integrable in this case. The first consequence of this
fact is that the resulting solutions are necessarily stationary,
i.e. a Birkhoff’ theorem of the sort of the one proven in [16]
for pure gravity is obeyed by these configurations. An
unusual fact we found through the computations is that,
in order to make integrability manifest, it was necessary to
take one of the gauge elections as imposed on the string
coupling: the dilaton. In spite of the fact that the above is a
nonstandard procedure it results fully justifiable at the local
level (as we show in Appendix B).

Our main results can be stated as follows: for the case of
nontrivial string coupling, the lower energy string back-
grounds with a constant norm Killing field that are addi-
tionally self-T-dual are uniquely described by a two-
parametric class, including only three nonsingular cases:
the charged black string, the exact gravitational wave
propagating along the extremal black string, and flat space
with a linear dilaton. Besides, for a constant string cou-
pling, the only self-T-dual lower energy string background
under the same assumptions corresponds to the Coussaert-
Henneaux spacetime. We also discussed other cases and,
along this work, we went through the bestiary of three-
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dimensional string backgrounds. Actually, we presented a
survey of fixed points of T-duality transformations in
three-dimensional low energy effective bosonic string the-
ory. We did this by means of standard techniques for
solving the equations of motion of three-dimensional grav-
ity models, and the fact of having worked out a classifica-
tion for the described self-dual solutions in such a simple
way provides an example of how the techniques developed
in Ref. [16] were suitable to be used within a more general
context.
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APPENDIX A: LOW ENERGY STRING
EQUATIONS FOR SELF-T-DUAL BACKGROUNDS

A low energy string background is determined by
Eqs. (2). In three dimensions the Kalb-Ramond strength
must be proportional to the volume threeform ���� ��������
�g
p

��� (tr’ � �1) and such proportionality is
straightforwardly fixed by Eq. (2b) as being

 H��� � ce2�����; (A1)

where c is an integration constant related to the axion
charge per unit length. Using the above expression, the
independent Einstein equations for a geometric back-
ground of the form (7) take the following form

 

�
NF
2
�Ett � Err �WE’t� �

� _�

N

_�
� N2F2

�
�0

N

�
0
� 0; (A2a)

Err � E’’ �WE’t �
e2�

2N

�
e�2��F�1 _�

N

_�
�
e�2�

2N

�
e6��e�4�N2F�0

N

�
0
� 4F��0�2 � c2e4� � 0; (A2b)

�Ert �
�F�0 _�

N2F2 �

� _�

N2F

�
0
� 0; (A2c)

2Ne�2�

a2 E’
t �

�
e�2�W0

N

�
0
� 0; (A2d)

�
2Ne�2�

a2 E’
r �

�
e�2�W0

N

_�
� 0; (A2e)

�
2e�4�

a2 �E’
’ �WE’

t� �

�
e�2�W0

N

�
2
�
c2

a2 � 0; (A2f)

where _�. . .� and �. . .�0 denote derivatives with respect to the
coordinates t and r, respectively, and E�� � 0 are the
components of the Einstein Eqs. (2a). The remaining dila-
ton Eq. (2c) is given by

 �
e2�

N

�
e�2� _�

NF

_�
�
e2�

N
�NFe�2��0�0 �

c2

2
e4� �

2

k
� 0:

(A2g)

From Eqs. (A2d) and (A2e) it is clear that the quantity

 J �
a3e�2�W0

N
; (A3)

is an integration constant. The remaining equations deter-
mine the form of F�t; r�, N�t; r�, and W�t; r�, while ��t; r�

is fixed by choosing an appropriate coordinate, as it is
justified in the Appendix B.

APPENDIX B: JUSTIFYING GAUGE ELECTIONS

Something that can be found puzzling is the fact that the
last gauge election on the cases �2 � 0 of Sec. III were
taken on the dilaton and not on the metric functions as
usual. However, this choice is fully consistent with the
previous ones which allow to write the metric as in
Eq. (7). In order to avoid any confusion we dedicate this
appendix to justify this item. The key point here is that
after fixing gtr � 0 � g’r, metric (7) presents a residual
symmetry, it is form-invariant under the coordinate trans-
formation
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 �t; r; ’�� ��t � f1�t; r�; �r � f2�t; r�; �’ � ’� f3�t; r��;

(B1)

together with the redefinitions

 

�F � F
�
�f02�

2 �
� _f2�

2

N2F2

�
; (B2)

 

�N � N
f02
_f1

�
�f02�

2 �
� _f2�

2

N2F2

�
�1
; (B3)

 

�W �
W � _f3

_f1

; (B4)

where the functions fi, i � 1, 2, 3, obey the two conditions

 f01f
0
2 �

_f1
_f2

N2F2 � 0; (B5)

 

_f1f
0
3 � f

0
1�

_f3 �W� � 0; (B6)

related to the fact that the transformation (B1) respects the
gauge election, i.e. g�t �r � 0 � g �’ �r. So, the remaining
gauge choice just corresponds to fix one of the above
functions. Hence, in order to recover, for example, the
gauge election (9) we just need to make a transformation
of the type discussed above, with f2 � ae��, and where
the functions f1 and f3 are obtained from the linear first
order pdes

 

�
@t �

�0N2F2

_�
@r

�
f1 � 0; (B7)

 

�
@t �

�0N2F2

_�
@r

�
f3 � W: (B8)

On the other hand, the gauge election (16) is obtained by
means of a similar transformation, where this time f1 �
ae�� and where the functions f2 and f3 come from solving
the linear first order pdes

 

�
@t �

�0N2F2

_�
@r

�
f2 � 0; (B9)

 

�
@t �

_�

�0
@r

�
f3 � W: (B10)

Finally, for the gauge choice of Subsec. III C we substitute
�F � 1 in Eq. (B2), which provides a third condition on the

functions fi, i � 1; 2; 3, additional to the conditions (B5)
and (B6), and additionally determines the corresponding
transformation. The solutions of all the previous first order
pdes can be found integrating their corresponding charac-
teristic ordinary systems. This guarantees the existence of
the related coordinate systems.

APPENDIX C: ON SELF-T-DUAL DIRECTIONS
WITH NONCONSTANT NORM

Now, let us comment on the existence of more general
examples, while still satisfying the requirements for
self-T-duality, but do not necessarily present a constant
norm Killing vector along the isometry direction where the
T-duality is being performed. We explore this possibility
within a simple set-up according to which the Kalb-
Ramond field B�� is set to zero and the metric and dilaton
acquire the following form
 

g � e2��t;y���dt2 � dy2� � e2��t;y�dx2; (C1a)

� � ��t; y�; (C1b)

for a pair of differentiable functions � and � which, like
the dilaton �, are assumed to depend only on the coordi-
nates t and y.

Thus, the idea is to find a configuration that could still be
self-T-dual along the direction @x even though the function
1
2 lngxx � ��t; y� is nonconstant. This would be possible
due to the fact that a self-T-dual solution is one that, after
performing the T-duality transformation, recovers its origi-
nal form up to diffeomorphisms and gauge transforma-
tions. Hence, a given configuration (C1) is self-dual if
there exists a diffeomorphism

  : �t; y�� �T�t; y�; Y�t; y��; (C2)

that leaves the two-dimensional metric block

 g �2� � e2��t;y���dt2 � dy2�;

invariant, and for which the conditions
 

~��t; y� � ���t; y� � ��T�t; y�; Y�t; y��; (C3a)
~��t; y� � ��t; y� ���t; y� � ��T�t; y�; Y�t; y��; (C3b)

are obeyed. These functional conditions do not look a
priory so restrictive; in particular, if the coordinate trans-
formation satisfy to be an involution, 2 � 1, then the first
condition (C3a) is a consequence of the second one (C3b),
meaning that it is simply requesting that the corresponding
metric function is the noninvariant part of the dilaton under
the action of , so that ��t; y� is odd with respect to it.

It is instructive to think in the concise example where
��t; y� turns out to be symmetric under parity transforma-
tion : y � �y while the function ��t; y� is assumed to
agree with the odd part of the dilaton, namely ��t; y� �
��t; y� ���t;�y�. Notice that such an ansatz would lead
to a self-T-dual configuration even for a nonconstant
��t; y� satisfying these requirements. In fact, by applying
T-duality along the direction x, one would obtain
 

~g � e2��t;y���dt2 � dy2� � e�2��t;y�dx2;

~� � ��t; y� ���t; y�;

which means that ��t; y� is odd under reversing the sign of
y. Now, the requirements mentioned above would yield the
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following dual configurations:
 

~g � e2��t;�y���dt2 � ��1�2dy2� � e2��t;�y�dx2;

~� � ��t;�y�:

Hence, by simply renaming coordinates as y � Y � �y,
we would certainly reobtain the original configuration.
This can be straightforwardly extended to the generic
form : �t; y�� �T�t; y�; Y�t; y�� we were discussing
above.

This kind of construction would provide concrete ex-
amples of self-dual backgrounds only if the conditions

(C3) are compatible with the low energy string equations.
Nevertheless, the straightforward efforts to find explicit
nontrivial examples do not prove to succeed. In fact, the
stationary branch related to the configuration (C1), when
there is no dependence on time, turns out to be fully
determined from the low energy string equations by using
a different gauge election. The resulting stationary con-
figuration is only self-dual if ��y� � 0, i.e. for a constant
norm self-dual direction.
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