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Decoherence induced by coupling a system with an environment may display universal features. We dem-
onstrate that when the coupling to the system drives a quantum phase transition in the environment, the decay
of quantum coherences in the system is Gaussian with a width independent of the system-environment cou-
pling strength. We obtain analytical results for a class of solvable models, and present numerical evidence
supporting the validity of our results in more general cases. This effect opens the way for a quantum simulation
algorithm, where a single qubit is used to detect a quantum phase transition. We discuss possible implemen-
tations of such an algorithm and relate our results to available data on universal decoherence in NMR echo
experiments.
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I. INTRODUCTION

The coupling between a quantum system and its environ-
ment leads to decoherence, the process by which quantum
information is degraded. Decoherence plays a crucial role in
the understanding of the quantum to classical transition �1�.
It also has practical importance: its understanding is essential
in technologies that actively use quantum coherence, such as
quantum information processing �2�. In general, the time
scale tdec of decoherence depends on the system-environment
coupling strength, which we arbitrarily denote �. For ex-
ample, in the well-studied case of quantum Brownian motion
�where the environment consists of a large number of nonin-
teracting harmonic oscillators�, quantum coherence generally
decays exponentially with a rate 1 / tdec proportional to �2 �3�.
In this paper we describe a class of systems with a drastically
different behavior: The decay of quantum coherence is
Gaussian with a rate which is independent of the system-
environment coupling strength �. Notice that there are many
examples where Gaussian decoherence can be observed,
however, in all these cases the rate depends on the coupling
to the environment �see, e.g., Ref. �7� and references
therein�. This independence signals a type of universal be-
havior whose study is the aim of this work. In general, one
should avoid building physical quantum information pro-
cessing devices in the presence of this type of universal de-
coherence. However, we show that universality may also
turn out to be a powerful property that could be used to our
advantage: In fact, using a single qubit as a probe, by detect-
ing decoherence in the universal regime we could extract
valuable information about the environment.

Environment-independent decoherence rates are also
found in other circumstances. For example, systems with a
classically chaotic Hamiltonian display a “Lyapunov regime”
where the decay is exponential and given by the Lyapunov
exponent of the underlying classical dynamics �4,5�. These
models are also often used to represent a complex environ-
ment. In particular, this was the motivation of Ref. �5� to
explain the perturbation-independent decay of polarization
detected in recent NMR echo experiments �6� �where, how-

ever, a nonexponential but Gaussian decay is actually ob-
served�. Our findings are different from the usual exponential
Lyapunov regime: we discuss systems where the universal
�independent of �� decoherence is Gaussian. In our model,
the complexity and sensitivity of the environment arise from
the susceptibility of the environmental spectrum to the sys-
tem’s state. The relation between our results and the experi-
ments of Ref. �6� will also be discussed below. The paper is
organized as follows: In Sec. II we present the basic ingre-
dients of our model �a central spin interacting with a spin
bath�. In Sec. III we discuss the conditions under which the
environment induces a Gaussian decay of quantum coher-
ence in the system and, more interestingly, the condition un-
der which the decay width is independent of the system-
environment coupling strength. We also show that such
conditions are met in a model that can be exactly solved �the
Ising chain with a transverse coupling to a central spin�, and
show some evidence supporting the validity of our results in
more general models �the Bose-Hubbard model, in particu-
lar�. These two models are considered paradigms of quantum
phase transitions �11�. In Sec. IV we present our conclusions,
and we show and discuss some of the implications of our
work.

II. THE MODEL

Let us consider a spin 1/2 particle �a qubit� coupled to an
environment that is “structurally unstable” with respect to
the system state �in a sense that will be made clear below�.
The model we discuss is a generalization of the one studied
by Quan et al. �8�, who showed that an environment at the
critical point of a quantum phase transition is highly efficient
in producing decoherence. Below, we will not only general-
ize the results of �8� but also show that in these circum-
stances universal decoherence arises naturally. Afterwards,
we will test the generality of our analytical results numeri-
cally in a system where our assumptions do not hold. We
assume that the system and the environment evolve under the
Hamiltonian
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HSE = IS � HE + �0��0� � H�0
+ �1��1� � H�1

. �1�

Here, the operators HE, H�0
, and H�1

act on the Hilbert
space of the environment. If the system is in state �j� �j
=0,1�, the environment evolves with an effective Hamil-
tonian H j =HE+H�j

�� j is the system-environment coupling
strength�. Considering the initial state ��SE�0��= �a�0�
+b�1���E�0��, the evolved reduced density matrix of the sys-
tem is

�S�t� = TrE��SE�t����SE�t��

= �a�2�0��0� + ab*r�t��0��1� + a*br*�t��1��0� + �b�2�1��1� .
�2�

The off-diagonal terms of this operator are modulated by the
decoherence factor r�t�: the overlap between two states of the
environment obtained by evolving the initial state �E�0�� with
two different Hamiltonians, i.e.,

r�t� = �E�0��eiH0te−iH1t�E�0�� . �3�

Notice that r�t� has the form of a Loschmidt echo �or fidel-
ity�, which can show universal behavior �with an exponential
decay� when Hi are classically chaotic Hamiltonians �5,7�.
Assuming that the initial state of the environment is the
ground state �g0� of H0 �9�, r�t� is, up to an irrelevant phase
factor, identical to the so-called survival probability ampli-
tude

r�t� = �g0�e−iH1t�g0� . �4�

Let us first analyze models where both Hamiltonians H j
�j=0,1� can be diagonalized in terms of a suitable set of
fermionic creation and annihilation operators �k

�j�:

H j = �
k=1

N

�k
�j�	�k

�j�†�k
�j� −

1

2

 . �5�

Furthermore, we assume that the operators appearing in the
two Hamiltonians H j can be connected by a Bogoliubov
transformation of the form

�k
�1� = cos��k��k

�0� − i sin��k��−k
�0�†, �6�

where the angles �k define the Bogoliugov coefficients. No-
tice that this expression only includes mixing between modes
with opposite values of the index k. Our treatment can be
extended to more complicated situations, but we limit first to
the simplest nontrivial case, where it is possible to relate the
ground states �g� j of H j as

�g�0 = �
k�0

�i cos��k� + sin��k��k
�1�†�−k

�1�†��g�1. �7�

Under these assumptions the decoherence factor is

r�t� = �
k�0

�cos2��k�eit�k
�1�

+ sin2��k�e−it�k
�1�

� . �8�

The above expression will be the starting point of our calcu-
lation. We remind the reader that the assumptions under

which it was derived are �a� the two effective Hamiltonians
H j can be diagonalized in terms of two sets of �fermionic�
creation and annihilation operators �k

�j� �j=0,1� that can be
related by means of the Bogolubov transformation �6�; and
�b� The initial state of the environment is an eigenstate of
H0. Below, we will show that under rather generic conditions
for the coefficients of the Bogolubov transformation we can
find a Gaussian decay for r�t� and also discuss the conditions
under which the decay displays universal features. Condition
�a� restricts our results to a broad but specific class of sys-
tems. Below we will test numerically the validity of our re-
sults in a case where condition �a� is not valid.

III. CONDITIONS FOR A GAUSSIAN DECAY WITH
UNIVERSAL WIDTH

It is worth noticing that the expression we obtained in Eq.
�8� for r�t� is completely analogous to the one found when
studying decoherence on a qubit induced by noninteracting
spin environments �10�. In that case, the index k labels the
different environmental spins, the corresponding Bogoliubov
coefficients define their initial states, and the energies �k

�1� are
related with the coupling strengths between the central spin
and the environmental ones.

Under reasonable assumptions on the angles �k and the
energies �k

�1�, we can go further and—using the ideas devel-
oped in �10�—obtain a simple form for the temporal evolu-
tion of the overlap r�t�. To illustrate our procedure, let us
analyze first an oversimplified case: suppose that the energies
of all the modes are the same, i.e., �k

�1�=�. In the simplest
case �k=� /4, the overlap oscillates as r�t�= �cos �t�N/2. The
same result is recovered as a consequence of the law of large
numbers if the angles �k are spread over the entire circle. In
fact, �r�t��2��cos �t�N if the following Lindenberg conditions
are satisfied:

1

N
�

k

cos2 �k � 1/2,

sN
2 = �

k

sin2 2�k��k
�1��2 	 �2. �9�

The first condition is satisfied when the angles are randomly
distributed. The second one imposes a finite variance for the
“random walk” in which a step of length +�k �−�k� is taken
with probability cos2 �k �sin2 �k�. When �k

�1�=�, the condi-
tion takes the form sN

2 	1, and it is met when there is a
sufficiently large number of modes for which sin 2�k does
not vanish.

A more realistic situation is when the energies �k
�1� take

values in a given spectral band. When the energies are dis-
tributed with a vanishing mean value, the decay of r�t� is
Gaussian with a width given by sN

2 defined in Eq. �9� �10�.
Consider the more general case where the energies are dis-
tributed about an arbitrary mean value, i.e., �k

�1�=�+
k
�where 
k has zero mean�. We now define the dispersion s̃N

2

as the cumulative variance of the fluctuations of the energy,
and we find that, in general, when
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1

N
�

k

cos2 �k � 1/2,

s̃N
2 = �

k

sin2�2�k�
k
2 	 �2, �10�

r�t� is described by a Gaussian envelope modulating an os-
cillating term,

�r�t��2 = exp�− s̃N
2 t2��cos��t��N/2. �11�

When the operators �k
�0� and �k

�1� are similar, the angles �k
are small and Eqs. �9� do not hold: Therefore in such a case
there is almost no decoherence. However, a drastic difference
in the nature of the eigenstates of H0 and H1 can only be
accounted for with �k varying in the full range �0,2��. This
occurs when the environment suffers a quantum phase tran-
sition when � is varied. Thus denoting �c the critical point of
the transition, for �0��c��1 we expect the decoherence
factor to behave as indicated in Eq. �11�. When s̃N

2 is only
given by the properties of the environment Hamiltonian, the
decay of r�t� becomes universal �independent of ��.

A. Ising spin chain environment

An important model where the above assumptions �5� and
�6� are satisfied is the following: We consider a system that
consists of a central spin which interacts with an environ-
ment formed by an Ising chain. The system environment
interaction is such that the two computational states of the
system induce two different transverse magnetic fields in the
environment. This model was previously studied in �8� and is
such that the two effective Hamiltonians for the environment
that are associated with the two computational states of the
system are

H j = − J	�
i=1

N

�i
z�i+1

z + � j�
i=1

N

�i
x
 . �12�

Notice that the coupling of the system to all spins in the
environment chain is rather unrealistic. However, numerical
results coupling the system to only a few spins in the envi-
ronment �local interaction� show behavior similar to our re-
sults �12�. Both the Bogoliubov coefficients and the energies
can be analytically computed and turn out to be given by the
following simple expressions �11�:

�k
�j� = 2J1 + � j

2 − 2� j cos�2�k/N� , �13�

2�k = �k��1� − k��0�� . �14�

In this case the critical value is �c=1 and the angles k��� are
defined as

tan�k� = sin�2�k/N�/�� − cos�2�k/N�� .

When �1	1 and �0�1, the angles �k�����k /N and the
Bogoliubov coefficients satisfy conditions �9� �13�. More-
over, the energies �k

�1� are distributed between ��1−1� and
��1+1�, which gives s̃N

2 �N. As the dispersion s̃N
2 turns out to

be independent of �1, the width of the Gaussian envelope is

independent of �1. Thus this simple model displays the two
main features we are interested in discussing: A Gaussian
decay with a width that turns out to be independent of the
coupling strength between the system and the environment.

In Fig. 1 we display r�t� for �0=0, showing the accuracy
of Eq. �11�. After the critical point of the quantum phase
transition, the envelope of r�t� has a universal envelope in-
dependent of �1. However, oscillations �whose frequency de-
pends on �1� are not universal. Yet, it is possible to eliminate
them by performing a spin-echo experiment: first, evolve the
system coupled to the Ising chain environment for a time t.
At this time, flip the environmental spins in the x direction
�e.g., with a rf pulse that applies a �-rotation around the
z-axis�. Finally, evolve for another time t. The total evolution
can be described using the Hamiltonian H1=HE+H�1

from
time 0 to t, and H−1=HE−H�1

from time t to 2t. Thus in this
echo experiment the decoherence factor is

0
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FIG. 1. �Color online� Left: Decoherence factor for a spin trans-
versely coupled to an Ising chain with 50 spins for different cou-
pling strengths �1. �a� �1=0.1, 0.5, and 2, �b� �1=5, �c� �1=10, and
�d� �1=40. Right: Decoherence factor after the spin echo sequence,
�a�� �1=2, �b�� �1=5, �c�� �1=10, and �d�� �1=40. The dot-dashed
line is Eq. �15�. In all plots �0=0, and the dashed line is the pre-
dicted universal Gaussian envelope.
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recho�2t� = �g�0e−iH−1te−iH1t�g�0. �15�

This overlap is simply computed using the Bogoliubov trans-
formation that connects the modes diagonalizing the Hamil-
tonians H−1 and H0. If we denote �k

�−1� the modes of H−1, the
Bogoliubov coefficients associated with the corresponding
angles �̃k are such that �k

�−1�=cos��̃k��k
�0�− i sin��̃k��−k

�0�†. The
analytic form for the overlap recho�t� is simplified introducing
the sum and difference of the energies, �k

�±�=�k
�1�±�k

�−1�, and
the Bogoliubov angles, �k

�±�= �̃k±�k. We obtain

recho�2t� = �
k�0

�cos �k
�+�t cos2 �k

�−� + cos �k
�−�t sin2 �k

�−�

+ i sin �k
�+�t cos �k

�−� cos �k
�+�

+ i sin �k
�−�t sin �k

�−� sin �k
�+�� . �16�

For the Ising model this can be evaluated explicitly. In the
limit of large � we obtain, using similar arguments as above,

recho�t� � exp�− s̃N
2 t2�	1 −

K�t�
�

sin��t�
 , �17�

where K�t�=2�k sin��k
�−�t�cos�2�k /N�sin2�2�k /N�. Figure 1

shows the echo dependence on �.

B. Bose-Hubbard chain environment

One can, in fact, question the generality of our results
which were obtained on the basis of a simple argument based
on some hypothesis. To test the generality of our results
against the restrictiveness and uncontrollability of assump-
tions �5� and �6�, we studied a system which belongs to a
completely different class of models: the Bose-Hubbard
model �BHM� �11�, with Hamiltonian

HBH = − g�
�i,j�

ai
†aj + u�

n

an
†an�an

†an − 1� . �18�

Here an are boson annihilation operators in site n of a dis-
crete lattice. For g	u, the system behaves as a superfluid of
noninteracting particles; but when u	g, the interaction term
dominates and the ground state is Mott-insulator-like. This
model cannot be cast in terms of fermionic operators as in
Eq. �5�, in fact, no analytic solution is known. The BHM has
practical relevance because it can be experimentally simu-
lated using cold atoms in optical lattices �14�. We calculate
r�t� numerically for a spin 1/2 coupled to the hopping term
of HBH, that is, we take g��. In Fig. 2 we show the deco-
herence factor for several values of � for a BHM with a fixed
number of bosons. The same overall behavior of the Ising
chain is observed: a universal Gaussian envelope �indepen-
dent of �� modulating an oscillation with frequency propor-
tional to �. The very different nature of the BHM hints at a
more general validity of our results.

IV. CONCLUSIONS AND OUTLOOK

In this paper we demonstrated the existence of a class of
models for which the decoherence induced by the coupling
between a system and its environment displays a rather in-

teresting feature: the decay of quantum coherence is Gauss-
ian and independent of the system-environment coupling
strength. There are many other cases where a Gaussian decay
has been predicted �see �10� for example�. The universal re-
gime �characterized by the independence of the decay-width
on the system-environment coupling strength� is a more in-
teresting effect.

A Gaussian decay of coherence with a rate independent of
the coupling to the environment was indeed observed in
NMR polarization echo experiments �6�. Arguing on the
complexity of the experimental many-body system, these re-
sults have been related to the environment-independent de-
coherence predicted in classically chaotic Hamiltonians
�4,5,7�. The experimental situation is quite different from the
one we considered here: the decoherence factor is measured
after an echo created by a change of sign of the environment
Hamiltonian, and not the system-bath interaction. Our model
points to a different way of introducing complexity and sen-
sitivity in the environment: a quantum phase transition. Fur-
ther research using this approach might explore more realis-
tic models that account for all the details of the experiments.

The universal decoherence regime of this work can also
be understood using analogies to the regime of strong pertur-
bations of the survival probability, Eq. �4�, a particular case
of a Loschmidt echo. Indeed, r�t� is the Fourier transform of
the strength function or local density of states �LDOS�,
L�E�=�n��g0 ��n��2
�E−En�, where ��n� are the eigenvectors
of H1 and En its eigenenergies. In typical LDOS studies, H1
differs from H0 by a perturbation. In complex systems �e.g.,
random matrices, or classically chaotic Hamiltonians� for
sufficiently strong perturbations �g0� is a random superposi-
tion of the ��n� states. Therefore the LDOS becomes inde-
pendent of the perturbation: it equals the full density of states
of H1. Chaotic systems, for instance, give an LDOS with a
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FIG. 2. �Color online� Decoherence factor for a spin 1/2
coupled to a Bose-Hubbard model through the hopping strength J
�six bosons in six sites�, for �a� J=5, �b� J=10, �c� J=20, and �d�
J=50. In all plots the dashed line is the universal Gaussian enve-
lope; the width was obtained numerically.
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Lorentzian shape �15� �leading to an exponential decay of
r�t��, while spin systems lead to Gaussian LDOS �16�. In our
model, the saturation of the LDOS when H0 and H1 are on
both sides of the quantum phase transition occurs because of
the radically different nature of the eigenstates.

Universal decoherence can be harmful for quantum infor-
mation applications. However, it can be a useful tool to ex-
tract information about a critical system, e.g., its spectral
structure or the critical point of its quantum phase transition.
The latter example can be thought of as a “critical point
finding” algorithm in a one-qubit quantum computer �or a
quantum simulator�: in systems where the spectrum is not
shifted by the coupling �which gives the oscillatory cos��t�N

term�, the critical point can be simply obtained as the � value
for which one observes the onset of universality. Otherwise,
the oscillation term obscures the critical point. In these cases
one can instead couple the system weakly to the environment
and drive the transition with an external parameter �as in Ref.
�8��. The critical point is then signaled by the � value for
which there is a maximum decoherence decay. A demonstra-

tion of this algorithm can be performed in an NMR setting
simulating the Ising Hamiltonian studied above �17�.

We have shown that when the coupling to the system
drives a quantum phase transition in the environment,
the decoherence factor decays as a Gaussian with an
environment-independent width. We showed numerically
that our findings are more general than what can be expected
from the analytical approximations we used. Our results
could lead to an alternative interpretation of hitherto unex-
plained NMR experimental results on environment indepen-
dent decoherence rates. Finally, we discussed how the uni-
versal behavior of the decoherence factor can be used to
study critical systems in a simulation algorithm for one-qubit
quantum computers.
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