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The results of botnet detection methods are usually presented without any comparison.

Although it is generally accepted that more comparisons with third-party methods may

help to improve the area, few papers could do it. Among the factors that prevent a com-

parison are the difficulties to share a dataset, the lack of a good dataset, the absence of a

proper description of the methods and the lack of a comparison methodology. This paper

compares the output of three different botnet detection methods by executing them over a

new, real, labeled and large botnet dataset. This dataset includes botnet, normal and

background traffic. The results of our two methods (BClus and CAMNEP) and BotHunter

were compared using a methodology and a novel error metric designed for botnet de-

tections methods. We conclude that comparing methods indeed helps to better estimate

how good the methods are, to improve the algorithms, to build better datasets and to build

a comparison methodology.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

It is difficult to estimate how much a new botnet detection

method improves the current results in the area. It may be

done by comparing the new results with other methods, but

this has already been proven hard to accomplish (Aviv and

Haeberlen, 2011). Among the factors that prevent these com-

parisons are: the absence of proper documentation of the

methods (Tavallaee et al., 2010), the lack of a common, labeled

and good botnet dataset (Rossow et al., 2012), the lack of a

comparison methodology (Aviv and Haeberlen, 2011) and the

lack of a suitable error metric (Salgarelli et al., 2007).
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Although the comparison of methods can greatly help to

improve the botnet detection area, few proposalsmade such a

comparison (García et al., 2013). As far as we know, only three

papers (Wurzinger et al., 2010; Zhao et al., 2013; Li et al., 2010)

made the effort so far.

Obtaining a good dataset for comparisons is difficult.

Currently, most detection proposals tend to create their own

botnet datasets to evaluate their methods. However, these

datasets are difficult to create (Lu et al., 2009) and usually end

up being suboptimal (Shiravi et al., 2012), i.e. they lack some

important features, such as ground-truth labels, heterogeneity

or real-world traffic. These custom datasets are often difficult

touse for comparisonwithothermethods.This isbecauseeach
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method is usually focused on different properties of the data-

set. The problem is to find a good, common and public dataset

that can be read by all methods and satisfy all the constrains.

The difficultly to compare detection methods goes beyond

the dataset. The lack of good descriptions of the methods and

error metrics contribute to the problem. As stated by Rossow

et al. (2012), the error metrics used on most papers are usu-

ally non-homogeneous. They tend to use different error

metrics and different definitions of error. Moreover, the most

common error metrics, e.g. FPR, seems to be not enough to

compare botnet detection methods. The classic error metrics

were defined from a statistical point of view and they fail to

address the detection needs of a network administrator.

The goal of this paper is to compare three botnet detection

methods using a simple and reproducible methodology, a

good dataset and a new error metric. The contributions of our

paper are:

� A deep comparison of three detection methods. Our own

algorithms, CAMNEP and BClus, and the third-party algo-

rithm BotHunter (Gu et al., 2007).

� A simple methodology for comparing botnet detection

methods along with the corresponding public tool for

reproducing the methodology.

� A new error metric designed for comparing botnet detec-

tion methods.

� A new, large, labeled and real botnet dataset that includes

botnet, normal and background data.

We conclude that the comparison of different botnet

detectionmethodswith other proposals is highly beneficial for

the botnet research community because it helps to objectively

assess themethods and improve the techniques. Also, that the

use of a good botnet dataset is paramount for the comparison.

The rest of the paper is organized as follows. Section 2

shows previous work in the area. Section 3 describes the

CAMNEP detection method. Section 4 shows the BClus botnet

detection method. Section 5 describes the BotHunter method.

Section 6 describes the dataset and its features. Section 7 de-

scribes the comparison methodology, the public tool and the

new error metric. Section 8 shows the results and compares

the methods and Section 9 presents our conclusions.
1 http://www.iscx.ca/datasets.
2. Previous work

The comparison of detection methods is usually considered a

difficult task. In the case of botnets it is also related to the

creation of a new dataset. The next Subsections describe the

previous work in the area of comparison of methods and the

area of creation of datasets.

2.1. Comparison of methods

The comparison of a new detection methodwith a third-party

method is difficult. In the survey presented by García et al.

(2013), where there is a deep analysis of fourteen network-

based botnet detection methods, the authors found only one

paper thatmade such a comparison. The survey compared the

motivations, datasets and results of the fourteen proposals. It
concludes that it is difficult to compare the results with

another proposal because the datasets tend to be private and

the descriptions of the methods tend to be incomplete.

Another analysis of the difficulty of reproducing a method

was described by Tavallaee et al. (2010), where they state that

there is an absence of proper documentation of the methods

and experiments in most detection proposals.

One of the detection proposals that actually made a com-

parison with a third-party method was presented by

Wurzinger et al. (2010). The purpose of the paper is to identify

single infected machines using previously generated detec-

tion models. It first extracts the characters strings from the

network to find the commands sent by the C&C and then it

finds the bot responses to those commands. The authors

downloaded and executed the BotHunter program of Gu et al.

(2007) on their dataset and made a comparison. However, the

paper only compares the results of both proposals using the

TPR error metric and the FP values.

The other paper thatmade a comparisonwith a third-party

method was presented by Zhao et al. (2013). This proposal

selects a set of attributes from the network flows and then

applies a Bayes Network algorithm and a Decision Tree algo-

rithm to classify malicious and non-malicious traffic. The

third-partymethodused for comparisonwas again BotHunter.

There is a description of how BotHunter was executed, but

unfortunately the only error metric reported was a zero False

Positive. No other numerical values were presented.

The last proposal that also compared its results with a

third-party method was made by Li et al. (2010). This paper

analyzes the probable bias that the selection of ground-truth

labels might have on the accuracy reported for malware

clustering techniques. It states that common methods for

determining the ground truth of labels may bias the dataset

toward easy-to-cluster instances. This work is important

because it successfully compared its results with the work of

Bayer et al. (2009). The comparison was done with the help of

Bayer et al., who run the algorithms described in Li et al. (2010)

on their private dataset.

Regarding the creation of datasets for malware-related

research, Rossow et al. (2012) presented a good paper about

the prudent practices for designing malware experiments.

They defined a prudent experiment as one being correct,

realistic, transparent and that do not harm others. After

analyzing 36 papers they conclude that most of them had

shortcomings in one ormore of these areas. Most importantly,

they conclude that only a minority of papers included real-

world traffic in their evaluations.

2.2. Datasets available

Regarding botnet datasets that are available for download, a

deep study was presented in Shiravi et al. (2012) about the

generation of datasets. It describes the properties that a

dataset should have in order to be used for comparison pur-

poses. The dataset used in the paper includes an IRC-based

Botnet attack,1 but the bot used for the attack was developed

by the authors and therefore it may not represent a real botnet

behavior. This datasetmaybedownloadedwith authorization.

http://www.iscx.ca/datasets
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Table 1 e Summary of available datasets.

Name Available Format Background Botnet Normal Labels

Shiravi et al. (2012) ? ? √ √ e ?

PREDICT √ CSV e √ e e

CAIDA √ CSV, pcap e √ e e

Saad et al. (2011) √ pcap √ √ e √
Szab�o et al. (2008) √ pcap e e √ √
Contagio √ pcap e √ e √
NexGinRC (2013) ? CSV e √ √ ?

Cho et al. (2000) √ pcap √ e e e
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The Protected Repository for the Defense of Infrastructure

Against Cyber Threats (PREDICT) indexed three Botnet data-

sets2 until May 16th, 2013. The first one is the Kraken Botnet

Sinkhole Connection Data dataset, the second one is the Flash-

back Botnet Sinkhole Connection Data dataset and the third one is

the Conficker Botnet Sinkhole Connection Data dataset. They were

published as CSV text files, where each line is a one minute

aggregation of the number of attempted connections of one IP

address. Unfortunately, the aggregation method may not be

suitable for comparisons with other proposals.

The CAIDA organization published a paper about the Sality

botnet in Dainotti et al. (2012) along with its corresponding

dataset.3 Unfortunately, the CSV text format of the dataset

may not be suitable for every detection algorithm because the

content of the dataset only includes enough information to

reproduce the techniques in the paper. CAIDA also published

a dataset about the Witty Botnet in pcap format4 and several

datasets with responses to spoofed DoS traffic5 and anoma-

lous packets.6 None of them are labeled.

A custom botnet dataset was created to verify five P2P

botnet detection algorithms in Saad et al. (2011). Fortunately,

this dataset was made public and can be downloaded.7 The

dataset is a mixture of two existing and publicly available

malicious datasets and one non-malicious pcap dataset. They

weremerged to generate a new file. This was, at that time, the

best dataset that can be downloaded for comparison pur-

poses. Unfortunately, there is only one infected machine for

each type of botnet, therefore no synchronization analysis can

be done.

The Traffic Laboratory at Ericsson Research created a

normal dataset that was used in Saad et al. (2011) and

described in Szab�o et al. (2008). This normal dataset is publicly

available.8 It is composed of pcap traffic files that were labeled

bymeans of one IP header option field. This is the only normal

dataset that is labeled inside the pcap file.
2 https://www.predict.org/Default.aspx?tabid¼104.
3 http://imdc.datcat.org/collection/1-06Y5-B¼UCSDþNetworkþ

TelescopeþDatasetþonþtheþSipscan.
4 http://www.caida.org/data/passive/witty_worm_dataset.xml.
5 http://www.caida.org/data/passive/backscatter_2008_dataset.

xml.
6 http://www.caida.org/data/passive/telescope-2days-2008_

dataset.xml.
7 http://www.isot.ece.uvic.ca/dataset/ISOT_Botnet_DataSet_

2010.tar.gz.
8 http://www.crysys.hu/~szabog/measurement.tar.
9 http://contagiodump.blogspot.co.uk/2013/04/collection-of-

pcap-files-from-malware.html.
A considerable amount of malware traffic in pcap format

was published in the Contagio blog.9 It contains thirty one ATP

pcap captures and sixty one crimenware pcaps. Each file

contains the traffic of one malware without background

traffic. Unfortunately, the captures are really short (mostly

between 1min and 1 h) and the traffic is not labeled. But since

each scenario includes only one infected computer, it should

be possible to label them.

Another dataset with malware logs and benign logs was

collected in NexGinRC (2013). The malware logs are both real

and simulated. The benign logs consist of 12 months of traffic.

Unfortunately, the dataset is in CSV format, whichmay not be

suitable for some detection algorithms because it does not

have the same information as a NetFlow file or pcap file. Ac-

cess to this dataset may be granted upon request10.

The last dataset analyzed is currently created by the MAWI

project described in Cho et al. (2000). It includes an ongoing

effort to publish one of the most recent and updated back-

ground datasets to date. Its goal is to promote the research on

traffic analysis and the creation of free analysis tools. How-

ever, the pcap files are not labeled, and therefore it is more

difficult to use them for training or verification. There was an

effort to label this dataset using anomaly detectors in

Fontugne et al. (2010). The labels are not ground-truth, but

may be useful to compare other methods.

Asummaryof thedescribeddatasets ispresented inTable1.

This table shows that, so far, no dataset includes Background,

Botnet and Normal labeled data.
3. The CAMNEP detection method

The Cooperative Adaptive Mechanism for NEtwork Protection

(CAMNEP) (Rehak et al., 2009) is a Network Behavior Analysis

system (Scarfone and Mell, 2007) that consists of various

state-of-the-art anomaly detection methods. The system

models the normal behavior of the network and/or individual

users behaviors and labels deviations from normal behaviors

as anomalous.

3.1. System architectures

CAMNEP processes NetFlow data provided by routers or other

network equipment to identify anomalous traffic by means of

several collaborative anomaly detection algorithms. It uses
10 ytextsc{http://nexginrc.org/Datasets/DatasetDetail.aspx?
pageID¼24}.

https://www.predict.org/Default.aspx?tabid=104
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a multi-algorithm and multi-stage approach to reduce the

amount of false positives generated by the individual anomaly

detectors without compromising the performance of the sys-

tem. The self-monitoring and self-adaptation techniques,

described in Section 3.4, are very important to this purpose.

They help improve the error rate of the systemwith aminimal

and controllable impact on its efficiency.

CAMNEP consists of three principal layers that evaluate the

traffic: anomaly detectors, trust models and anomaly

aggregators.

The anomaly detectors layer (identified as Anomaly De-

tectors A and B in Fig. 1) analyze the NetFlows using various

anomaly detection algorithms. We are currently using 8

different anomaly detection approaches. Each of them uses a

different set of features, thus looking for an anomaly from

slightly different perspectives. The output of these algorithms

is aggregated into events using several statistical functions

and the results are sent to the trust models. All the detection
Fig. 1 e Adaptation process
algorithms used in the system are described in detail in Sec-

tion 3.2.

The trust models layer maps the NetFlows into traffic

clusters. These clusters group together the NetFlows that have

a similar behavioral pattern. They also contain the anomaly

value of the type of the event that they represent. These

clusters persist over time and the anomaly value is updated by

the trust model. The updated anomaly value of a cluster is

used to determine the anomaly of new NetFlows. Therefore,

the trust models act as a persistent memory and reduce the

amount of false positives by means of the spatial aggregation

of the anomalies.

The aggregators layer creates one composite output that

integrates the individual opinion of several anomaly detectors

as they were provided by the trust models. The result of the

aggregation is presented to the user of the system as the final

anomaly score of the NetFlows. Each aggregator can use two

different averaging operators: an order-weighted averaging
in the CAMNEP system.

http://dx.doi.org/10.1016/j.cose.2014.05.011
http://dx.doi.org/10.1016/j.cose.2014.05.011
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(Yager, 1988) or simpleweighted averaging. CAMNEP is using a

simulation process to determine the best aggregation operator

for the current type and state of network. This process is

described in Section 3.4.

3.2. Anomaly detectors

The anomaly detectors in the CAMNEP system are based on

already published anomaly detection methods. They work in

two stages: (i) they extract meaningful features associated

with each NetFlow (or group of NetFlows), and (ii) they use the

values of these features to assign an anomaly score to each

NetFlow. This anomaly score is a value in the [0,1] range. A

value of 1 represents an anomaly and a value of 0 represents

normal behavior. The anomaly detector's model is a fuzzy

classifier that provides the anomaly value for each NetFlow.

This value depends on theNetFlow itself, on other NetFlows in

the current context, and on the internal trafficmodel, which is

based on the past traffic observed on the network.

The following subsections describe each of the anomaly

detectors used in the CAMNEP system.

3.2.1. MINDS
The MINDS algorithm (Ertoz et al., 2004) builds a context in-

formation for each evaluated NetFlow using the following fea-

tures: thenumber ofNetFlows from the same source IP address

as the evaluated NetFlow, the number of NetFlows toward the

same destination host, the number of NetFlows towards the

same destination host from the same source port, and the

number of NetFlows from the same source host towards the

same destination port. This is a simplified version of the orig-

inal MINDS system, which also uses a secondary window

defined by the number of connections in order to address slow

attacks. The anomaly value for a NetFlow is based on its dis-

tance to the normal sample. The metric defined in this four-

dimensional context space uses a logarithmic scale on each

contextdimension, andthesemarginaldistancesarecombined

into the global distance as the sum of their squares. In the

CAMNEP implementation of this algorithm, the variance-

adjusted difference between the floating average of past

values and the evaluated NetFlow on each of the four context

dimensions is used to know if the evaluated NetFlow is

anomalous. The original work is based on the combination of

computationally-intensiveclusteringandhumanintervention.

3.2.2. Xu
In the algorithm proposed by Xu et al. (2005), the context of

each NetFlow to be evaluated is created with all the NetFlows

coming from the same source IP address. In the CAMNEP

implementation, for each context group of NetFlows, a 3

dimensional model is built with the normalized entropy of the

source ports, the normalized entropy of the destination ports,

and the normalized entropy of the destination IP addresses.

The anomalies are determined by some classification rules

that divide the traffic into normal and anomalous. The dis-

tance between the contexts of two NetFlows is computed as

the difference between the three normalized entropies, com-

bined as the sum of their squares. Our implementation of the

algorithm is close to the original publication, which was

further expanded by Xu and Zhang (2005), except for the
introduction of new rules that define a horizontal port scan as

anomalous.

3.2.3. Lakhina volume
The volume prediction algorithm presented in Lakhina et al.

(2004) uses the Principal Components Analysis (PCA) algo-

rithm to build a model of traffic volumes from individual

sources. The observed traffic for each source IP address with

non-negligible volumes of traffic is defined as a three dimen-

sional vector: the number of NetFlows, number of bytes and

number of packets from the source IP address. The traffic

model is defined as a dynamic and data-defined trans-

formation matrix that is applied to the current traffic vector.

The transformation splits the traffic into normal (i.e. modeled)

and residual (i.e. anomalous). The transformation returns the

residual amount of NetFlows, packets and bytes for each

source IP address. These values define the context (identical

for all the flows from the given source). An anomaly is deter-

mined by transforming the 3D context into a single value in

the [0,1] interval.

Notice that the original work was designed to handle a

different problem, that is, the detection of anomalies on a

backbone. Also the original workmodeled networks instead of

source IP addresses. However, we modify it to obtain a clas-

sifier that can successfully contribute to the joint opinion

when combined with others.

3.2.4. Lakhina Entropy
The entropy prediction algorithm presented by Lakhina et al.

(2005) is based on the similar PCA-based traffic model than

Section 3.2.3, but it uses different features. It aggregates the

traffic from the individual source IP addresses, but instead of

traffic volumes, it predicts the entropies of destination IP ad-

dresses, destination ports and source ports over the set of

context NetFlows for each source. The context space is

therefore three dimensional. An anomaly is determined as the

normalized sumof residual entropy over all three dimensions.

The metric is simple: a function measures the difference of

residual entropies between the NetFlows and aggregates their

squares. Also, the original anomaly detection method was

significantly modified along the same lines as the volume

prediction algorithm.

3.2.5. TAPS
The TAPS method (Sridharan et al., 2006) is different from the

previous approaches because it targets horizontal and vertical

port scans. The algorithm only considers the traffic sources

that created at least one single-packet NetFlow during a

particular observation period. These preselected sources are

then classified using the following three features: number of

destination IP addresses, number of destination ports and the

entropy of the NetFlow size measured in number of packets.

The anomaly value of the source IP address is based on the

ratio between the number of unique destination IP addresses

and destination ports. When this ratio exceeds a pre-

determined threshold the source IP address is considered as a

scan origin. Using the original method, we have encountered

an unusually high number of false positives. Therefore, we

extended the method with the NetFlow size entropy to ach-

ieve better results.

http://dx.doi.org/10.1016/j.cose.2014.05.011
http://dx.doi.org/10.1016/j.cose.2014.05.011
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3.2.6. KGB
TheKGBanomalydetectorpresentedbyPevný etal. (2012) is also

based on Lakhina's work. It uses the same features as Lakhina

Entropy detector described above. Similar to Lakhina's work, it

performs a PCAanalysis of the feature vectors for each source IP

address in thedataset. Thefinal anomaly isdetermined fromthe

deviations of averaging the principal components.

There are two versions of KGB detector:

� KGBf e examines principal components with high

variances

� KGBfog e examines principal components with low

variances.
11 Normality of both distributions is not difficult to achieve
provided that the attack classes are properly defined and that the
challenge samples in these classes are well selected, i.e. compa-
rable in terms of size and other parameters.
3.2.7. Flags
The Flags detector uses the same detectionmethod as the KGB

detector (Pevný et al., 2012). The only difference is in the input

feature vector. The feature vector of the Flags detector is

determined by the histogram of the TCP Flags of all the Net-

Flows with the same IP address. This detector is looking for a

sequence or a combination of anomalous TCP flags.

3.3. Trust modeling

The trust models are specialized knowledge structures stud-

ied in multi-agent research (Ramchurn et al., 2004; Sabater

and Sierra, 2005). The features of trust models include fast

learning, robustness in response to false reputation informa-

tion and robustness with respect to environmental noise.

Recent trust models, inspired by machine learning

methods (Rettinger et al., 2007) and pattern recognition ap-

proaches (Rehak et al., 2007) make the trust reasoning more

relevant for network security, as they are able to:

� include the context of the trusting situation into the

reasoning, making the trust model situational;

� use the similarities between trustees to reason about

short-lived or one shot trustees, e.g. NetFlows.

A feature vector includes the identity of a NetFlow and the

context of the NetFlow by each trust model in the feature

space. We use the term centroid to denote the permanent

feature vectors that are positioned in the feature spaces of

trust models. The centroids act as trustees of the model, and

the trustfulness value of each centroid is updated. Each

centroid is used to deduce the trustfulness of the feature

vectors in its vicinity.

The anomaly detectors integrate the anomaly values of

individual NetFlows into their trust models. The reasoning

about the trustfulness of each individual NetFlow is both

computationally unfeasible and unpractical (the NetFlows

are single shot events by definition), and thus the centroids of

the clusters holds the trustfulness of significant NetFlow

samples. The anomaly value of each NetFlow is used to up-

date the trustfulness of centroids in its vicinity. The weight

used for the update of the trustfulness of the centroids de-

creases with the distance. Therefore, as each model uses a

distinct distance function, they all have a different insight

into the problem.
Each trust model determines the trustfulness of each Net-

Flow by finding all the centroids in the NetFlows vicinity. It

sets the trustfulness using the distance-based weighted

average of the values preserved by the centroids. All the

models provide their trustfulness assessment (conceptually a

reputation opinion) to the anomaly aggregators.
3.4. Adaptation

The adaptation layer of CAMNEP identifies the optimal trust-

fulness aggregation function that achieves the best separation

between the legitimate and malicious NetFlows. This layer is

based on the insertion of challenges into the NetFlow data

observed by the system. The challenges are NetFlows of past

classified incidents. They are generated by short lived, chal-

lenge specific challenge agents and are mixed with the input

traffic. They cannot be distinguished from the rest of the input

traffic by the detectors/aggregators. They are processed and

evaluated with the rest of the traffic. Also, they are used to

update anomaly detection mechanisms and the trust models.

Once the process is completed, the challenges are re-

identified by their respective challenge agents and removed

from the output. The anomaly value given to these NetFlows

by the individual anomaly aggregators is used to evaluate

those aggregations and to select the optimal output for the

current network conditions.

There are two broad types of challenges: The malicious

challenges correspond to known attacks, whereas the legitimate

challenges represent known instances of legitimate events that

tend to be misclassified as anomalous. Malicious challenges

are further divided into broad attack classes, such as finger-

printing/vertical scan, horizontal scan, password brute forc-

ing, etc. For each attack class, each aggregator has a

probability distribution that is empirically estimated from the

continuous anomaly values attributed to the challenges in

that class. This characterization can be seen in Fig. 2. All the

legitimate challenges are also defined by a distribution.

We assume that the anomaly values of both the legitimate

and malicious challenges are defined by normal distribu-

tions.11 The distance between the estimatedmean normalized

values of both distributions, represents the quality of the

aggregator with respect to a given attack class. The effective-

ness of the aggregator, defined as an ability to distinguish be-

tween the legitimate events and the attacks is defined as a

weighted average of the effectiveness with respect to indi-

vidual classes.

As the network traffic is highly dynamic, it is very difficult

to predict which aggregation function will be chosen, espe-

cially given the fact that the challenges are selected from a

challenge database using a stochastic process with a pseudo-

random generator unknown to a potential attacker. The

attacker therefore faces a dynamic detection system that

unpredictably switches its detection profiles. Each profile has

a utility value (i.e. detection performance) close to the opti-

mum. This unpredictability, together with the additional

http://dx.doi.org/10.1016/j.cose.2014.05.011
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robustness achieved by the use of multiple algorithms, makes

the evasion attempt a much more difficult task than simply

avoiding a single intrusion detection method (Rubinstein

et al., 2009).

Furthermore, the system is able to find the optimal

thresholds for the anomaly score when using the results from

the adaptation process. The system is continuously modeling

the normal distribution of malicious and legitimate chal-

lenges. The threshold is set to minimize the Bayes risk (pos-

teriori expected loss) computed from the modeled legitimate

and malicious behavior distributions. Thus, the final result of

the system is a list of NetFlows with labels anomalous or

normal.
3.5. Training of the CAMNEP method

Since the system needs the inner models of the anomaly de-

tectors and trust models to have the optimal detection results,

it is necessary to train them. Typically, the system needs

25min of traffic to create its innermodels and to adapt itself to

the current type of network and its state. Therefore, the

training data for the CAMNEP algorithm was created by

trimming off some minutes at the start of each of the sce-

narios in the dataset described in Section 6.
4. The BClus detection method

The BClus method is a behavioral-based botnet detection

approach. It creates models of known botnet behavior and
uses them to detect similar traffic on the network. It is not an

anomaly detection method.

The purpose of the method is to cluster the traffic sent by

each IP address and to recognize which clusters have a

behavior similar to the botnet traffic. A basic schema of the

BClus method is:

1. Separate the NetFlows in time windows.

2. Aggregate the NetFlows by source IP address.

3. Cluster the aggregated NetFlows.

4. Only Training: Assign ground-truth labels to the botnet

clusters.

5. Only Training: Train a classification model on the botnet

clusters.

6. Only Testing: Use the classification model to recognize the

botnet clusters.

At the end the BClus method outputs a predicted label for

each NetFlow analyzed.

The following Subsections describe each of these steps.

4.1. Separate the NetFlows in time windows

The main reason to separate the NetFlows in time windows is

the huge amount of data that had to be processed. Some of our

botnet scenarios produced up to 395,000 packets perminute. A

short timewindow allow us to better process this information.

The second reason to use time windows is that botnets

tend to have a temporal locality behavior (Hegna, 2010),

meaning that most actions remain unchanged for several

minutes. In our dataset the locality behavior ranges between 1

http://dx.doi.org/10.1016/j.cose.2014.05.011
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and 30 min. This temporal locality helps to capture all the

important behaviors in the time windows.

The third reason for using time windows is the need to

deliver a result to the network administrator in a timely

manner. After each time window, the BClus method outputs

some results and the administrator can have an input about

the traffic.

An important decision on the time window separation

criteria is the window width. A short time window does not

contain enough NetFlows and therefore would not allow a

correct analysis of the botnet behavior. In the other hand, a

large timewindowwould have a high computational cost. The

time window used by the BClus method is of two minutes,

since it is enough to capture all the botnet behaviors and it

does not contain too much NetFlows.

The next step in the BClus method is to aggregates the

NetFlows.
4.2. Aggregate the NetFlows by source IP address

The purpose of aggregating th NetFlows is to analyze the

problem from a new high-level perspective. The aggregated

data may show new patterns. We hypothesize that these new

patterns could help recognize the behaviors of botnets. From

the botnet detection perspective, the main motivations for

aggregating NetFlows are the following:

� Each bot communicates with the C&C server periodically

(AsSadhan et al., 2009).

� Several bots may communicate at the same time with the

same C&C servers (Gu et al., 2008).

� Several bots attack at the same time the same target (Lee

et al., 2008).

Inside each time window, the NetFlows are aggregated

during one aggregation window. The width of the aggregation

window should be less than the width of the time window,

whichwas of twominutes. After some experimentation, a one

minute aggregation window width was selected, which is

enough to capture the botnet synchronization patterns and

short enough not to capture too much traffic (García et al.,

2012). Therefore, on each time window, two aggregation

windows are used.

The NetFlows are aggregated by unique source IP address.

The resulting features on each aggregation window are:

1. Source IP address

2. Amount of unique source ports used by this source IP

address.

3. Amount of unique destination IP addresses contacted by

this source IP address.

4. Amount of unique destination ports contacted by this

source IP address.

5. Amount of NetFlows used by this source IP address.

6. Amount of bytes transferred by this source IP address.

7. Amount of packets transferred by this source IP address.

We call this group of seven aggregated features an instance

to simplify the references. The aggregation step ends with a
list of instances for each aggregation window. Next Subsec-

tion describes the clustering process of these instances.
4.3. Cluster the aggregated NetFlows

The continuous evolution of botnets suggests that a good

detection method should be as independent of the network

characteristics as possible. The BClus method, then, uses an

unsupervised approach to cluster the instances described in

the previous section. These natural groups of behaviors

depend on the time window being analyzed and on the

characteristics of the networkwhere the algorithm is running.

The technique used for this task isWEKA's implementation

of the Expectation-Maximization (EM) algorithm (Moon, 1996).

EM is an iterative procedure that attempts to find the pa-

rameters of the model that maximize the probability of the

observed data. Our dataset has many different network be-

haviors generated by normal, botnet and attack actions. We

hypothesize that these behaviors are generated from different

probabilistic models and that the parameters of these models

can be found using the EM algorithm. The instances are

assigned to the probability distribution that they most likely

belong to, therefore building clusters.

After generating the clusters, the task of the BClus method

is to find which of them belong to botnets. The features of a

cluster are the average and standard deviation of the seven

instances features described in Section 4.2. The following 15

cluster features are obtained for each cluster:

1. Total amount of instances in the cluster.

2. Total amount of NetFlows in the cluster.

3. Amount of source IP addresses.

4. Average amount of unique source ports.

5. Standard Deviation of the amount of unique source

ports.

6. Average amount of unique destination IP addresses.

7. StandardDeviation of the amount of unique destination

IP addresses.

8. Average amount of unique destination ports.

9. StandardDeviation of the amount of unique destination

ports.

10. Average amount of NetFlows.

11. Standard Deviation of the amount of NetFlows.

12. Average amount of bytes transferred.

13. Standard Deviation of the amount of bytes transferred.

14. Average amount of packets transferred.

15. Standard Deviation of the amount of packets

transferred.

Once the features are extracted, they are used in the next

Subsection to assign the ground-truth labels to the clusters.
4.4. Train a classification model on the botnet clusters

The classification algorithm used to find the botnet clusters is

JRIP. It is the WEKA's implementation of a “( … ) a proposi-

tional rule learner, Repeated Incremental Pruning to Produce

Error Reduction (RIPPER), which was proposed by William W.

Cohen as an optimized version of IREP” (Hall et al., 2009).

http://dx.doi.org/10.1016/j.cose.2014.05.011
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The JRIP algorithm receives a labeled group of clusters and

output a group of rules to detect them. That means that the

JRIP algorithm needs to be trained on how to recognize a

botnet cluster. This training is done with the following leave-

one-out algorithm:

1. Training phase.

(a) Use a leave-one-out algorithm with the training and

cross-validation datasets. For each round do:
i. Separate the NetFlows in time windows (Section

4.1).

ii. Aggregate the NetFlows by source IP address (Sec-

tion 4.2).

iii. Cluster the aggregated NetFlows (Section 4.3).

iv. Assign ground-truth labels to the clusters based on

the ground-truth labels of the NetFlows (Section

4.4.1).

v. Train a JRIP classification model to recognize the

botnet clusters.

vi. Apply the JRIPmodel in the cross-validation dataset

of this round.

vii. Store the error metrics of this round.
12 http://www.snort.org.
2. Select the bests JRIP model based on the results of the

leave-one-out.

3. Testing phase (Section 4.5).

(a) Read the testing dataset.

(b) Use the best JRIP classification model to recognize the

botnet clusters.

(c) Assign the labels to the NetFlows based on the labels of

the clusters.

The rest of the Subsections describe each of the steps.

4.4.1. Assign ground-truth labels to the botnet clusters
Ground-truth labels should be assigned to the clusters

because we need to train the JRIP classification algorithmwith

them. Once the JRIP algorithm knows which are the botnet

clusters, it can create a model to recognize them.

To assign a ground-truth label to a cluster, we should first

assign a ground-truth label to all of its instances (aggregated

NetFlows). However, to assign a ground-truth label to an

instance, we should first assign a ground-truth label to all of

its NetFlows.

The ground-truth label of each NetFlow is known from the

original NetFlow files that are part of the dataset. Therefore,

ground-truth label of each instance is known, since an

instance is composed of all the NetFlows from the same IP

address. However, a cluster is composed of different instances

coming from different IP addresses, and then it is not

straightforward to know which ground-truth label should be

assigned to a cluster. This Subsection describes how we

assigned a ground-truth label to each cluster.

To help us decide which label should be assigned to each

cluster, a new feature was computed for each cluster: The

percentage of botnet NetFlows on the cluster. This value is

expected to be bigger on botnet clusters and smaller on

background clusters and it was used to select the ground-

truth label for the cluster. Notice that this feature is only

used to assign the ground-truth label in the training phase and

is not stored nor used in the testing phase.
As this new feature is a percentage, a correct threshold had

to be found. This threshold decision is very important,

because different percentages correspond to different botnet

behaviors. If it is above 0%, it means that every cluster with at

least one botnet NetFlow is considered a representative of a

botnet behavior. If it is above 1%, it means that only clusters

with more that 1% of botnet NetFlows are considered a

representative of a botnet behavior. A manual analysis of the

dataset determined that most of the real botnet clusters had

between 0% and 1% of botnet NetFlows. To find out which

threshold between 0% and 1% was the best, we implemented

the leave-one-out algorithm described in Section 4.4 to try the

following ten candidates thresholds: 0.1%, 0.2%, 0.3%, 0.4%,

0.5%, 0.6%, 0.7%, 0.8%, 0.9% and 1%.

After running the leave-one-out technique we found that

the group of clusters that has the best error metrics for the

BClus algorithm was generated with a threshold of 0.4%. The

set of JRIP rules generated by the 0.4% percentage became the

best detection model applied in next Subsection.

4.5. Testing phase. Use the classification model to
recognize the botnet clusters

Once the best detection model was found in previous Sub-

section, we applied it in the testing dataset to knew the real

performance of the BClus algorithm.

The testing dataset was processed in the sameway that the

training dataset. That is, it was separated in twominutes time

windows, the NetFlows in each time windows were aggre-

gated by its source IP address every one minute and those

aggregated instances were clustered. Then, the best JRIP

model was applied to detect the botnet clusters.

If a cluster was classified as botnet, then all of its instances

were labeled as botnet, and in turn all of the NetFlows in those

instances were labeled as botnet. Finally, the BClus method

outputted a list of NetFlows with the predicted label assigned.

This list of labeled NetFlows for each testing scenario is the

output that will be compared to the CAMNEP and BotHunter

methods in Section 8.
5. The BotHunter Method

The BotHunter method was proposed by Gu et al. (2007) to

detect the infection and coordination dialog of botnets by

matching a state-based infection sequence model. It consists

of a correlation engine that aims at detecting specific stages of

the malware infection process, such as inbound scanning,

exploit usage, egg downloading, outbound bot coordination

dialog and outbound attack propagation.

It uses an adapted version of the Snort IDS12 with two

proprietary plugin-ins, called Statistical Scan Anomaly Detection

Engine (SCADE) and Statistical Payload Anomaly Detection Engine

(SLADE). SLADE implements a lossy n-gram payload analysis

of incoming traffic flows to detect divergences in some pro-

tocols. SCADE performs port scan analyzes.

An infection is reported when one of two conditions is

satisfied: first, when an evidence of local host infection is

http://www.snort.org
http://dx.doi.org/10.1016/j.cose.2014.05.011
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found and evidence of outward bot coordination or attack

propagation is found, and second, when at least two distinct

signs of outward bot coordination or attack propagation are

found. The BotHunter warnings are tracked over a temporal

window and contribute to the infection score of each host.

The BotHunter proposal is compared to the BClus and

CAMNEP methods to have the reference of an accepted

detection method in the community. The version of Bot-

Hunter used in the comparison is 1.7.2.

Section 8.1 describes how the results of the BotHunter

proposal were adapted and incorporated into the comparison.
6. Creation of the dataset

In order to compare the methods, a good dataset is needed.

According to (Sperotto et al., 2009; Shiravi et al., 2012), a good

dataset should be representative of the network were the al-

gorithms are going to be used. This means that it should have

botnet, normal and background labeled data, that the balance

of the dataset should be like in a real network (usually the

percentage of botnet data is small), and that it should be

representative of the type of behaviors seen on the network.

The difficulties of obtaining such a dataset are discussed in

Shiravi et al. (2012) and the importance of these characteris-

tics are discussed in Rossow et al. (2012).

Due to the absence of a public botnet dataset with the

characteristics needed, we created a new public dataset that

complies with the following design goals:

� Must have real botnets attacks and not simulations.

� Must have unknown traffic from a large network.

� Must have ground-truth labels for training and evaluating

the methods.

� Must include different types of botnets.

� Must have several bots infected at the same time to capture

synchronization patterns.

� Must have NetFlow files to protect the privacy of the users.
Fig. 3 e Testbed net
The topology used to create the dataset consisted in a set

of virtualized computers running the Microsoft Windows XP

SP2 operating system on top of a Linux Debian host. At the

time of designing the topology, the Windows XP SP2 was the

most used operating system by the malware. Each virtual

machine was being bridged into the University network.

Fig. 3 shows a diagram of the testbed. The traffic was

captured both on the Linux host and on one of the University

routers. The traffic from the Linux host was exclusively

composed of botnet traffic and was used for labeling pur-

poses. The traffic from the University router was used to

create the final dataset. The tool used to capture the traffic

was tcpdump (Jacobson et al., 1997).

The next Subsections describe each of the captures, its

design principles, the preprocessing of the dataset, the

assignment of labels, the separation in training and testing

and the publication of the dataset.
6.1. Design of the botnet scenarios

A botnet scenario, in the context of this paper, is a particular

infection of the virtual machines using a specific malware.

Thirteen of these scenarios were created, and each of them

was designed to be representative of some malware behavior.

The main characteristics of the scenarios and their be-

haviors are shown in Table 2. It describes if they used IRC, P2P

or HTTP protocols, if they sent SPAM, did Click-Fraud, port

scanned, did DDoS attacks, used Fast-Flux techniques or if

they were custom compiled.

The features related with the network traffic of each sce-

nario are shown in Table 3. It presents the size, duration,

number of packets, number of flows, number of bots and bot

family.

The network topology used to make the captures had a

bandwidth control mechanism. However, the traffic going out

to the Internet was not filtered. This decision may seem

controversial (Rossow et al., 2012), but it was taken with the

explicit determination of capturing real attacks. We believe
work topology.

http://dx.doi.org/10.1016/j.cose.2014.05.011
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that the best way to study and model an attack is to capture

real attacks.

The next Subsection describes how these scenarios were

preprocessed to obtain a more usable dataset.

6.2. Dataset preprocessing

After capturing the packets, the dataset was preprocessed and

converted to a common format for the detectionmethods. The

format selected was the NetFlow file standard (Clais, 2008),

which is considered the ad-hoc standard for network data

representation. The conversion from pcap files to NetFlow
Table 2eCharacteristics of the botnet scenarios. (CF: ClickFraud
us.)

Id IRC SPAM CF PS DDoS FF

1 √ √ √
2 √ √ √
3 √ √
4 √ √
5 √ √
6 √
7

8 √
9 √ √ √ √
10 √ √
11 √ √
12

13 √ √
files was done in two steps using the Argus software suite

(Argus, 2013). First, the argus tool was used to convert each

pcap file into a bidirectional Argus binary storage file. The

exact configuration of argus is published with each scenario.

Second, the ra Argus client tool was used to convert each

Argus binary storage file into a NetFlow file. This can be done

by specifying in the ra configuration the output fields. The ra

configuration is also published with each scenario. These final

NetFlowfileswere composed of the following fields: Start Time,

End Time, Duration, Source IP address, Source Port, Direction,

Destination IP address, Destination Port, State, SToS, Total Packets

and Total Bytes.
, PS: Port Scan, FF: FastFlux, US: Compiled and controlled by

P2P US HTTP Note

√
√ UDP and ICMP DDoS.

√ Scan web proxies.

Proprietary C&C. RDP.

√ Chinese hosts.

Proprietary C&C. Net-BIOS, STUN.

√ UDP DDoS.

√ ICMP DDoS.

√ Synchronization.

√ Captcha. Web mail.

http://dx.doi.org/10.1016/j.cose.2014.05.011
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Table 3 e Amount of data on each botnet scenario.

Id Duration(hrs) # Packets #NetFlows Size Bot #Bots

1 6.15 71,971,482 11,231,035 52 GB Neris 1

2 4.21 71,851,300 7,037,972 60 GB Neris 1

3 66.85 167,730,395 15,202,061 121 GB Rbot 1

4 4.21 62,089,135 4,238,045 53 GB Rbot 1

5 11.63 4,481,167 7,710,910 37.6 GB Virut 1

6 2.18 38,764,357 2,579,105 30 GB Menti 1

7 0.38 7,467,139 454,175 5.8 GB Sogou 1

8 19.5 155,207,799 11,993,935 123 GB Murlo 1

9 5.18 115,415,321 8,087,513 94 GB Neris 10

10 4.75 90,389,782 5,180,852 73 GB Rbot 10

11 0.26 6,337,202 40,836 5.2 GB Rbot 3

12 1.21 13,212,268 1,262,790 8.3 GB NSIS.ay 3

13 16.36 50,888,256 6,425,345 34 GB Virut 1

c om p u t e r s & s e c u r i t y 4 5 ( 2 0 1 4 ) 1 0 0e1 2 3 111
6.2.1. Ground-truth labels assignment
The assignment of ground-truth labels is a very important

part of the dataset creation process (Fontugne et al., 2010).

However, it can be complex and difficult to do (Davis and

Clark, 2011). For example, a wrongly assigned label might

produce unreliable results (Maloof, 2006).

Our labeling strategy assigns three different labels: back-

ground, botnet and normal. The priority to assign the labels is

the following:

1. Assign the Background label to the whole traffic.

2. Assign the Normal label to the traffic that matches certain

filters.

3. Assign the Botnet label to all the traffic that comes from or

to any of the known infected IP addresses.

The filters used to assign normal labels were created from

the known and controlled computers in the network, such as

routers, proxies, switches, our own computers in the labora-

tory, etc.

The distribution of labels on each experiment is shown in

Table 4. It can be seen that most of the traffic was labeled as

Background. This majority class may add a natural bias to the

dataset, however one of the ways to avoid this is to capture a

large dataset, as it was sated in by Kotsiantis et al. (2006).
Table 4 e Distribution of labels for each scenario in the
dataset.

Id Background Botnet Normal

1 10,124,854 (95.40%) 94,972 (0.89%) 392,433 (3.69%)

2 6,071,419 (95.59%) 54,433 (0.85%) 225,336 (3.54%)

3 14,381,899 (94.60%) 75,891 (0.49%) 744,270 (4.89%)

4 3,895,469 (91.91%) 6466 (0.15%) 336,103 (7.93%)

5 416,267 (91.37%) 2129 (0.46%) 37,144 (8.15%)

6 2,031,967 (94.12%) 4927 (0.22%) 121,854 (5.64%)

7 425,611 (93.71%) 293 (0.06%) 28,270 (6.22%)

8 11,451,205 (95.47%) 12,063 (0.10%) 530,666 (4.42%)

9 6,881,228 (90.22%) 383,215 (5.02%) 362,594 (4.75%)

10 4,535,493 (87.54%) 323,441 (6.24%) 321,917 (6.21%)

11 119,933 (29.33%) 277,892 (67.97%) 11,010 (2.69%)

12 119,933 (29.33%) 277,892 (67.97%) 11,010 (2.69%)

13 1,218,140 (93.76%) 21,760 (1.67%) 59,190 (4.55%)
6.2.2. Dataset separation into training, testing and cross-
validation
To correctly create the classification models used in the BClus

and CAMNEP methods, we need to first separate the dataset.

For the CAMNEP method the training consisted in the first

25 min of each scenario, so it was not necessary to further

separate them.

For the BClus method, it was necessary to separate the

dataset into training and cross-validation, and testing. The

separation criteria was carefully evaluated, because the

following constrains must be met:

� The training and cross-validation datasets should be

approximately 80% of the dataset.

� The testing dataset should be approximately 20% of the

dataset.

� None of the botnet families used in the training and cross-

validation dataset should be used in the testing dataset.

This ensures that the methods can generalize and detect

new behaviors.

However, it is not clear which feature should be used for

the 80%e20% separation criteria. It is not the same to have an

80% of the amount of packets than of the amount of bytes. We

made the separation by carefully selecting the scenarios so

that the 80% of the following features are considered: the

Duration in minutes, the Number of clusters, the Number of Net-

Flows and the Number of aggregated NetFlows of the scenarios.

The final separation of the scenarios for the datasets is

shown in Table 5. The problem of the imbalanced amount of

labels on each dataset was reduced, as stated in Kotsiantis

et al. (2006), by carefully selecting the training and testing

datasets. Also, as the majority label is Background, the bias

toward themajority class reported in Li et al. (2010) is avoided.

All the three methods compared used only the testing

scenarios for obtaining results.
Table 5 e Dataset separation into training, testing and
cross-validation.

Scenario Dataset

1,2,6,8,9 Testing

3,4,5,7,10,11,12,13 Training and cross-validation

http://dx.doi.org/10.1016/j.cose.2014.05.011
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6.3. Dataset publication

The thirteen scenarios of our dataset were published in the

web site https://mcfp.felk.cvut.cz/(García, 2013). Each scenario

includes the botnet pcap file, the labeled NetFlow file, a

README file with the capture time line and the original mal-

ware executable binary. It was not possible to publish the

complete pcap file with the background and normal packets

because they contain private information. However, both of

our methods use only the NetFlows files. The correspondence

between the number of scenario and the name of the capture

in the web page is:

� Scenario Id 1 is CTU-Malware-Capture-Botnet-42.

� Scenario Id 2 is CTU-Malware-Capture-Botnet-43.

� Scenario Id 3 is CTU-Malware-Capture-Botnet-44.

� Scenario Id 4 is CTU-Malware-Capture-Botnet-45.

� Scenario Id 5 is CTU-Malware-Capture-Botnet-46.

� Scenario Id 6 is CTU-Malware-Capture-Botnet-47.

� Scenario Id 7 is CTU-Malware-Capture-Botnet-48.

� Scenario Id 8 is CTU-Malware-Capture-Botnet-49.

� Scenario Id 9 is CTU-Malware-Capture-Botnet-50.

� Scenario Id 10 is CTU-Malware-Capture-Botnet-51.

� Scenario Id 11 is CTU-Malware-Capture-Botnet-52.

� Scenario Id 12 is CTU-Malware-Capture-Botnet-53.

� Scenario Id 13 is CTU-Malware-Capture-Botnet-54.
7. Comparison methodology and new error
metric

To compare several detection methods it is necessary to

have a methodology, so the comparisons can be repeated

and extended. For this purpose we created a simple meth-

odology and a new error metric. The methodology may be

used by other researchers to add the results of their

methods and obtain a new comparisons. Section 7.1 pre-

sents the methodology and Section 7.2 presents the error

metric.
13 http://downloads.sourceforge.net/project/botnetdetectorsco
mparer/BotnetDetectorsComparer-0.9.tgz.
7.1. Comparison methodology

When a new botnet detection method using a new dataset

needs to be compared with a third-party method, the most

usual approach is to try to run the third-party method on the

new dataset. However, obtaining the original implementation

of a third-party method may be difficult or even impossible

due to copyright issues.

The comparisonmethodology used in this paper is simpler.

Instead of trying to implement a third-party method on our

dataset, we propose that the researchers first download a

common dataset with labels, execute their methods on this

common dataset, add its results to the common dataset and

then publish the common dataset back.

A dataset made of NetFlows lines with ground truth

labels can be easily modified to add a new column with the

method's predictions for each NetFlow. In this way, more

and more methods will publish their results and more

comparisons can be made. The main advantage of
this approach is that the details of the methods remain

private.

To implement this methodology we created and published

a new tool called Botnet Detectors Comparer (García, 2014) that it
is publicly available for download.13

This tool reads the dataset NetFlow file and implements

the following steps:

� Separates the NetFlow file in comparison time windows.

� Compares the ground-truth NetFlow labels with the pre-

dicted labels of each method and computes the TP, TN, FP

and FN values.

� After the comparison time window ended, it computes the

error metrics: FPR, TPR, TNR, FNR, Precision, Accuracy,

ErrorRate and FMeasure1 for that time window.

� When the dataset ends, it computes the final error metrics.

� The error metrics are stored in a text file and plotted in a

eps image.

Also, this tool computes the new error metric that we

propose in next Section 7.2.

The comparison time window is the time window used for

computing the error metrics and it is not related with the

methods. It is the time that the network administrator may

wait to have a decision about the traffic. In our methodol-

ogy the width of the comparison time windows is five

minutes.

Using this methodology, researchers can now add its own

predictions to the NetFlows files of our dataset and use this

tool to compute the error metrics. To tell the tool which labels

the newmethod uses for its predictions, they should be added

to the header of the NetFlow file as a new column with the

format “NameOfNewMethod( NormalLabelUsed: BotnetLabe-

lUsed: BackgroundLabelUsed)”.

The next Subsection describes the new error metric pro-

posed to compare botnet detection methods.

7.2. New error metric

The error metrics usually used by researchers to analyze

their results (e.g. FPR, FMeasure) were historically designed

from a statistical point of view, and they are really good to

measure differences and to compare most methods. But the

needs of a network administrator that is going to use a

detection method are slightly different. These error metrics

should have a meaning that can be translated to the

network. This has been called the semantic gap by Rossow

et al. (2012). It is possible that the common error metrics

are not enough for a network administrator (García et al.,

2013).

For example, according to the classic definition, a False

Positive should be detected every time that a normal NetFlow

is detected as botnet. However, a network administrator

might want to detect a small amount of infected IP addresses

instead of hundreds of NetFlows. Furthermore, she may need

to detect them as soon as possible. However, these needs are

not satisfied in the classic error metrics.

https://mcfp.felk.cvut.cz/
http://downloads.sourceforge.net/project/botnetdetectorscomparer/BotnetDetectorsComparer-0.9.tgz
http://downloads.sourceforge.net/project/botnetdetectorscomparer/BotnetDetectorsComparer-0.9.tgz
http://dx.doi.org/10.1016/j.cose.2014.05.011
http://dx.doi.org/10.1016/j.cose.2014.05.011


Table 6 e References for algorithms names.

Algorithm name Reference

Flags-FOG-srcIP.src.fog-1.00 Fs1

Flags-FOG-srcIP.src.fog-1.50 Fs1.5

Flags-FOG-dstIP.dst.fog-1.00 Fd1

Flags-FOG-srcIP.src.fog-2.00 Fs2

Flags-FOG-dstIP.dst.fog-1.50 Fd1.5

Flags-FOG-dstIP.dst.fog-2.00 Fd2

Minds-1.00 Mi1

Xu-1.00 X1

Xu-1.50 X1.5

Minds-1.50 Mi1.5

Minds-2.00 Mi2

LakhinaEntropyGS-1.00 Le1

KGBFog-sIP.src.fog-1.00 Ko1

KGBFog-sIP.src.fog-1.50 Ko1.5

MasterAggregator-1.00 CA1

TAPS3D-1.50 T1.5

TAPS3D-1.00 T1

KGBF-sIP.src.f-1.00 K1

KGBF-sIP.src.f-2.00 K2

AllNegative AllNeg

AllPositive AllPo

BClus BClus

XuDstIP-1.50 Xd1.5

XuDstIP-2.00 Xd2

TAPS3D-2.00 T2

LakhinaVolumeGS-1.50 Lv1.5

MasterAggregator-1.50 CA1.5

LakhinaVolumeGS-2.00 Lv2

MasterAggregator-2.00 CA2

Xu-2.00 X2

KGBF-sIP.src.f-1.50 K1.5

XuDstIP-1.00 Xd1

LakhinaEntropyGS-1.50 Le1.5

LakhinaEntropyGS-2.00 Le2

LakhinaVolumeGS-1.00 Lv1

KGBFog-sIP.src.fog-2.00 Ko2
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The type of error metric that may be useful for a network

administrator may be also useful for comparing the methods

that she is going to use.

Therefore, we have created a new set of error metrics in an

attempt to solve this issue that adhere to the following

principles:

� Errors should account for IP addresses instead of NetFlows.

� To detect a botnet IP address (TP) early is better than latter.

� To miss a botnet IP address (FN) early is worst than latter.

� The value of detecting a normal IP address (TN) is not

affected by time.

� The value ofmissing a normal IP address (FP) is not affected

by time.

The first step is to incorporate the time to the metrics by

computing the errors in comparison time frames. These time

frames are only used to compute the errors and are inde-

pendent of the detection methods.

The second step was to migrate from a NetFlow-based

detection to an IP-based detection. The classical error values

(TP, FP, TN, FN) were redefined as follows:

� c_TP: A True Positive is accountedwhen a Botnet IP address

is detected as Botnet at least once during the comparison

time frame.

� c_TN: A True Negative is accounted when a Normal IP

address is detected as Non-Botnet during the whole com-

parison time frame.

� c_FP: A False Positive is accounted when a Normal IP

address is detected as Botnet at least once during the

comparison time frame.

� c_FN: A False Negative is accounted when a Botnet IP

address is detected as Non-Botnet during the whole com-

parison time frame.

The third stepwas tomodify the values of the errormetrics

by adding a time-based correcting_function that is defined as

follows:

correcting function ¼ eð�a * N+ comparison time frameÞ þ 1 (1)

This function depends on the ordinal number of the time

framewere it is computed and on the a value. Fig. 4 shows this

monotonically decreasing function that weights the values

according to the time frame number. The main idea is to

weight the valuesmore on the firsts time frames and toweight

them less on the lasts ones. The a value is used tomanually fit

the function according to the capture length. The a value used

for our comparison was 0.01.

Using this correcting_function, four time-dependent error

metrics were created, called tTP, tTN, tFP and tFN. Note that

they use the previously defined IP-based error metrics. They

are computed as follows:

� tTP:

c TP * correcting function
N+ of unique botnet IPaddresses in thecomparison timeframe
 AllBackground AllBac

BotHunter BH
(2)
� tFN:

c FN * correcting function
N+ of unique botnetIPaddressesin thecomparison timeframe
(3)
� tFP:

c FP
N+ of unique normalIPaddresses in thecomparison timeframe
(4)
� tTN:

c TN
N+ of unique normalIPaddresses in thecomparison timeframe
(5)

These time-based error metrics allow for a more realistic

comparison between detection algorithms. An algorithm

weights better if it can detect sooner all the infected IP ad-

dresses without error. To miss an infected IP address at the

http://dx.doi.org/10.1016/j.cose.2014.05.011
http://dx.doi.org/10.1016/j.cose.2014.05.011


Table 7 e Comparison of error metrics for the methods in Scenario 1.

Name tTP tTN tFP tFN TPR TNR FPR FNR Prec Acc ErrR FM1

AllPo 65.5 0 69 0 1 0 1 0 0.4 0.4 0.5 0.65

BClus 30.2 41.3 27.6 35.3 0.4 0.5 0.4 0.5 0.5 0.5 0.4 0.48

Fs1 7.8 66.4 2.5 57.5 0.1 0.9 <0.0 0.8 0.7 0.5 0.4 0.20

Fs1.5 6.3 67.2 1.7 59.1 <0.0 0.9 <0.0 0.9 0.7 0.5 0.4 0.17

Fd1 6.8 54.2 14.6 58.6 0.1 0.7 0.2 0.8 0.3 0.4 0.5 0.15

Fs2 4 67.6 1.3 61.4 <0.0 0.9 <0.0 0.9 0.7 0.5 0.4 0.11

Fd1.5 4.6 57.5 11.4 60.8 <0.0 0.8 0.1 0.9 0.2 0.4 0.5 0.11

Fd2 2.2 59.8 9.1 63.2 <0.0 0.8 0.1 0.9 0.1 0.4 0.5 0.05

Mi1 2.3 52.3 16.6 63.1 <0.0 0.7 0.2 0.9 0. 0.4 0.5 0.05

X1 1.7 68.6 0.3 63.6 <0.0 0.9 <0.0 0.9 0.8 0.5 0.4 0.05

X1.5 1.5 68.6 0.3 63.9 <0.0 0.9 <0.0 0.9 0.8 0.5 0.4 0.04

BH 1.59 73.8 0.18 109 0.01 0.9 <0.0 0.9 0.8 0.4 0.5 0.02

Mi1.5 1 56.9 12 64.4 <0.0 0.8 0.1 0.9 <0.0 0.4 0.5 0.02

Mi2 0.6 63.1 5.8 64.8 <0.0 0.9 <0.0 0.9 <0.0 0.4 0.5 0.01

Le1 0.2 68.1 0.8 65.2 <0.0 0.9 0.01 0.9 0.2 0.5 0.4 0.007

Ko1 0.1 68.7 0.1 65.3 <0.0 0.9 <0.0 0.9 0.4 0.5 0.4 0.004

Ko1.5 0.08 68.9 0.02 65.3 <0.0 1 0 0.9 0.7 0.5 0.4 0.002

CA1 0.005 68.7 0.2 65.4 0 0.9 <0.0 1 <0.0 0.5 0.4 <0.00

T1.5 0.005 68.9 0 65.4 0 1 0 1 1 0.5 0.4 <0.00
T1 0.005 68.9 0 65.4 0 1 0 1 1 0.5 0.4 <0.00
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beginning is more costly than to falsely detect an infected IP

address at the beginning. After some time frames, all the error

values are weighted the same.

With these time-based error metrics we can now compute

new corresponding rates. They are like the classic ones, but

are redefined to use the time-based values:

� FPR ¼ tFP
tTNþtFP

� TPR ¼ tTP
tTPþtFN

� TNR ¼ tTN
tTNþtFP

� FNR ¼ tFN
tTPþtFN

� Precision ¼ tTP
tTPþtFP

� Accuracy ¼ tTPþtTN
tTPþtTNþtFPþtFN

� ErrorRate ¼ tFNþtFP
tTPþtTNþtFPþtFN

� F Measure1 ¼ 2 � Precision�TPR
PrecisionþTPR ðFMeasure with beta ¼ 1Þ

This error metric is implemented in the Botnet Detectors

Comparer tool that it is publicly available for download and

described in previous Subsection.
Fig. 5 e Simplified comparison of error metrics for the BClu
8. Comparison of the results of the detection
methods

The three detection methods were executed on each of the

five testing datasets described in Section 6.2.2. Each method

added its flow predictions to each dataset file, so there are

five files to compare using the methodology described in

Section 7.

To better understand the implications of comparing these

results, the following baseline algorithms were added: the

AllPositive algorithm, that always predicts Botnet, the All-

Negative algorithm that always predicts Normal and the All-

Background algorithm that always predicts Background. They

are analyzed alongside with the BClus, CAMNEP and Bot-

Hunter algorithm. The names of all the algorithms compared

are encoded in Table 6.

The next Subsections compare the results on each of the

five testing scenarios of the dataset.
s, CAMNEP and AllPositive algorithms on Scenario 1.

http://dx.doi.org/10.1016/j.cose.2014.05.011
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Fig. 6 e Comparison of the running error metrics for Scenario 1.
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8.1. Adaptation of the BotHunter results

The comparison of the results is done by reading the ground-

truth label of each NetFlow and comparing it to the predicted

label of each NetFlow. However, BotHunter does not read

NetFlows files and does not output a prediction label for each

NetFlow, making the comparison more difficult.

To solve this issue we run BotHunter on the original pcap

files and we obtained, for each pcap, a list of alerts. These

alerts include the date, the name of the alert, the protocol, the

source IP address, source port, the destination IP address and
Table 8 e Comparison of error metrics for the methods in Scen

Name tTP tTN tFP tFN TPR TN

AllPo 49.9 0 47 0 1 0

BClus 15.6 37.1 9.8 34.2 0.3 0.7

Fd1 14.4 36.5 10.4 35.5 0.2 0.7

Fd1.5 9.3 39.1 7.8 40.5 0.1 0.8

Fd2 7.9 40.7 6.2 42 0.1 0.8

Fs1 6.8 45.9 1 43 0.1 0.9

Fs1.5 6 46.3 0.6 43.8 0.1 0.9

X1 5.3 46.7 0.2 44.5 0.1 0.9

X1.5 4.3 46.8 0.1 45.6 <0.0 0.9

Fs2 4.2 46.5 0.4 45.7 <0.0 0.9

BH 1.65 46.9 0.05 75 0.02 0.9

Mi1 1.1 35.8 11.1 48.8 <0.0 0.7

Mi1.5 0.6 39.1 7.8 49.2 <0.0 0.8

X2 0.5 46.9 0.02 49.4 <0.0 1

CA1 0.2 46.9 0.04 49.6 <0.0 0.9

Ko1 0.1 46.9 0.08 49.8 <0.0 0.9

Mi2 0.1 46.3 0.6 49.8 <0.0 0.9

Le1 0.1 46.1 0.8 49.8 <0.0 0.9

Lv1 0.1 46.6 0.3 49.8 <0.0 0.9

Xd1 0.07 44 2. 49.8 <0.0 0.9

T1 0.03 47 0 49.9 <0.0 1
destination port. Then, we searched which was the NetFlow

corresponding to that alert and we assigned it the label Botnet.

The rest of the NetFlows were labeled as Normal.

With this labels assignment procedure it was possible to

add the BotHunter method to the comparison.

Next Subsections compare the results on each scenario.

8.2. Comparison of results in Scenario 1

This scenario corresponds to an IRC-based botnet that sent

spam for almost six and a half hours.
ario 2.

R FPR FNR Prec Acc ErrR FM1

1 0 0.5 0.5 0.4 0.68

0.2 0.6 0.6 0.5 0.4 0.41

0. 0.7 0.5 0.5 0.4 0.38

0.1 0.8 0.5 0.5 0.5 0.27

0.1 0.8 0.5 0.5 0.4 0.24

<0.0 0.8 0.8 0.5 0.4 0.23

<0.0 0.8 0.8 0.5 0.4 0.21

<0.0 0.8 0.9 0.5 0.4 0.19

<0.0 0.9 0.9 0.5 0.4 0.15

<0.0 0.9 0.9 0.5 0.4 0.15

9 <0.0 0.9 0.9 0.3 0.6 0.04

0.2 0.9 <0.0 0.3 0.6 0.03

0.1 0.9 <0.0 0.4 0.5 0.02

0 0.9 0.9 0.4 0.5 0.02

<0.0 0.9 0.8 0.4 0.5 0.01

<0.0 0.9 0.6 0.4 0.5 0.005

<0.0 0.9 0.1 0.4 0.5 0.005

<0.0 0.9 0.1 0.4 0.5 0.005

<0.0 0.9 0.2 0.4 0.5 0.004

<0.0 0.9 <0.0 0.4 0.5 0.003

0 0.9 1 0.4 0.5 0.001
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Fig. 7 e Simplified comparison of error metrics for the BClus, CAMNEP and AllPositive algorithms on Scenario 2.
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The error metrics for this scenario are shown in Table 7,

which is ordered by FMeasure1. This Table shows that the

AllPositive algorithm had the best FMeasure, although it had a

100% FPR. The BClus algorithm had a FMeasure of 0.48 and an

FPR of 40%. The BotHunter algorithm had a FMeasure of 0.02

and an FNR of 98%. The CAMNEP (CA1) algorithm had a low

FMeasure and low FPR. The bold text in Tables 7,8,9,10 and 11

identifies the main algorithms compared in this work, i.e.

BClus, CAMNEP and BotHunter. The rest are the internal

CAMNEP algorithms and the All Positive algorithm.

A simplified comparison between the BClus, CAMNEP and

AllPossitive algorithms is shown in Fig. 5. Although the All-

Positive algorithmhad a 100% TPR and FPR, it can be seen that it

had a Precision, Accuracy and ErrorRate around 50% and a
Fig. 8 e Comparison of the runnin
FMeasure of more than 60%. The BClus algorithm had between

40% and 60% for the TPR, FPR, TNR and FNR metrics and nearly

50% for the FMeasure. The CAMNEP algorithm had a value near

0%for theTPR,near1%for theTNRandnear0%for theFMeasure.

The apparently good results of the AllPositive algorithm

may have an explanation. This algorithm predicts always

Botnet, which gives a TPR of 100%, a precision of 50% and a

FMeasure of 66%. However, these metrics were computed

using only the Botnet and Normal labels and omitting the

Background labels. The Background labels were not used for

computing the error metrics because they were neither

Normal nor Botnet. Therefore, the only traffic that this algo-

rithm can mis-classify is the Normal traffic. However, the

amount of Normal traffic in the dataset is considerably
g error metrics for Scenario 2.

http://dx.doi.org/10.1016/j.cose.2014.05.011
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Table 9 e Comparison of error metrics for the methods in Scenario 6.

Name tTP tTN tFP tFN TPR TNR FPR FNR Prec Acc ErrR FM1

Fs1 22.5 20.7 0.2 6.8 0.7 0.9 <0.0 0.2 0.9 0.8 0.1 0.86

Fd1 23.2 17.6 3.3 6 0.7 0.8 0.1 0.2 0.8 0.8 0.1 0.83

Fs1.5 20.8 20.8 0.1 8.5 0.7 0.9 <0.0 0.2 0.9 0.8 0.1 0.82

Fd1.5 19.9 18.6 2.3 9.3 0.6 0.8 0.1 0.3 0.8 0.7 0.2 0.77

Fd2 19.1 19.3 1.6 10.1 0.6 0.9 <0.0 0.3 0.9 0.7 0.2 0.76

Fs2 17.7 20.8 0.1 11.5 0.6 0.9 <0.0 0.3 0.9 0.7 0.2 0.75

AllPo 29.3 0 21 0 1 0 1 0 0.5 0.5 0.4 0.73

X1 5.7 20.9 0.04 23.6 0.1 0.9 <0.0 0.8 0.9 0.5 0.4 0.32

Xd1.5 3.6 17.3 3.6 25.7 0.1 0.8 0.1 0.8 0.5 0.4 0.5 0.19

BH 2.53 20.9 0.02 37.3 0.06 0.99 <0.0 0.93 0.98 0.38 0.61 0.11

Xd2 3.6 17.3 3.6 25.7 0.1 0.8 0.1 0.8 0.5 0.4 0.5 0.19

Xd1 3.6 17.3 3.6 25.7 0.1 0.8 0.1 0.8 0.4 0.4 0.5 0.19

X1.5 1.4 21 0 27.8 <0.0 1 0 0.9 1 0.4 0.5 0.09

CA1 0.6 20.9 0.07 28.6 <0.0 0.9 <0.0 0.9 0.9 0.4 0.5 0.04

BClus 0.6 20.2 0.7 28.6 <0.0 0.9 <0.0 0.9 0.4 0.4 0.5 0.04
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smaller than the rest. This imbalance made the AllPositive

have better results than it should. This algorithm is useful as a

baseline for evaluating detection methods and datasets, but it

is useless in a real network.

To better appreciate the inner workings of the detection

methods during the analysis of this scenario, we plotted the

accumulated and running error metrics for each comparison

time frame in Fig. 6. This Figure shows that the FPR of the

BClus method was high on the first time frames, but after that

it kept going down until the final 40%. On the sixth time frame

the BClus method started to detect botnets with a 100% TPR

until near the twelfth time frame. While still having a huge

amount of FP, the BClus method managed to have a final

FMeasure of 48%. The CAMNEP and BotHunter algorithms had

low values during all the scenario.

8.3. Comparison of results in Scenario 2

In this scenario, the same IRC-based botnet as scenario 1 sent

SPAM for 4.21 h.

The error metrics for this scenario are shown in Table 8.

The AllPositive algorithm had the best FMeasure. The BClus

algorithm had a FMeasure of 0.41 and an FPR of 20%. The
Fig. 9 e Simplified comparison of error metrics for the BClu
BotHunter algorithm had an FMeasure of 0.04 and an FNR of

97%. The CAMNEP algorithmhad a FMeasure of 0.01 and a very

small FPR.

The simplified comparison for this scenario is shown in

Fig. 7. Although it was the same bot that scenario 1 and it

performed almost the same actions, all the algorithms gave

different results. The CAMNEP method still have a large

amount of tFN, but despite the low 1% FMeasure, it was 55

times better than itself on scenario 1. Its Precision was high

because there were almost no tFP, independently of the

amount of tTP. Regarding the BClus method, it had a lower

TPR than on scenario 1, but also a lower FPR, which lead to a

comparatively better FMeasure value. This scenario is a good

example of the variability in the network due to the presence

of Background traffic. The same bot, generating the same type

and amount of traffic obtained different error metrics.

The inner workings of the algorithms can be seen in the

running metrics shown in Fig. 8. The BClus method started

with a large FPR, but after the fifth time frame it started to

detect botnets correctly and its FMeasure value improved. The

TPR, FPR and FMeasure values for the BClusmethod decreased

until the end of the scenario, suggesting that the final values

could be even lower. The BotHunter algorithm had an FM1
s, CAMNEP and AllPositive algorithms on Scenario 6.
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Fig. 10 e Comparison of the running error metrics for Scenario 6.
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close to 20% on the first time frames but then it quickly

dropped to 0.04. The CAMNEP error metrics remained low

during the whole scenario.

8.4. Comparison of results in Scenario 6

The botnet in this scenario scanned SMTP (Simple Mail

Transfer Protocol) servers for two hours and connected to
Table 10 e Comparison of error metrics for the methods in Sce

Name tTP tTN tFP tFN TPR TN

AllPo 233.4 0 230 0 1 0

Fs1 74.4 220.7 9.2 159 0.3 0.

Ko1 70.7 228.9 1.08 162.7 0.3 0.

Ko1.5 68.4 229.3 0.6 164.9 0.2 0.

Ko2 53.4 229.5 0.4 180 0.2 0.

Fs1.5 54.6 222.7 7.2 178.8 0.2 0.

Fs2 28 224.9 5 205.3 0.1 0.

BClus 23.5 152.8 77.1 209.9 0.1 0.

Fd1 15.6 196.1 33.8 217.7 <0.0 0.

Fd1.5 14.1 203.9 26 219.2 <0.0 0.

CA1 10.8 229.8 0.1 222.6 <0.0 0.

Fd2 11.6 209.8 20.1 221.8 <0.0 0.

X1 8.5 229.7 0.2 224.9 <0.0 0.

Mi1 4.6 213.1 16.8 228.7 <0.0 0.

Xd1.5 3.9 194.1 35.8 229.5 <0.0 0.

Xd2 3.9 194.4 35.5 229.5 <0.0 0.

Xd1 3.9 193.5 36.4 229.5 <0.0 0.

Mi1.5 1 219.2 10.7 232.4 <0.0 0.

X1.5 0.5 230 0 232.8 <0.0 1

BH 0 229 0.11 309 0 0.
several RDP (Remote Desktop Protocol) services. However, it

did not send any SPAM and did not attack. The C&C server

used a proprietary protocol that connected every 33 s and sent

an average of 5500 bytes on each connection.

The error metrics for this scenario can be seen in Table 9.

The AllPositive algorithm had a Fmeasure of 0.73, far better

than the FMeasures of BClus and CAMNEP, which were both

0.04. The BotHunter algorithm had a better FMeasure than the
nario 8.

R FPR FNR Prec Acc ErrR FM1

1 0 0.5 0.5 0.4 0.67

9 <0.0 0.6 0.8 0.6 0.3 0.46

9 <0.0 0.6 0.9 0.6 0.3 0.46

9 <0.0 0.7 0.9 0.6 0.3 0.45

9 <0.0 0.7 0.9 0.6 0.3 0.37

9 <0.0 0.7 0.8 0.5 0.4 0.36

9 0.02 0.8 0.8 0.5 0.4 0.21

6 0.3 0.8 0.2 0.3 0.6 0.14

8 0.14 0.9 0.3 0.4 0.5 0.1

8 0.1 0.9 0.3 0.4 0.5 0.10

9 <0.0 0.9 0.9 0.5 0.4 0.08

9 <0.0 0.9 0.3 0.4 0.5 0.08

9 <0.0 0.9 0.9 0.5 0.4 0.07

9 <0.0 0.9 0.2 0.4 0.5 0.03

8 0.1 0.9 <0.0 0.4 0.5 0.02

8 0.1 0.9 <0.0 0.4 0.5 0.02

8 0.1 0.9 <0.0 0.4 0.5 0.02

9 <0.0 0.9 <0.0 0.4 0.5 0.008

0 0.9 1 0.4 0.5 0.005

99 <0.0 1 0 0.42 0.57 e

http://dx.doi.org/10.1016/j.cose.2014.05.011
http://dx.doi.org/10.1016/j.cose.2014.05.011


Fig. 11 e Simplified comparison of error metrics for the BClus, CAMNEP and AllPositive algorithms on Scenario 8.
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BClus and CAMNEP algorithms because some of the IP ad-

dresses used in the SMTP connections where blacklisted in its

static detection rules as part of the RBN (Russian Business

Network). It should be noted that the scenarios were captured

on August 2011 and the BotHunter rules are from January

2013, so it is possible that these IP addresses were blacklisted

after the capture.

The simplified comparison for this scenario is shown in

Fig. 9. The CAMNEP and the BClus methods behaved almost

identically. The only difference is that the BClus method had

ten times more FPR and therefore the CAMNEP method had a

better Precision and a slightly better FMeasure.

The inner workings of the algorithms can be seen in the

running metrics shown in Fig. 10. This Figure shows that both
Fig. 12 e Comparison of the runnin
BClus and CAMNEP methods detected tFP values until half of

the scenario, and then they had some tTP. However, the tTPs

were not enough to improve the FMeasure1 significantly.

8.5. Comparison of results in Scenario 8

In this scenario, the botnet contacted a lot of different Chinese

C&C hosts and received large amounts of encrypted data. It

also scanned and cracked the passwords of machines using

the DCERPC protocol both on Internet and on the local

network for 19 h. There were more attacks during more time.

The error metrics for this scenario can be seen in Table 10.

The AllPositive algorithm had the best FMeasure. Six algo-

rithms were better than BClus, who had a FMeasure of 0.14
g error metrics for Scenario 8.

http://dx.doi.org/10.1016/j.cose.2014.05.011
http://dx.doi.org/10.1016/j.cose.2014.05.011


Table 11 e Comparison of error metrics for the methods in Scenario 9.

Name tTP tTN tFP tFN TPR TNR FPR FNR Prec Acc ErrR FM1

AllPo 58.3 0 58 0 1 0 1 0 0.5 0.5 0.4 0.66

Fd1 21.7 47.1 10.8 36.6 0.3 0.8 0.1 0.6 0.6 0.5 0.4 0.47

Fd1.5 17.7 49.2 8.7 40.6 0.3 0.8 0.1 0.6 0.6 0.5 0.4 0.41

Fd2 13.9 50.9 7.01 44.4 0.2 0.8 0.1 0.7 0.6 0.5 0.4 0.35

Xd1 10.3 48.5 9.4 48.0 0.1 0.8 0.1 0.8 0.5 0.5 0.4 0.26

BClus 10.1 46.4 11.5 48.2 0.1 0.8 0.2 0.8 0.4 0.4 0.5 0.25

Fs1 8.3 55.2 2.7 50 0.1 0.95 <0.0 0.8 0.7 0.5 0.4 0.23

Fs1.5 7.8 55.7 2.2 50.4 0.1 0.9 <0.0 0.8 0.7 0.5 0.4 0.23

Xd1.5 7.04 53.3 4.6 51.3 0.1 0.9 <0.0 0.8 0.6 0.5 0.4 0.2

CA1 5.5 57.7 0.2 52.8 <0.0 0.9 <0.0 0.9 0.9 0.5 0.4 0.17

Fs2 4.3 56.6 1.3 54 <0.0 0.9 <0.0 0.9 0.7 0.5 0.4 0.13

X1 2.8 56.9 1.09 55.5 <0.0 0.9 <0.0 0.9 0.7 0.5 0.4 0.09

Mi1 2.9 47.3 10.6 55.4 <0.0 0.8 0.1 0.9 0.2 0.4 0.5 0.08

CA1.5 2.3 57.8 0.1 55.9 <0.0 0.9 <0.0 0.9 0.9 0.5 0.4 0.07

Mi1.5 2.2 51.3 6.6 56.1 <0.0 0.8 0.1 0.9 0.2 0.4 0.5 0.06

BH 1.76 57.9 0.06 86.9 0.02 0.9 <0.0 0.9 0.9 0.4 0.5 0.03

X1.5 0.9 57.3 0.6 57.4 <0.0 0.9 <0.0 0.9 0.6 0.5 0.4 0.03

Mi2 0.4 57.2 0.7 57.9 <0.0 0.9 <0.0 0.9 0.3 0.4 0.5 0.01

Ko1 0.2 57.8 0.1 58.1 <0.0 0.9 <0.0 0.9 0.6 0.4 0.5 0.008

Le1 0.1 57.2 0.7 58.1 <0.0 0.9 <0.0 0.9 0.1 0.4 0.5 0.006

X2 0.1 57.9 0.05 58.2 <0.0 0.9 <0.0 0.9 0.6 0.4 0.5 0.004

Ko1.5 0.06 57.9 0.03 58.3 <0.0 0.9 <0.0 0.9 0.6 0.4 0.5 0.002

Lv1 0.04 57.6 0.3 58.3 <0.0 0.9 <0.0 0.9 0.1 0.4 0.5 0.001

T1 0.04 58 0 58.3 <0.0 1 0 0.9 1 0.4 0.5 <0.00
CA2 0.04 58 0 58.3 <0.0 1 0 0.9 1 0.4 0.5 <0.00
Le1.5 0.03 57.7 0.2 58.3 <0.0 0.9 <0.0 0.9 0.1 0.4 0.5 <0.00
T1.5 0.02 58 0 58.3 0 1 0 1 1 0.4 0.5 <0.00
Ko2 0.02 57.9 0.01 58.3 0 1 0 1 0.5 0.4 0.5 <0.00
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and an FPR of 30%. The CAMNEP algorithm had a FMeasure of

0.08 and a very low FPR. The BotHunter algorithm could not

detect a single TP, so it was not possible to compute its

FMeasure.

The simplified comparison for this scenario is shown in

Fig. 11. The BClus method had a low TPR of about 10%, how-

ever it was more than twice of CAMNEPs TPR value. The TNR

value was near 60% for BClus and near 90% for CAMNEP. The

FPR of BClus was high, near 30%, however it had a FMeasure

value that is twice the value for CAMNEP.

The inner workings of the algorithms can be seen in the

runningmetrics shown in Fig. 12. This Figure shows that none

of the error metrics exceeded 40%. It means that this scenario
Fig. 13 e Simplified comparison of error metrics for the BCl
was very difficult for themethods. Until the fiftieth time frame

both BClus and CAMNEP TPR values grew at almost the same

rate. However, after that, the BClusmethod grew a little faster.

The FPR of the BClus method was very high almost from the

start of the scenario. The BotHunter algorithm had very low

measurements during the whole scenario.
8.6. Comparison of results in Scenario 9

In this scenario, ten host were infected using the same Neris

botnet as in scenario 1 and 2. For five hours, more than 600

SPAM mails were successfully sent.
us, CAMNEP and AllPositive algorithms on Scenario 9.

http://dx.doi.org/10.1016/j.cose.2014.05.011
http://dx.doi.org/10.1016/j.cose.2014.05.011


Fig. 14 e Comparison of the running error metrics for Scenario 9.
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The error metrics for this scenario can be seen in Table 11.

The AllPositive algorithm had the best FMeasure. The BClus

algorithm had a FMeasure of 0.25, an FPR of 20% and a TPR of

10%. The CAMNEP algorithm had a FMeasure of 0.17, a very

low FPR and a very low TPR. The BotHunter algorithm had a

low FMeasure of 0.03 and high FNR of 98%.

The simplified comparison for this scenario is shown in

Fig. 13. It can be seen that the TPR value for the BClus method

was almost twice the value for CAMNEP. Also, the FPR value of

BClus was 40 times larger than the CAMNEP value. However,

the FMeasure value of CAMNEP was almost 70% the value of

BClus.

The inner workings of the algorithms can be seen in the

running metrics shown in Fig. 14. Almost from the start of the

scenario, the TPR and FMeasure of the BClus and CAMNEP

methods grew fast. However, after the twentieth time frame,

both FMeasures values started to decrease. The FPR value of

BClus was relatively low compared to the previous scenarios.

The BotHunter algorithm presented very low values during

the whole scenario despite that there were ten bots being

executed.
9. Conclusions

We conclude that our comparison of detection methods using

a real dataset greatly helped to improve our research. It

showed us how and why the methods were not optimal,

which botnet behaviors were not being detected and how the

dataset should be improved. Also, it show us the need for a

comparison methodology and a proper error metric.

We also conclude, as it was recommended by Aviv and

Haeberlen (2011), that a join effort to create a comparison
platform of detection methods could greatly enhance

the results achieved in the area. We believe that such a

platform could take advantages of our comparison

methodology.

The usage of a large and real dataset, despite not having a

great amount of different botnets, show us which phases of

the botnet behavior were more easy to detect by the methods,

and the difficulties of working with unknown background

data.

Regarding our detection methods, BClus showed large FPR

values on most scenarios but also large TPR, we are already

working on improving it. The CAMNEP method had a low FPR

during most of the scenarios but at the expense of a low TPR.

Each of them seems best for a different botnet behavior. The

comparison against the BotHunter method showed that in

real environments it could still be useful to have blacklists of

known malicious IP addresses.

Despite being biased by the really small amount of labeled

normal traffic, the AllPositive baseline algorithmwas useful to

visualize how the error metrics should be always carefully

considered.

We also conclude that, although useful and enough for our

purposes, the comparison methodology can be improved to

show howmany of the infected IP addresses were detected by

the algorithms. The new errormetric proposed, that takes into

consideration the IP addresses and time, allowed us to easily

compare the algorithms from the perspective of a network

administrator.

The dataset created, despite being paramount for the

comparison, should be improved. We are already working

on adding more botnets, more diverse attacks and more

normal labels. A better and larger dataset is already being

built.

http://dx.doi.org/10.1016/j.cose.2014.05.011
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