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a b s t r a c t

Based on a seven-degree-of-freedom shear deformable beam model, analytical solutions are derived
for the lateral stability analysis of cross-ply laminated thin-walled beams subjected to combined axial
and bending loads. The model includes shear deformability in a full form, i.e. shear flexibility due
to both bending and nonuniform warping is considered. The theory is formulated in the context of
large displacements and rotations, considering moderate bending rotations and large twist. Composite
is assumed to be made of symmetric balanced laminates and especially orthotropic laminates. The
closed-form analytic expressions obtained in this paper are valid for simply supported bisymmetric
beams. These fundamental solutions explicitly identify the influence of geometric nonlinear effects due
to the prebuckling deformation. The numerical results are compared with the bifurcation loads of the
postbuckling response. In addition, the effects of the variation of load height parameter and fiber angle
orientation are investigated.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Thin-walled beam structures are major components in many
engineering applications. They can be found in the design of
the aircraft wing, helicopter blade, axles of vehicles and so on.
Besides, composite beam members are widely used in aerospace,
automobile and civil architecture industries. Among the various
advantages offered by composites, it is important to mention their
high strength toweight ratio, their preferred fatigue characteristics
and the relatively simple techniques that are required for their
production and shaping. Thenewgeneration of these constructions
should be designed to work in a safe way and to experience
higher performance than the conventional systems. For example,
composite laminates can often sustain large elongations up to the
first occurrence of localizeddamage; inmost of the cases the failure
of thin-walled composite shapes is due to elastic buckling and the
load carrying capacity is directly related to the critical buckling
load. Accordingly, many research activities have been conducted
to the development of theoretical and computational methods for
the analysis of the aforementioned structural members.

Thin-walled beams may fail in a flexural or/and torsional buck-
lingmode: the beam suddenly deflects laterally or twists out of the
plane of loading. The buckling of the beam structures is caused by
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the coupling among bending, twisting and stretching deformations
of the beam member. Therefore, a nonlinear formulation is some-
times required for the accurate behavior prediction of such struc-
tures. The limitation of a linear buckling analysis is the omission
of the prebuckling deformation. The assumption that the lateral
buckling of beams is independent of the prebuckling deformations
is not valid when the ratios of out-of-plane flexural and torsional
stiffness to in-plane flexural stiffness are not small [1]. This effect is
a relevant phenomenon in the analysis of lateral bucklingwhich in-
volves mechanical complications, since structures may experience
large ormoderately large deflections and rotations before buckling
occurs.

In the classical analysis of lateral buckling of thin-walled
beams, analytical solutions for critical loads were evaluated for
metallic [2–4,1,5] and composite materials (for example: [6,7]).
On the other hand, a few closed-form solutions have been
obtained for critical loads considering the prebuckling deflections
of the beam. Vacharajittiphan et al. [8] and Pi and Trahair [9]
obtained an analytical solution to compute the critical loads of a
simply supported doubly symmetric I-beam subjected to uniform
bending. Mohri et al. [10] presented a closed-form solution to
determine the critical load of a simply supported monosymmetric
I-beam section under distributed load. Most of the closed-form
solutions apply to slender beam where the shear deformation
effects have not influence on the buckling behavior. However,
the elastic couplings in an orthotropic laminate emerge from
the material level that exhibits couplings between normal stress
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and shear strain and between shear stress and normal strain.
Shear deformation effect plays an important role in the behavior
of the linear [6,11] and the nonlinear [12,13] stability of thin-
walled composite beams.Machado and Cortínez [11,14] developed
analytical expressions for the lateral buckling of composite and
steel beams, which simultaneously incorporate several essential
effects including higher-order bending–torsional coupling, shear
deformation and warping stiffness.

To the best of the author’s knowledge, there is no publication
available that consider the effects of shear and prebuckling
deformation on the stability response analysis of the thin-walled
composite beams under combined axial and bending loads. This
problem is addressed in this paper. Besides, analytical solutions
are derived for the lateral stability analysis of cross-ply laminated
thin-walled beams, which is an extension of others previously
presented by Machado and Cortínez [11]. A compact closed-form
solution was recently obtained by Mohri et al. [15]. The analytical
expression includes first-order bending distribution, load height
level, prebuckling deflection effects and the presence of axial loads.
However, it is valid for simply supported beam–column non-
shear deformable steel elements. The present model considers a
geometrically nonlinear formulation to study the buckling and
postbuckling behavior of thin-walled composite beams. As a
distinctive feature, the present beam model incorporates, in a full
form, the effects of shear flexibility (bending and warping shear).
Besides, the model is presented for symmetric balanced laminates
and especially orthotropic laminates. In order to perform the
nonlinear analysis the Ritz variational method is used for reducing
the governing equation in terms of generalized coordinates to
analyze the behavior of simply supported beams under different
load conditions. The buckling loads are determined from the
singularity condition of the tangential stiffnessmatrix determinant
of the structure. An incremental-iterative method based on the
Newton–Raphson method combined with constant arc length
is employed for the solution of nonlinear equilibrium equation.
Numerical examples are presented to demonstrate the prebuckling
effects and the efficiency of the proposed technique to investigate
the lateral stability of thin-walled composite beams subjected to
combined loads. The influences of the variation of load height
parameter and fiber angle orientation are investigated. Finally, the
results from the present analysis are compared with previously
available results for various loading conditions.

2. Kinematics

A straight thin-walled composite beamwith an arbitrary cross-
section is considered (Fig. 1). The points of the structural member
are referred to a Cartesian coordinate system (x, ȳ, z̄), where the
x-axis is parallel to the longitudinal axis of the beam while ȳ and
z̄ are the principal axes of the cross-section. The axes y and z
are parallel to the principal ones but having their origin at the
shear center (SC), defined according to Vlasov’s theory of isotropic
beams. Midway through the thickness of each cross-sectional
element is the middle surface. A plane perpendicular to the x-axis
intersects the middle surface at a curve called the contour. The
coordinates corresponding to points lying on the middle line are
denoted as Y and Z (or Ȳ and Z̄). A contour (n, s, x) coordinate
system is definedwith s following the contour, and nperpendicular
to s. This coordinate is introduced on the middle contour of the
cross-section system.

ȳ(s, n) = Ȳ (s)− n
dZ
ds
, z̄(s, n) = Z̄(s)+ n

dY
ds
, (1)

y(s, n) = Y (s)− n
dZ
ds
, z(s, n) = Z(s)+ n

dY
ds
. (2)
On the other hand, y0 and z0 are the centroidal coordinates
measured with respect to the shear center.

ȳ(s, n) = y(s, n)− y0,
z̄(s, n) = z(s, n)− z0.

(3)

The present structural model is based on the following assump-
tions:
(1) The cross-section contour is rigid in its own plane.
(2) The warping distribution is assumed to be given by the

Saint–Venant function for isotropic beams.
(3) Flexural rotations (about the ȳ and z̄ axes) are assumed to

be moderate, while the twist φ of the cross-section can be
arbitrarily large.

(4) Shell force andmoment resultant corresponding to the circum-
ferential stress σss and the force resultant corresponding to the
shear strain in the n–s plane (γns) are neglected.

(5) The radius of curvature at any point of the shell is neglected.
(6) Twisting linear curvature of the shell is expressed according to

the classical plate theory.
(7) The laminate stacking sequence is assumed to be symmetric

and balanced, or especially orthotropic [16].

2.1. Development of the displacement field

According to the hypotheses of the present structural model,
the displacement field proposed in Eq. (4) is based on the principle
of semitangential rotation to avoid the difficulty due to the non-
commutative nature of rotations [12]. In this displacement field,
the torsional twist terms φ are expressed as trigonometric func-
tions according to hypotheses (3). The displacement field is rep-
resented by means of seven degrees of freedom corresponding to
three displacements (u, v and w), three measures of the rotations
(φ, θy and θz) about the shear center axis, ȳ and z̄ axes, respectively,
and a warping variable (θ ) of the cross-section. The displacement
field is expressed in the following form:

ux = uo − ȳ

θz cosφ + θy sinφ


− z̄


θy cosφ − θz sinφ


+ω

[
θ −

1
2


θ ′

yθz − θyθ
′

z

]
+

θzz0 − θyy0


sinφ,

uy = v − z sinφ − y (1 − cosφ)−
1
2


θ2z ȳ + θzθyz̄


,

uz = w + y sinφ − z (1 − cosφ)−
1
2


θ2y z̄ + θzθyȳ


,

(4)

where the prime indicates differentiation with respect to x. The
warping function ω of the thin-walled cross-section is defined
in [12]. The displacement field expression is a generalization of
others previously proposed in the literature as is explained by the
author in [12,14].

The components of Green’s strain tensorwhich incorporates the
large displacement are obtained as explained in [12].

3. Variational formulation

Taking into account the adopted assumptions, the principle of
virtual work for a composite shell may be expressed in the form:∫∫ 

Nxxδε
(0)
xx + Mxxδκ

(1)
xx + Nxsδγ

(0)
xs + Mxsδκ

(1)
xs

+Nxnδγ
(0)
xn


dsdx −

∫∫
(q̄xδūx + q̄yδūy + q̄zδūz)dsdx

−

∫∫
(p̄xδux + p̄yδuy + p̄zδuz)|x=0dsdn

−

∫∫
(p̄xδux + p̄yδuy + p̄zδuz)|x=Ldsdn

−

∫∫∫
(f̄xδux + f̄yδuy + f̄zδuz)dsdndx = 0, (5)
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Fig. 1. General thin-walled section beam and notation for displacement measures.

whereNxx,Nxs,Mxx,Mxs andNxn are the shell stress resultants [12].
The beam is subjected to wall surface tractions q̄x, q̄y and q̄z
specified per unit area of the undeformed middle surface and
acting along the x, y and z directions, respectively. Similarly, p̄x, p̄y
and p̄z are the end tractions per unit area of the undeformed cross-
section specified at x = 0 and x = L, where L is the undeformed
length of the beam. Besides f̄x, f̄y and f̄z are the body forces per
unit volume. Finally, denoting ūx, ūy and ūz as displacements at the
middle line.

4. Constitutive equations

The constitutive equations of symmetrically balanced laminates
maybe expressed in termsof shell stress resultants in the following
form [16]:

Nxx
Nxs
Nxn
Mxx
Mxs

 =


Ā11 0 0 0 0
0 Ā66 0 0 0
0 0 Ā(H)55 0 0
0 0 0 D̄11 0
0 0 0 0 D̄66



ε(0)xx
γ (0)xs
γ (0)xn
κ (1)xx
κ (1)xs

 , (6)

with

Ā11 = A11 −
A2
12

A22
, Ā66 = A66 −

A2
26

A22
,

Ā(H)55 = A(H)55 −


A(H)45

2
A(H)44

,

D̄11 = D11 −
D2
12

D22
, D̄66 = D66 −

D2
26

D22
,

(7)

where Aij,Dij and A(H)ij are plate stiffness coefficients defined
according to the lamination theory presented by Barbero [16]. The
coefficient D̄16 has been neglected because of its low value for the
considered laminate stacking sequence [17].

5. Principle of virtual work for thin-walled beams

Substituting the deformation expressions and the constitutive
equations into Eq. (5) and then integrating with respect to s,
one obtains the one-dimensional expression for the virtual work
equation given by:

LK + LP = 0, (8)

where Lk and Lp represent the virtual work contributions due to the
internal and external forces, respectively.

The Lk and Lp expressions are the same as those presented by
the authors in [12]; in the same way the 1-D beam forces, in terms
of the shell forces, have been defined in [12].

In the present study, the lateral buckling of beams subjected to
combined axial and bending loads is considered. The applied loads
are then reduced to a longitudinal force N̄ , lateral concentrated end
moments M̄y and uniformly distributed load qz . Thus, the external
work Lp is defined by the following relationship:

LP =

∫ L

0
(−qzδw + δφφezqz) dx +

−N̄δu0 + δθyM̄y
x=L
x=0 , (9)

where

qz =

∫
q̄zds +

∫∫
f̄zdsdn, (10)

M̄y =

∫∫
p̄xz̄dsdn, (11)

N̄ =

∫∫
p̄xdsdn, (12)

and ez denotes the eccentricity in the z-direction of the applied
loads from the shear center. The latterwill be called the load height
parameter onwards.

6. The discrete equilibrium problem

In order to perform the nonlinear analysis, the Ritz variational
method is used to reduce the governing equation in terms
of generalized coordinates. From the reduced system, first the
buckling loads are determined from the singularity condition of
the tangential stiffness matrix determinant of the structure. Then,
an incremental-iterative method based on the Newton–Raphson
method combined with constant arc length is employed for the
solution of nonlinear equilibrium equation. The equations of
motion are discretized to analyze the behavior of simply supported
beams under different load conditions.

In this case the displacement modes are approximated by
means of the following functions, which are compatible with the
boundary conditions of the beam:

u = U0
x
L
,

v = v0 sin
π
L
x

, θz = θz0 cos

π
L
x

,

w = w0 sin
π
L
x

, θy = θ y0

cos
π
L
x

,

φ = φ0 sin
π
L
x

, θ = θ0 cos

π
L
x

,

(13)

where U0, v0, w0, θz0, θy0, φ0 and θ0 are the associated displace-
ment amplitudes.

7. Analytical solutions for the combined buckling

In this section, as a special case, the analytical solutions are de-
rived for the lateral buckling of bisymmetric cross-section under
combined axial and lateral loads. When the beam is loaded in its
plane of symmetry it initially deflects. However, at a certain level of
the applied load, the beammay buckle laterally. This phenomenon
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is called lateral buckling, and the load value at which buckling oc-
curs is the critical load. The methodology used to obtain the buck-
ling load considering the prebuckling deformation is similar to the
one developed by Machado and Cortínez in [11]. In this case, the
initial displacement, corresponding to the fundamental state, is
due to the state of combined load. Therefore, the prebuckling dis-
placement components are in the form {u0, v, θz, w, θy, φ, θ}

t
=

{u0, 0, 0, w, θy, 0, 0}t . It is reasonable to assume that the funda-
mental statemay be givenwith sufficient approximation bymeans
of the linearized theory [11]. The prebuckling displacements are
obtained from the linearized version of Eq. (8). In fact, by neglect-
ing all the nonlinear terms, and applying the variational calculus,
the differential equations of equilibrium are obtained and then are
easily solved in a closed form in order to determine the initial dis-
placements.

For the case of simply supported beams subjected to axial and
uniform bending (see Fig. 2), the prebuckling displacements are
given by the following expressions:

u0 =
PEA (x − L), (14)

w =
Mo

2EIy 1 +
P
Py

 Lx − x2

, (15)

θy =
Mo

GSz − P


2EIyGSz 1 +
P
Py

 (L − 2x) , (16)

where, EIy and GSz are the flexural and shear stiffnesses of a com-
posite beam. Py represents the buckling axial load corresponding
to bending mode (see Eq. (22)).

To determine the lateral buckling, considering prebuckling
deformation, the initial displacements ((14)–(16)) are substituted
into Exp. (8), the resultant variational equation is discretized by
means of the trigonometric functions defined in Eq. (13) and then
the tangential stiffness matrix is obtained [18]. This procedure
leads to Eq. (17) (see Box I) for the tangential matrix evaluated in
the fundamental state, where EIy is the flexural stiffness, GSz andGSy are shear stiffnesses of a composite beam. The definitions of
these stiffnesses are given in the Appendix.

The buckling state is given by the condition of singularity of this
matrix [18]:

det(Kt) = 0. (18)

Therefore, a quadratic equation for the external loads are deter-
mined, the solution of which allows obtaining the critical values.

Following the same procedure for a distributed load and
only changing the expression corresponding to the prebuckling
displacement equations (14)–(16), it is possible to get a unified
simple formula for the equivalent moment defined as:

Mcr =

My0 for uniform bending
qzL2/8 for a uniformly distributed load
per unit length qz .

(19)

The explained technique leads to the following unified expression
of the critical moment for both loading cases:

Mcr = C1
1
α

π2

L2
EIz 1 +

P
Pz


1 +

P
Py



×

−C2ez +

α I0L2EIπ2


Pφ + P


1 +

P
Pz

 
1 +

P
Py

 + (C2ez)2

 , (20)
M M
P

L

Fig. 2. Simply supported beams subjected to axial and uniform bending.

where

α =


1 −

EIzEIy


1 − β
Pφ I0EIy


1 +


P − 2.14

P2GSz


×


−

L2

3EIyπ2
+

1GSy −
ηGSz

1 −

EIzEIy


+ δ
EIzGSy π

2

L2


1 −

GSyGSz

0.71 +

GSyGSz 0.29


, (21)

where, I0 is the polar moment of inertia about shear center, and
C1, C2, β and δ are approximate constants presented in Table 1. It is
worth noting that the axial load is in general considered positive in
Exp. (14). In the case of compression load the load value is negative.

Furthermore, Py, Pz , and Pφ are the buckling loads in bending
and torsion of a simply supported composite beam subjected to an
axial load [14].

Pz =

EIz GSyπ2GSyL2 + EIzπ2
, (22)

Py =

EIyGSzπ2GSzL2 + EIyπ2
, (23)

Pφ =
L2GSwGJ + ECwπ2

GJ + GSw
I0
GSwL2 + ECwπ2

 . (24)

The coefficient α represents the influence of the prebuckling
deformation and depends mainly on the relation between the
bending stiffnesses EIz and EIy in the case of uniform bending. For
the other load condition, α also depends on the bending and shear
stiffnesses (δ ≠ 0).

8. Effects of approximations on the buckling load analysis

In this section the effects of approximations in the analyses of
thin-walled composite beams is studied for a simply supported
beam subjected to uniform bending and axial load.

8.1. Neglecting the longitudinal displacements on the prebuckling
deformation

The first case corresponds to ignoring the influence of the axial
displacements on the prebuckling deformation. Therefore, the
initial displacements are given by the following expressions [11]:

w =
Mo

2EIy Lx − x2

, (25)

θy =
Mo

2EIy (L − 2x) . (26)

Following the same procedure explained above, the expression
for the tangential matrix yields Eq. (27) given in Box II. In this
case, expression (20) takes the following form (Exp. (28)), which
is obtained from the condition of singularity of the last matrix
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7)
Kt =



GSy + P
 π2

L2
−

GSyπ
L

0 0

GSy + EIz π2

L2
−


Mo −

PGSz


1 −

EIzEIy −

GJ
4EIy


π

L

ECwπ2Mo

4EIyL2
−

Mo2EIy 1 +
P
Py

 1 −

EIzEIy


+
GJ + GSw π2

L2
+ PI0

π2

L2
−

GSwπ
L

Sym GSw + ECw π2

L2


(1

Box I.
7)
Kt =



GSy + P
 π2

L2
−

GSyπ
L

0 0

GSy + EIz π2

L2
−Mo


1 −

EIzEIy −

GJ
4EIy


π

L

ECwπ2Mo

4EIyL2
−

Mo2EIy

1 −

EIzEIy


+
GJ + GSw π2

L2
+ PI0

π2

L2
−

GSwπ
L

Sym GSw + ECw π2

L2


(2

Box II.
Table 1
Parameters used in Eqs. (20)–(21).

Simply supported beam C1 C2 β δ η

(a) End moments 1 0 0.5 0 4.0
(b) Uniformly distributed load (Mcr = qzL2/8) 1.141 0.459 0.033 0.214 0.071
(Exp. (27) as given in Box II), in the same way as was explained
in the previous section.

Mcr =

EIz π2

L2
Io(Pφ + P)


1 +

P
Pz




1 −
EIzEIy
[

1 −
Pφ Io

2EIy


1 +
PGSy


+
PEIy π

2

L2

] . (28)

Comparing this last approximate formula with Eq. (20), for the
case of bending moments, it is evident the absence of Py, which
represents the buckling loads in vertical flexural mode of a simply
supported composite beam subjected to an axial load. Besides, the
axial force term P2 in the definition of α in Eq. (21) is not present
in the denominator of Eq. (28).

8.2. Classical or linear theory

In this second case, the influence of the prebuckling displace-
ments is neglected. This approximation is valid when the relation
between out-of-plane flexural stiffness and torsional stiffness is
small [19,20]. When the effects of in-plane prebuckling deforma-
tion are not considered, the analysis corresponds to a classical or
linear approximation. Therefore, considering a problem of initial
stresses and disregarding the initial deformation, the expression
for the tangentialmatrix yields Eq. (29) given in Box III: In this case,
Eq. (20) takes the following form:

Mcr =

EIz π2

L2
Io(Pφ + P)


1 +

P
Pz


1 +

PGSy
. (30)
It is clear that the prebuckling term α is not present in this last
approximate expression. The equivalentmoments according to the
linearized theory can be obtained from Eq. (20) by eliminating Py
and considering:

α = 1 +
PGSy . (31)

8.3. Without shear deformation

The influence of shear deformation can be neglected for slender
beams or for some particular stacking sequences where the ratio
between the equivalent elasticity modulus and the transverse
elasticity modulus is low. The reduced form of the buckling load is
the same as Eq. (20), however the definition of α in Eq. (21) takes
the following form:

α =


1 −

EIzEIy


1 − β
Pφ I0EIy


1 −

PL2

3EIyπ2


. (32)

Finally, the expressions of the buckling loads in bending and
torsion of a simply supported composite beam subjected to
an axial load are obtained by neglecting shear stiffnesses from
Eqs. (22)–(24). It is assumed that shear stiffnesses (GSy, GSz andGSw) are extremely larger than bending and warping stiffnesses
(EIy, EIz and ECw). Therefore, the buckling load yields:

Pz = EIz π2

L2
, (33)

Py = EIyπ2

L2
, (34)
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9)
Kt =



GSy + P
 π2

L2
−

GSyπ
L

0 0

GSy + EIz π2

L2
−Mo

π

L
0GJ + GSw π2

L2
+ PI0

π2

L2
−

GSwπ
L

Sym GSw + ECw π2

L2


(2

Box III.
Pφ =
L2GJ + ECwπ2

I0L2
. (35)

8.4. Comparison with existing solutions

As was pointed out in the Introduction of this paper, there is
no publication available that consider the effects of shear and pre-
buckling deformation on the stability response analysis of the thin-
walled composite beams under combined axial and bending loads.
Recently Mohri et al. [15] presented a compact closed-form solu-
tion for the buckling loads of a simply supported beam–column
non-shear deformable steel elements. The analytical expression
includes first-order bending distribution, load height level, pre-
buckling deflection effects and the presence of axial loads. The
bucklingmoments expression derived byMohri et al. [15] is shown
in Eq. (36).

M0,b = C1
π2

L2
EIz


C2ez ±


Iw
Iz


1 +

GJL2

ECwπ2


+ (C2ez)2



×


1 −

P
Py


1 −

P
Pz


1 −

P
Pθ


, (36)

where, the coefficients C1 and C2 used in Eq. (36) are the following:

C1 =
1.14
1 −

Iz
Iy

,

C2 =
0.46
1 −

Iz
Iy


1 −

P
Py


1 −

P
Pz


1 −

P
Pθ

−1

.

(37)

In order to compare these last expressions with the present ones,
the coefficients C1 and C2 are substituted into Eq. (36) and after
some arrangements the resultant expression becomes:

M0,b = 1.14
π2

L2
EIz

1 −
Iz
Iy

 1 −
P
Pz


1 −

P
Py

−0.46ez

+



1 −

Iz
Iy


Iw
Iz


1 +

GJL2

ECwπ2



1 −

P
Py

 
1 −

P
Pz

 
1 −

P
Pθ

−1 + (0.46ez)2

 . (38)
This last expression, developed by Morhi et al. [15], is very simi-
lar to Eq. (20) developed in the present article. The only difference
is in the definition of the coefficient α, which represents the pre-
buckling deformation. In the present formulation α is represented
by Eq. (32), while in the case of Morhi et al. [15] solution α yields:

α = 1 −
Iz
Iy
. (39)
Table 2
Materials considered in the numerical applications.

Properties Glass/epoxy (M1) Graphite/epoxy (M2)

Young’s modules (GPa)
E1 48.3 144
E2 19.8 9.65
Shear’s modules (GPa)
G12 = G13 8.96 4.14
G23 6.19 3.45
Poisson’s ratio
ν12 = ν13 0.27 0.3
ν23 0.60 0.5

Fig. 3. Four layered composite cross-section.

In order to know a little more about this coefficient, the effects of
shear deformation, load height level and the presence of axial loads
are neglected in Eq. (20). Therefore, Eq. (20) is reduced to the fol-
lowing form:

Mcr = 1.14
1
α

π

L


αEIz


GJ + ECw

π2

L2


, (40)

α =


1 −

Iz
Iy


1 − β

GJ
EIy

− β
ECw
EIy

π2

L2


. (41)

These last expressions agree with the closed-form solution ob-
tained by Pi and Trahair [9] for elastic lateral buckling, of beams
made with isotropic materials, considering prebuckling deflec-
tions. It is clear that the prebuckling effect considered in the Pi and
Trahair solution [9] is the same as in the present formulation.

9. Applications and numerical results

The purpose of this section is to apply the present method in
order to study the lateral stability behavior of thin-walled com-
posite beams under combined axial and lateral loads. The numeri-
cal results are obtained for a four layer bisymmetric-I cross-section
(Fig. 3). Material properties corresponding to S2-glass/epoxy (M1)
and AS4/3501 graphite/epoxy (M2) are defined in Table 2.
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Fig. 4. Buckling load of a beam under combined axial and end moments, for a
sequence {0/0/0/0}.

Fig. 5. Buckling load of a beam under combined axial and end moments, for a
sequence {0/90/90/0}.

Fig. 6. Buckling load of a beam under combined axial and end moments, for a
sequence {45/−45/−45/45}.

9.1. Simply supported I-beam subjected to uniform moments

The example considered is a simply supported I-beamsubjected
to axial force and uniform bending moment Mo applied about its
major axis as shown in Fig. 2. The geometrical properties are h =

0.6 m, b = 0.6 m, e = 0.03 m, L = 6 m and the analyzed material
is graphite–epoxy.

The effect of prebuckling deformation on the lateral buckling
is shown in Figs. 4–6, for a sequence of lamination {0/0/0/0},
{0/90/90/0} and {45/−45/−45/45}, respectively. The analytical
buckling moments considering and neglecting the prebuckling
deflections were calculated by means of Eqs. (20)–(21) along with
Table 1, and bymeans of Eqs. (30)–(31), respectively. In the figures
and tables, the buckling values determined by the linear theory
(without considering prebuckling deformations) are denoted by
LB and the values obtained by means of the present model with
NLB (accounting for prebuckling deflections). The critical loads
computed by Eq. (28), which iswithout longitudinal displacements
on the prebuckling deformation, are denoted by NLP. The bending
load M is scaled with the value of the critical load considering the
axial load P = 0 (Mcr for the NLB model). In the same way, the
axial load P is scaledwith the first critical load value corresponding
to the case of M = 0 (Pcr = Pz). The buckling loads for some
particular cases are shown in Table 3.

The buckling moments computed from the linear stability (LB)
analysis present a very conservative behavior compared with
those computed from the nonlinear stability (NLB) analysis. The
numerical results corresponding to the NLP model (Eq. (28)),
overestimates the buckling load for the lamination sequences
{0/0/0/0} and {0/90/90/0}, while underestimates the critical
load for a lamination {45/−45/−45/45}. Moreover, the influence
of the geometrically nonlinear effect on the lateral buckling
loads decreases as the moment ratio M/Mcr and the prebuckling
deformation decrease, and it is larger when there is no axial load.
The lamination {0/0/0/0} presents the higher critical loads in
all the cases analyzed. On the other hand, the shear deformation
effect reduces significantly the buckling load values. This effect is
larger for unidirectional fibers and insignificant for the sequence of
lamination {45/−45/−45/45}. For this last lamination the curves
with and without shear deformation coincide for both analyses
(NLB and LB).

The buckling loads computedwith the presentmodel and those
obtained by using the classical theory LB without shear deforma-
tion agree in some cases. For example, for a ratio P/Pcr = 0.2 and
a sequence of lamination {0/0/0/0} (see Fig. 4), both formulations
presentMcr = 10.97 MNm. The same behavior is observed for the
sequence of lamination {0/90/90/0} (see Fig. 5), where the same
bucklingmoment is obtained for P/Pcr = 0.55 (Mcr = 3.70MNm).

When the beam is loaded in the vertical plane, the displace-
ments of this situation correspond to the prebuckling state, and
then at a certain level of the applied load, the beammay buckle lat-
erally, while the cross-sections of the beam rotate simultaneously
about the beam’s axis. When the buckling load is reached, the be-
havior of the beam is initially flexural–torsional and corresponds to
the secondary or equilibriumpath. In order to investigate the preci-
sion of the analytical bucklingmoments, the postbuckling response
is analyzed for different axial load values. The initial postbuckling
paths corresponding to the displacement amplitudes u0, v, w and
φ are shown in Figs. 7 and 8, for an axial load P = 0 and P = 0.5Pcr,
respectively. In both cases the postbuckling equilibrium paths are
stable and symmetric. The numerical bifurcations observed in the
figures agree with the buckling loads obtained bymeans of the an-
alytical closed-form solutions shown in Table 3. The initial post-
buckling curves are similar for both load cases. However, when the
beam is subjected to the axial load the prebuckling curves have a
stiffer behavior.

9.2. Influence of the cross-section on the prebuckling behavior

The influence of the cross-section on the geometrically nonlin-
ear effects is analyzed in this example. The beam is subjected to
the same load conditions as that in the previous section. In this
case, the width of the flanges is decreased to the value of b =

0.3 m, while the other cross-section dimensions and material are
the same. The sequence of lamination used is {0/90/90/0} and the
beam length is L = 4 m.

The variations of buckling loads are shown in Fig. 9, where
the critical values obtained by the present nonlinear formulation
are compared with the classical predictions. In comparison with
the previous example, the discrepancy between both formulations,
due to the prebuckling deformations, is lower. This behavior is
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Table 3
Buckling loads considering different models (Mcr × 106 N m).

Load Buckling analysis {0/0/0/0} {0/90/90/0} {45/−45/−45/45}

Pz 33.18 19.83 4.43
M = 0 Pφ 33.93 20.58 8.51

Py 49.71 38.59 15.21
P = 0 Mcr 13.53 7.71 2.19

NLB 6.74 4.09 1.49
P = 0.5Pcr NLB without shear 10.27 5.22 1.49

LB 6.12 3.42 1.12
LB without shear 7.94 4.00 1.13
NLP 7.75 4.36 1.44
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Fig. 7. Postbuckling response of a beam under end moments, for a sequence
{0/0/0/0}.
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Fig. 8. Postbuckling response of a beam under end moments and axial force P =

0.5Pcr , for a sequence {0/0/0/0}.

due to the relation between the flexural stiffnesses. In this case
the ratio is EIz/EIy = 0.063, while in the previous section it wasEIz/EIy = 0.286. The value of α approximates to one when this
relation decreases (considering an axial force P = 0) and Eqs. (20)
and (30) become similar.

The load–displacement curves are shown in Fig. 10, for three
axial force cases. The stability behavior is represented by the
vertical displacement w (corresponding to the load in-plane
movement) and by the torsional twist φ (corresponding to the
postbuckling response). The axial load effect reduces considerably
the values of the equilibrium path curves, which are stable and
symmetric. This decrease is proportional to the increase of the axial
load. This effect keeps constant for large displacement values on
the equilibrium path.

9.3. Simply supported I-beam subjected to distributed load

A simply supported I-beam under a combined axial and
distributed load is analyzed. The distributed load can be applied
to the top flange, on the shear center, and to the bottom flange
(see Fig. 11). Therefore, the load height parameter effect on the
buckling and postbuckling behavior can be analyzed. The cross-
Fig. 9. Lateral buckling resistance influenced by an axial force, for a sequence
{0/90/90/0}.
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Fig. 10. Influence of the axial force on prebuckling and initial postbuckling paths.

sections are the same as that in the previous example and the
beam length is L = 6 m. In this case, two composite materials
are considered in the analysis (see Table 2); the stacking sequence
{0/0/0/0} is considered.

The load–twisting curves are shown in Figs. 12 and 13, cor-
responding to graphite/epoxy and glass/epoxy materials, respec-
tively. The bifurcation point depends on the load height parameter
and the axial load. In Table 4, the numerical bifurcation loads are
compared with the analytical buckling loads obtained by means of
Eq. (20). The buckling values obtained with the analytical expres-
sion are, in general, in good agreement with the bifurcation loads
observed in Figs. 12 and 13. There is a little discrepancy between
both models for the stiffer case, e.g., when the load is applied on
the bottom flange for graphite/epoxy material and P = 0.

The effect of the axial load reduces the bifurcation points and
the equilibrium curve values. The influence of this effect is larger
when the distributed load is applied on the bottom flange and
is smaller for the load applied on the top flange (the lowest
buckling load case). Furthermore, comparing both materials, it can
be observed that the stability behavior is similar and the load axial
effect is higher when the graphite/epoxy material is employed.
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Fig. 11. Simply supported beam subjected to combined axial and distributed loads applied in different heights.
Table 4
Comparison of buckling loads qz (MN/m).

Axial load Load height Material graphite/epoxy Material glass/epoxy
Numerical (Fig. 12) Exp. (20) Numerical (Fig. 12) Exp. (20)

ez = h/2 0.25 0.27 0.12 0.12
P = 0 ez = 0 0.42 0.42 0.18 0.18

ez = −h/2 0.92 0.67 0.27 0.26
ez = h/2 0.15 0.17 0.08 0.08

P = 0.5Pcr ez = 0 0.25 0.26 0.11 0.11
ez = −h/2 0.40 0.41 0.15 0.16
1.2

1
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0.6
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Fig. 12. Influence of the load height parameter on the postbuckling curves,
Graphite/epoxy material.
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Fig. 13. Influence of the load height parameter on the postbuckling curves,
Glass/epoxy material.

On the other hand, the load–deflection curvesw, corresponding
to the prebuckling and postbuckling paths, are shown in Figs. 14
and 15, considering graphite/epoxy and glass/epoxy materials,
respectively. The axial load effect reduces the prebuckling
displacement and this effect is more significant when the load
is applied on the bottom flange, the same behavior observed in
the buckling and the postbuckling response. The reduction in
the postbuckling curve values is larger when the graphite/epoxy
material is used (see Fig. 14). Finally, the smaller prebuckling
0.8

1

0.6

0.4
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/m
)
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Fig. 14. Influence of the load height parameter on the prebuckling displacements,
Graphite/epoxy material.
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Fig. 15. Influence of the load height parameter on the prebuckling displacements,
Glass/epoxy material.

displacement corresponds to the glass/epoxy material, when the
beam is subjected to a combined axial and distributed load applied
on the top flange (see Fig. 15).

9.4. Comparison with existing solutions

For verification purposes, an isotropic simply supported beam
subjected to a combined axial and distributed load is considered.
The material properties are assumed to be E = 210 GPa and
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Table 5
Lateral buckling moments of isotropic beams for various loading cases (Mcr × 106 N m).

Load height P/Pcr Numeric (Abaqus)
Ref. [15]

Analytic
Ref. [15]

Present with shear Eqs. (20)
and (21)

Present without shear Eqs. (20)
and (32)

Analytic Eq. (38)

0.0 118.13 119.88 121.23 122.16 121.80
ez = h/2 0.2 98.73 101.97 102.51 103.43 102.92

0.5 74.81 75.25 74.32 75.07 74.36
0.75 49.55 50.51 49.52 49.52 48.80
0.0 238.97 241.33 237.27 237.32 240.44

ez = −h/2 0.2 190.22 191.64 189.57 189.60 188.84
0.5 124.20 124.88 119.84 119.85 119.88
0.75 71.64 72.33 68.95 68.96 68.36
G = 80.77 GPa. The geometrical properties of the I-beam are
h = 0.195 m, b = 0.2 m, L = 6 m and the thicknesses of the
flange and the web are 0.01 m and 0.0065 m, respectively.

The results using the present analysis are compared with
previously available results [15] in Table 5, for various loading
conditions. The numerical simulations presented in Ref. [15]
correspond to a shell finite element formulation (S8R5) obtained
by means of Abaqus code. The numerical buckling loads were
obtained following the fundamental path of the nonlinear behavior
of the beam. The lateral buckling moments obtained with the
analytical solution (Eq. (38)) developed by Mohri et al. [15], are
shown in Table 5. The analytical solutions have been validated
for different values of the axial load P , respectively, equal to
0.0, 0.2Pcr, 0.5Pcr and 0.75Pcr. The axial critical load obtained by
Mohri et al. [15], for a simply supported beam–column non-shear
deformable steel elements, is Pz = 767.64 kN (Eq. (33)). While the
buckling load obtained with the present model is Pz = 766.05 kN
(Eq. (22)). The difference between both models is due to the shear
deformation effect.

It is seen that the results of the present formulation are in good
agreement with the results presented in Ref. [15]. It is important
to notice that the moments computed from Eq. (38) present a little
discrepancy with those presented as analytic in Ref. [15].

This discrepancy can be due to how the sectional characteristics
are computed.

10. Conclusions

In this paper the stability of thin-walled composite beam
subjected to combined axial and lateral loads has been analyzed.
Analytical solutions for the buckling load of simply supported
beam are obtained and compared with the numerical results.
The model used to obtain the analytical expressions is based on
a geometrically nonlinear formulation which incorporates some
non-conventional aspects. The effects of shear flexibility, higher-
order bending–torsional coupling and warping stiffness are taken
into account in the beam model. The theory is formulated in
the context of large displacements and rotations, considering
moderate bending rotations and large twist. Composite is assumed
to be made of symmetric balanced laminates and especially
orthotropic laminates. The effect of approximations in lateral
buckling analysis of thin-walled beams is analyzed. Approximate
analytical expressions are obtained to study the influence of axial
load on the prebuckling displacements, shear deformation and
the geometrically nonlinear effects of a simply supported beam
subjected to combined axial and bending loads.

The buckling loads obtained analytically are, in general, in good
agreement with the bifurcation loads observed in the postbuckling
response. The comparison with available results was satisfactory.
Therefore, the present closed-form solution is appropriate for
predicting lateral buckling loads.

The effect of combined load reduces the lateral buckling load.
The inclusion of the right prebuckling displacement is essential to
get an accurate buckling load. The buckling moments computed
from the classical theory present a very conservative behavior. The
influence of this geometrically nonlinear effect decreases when
the axial load increases. On the other hand, when the axial load
is neglected in the prebuckling displacements, the lateral buckling
load value is overestimated.

The initial postbuckling curves are stable and symmetric in all
the cases analyzed. The values corresponding to the equilibrium
path are reduced with the influence of the axial load. The shapes
of the postbuckling curves are similar with the effect of the
axial load. However, the curves corresponding to the prebuckling
displacement have a stiffer behavior when the beam is subjected
to the combined load case. It is well known that the buckling and
the postbuckling behavior are influenced by the fiber orientation
of the composite material. In this case, the effect of axial load is
larger when the fibers are oriented in the longitudinal direction
{0/0/0/0}. Finally, from the analysis of the load height parameter
effect, on the buckling and the postbuckling response, it is
demonstrated that the combined load effect is larger for the stiffest
load condition, which is when the lateral load is applied on the
bottom beam flange.
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Appendix

The constitutive relations between the generalized forces and
generalized strains are expressed, for a bisymmetric beam, in the
form Eqs. (A.1)–(A.3) as given in Box IV, where {fg} is the vector of
generalized forces, {∆} is the vector of the generalized strains and
[K ] is a symmetric matrix (12 × 12) (see Box V).
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Ā11ω

2
p + D̄11l2


ds

GSy =

∫ 
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
Y 2

+ Z2 Z̄2
− 4D̄11Z̄Y ′r


ds

K9,11 =

∫ 
Ā11


Y 2

+ Z2 Ȳ 2
+ 4D̄11Ȳ Z ′r


ds

K9,12 =

∫ 
Ā11


Y 2

+ Z2 Ȳ Z̄ − 2D̄11

Ȳ Y ′

− Z̄Z ′

r

ds

K10,10 =

∫ 
Ā11Z̄4

+ 4D̄11Z̄2Y ′2 ds
K10,11 =

∫ 
Ā11Z̄2Ȳ 2

− 4D̄11Z̄Y ′Ȳ Z ′

ds

K10,12 =

∫ 
Ā11Z̄3Ȳ + 2D̄11


Ȳ Y ′

− Z̄Z ′

Z̄Y ′


ds

K11,11 =

∫ 
Ā11Ȳ 4

− 4D̄11Ȳ 2Z ′2 ds
K10,12 =

∫ 
Ā11Ȳ 3Z̄ − 2D̄11


Ȳ Y ′

− Z̄Z ′

Ȳ Z ′


ds

K12,12 =

∫ 
Ā11Z̄2Ȳ 2

+ D̄11

Ȳ Y ′

− Z̄Z ′
2

ds

(A

Box VI.
εD9 =
φ′2

2
,

εD10 =
θ ′2
y

2
,

εD11 =
θ ′2
z

2
,

εD12 = θ ′

yθ
′

z . (A.4)

The elements of the symmetricmatrix [K ] are given by the contour
integrals (see Box VI), where

Y ′
=

dY
ds

; Z ′
=

dZ
ds
. (A.7)
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